函数是周期为2的周期函数解读
函数周期知识点总结
函数周期知识点总结一、函数的周期性函数的周期性是指函数在特定区间内具有重复性的性质。
如果函数在一个区间内满足f(x+T)=f(x),其中T为正数,则称函数f(x)在该区间上有周期T,T称为函数f(x)的周期。
函数的周期性是函数中非常重要的一种性质,对于周期函数而言,其周期性是其定义的本质。
二、周期函数的性质1. 周期函数的定义周期函数是指函数的取值在每个周期内具有重复性。
周期函数的周期是指函数在一个区间内具有重复性。
设f(x)是定义在一定区间上的函数,如果存在正数T,使得任意x∈[a,a+T],都有f(x+T)=f(x),则称函数f(x)为周期函数,T为周期。
周期函数的周期一般是不唯一的。
2. 周期函数的图像特点周期函数的图像表现出在一个周期内具有重复性的特点。
周期函数的图像通常是具有规律的波动,在一定周期内呈现出反复的形状。
3. 周期函数的基本性质周期函数在一个周期内具有相同的性质,包括最大值、最小值、零点等。
周期函数还具有周期平移、镜像对称等性质。
周期函数的和、差、积、商也是周期函数。
4. 周期函数的分类周期函数根据周期的不同可以分为正弦函数、余弦函数、正切函数、余切函数等等。
根据周期的形式还可以分为奇函数和偶函数。
5. 周期函数的应用周期函数在自然界和各种科学领域有着非常广泛的应用,如物理学、工程学、生物学等等。
周期函数的研究对于理解自然规律和解决实际问题具有重要的意义。
三、常见周期函数1. 正弦函数正弦函数是最基本的周期函数之一。
其函数表达式为y=Asin(Bx+C)+D,其中A,B,C,D为常数,A为振幅,B为角频率,C为相位差,D为垂直位移。
正弦函数的图像是一条连续的曲线,具有周期性。
2. 余弦函数余弦函数也是最基本的周期函数之一。
其函数表达式为y=Acos(Bx+C)+D,其中A,B,C,D为常数,A为振幅,B为角频率,C为相位差,D为垂直位移。
3. 正切函数正切函数的函数表达式为y=A tan(Bx+C)+D,其中A,B,C,D为常数,A为振幅,B为角频率,C为相位差,D为垂直位移。
周期为2 的周期函数展开成傅里叶级数
谢谢大家!本课件由王科设计、开发 * 第一节函数及其图形自然界的许多现象都具有周期性,如心脏的跳动、肺的运动、给我们居室提供动力的电流、电子信号技术中常见的方波、锯齿形波和三角波以及由空气的周期性振动产生的声波等等。
内容简介 5.1 周期为的周期函数展开成傅里叶级数一、案例二、概念和公式的引出三、进一步的练习一、案例 [矩形波的叠加] 周期函数可表示为f T+t f t ,T为函数 F t 的周期。
如物理上“正弦振动”或“简谐振动”的运动方程为其中A为振幅,为角频率,为初相。
电子技术中常用的周期T的矩形波可看成若干个正弦波叠加而成,如下图所示:二、概念和公式的引出三角级数由正弦或余弦函数组成的无限多项的和,称为三角级数。
它的一般形式为其中为常数。
傅里叶级数存在,则称它们为函数f x 的傅里叶系数,由傅里叶系数组成的三角级数设f x 是周期为的周期函数,如果称为傅里叶级数。
收敛定理的周期函数f x 满足条件(狄利克雷充分条件)若周期为(1)在区间连续或只有有限个第一类间断点;(2)在区间只有有限极值点,则函数 f x 的傅里叶级数收敛,且(1)当是连续点时,级数收敛于f x ;(2)当是间断点时,级数收敛于三、进一步的练习练习1 [脉冲矩行波] 如右图所示,求此函数的脉冲矩形波的信号函数 f x 是以为周期的周期函数,它在的表达式为傅里叶级数展开式。
解用傅里叶系数公式计算傅里叶系数如下: 因为函数f x 是奇函数,所以f x cosnx是奇函数,因此fx cosnx 上积分为零.于是于是,函数f x 的傅立叶级数展开式为由收敛定理知函数f x 在范围内与级数相等,即当此函数的傅立叶级数收敛情况如下图所示.当n分别1,2,3,6取时,傅立叶级数的部分和Sn x 图形与函数f x 的方波逼近的情况,类似于本章开始演示的图形.时,傅立叶级数收敛于练习2 [脉冲三角信号] 已知脉冲三角信号f x 是以为周期的周期函数,它在的表达式为如右图所示,将函数 f x 展开成傅里叶级数。
函数的周期性解读
函数的周期性一、正弦函数的周期三角函数,以正弦函数 y = sin x 为代表,是典型的周期函数. 幂函数 y = x α 无周期性,指数函数 y = a x 无周期性,对数函数 y =log a x 无周期,一次函数 y = kx +b 、二次函数 y = ax 2+bx +c 、三次函数 y = ax 3+bx 2 + cx +d 也无周期性.周期性是三角函数独有的特性.1、正弦函数 y =sin x 的最小正周期在单位圆中,设任意角α的正弦线为有向线段MP . 正弦函数的周期性动点P 每旋转一周,正弦线MP 的即时位置和变化方向重现一次. 同时还看到,当P 的旋转量不到一周时,正弦线的即时位置包括变化方向不会重现.因此,正弦函数y =sin x 的最小正周期2π.2、y =sin (ωx )的最小正周期设ω>0,y =sin (ωx )的最小正周期设为L .按定义 y = sin ω(x +L ) = sin (ωx + ωL ) = sin ωx . 令ωx = x ' 则有 sin (x ' + ωL ) = sin x ' 因为sin x 最小正周期是2π,所以有ωωπ2π2=⇒=L L例如 sin2x 的最小正周期为π2π2= sin2x 的最小正周期为π421π2=3、正弦函数 y =sin (ωx +φ) 的周期性对正弦函数sin x 的自变量作“一次替代”后,成形式y = sin (ωx +φ). 它的最小正周期与y = sin ωx 的最小正周期相同,都是ωπ2=L .如⎪⎭⎫⎝⎛+=2π3sin x y 的最小周期与 y = sin (3x )相同,都是3π2.于是,余弦函数⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-==2πsin 2πsin cos x x x y 的最小正周期与sin x 的最小正周期相同,都是2π.二、复合函数的周期性将正弦函数 y = sin x 进行周期变换x →ωx ,sin x →sin ωx后者周期变为)0(π2>ωω而在以下的各种变换中,如(1)初相变换sin ωx → si n ( ωx +φ);(2)振幅变换sin (ωx +φ)→ A sin ( ωx +φ);(3)纵移变换 A si n ( ωx +φ) → A si n ( ωx +φ)+m ;后者周期都不变,亦即 A si n ( ωx +φ) +m 与si n (ωx )的周期相同,都是ωπ2.而对复合函数 f (sin x )的周期性,由具体问题确定.1、复合函数 f (sin x ) 的周期性 【例题】 研究以下函数的周期性: (1)2 sin x ; (2)x sin(2)x sin 的定义域为[2k π,2k π+π],值域为[0,1],作图可知, 它是最小正周期为2π的周期函数.【解答】 (1)2sin x 的定义域为R ,值域为⎥⎦⎤⎢⎣⎡2 ,21,作图可知,它是最小正周期为2π的周期函数. 【说明】 从基本函数的定义域,值域和单调性出发,通过作图,还可确定,log a x ,sin x ,xsin 1, sin (sin x )都是最小正周期2π的周期函数.2、y = sin 3 x 的周期性对于y = sin 3x =(sin x )3,L =2π肯定是它的周期,但它是否还有更小的周期呢? 我们可以通过作图判断,分别列表作图如下.图上看到,y = sin 3x 没有比2π更小的周期,故最小正周期为2π.3、y = sin 2 x 的周期性对于y = sin 2x = (sin x )2,L =2π肯定是它的周期,但它的最小正周期是否为2π? 可以通过作图判定,分别列表作图如下.图上看到,y = sin 2x 的最小正周期为π,不是2π.4、sin 2n x 和sin 2n -1 x 的周期性y = sin2x 的最小正周期为π,还可通过另外一种复合方式得到. 因为 cos2x 的周期是π,故 sin 2x 的周期也是π.sin 2x 的周期,由cos x 的2π变为sin 2x 的π. 就是因为符号法“负负得正”所致.因此,正弦函数sin x 的幂符合函数sin m x ,当m =2n 时,sin m x 的最小正周期为π;m = 2n –1时,sin m x 的最小正周期是2π.5、幂复合函数举例【例1】 求 y =|sin x |的最小正周期.【解答】 x x y 2sin |sin |==最小正周期为π.【例2】 35)(sin x y =求的最小正周期.【解答】 5335)(sin )(sin x x =最小正周期为2π.【例3】 求52)(sin x y =的最小正周期.【解答】5252)(sin )(sin x x =最小正周期为π.【说明】 正弦函数sin x 的幂复合函数pq x )(sin . 当q 为奇数时,周期为2π;q 为偶数时,周期为π.三、周期函数的和函数两个周期函数,如 sin x 和 cos x ,它们最小正周期相同,都是 2π. 那么它们的和函数,即 si nx + cos x 的最小正周期如何?)4πsin(2cos sin +=+x x x和函数的周期与原有函数的周期保持不变. 这个结论符合一般情况.对于另一种情况,当相加的两个函数的最小正周期不相同,情况将会如何?1、函数 sin x + sin2 x 的周期性sin x 的最小正周期为2π,sin2x 的最小正周期是π,它们之间谁依赖谁,或依赖一个第三者? 列表如下.表上看到函数sin x +sin2x 的最小正周期是2π.2、函数 sin x + sin2x 的周期性依据上表,作sin x +sin2x 的图像如右.从图上看到,函数的最小正周期为2π. 由si nx ,sin2x 的最小正周期中的大者决定,因为前者是后者的2倍.从图上看到,sin x +sin2x 仍然是个“振动函数”,但振幅已经不是常数了.3、函数sin x +sin32x 的周期性 sin x 的最小正周期为2π,sin 32x 的最小正周期是3π. 它们之间的和sin x + sin 32x 的最小正周期也由“较大的”决定吗?即“和函数”的周期为3π吗?不妨按周期定义进行检验. 设2π0=x 则x 0 +3π=π32π+ 2312π32sin 2πsin 2π)(0+=⎪⎭⎫⎝⎛∙+=⎪⎭⎫ ⎝⎛=f x f )(23127π32sin 27πsin π32ππ)3(00x f f x f ≠+-=⎪⎭⎫⎝⎛∙+=⎪⎭⎫ ⎝⎛+=+因此3π不是sin x + sin32x 的最小正周期.通过作图、直观看到,sin x +sin32x 的最小正周期为6π,即sin x 和sin 32x 最小正周期的最小倍数.四、周期函数在高考中三角函数是高考命题的重要板块之一,小题考,大题也考,比分约占高考总分的七分之一,与立体几何相当. 与立几不同的是,它还与函数、方程、不等式、数列、向量等内容综合.正弦函数是三角函数的代表,而周期性又是正弦函数的特性. 关系到正弦函数的试题,有2种形式. (1)直接考,求正弦函数的最小正周期.(2)间接考,考周期在正弦函数性质中的应用. 求单调区间,求最值,简单方程的通解等.1、求正弦函数的周期【例1】 函数 y =|sin 2x|的最小正周期为 (A )2π(B )π (C )2π (D )4π 【解答】 2sin |2sin |2x x y == 最小正周期是2sinx最小正周期的一半,即2π. 答案为(C ) 【说明】 图象法判定最简便,|sin x |的图象是将sin x 的图象在x 轴下方部分折到x 轴上方去. 倍角法定判定最麻烦 x xy cos 212sin2-== 【解答】 (1)y = 2cos2x + 1的最小正周期由cos2x 决定2、求正弦函数的周期【例2】 (1)y =2cos 2x +1的最小正周期为 .(2)y =|sin x + cos x |的最小正周期为 .【解答】 (1)y = 2cos 2x + 1的最小正周期由cos 2x 决定,故答案为π.(2))(sin 2|)sin(|2|cos sin |2ϕϕ+=+=+x x x x 故答案为π.【说明】 )(sin cos 22ϕ+x x 都可看作sin x 的幂函数的复合函数.3、函数周期性应用于求值【例题】 f (x )是R 上的偶函数,且是最小正周期为π的周期函数.【解答】 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛3π 3π 32π 35π f f f f 233πsin == 【说明】 周期性应用于区域转化. 将“无解析式”的区域函数转化到“有解析式”的区间上求值.若 时 f (x ) = si nx 试求 的值.4、函数周期性应用于求单调区间【例题】 x ∈R ,求函数 y =sin 2x + 3sin x cos x +2cos 2x 的单调增区间.【解答】 )2cos 1(2sin 2322cos 1x x x y +++-=23)6π2sin(232cos 212sin 23++=++=x x x 函数的最小正周期为π. 令 2π6π22π≤+≤-x 得 6π3π≤≤-x 因为函数周期为π,故函数的单调增区间为⎥⎦⎤⎢⎣⎡+-6ππ ,3ππk k .【说明】 先求包含零点的增区间,再用最小正周期求单调增区间的集合.周期函数在高考中5、周期性应用于求函数零点【例题】 已知函数412sin 2cos sin cos sin )(2244--++=x x x x x x f .【解答】 41)cos sin 1(2cos sin 1412sin 2cos sin cos sin )(222244---=--++=x x x x x x x x x x fx x 2sin 4141412sin 4121+=-+=令 02s i n4141=+x 得 4π=x 故交点横坐标的值的集合为4π=x .【说明】 先求绝对值最小的解,再利用最小正周期求“通解”.五、高考史上的周期大难题高考史上第一次“周期大难题”出现在恢复高考后的第3年,即1980年的理科数学卷上.本题排在该卷的第六大题上. 在有十个大题的试卷上,这是个中间位置,然而,从当年的得分情况来看,本题的难度超过了包括压轴题和附加题在内的所有题目. 这点为命题人事先未能预料. 后来分析,该题的难点有三 .(1)函数抽象,导致周期中含有参数;(2)求参数范围,与解不等式综合;(3)求最小正整数解,连命题人自拟的“标答”都含糊不清. 20多年来数学界质疑不断.【考题】设三角函数)3π5πsin()(+=k x f ,其中k ≠0.(1)写出 f (x )极大值M 、极小值m 与最小正周期;(2)试求最小的正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数 f (x )至少有一个值是M 与一个值是m .【解答】 (1) M =1,m = -1,k k T π10π25=⨯=.(2)f (x )在它的每一个周期中都恰好有一个值是M 与一个值是m .而任意两个整数间的距离都≥1因此要使任意两个整数间函数f (x )至少有一个值是M 与一个值是m ,必须且只须使 f (x )的周期≤1即:k =32就是这样的最小正整数. .4.31 π10 ,1 π10 =≥≤k k六、高考史上的周期大错题中学教材上的周期函数,一般都是简单和具体的函数. 关于最小正周期的求法,也是一些感性的结果;没有系统和完整“最小正周期”的系统研究.然而,随着“抽象函数”的不断升温,对周期函数周期的考点要求越来越高. 2006年福建理数卷出现的“周期大错题”正是这种盲目拔高的必然结果.【例题】 f (x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是A.2B.3C.4D.5【说明】 这是2005年福建卷(理)第12题,命题组提供的答案是D ,即答案为5. 答案D 从何而来?以下,就是“D”的一种解法.【解答】 f (x )周期为3,由 f (2)=0,得 f (5) = f (2)=0,得 f (-1)= f (2-3) = f (2)=0,得 f (-4) = f (2-6) = f (2)=0f (x )为奇函数,得 f (1) = - f (-1) =0 f (4)= - f (-4)=0,得 f (-0)= - f (0),得 f (0)=0 f (3)= f (3+0)= f (0)=0于是,求得 f (x )=0的解为:1、2、3、4、5. 共5个解,答案为D. 【讨论】 除了上述解法得 f (x )=0的5个解外,还有如下的解.根据方程 f (x )=0的定义, x = 1.5 和 x =4.5 也是方程的解,证明如下: 由 f (x )的周期性,知 f (-1.5)= f (1.5) (1) 由 f (x )的奇偶性,知 f (-1.5) = - f (1.5) (2) 从而有 f (1.5)=0,f (4.5) = f (1.5)=0.所以,1.5和4.5也是方程 f (x )=0的解.于是,方程的解共有7个:即是1、1.5、2、3、4、4.5、5. 【思考】 按上面讨论的结果,方程 f (x ) = 0的解至少有7个. 而原题的四个选项支中均没有这个答案. 命题人给定的答案D 是错的. 高考史上的周期大错题【实验检验】 f (x )同时满足4个条件:(1)定义在R 上;(2)奇函数;(3)周期为3;(4)f (2) =0. 据此,我们找到 f (x )的一个具体例子:x x x f 3π4sin 3π2sin)(+= 并在区间(0,6)上找到 f (x )=0的7个解,列表如下:这7个解即是1,1.5,2,3,4,4.5,5.函数x x x f 3π4sin 3π2sin)(+=在一个周期[0,3]上的图像如右. 图像与 x 轴有5个交点,故在[0,6]有9个交点,从而在(0,6)上有7个交点.【反思】 命题人的错误自然出在疏忽二字上. 实在地,本题较难,首先难倒了命题人自己.严格地讲,试题“超纲”. 对两个周期函数的和函数,其最小正周期是它们的“最小公倍数”——这本身就没有进行过证明,对某些具体函数可以具体分析,但对抽象函数来讲,却没有理论依据. 而本题,又恰恰是个抽象函数,而且是个综合问题. 命题出错似乎是必然的.。
求函数f(x)周期的几种常见方法解读
求函数f(x)周期的几种常见方法函数的周期性是函数的一个重要性质.对一般函数f(x)的周期,不少中学生往往不知从何入手去求.为了加深对函数f(x)周期概念的理解,本文以实例来说明求函数f(x)周期的几种常见方法,供读者参考.1 定义法根据周期函数的定义以及题设中f(x)本身的性质推导出函数的周期的方法称为定义法.(1)∴f(x)为周期函数,且2a是它的一个周期.注:如果题设函数方程中只有一边含有不为零的常数a,另一边与a无关,这时周期T应取决于a,假设T能被a整除,就分别试算f(x+2a),f(x+3a),f(x+4a),…,当出现f(x+T)=f(x)(T≠0)的形式时,就可知T是f(x)的周期.周期函数,若是,求出它的周期;若不是,说明理由.(1)∴f(x+2a)=f[(x+a)+a](2)∴f(x)为周期函数,3a是它的周期.2 特殊值法当题设条件中有f(m)=n(m,n为常数)时,常常以此条件为突破口,采用特殊值法解即可奏效.f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.∴f(x)为周期函数,2π是它的一个周期.3 变量代换法例4设函数f(x)在R上有定义,且对于任意x都有f(x+1995)=f(x+1994)+f(x+1996),试判断f(x)是否周期函数.若是,求出它的一个周期;若不是,说明理由.解在f(x+1995)=f(x+1994)+f(x+1996) (x∈R)中,以x代x +1995,得f(x)=f(x-1)+f(x+1);(1)在(1)中以x+1代x,得f(x+1)=f(x)+f(x+2).(2)(1)+(2),得f(x-1)+f(x+2)=0,∴f(x-1)=-f(x+2).(3)在(3)中以x+1代x,得f(x)=-f(x+3);(4)在(4)中以x+3代x,得f(x+3)=-f(x+6).(5)将(5)代入(4),得f(x+6)=f(x).∴f(x)为周期函数,6是它的一个周期.4 递推法f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.(1)在(1)中以x+2代x,得f(x+4)=f(x+6)+f(x+2).(2)(1)+(2),得f(x)+f(x+6)=0,∴f(x)=-f(x+6).(3)在(3)中以x+6代x,得f(x+6)=-f(x+12).(4)(4)代入(3),得f(x+12)=f(x).∴f(x)为周期函数,12是它的一个周期.5 消去法例6若函数f(x)定义在R上,且对一切实数x,都有f (5+x)=f (5-x),f (7+x)=f (7-x),试判断f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.解在f(5+x)=f(5-x)中以5-x代x,得f(x)=f(10-x);(1)在f(7+x)=f(7-x)中以7-x代x,得f(x)=f(14-x).(2)由(1)和(2),得f(10-x)=f(14-x).(3)在(3)中以10-x代x,得f(x+4)=f(x).∴f(x)是周期函数,4为它的一个周期.6 结构类比法f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.解:可视sinx为本题中f(x)的一个实例,由此可设想f(x)为周期函数,且2π是它的一个周期.下面进行证明:于是f(x+2π)=f[(x+π)+π]=-f(x+π)=f(x).∴f(x)为周期函数,2π是它的一个周期.7 公式法例8已知y=f(x)(x∈R)的图象是连续的曲线,且f(x)不为常数,f(x)的图象关于直线x=a和直线x=b对称(a<b).(1)求证:f(x)=f(2a-x),f(x)=f(2b-x);(2)求证f(x)是周期函数,并求出它的一个正周期.证明(1)∵ f(x)的图象关于直线x=a对称,且图象连续,不是平行于x轴的直线,∴设P(x,y)为曲线上任一点,点P关于x=a的对称点P'的坐标为P'(x',y'),同理可证 f(x)=f(2b-x).解(2)由(1)可知,f(x)=f(2a-x)=f(2b-x),∴f(2a-x)=f(2b-x),以x代2a-x,得f[x+(2b-2a)]=f(x).∵a<b,2b-2a>0且为常数,∴f(x)是周期函数,2b-2a为它的周期.由例8可得到如下的定理若函数y=f(x)(x∈R)的图象关于直线x=a和直线x=b(a<b)对称,且在这两条直线之间再无对称轴,那么f(x)是周期函数,2b -2a为它的周期.此定理可当作一个公式用,如例6中函数f(x)的周期为2.7-2.5=4.。
以2l为周期的函数的傅里叶级数
x
F ( x)的图象.
S( x)的图象.
8
需澄清的几个问题.(误认为以下三情况正确) a.只有周期函数才能展成傅里叶级数;
b.在[0, ]上,展成周期为2的傅里叶级数唯一; c.在[ , ]上连续且只有有限极值点时,
级数收敛于f ( x).
9
6.4.4 以2l为周期的函数的傅里叶级数
分析:令t x ,
an
2
f ( x)cosnxdx(n 0,1,2,3,) ,
0
②
bn 0(n1,2,) .
1
定理说明:
若 f (x) 为奇函数,则
f ( x) ~ bnsinnx , 是正弦级数。
n1
若 f (x) 为偶函数,则
f
(
x
)
~
a 2
an
n1
cosnx
,是余弦级数。
ቤተ መጻሕፍቲ ባይዱ
2
二、函数展开成正弦级数或余弦级数
0
f
(
x
)s innx dx
2
0 (
x 1)s innxdx
2[ xcosnx sinnx cosnx ] 2 [1(1)n (1)n ]
n
n2
n 0 n
2
2 , 2k 1 1,
n2k 1, (k
n2k.
1,
2,
)
k
5
∴
x
1
2 [(
2)sinx
s
in2
x
1
(
2)sin3
x
sin4
2 2 n1(2n1)2
18
练习1. 将 cos x 在 0 x 内展开成以 2 为周期
三角函数的周期性与奇偶性知识点
三角函数的周期性与奇偶性知识点三角函数是数学中重要的概念之一,包括正弦函数、余弦函数和正切函数。
它们在数学中有着广泛的应用,涉及到周期性与奇偶性的概念。
本文将详细介绍三角函数的周期性与奇偶性知识点,以便读者更好地理解和运用这些函数。
一、正弦函数的周期性与奇偶性正弦函数是一种周期函数,其周期为2π。
换句话说,当自变量增加2π时,正弦函数的值会再次重复。
具体而言,正弦函数的周期性可以表示为sin(x + 2π) = sin(x)。
这意味着,如果我们将自变量x增加一个周期的长度,正弦函数的值将保持不变。
正弦函数还具有奇偶性。
奇函数的特点是在原点关于y轴对称,即f(-x) = -f(x)。
对于正弦函数来说,sin(-x) = -sin(x),因此它是一个奇函数。
这也意味着,正弦函数的图像关于坐标原点对称。
二、余弦函数的周期性与奇偶性余弦函数也是一种周期函数,其周期同样为2π。
与正弦函数类似,余弦函数的值在自变量增加一个周期的长度后会再次重复,即cos(x +2π) = cos(x)。
不同的是,余弦函数是一个偶函数,即f(-x) = f(x)。
在余弦函数中,cos(-x) = cos(x),这意味着余弦函数的图像关于y轴对称。
三、正切函数的周期性与奇偶性正切函数是一个没有周期的函数,它在某些点上是无界的。
因此我们不能像正弦函数和余弦函数一样讨论它的周期性。
然而,正切函数具有奇偶性。
在正切函数中,tan(-x) = -tan(x),因此它也是一个奇函数。
与正弦函数一样,正切函数的图像关于原点对称。
综上所述,三角函数的周期性与奇偶性是它们在数学中重要的性质。
正弦函数和余弦函数都是周期函数,正弦函数是奇函数而余弦函数是偶函数。
正切函数虽然没有周期,但仍然是一个奇函数。
这些性质在解决数学问题和实际应用中起到重要的作用。
通过了解三角函数的周期性与奇偶性,我们可以更好地理解和分析三角函数的性质。
这对于解题和应用三角函数来说是非常有帮助的。
函数周期归纳总结
函数周期归纳总结函数是数学中一个重要的概念,它描述了一种映射关系,将一个自变量映射到对应的因变量上。
在函数的研究中,周期是一个经常遇到的概念。
周期函数是指具有某种规律性重复出现的函数。
本文将对函数周期的概念进行归纳总结。
周期函数是指在一定的自变量取值下,函数值具有规律性的重复出现的函数。
在函数图像上,这种重复出现往往表现为图像的部分或者整体重复。
函数周期的概念是从图像的视角来考虑的,因此我们首先需要了解函数图像的特点和性质。
函数图像是函数在直角坐标系中的表现形式,横坐标表示自变量的取值,纵坐标表示函数值。
在直角坐标系中,我们可以通过绘制函数图像来观察函数的变化规律,从而更好地理解函数的性质。
对于周期函数来说,函数图像将呈现出一定的规律性重复。
周期函数的周期可以通过观察函数图像的特点来进行判断。
当函数图像在横坐标某一段上具有重复性质时,我们可以认为函数具有周期。
周期即横坐标上的距离,可以通过测量函数图像的一段距离来确定。
在实际问题中,我们会遇到许多周期函数。
例如,三角函数就是常见的周期函数之一。
正弦函数和余弦函数是最基本的三角函数,它们的周期是2π。
对于正弦函数来说,当自变量增加2π时,函数值会重复出现;对于余弦函数来说,当自变量增加2π时,函数值也会重复出现。
除了三角函数,指数函数也是常见的周期函数。
指数函数具有形如f(x)=a^x的形式,其中a为常数,x为自变量。
对于指数函数来说,当自变量增加一个常数倍数时,函数值也会重复出现。
这种情况下,函数的周期可以通过求解指数函数的指数等式来确定。
需要注意的是,不是所有的函数都具有周期性。
只有满足一定条件的函数才能称为周期函数。
例如,常数函数就不具备周期性,因为它的函数图像是一条平行于横轴的直线,没有任何重复。
此外,非周期函数的图像也不能呈现规律性的重复。
总结起来,函数周期是描述函数在一定自变量取值下函数值重复出现的规律。
周期函数是具有周期性的函数,其图像将呈现出一定的重复性质。
周期函数怎么判断
周期函数怎么判断三角函数的周期根据公式:弦函数的2π/w,切函数的π/w(w为正);一般的函数根据定义来判断,除了三角函数外,没有给出解析式的函数是周期的函数。
推知周期,常见的周期情况有f(x+T)=f(x),周期为T,f(x+a)=-f(x),周期为2a。
扩展资料周期函数的判定方法1、根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的`,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。
例:f(X)=cosx 是非周期函数。
2、一般用反证法证明。
(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。
例:证f(X)=ax+b(a≠0)是非周期函数。
证:假设f(X)=ax+b是周期函数,则存在T(≠0),使true ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。
例:证f(X)= 是非周期函数。
证:假设f(X)是周期函数,则必存在T(≠0)对,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。
例:证f(X)=sinx2是非周期函数证:若f(X)= sinx2是周期函数,则存在T(>0),使之true,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有s in(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2T2=Lπ(L∈Z+),∴与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。
§15.2.以2l为周期的函数的展开式资料
定义 如果 f ( x ) 为奇函数,Fourier 级数 bn sin nx
n 1
称为正弦级数.
a0 如果 f ( x ) 为偶函数, Fourier 级数 an cos nx 2 n1
称为余弦级数.
2018年11月28日星期三
13
例 3 设 f ( x ) 是 周 期 为 2 的 周 期 函 数 , 它 在 [ , ) 上的表达式为 f ( x ) x ,将 f ( x ) 展开成 Fourier 级数.
k 2k 1 ( 2m 1)x f ( x) sin 2 m 1 2 m 1 2
k 2k x 1 3x 1 5x (sin sin sin ) 2 2 3 2 5 2
( x ; x 0,2,4,)
2018年11月28日星期三 7
4
若f(x) 在[-l, l]按段光滑,则有相应的收敛定理。
定理 设周期为 2l的周期函数f ( x ), 且f ( x )在[ l , l ]
按段光滑 , 则它的 Fourier级数展开式为
f ( x 0 ) f ( x 0 ) a0 n x n x (an cos bn sin ), 2 2 n 1 l l
(1)当周期为2l 的奇函数 f ( x ) 展开成傅里叶级数 时,它的傅里叶系数为 an 0 ( n 0,1,2,)
2 l n x bn f ( x ) sin dx l 0 l
( n 1,2,)
11
2018年11月28日星期三
(2)当周期为2l 的偶函数 f ( x ) 展开成傅里叶级 数时,它的傅里叶系数为 2 l n x an f ( x ) cos dx ( n 0,1,2,) 0 l l bn 0 ( n 1,2,)
设f(x)是周期为2派的周期函数
f(x)在x=π处的左极限为0,右极限为-π,其傅里叶级数在x=π处收敛于左右极限的平均值,即-π/2.
周期函数是无论任何独立变量上经过一个确定的周期之后数值
皆能重复的函数。
对于函数y=f(x),如果存在一个不为零的常数T,使得当x
取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函
数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。
事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。
并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定
有最小正周期。
函数定义
设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。
如果在所有正周期中有一个最小的,
则称它是函数f(x)的最小正周期。
由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。
函数性质
周期函数周期函数的性质[1]共分以下几个类型:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T
一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。
专题19 函数的周期性(解析版)-2022年高考数学一轮复习考点覆盖专项练之函数(全国通用)
专题19 函数的周期性主要考查:函数周期性的应用一、单选题1.已知函数()f x 对于任意实数x 满足条件1(2)()f x f x +=-,若1(2)2f =,则(2020)f =( ) A .12- B .12 C .2-D .2 【解析】11(2)(4)()4()(2)f x f x f x T f x f x +=-∴+=-=∴=+,,, 1(2020)(4)2(2)f f f ∴==-=-,故选:C 2.已知函数()y f x =对任意x ∈R 都有(2)()f x f x +=-且(4)()0f x f x -+=成立,若(0)0f =,则()2019(2020)(2021)f f f ++的值为( )A .4B .2C .0D .2-【解析】由(2)()f x f x +=-,可知(2)()f x f x -=.又(4)()f x f x -=-,(4)(2)0f x f x ∴-+-=,(2)()f x f x ∴+=-,(4)[(2)2](2)()f x f x f x f x ∴+=++=-+=,∴函数()y f x =是周期为4的周期函数,(2019)(3)f f ∴=,(2020)(0)f f =,(2021)(1)f f =.由(4)()0f x f x -+=可得(41)(1)0f f -+=,即(3)(1)0f f +=,(2019)(2020)(2021)000f f f ∴++=+=.故选:C .3.已知()f x 是定义在R 上的奇函数,且满足()()4f x f x =-,当[]0,2x ∈时,()21x f x =-,则()21f =( )A .-3B .-1C .1D .3【解析】由()()4f x f x =-知,()f x 图像对称轴为2x =;由()f x 为奇函数得,()f x 图像对称中心为()0,0,则()f x 的周期为8;所以()()()()213311f f f f =-=-=-=-,故选:B.4.设奇函数()f x 的定义域为R ,且(4)()f x f x +=,当(]4,6x ∈时()21x f x =+,则()f x 在区间[)2,0-上的表达式为( )A .()21x f x =+B .4()21x f x -+=--C .4()21x f x -+=+D .()21x f x -=+【解析】当[2,0)x ∈-时,(]0,2x -∈,(]44,6x ∴-+∈又∵当(]4,6x ∈时,()21x f x =+,4(4)21x f x -+∴-+=+ 又(4)()f x f x +=,∴函数()f x 的周期为4T =,(4)()f x f x ∴-+=- ,又∵函数()f x 是R 上的奇函数,()()f x f x ∴-=- ,∴4()21x f x -+-=+,∴当[)2,0x ∈-时,4()21x f x -+=--.故选:B .5.已知函数()f x 的定义域为R ,且满足()()()()2f x y f x y f x f y ++-=,且122f ⎛⎫=⎪⎝⎭()00f ≠,则()2021f =( ).A .2021B .1C .0D .1- 【解析】令0x y ==,则()()()()00200f f f f +=,故()()()20010f f -=,故()01f =,(()00f =舍),令12x y ==,则()()1110222f f f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 故()10f =.∴()()()()11210f x f x f x f ++-==,即()()()()()()1124f x f x f x f x f x f x +=--⇒+=-⇒+=,故()f x 的周期为4,即()f x 是周期函数.∴()()202110f f ==.故选:C .6.已知函数()f x 的定义域为R 且满足()()f x f x -=-,()(4)f x f x =+,若(1)6f =,则()()22log 128log 16f f +=( )A .6B .0C .6-D .12-【解析】因为()(4)f x f x =+,所以()f x 的周期4T =,因为函数()f x 的定义域为R 且满足()()f x f x -=-,所以(0)0f =,(1)(1)6f f -=-=-,所以()()22log 128log 16f f +=7422(log 2)(log 2)f f +(7)(4)f f =+()()870f f =-++(1)(0)f f =-+(1)(0)f f =-+60=-+6=-.故选:C7.已知()f x 是定义在R 上的偶函数,且满足()()2f x f x +=,当[]0,1x ∈时,()21x f x =-,则函数()4log y f x x =-的零点个数为( )A .2B .4C .6D .8【解析】()4log y f x x =-的零点个数,即()y f x =与4log y x =的图像的交点个数,作出图像可得共有8个交点.故选:D.8.已知函数()f x 是定义在R 上的偶函数,满足()()2f x f x +=,当[]0,1x ∈时,()πcos 2f x x =,则函数()y f x x =-的零点个数是( )A .2B .3C .4D .5 【解析】∵()()2f x f x +=,则函数()f x 是周期2T =的周期函数.又∵函数()f x 是定义在R 上的偶函数,且[]0,1x ∈时,()πcos2f x x =, ∴当[)1,0x ∈-时,()()ππcos cos 22f x f x x x ⎛⎫=-=-= ⎪⎝⎭, 令()0f x x -=,则函数()y f x x =-的零点个数即为函数()y f x =和()g x x =的图象交点个数, 分别作出函数()y f x =和()g x x =的图象,如下图,显然()f x 与()g x 在[)1,0-上有1个交点,在0,1上有一个交点, 当1x >时,()1g x >,而()1f x ≤,所以1x >或1x <-时,()f x 与()g x 无交点.综上,函数()y f x =和()g x x =的图象交点个数为2,即函数()y f x x =-的零点个数是2. 故选:A二、多选题9.已知()f x 的定义域为R ,其函数图象关于直线3x =-对称且(3)(3)f x f x +=-,当[0,3]x ∈时,()2211x f x x =+-,则下列结论正确的是( )A .()f x 为偶函数B .()f x 在[6,3]--上单调递减C .()f x 关于3x =对称D .(2021)7f =-【解析】对于A ,因为()f x 的定义域为R ,其函数图象关于直线3x =-对称,所以(3)(3)f x f x -=--,又(3)(3)f x f x +=-,所以(3)(3)f x f x +=--,所以[][](3)3(3)3f x f x -+=---,即()()f x f x =-,所以函数为偶函数,故A 正确;对于B :因为(3)(3)f x f x +=-,所以()()()(3)333f x f x ++=+-,即()()6f x f x +=所以函数是周期为6的周期函数,当[6,3]x ∈--时,[]60,3x +∈,因为当[0,3]x ∈时,()2211x f x x =+-函数在[]0,3上单调递增,所以当[6,3]x ∈--时,()()()6622611x f x f x x +=+=++-,函数在[]6,3--上单调递增,故B 错误;对于C :因为函数图象关于直线3x =-对称,所以(3)(3)f x f x -=--,又函数是偶函数,所以()()f x f x =-,即()()(3)33f x f x f x ⎡⎤-=--=-⎣⎦,()()(3)33f x f x f x ⎡⎤--=---=+⎣⎦,所以()()33f x f x +=-,所以()f x 关于3x =对称,故C 正确;对于D :()()()()()()20213366555561f f f f f f =⨯+==-=-+=,又[0,3]x ∈时,()2211x f x x =+-,所以()()120211221117f f ==+⨯-=-,故D 正确;故选:ACD10.已知函数()f x 为偶函数,且()()22f x f x +=--,则下列结论一定正确的是( )A .()f x 的图象关于点(2,0)-中心对称B .()f x 是周期为4的周期函数C .()f x 的图象关于直线2x =-轴对称D .(4)f x +为偶函数【解析】因为()2()2f x f x +=--,所以()f x 的图象关于点()2,0中心对称,又因为函数()f x 为偶函数,所以()f x 是周期为8的周期函数,且它的图象关于点(2,0)-中心对称和关于直线4x =轴对称,所以()4f x +为偶函数.故选:AD.11.已知(2)y f x =+为奇函数,且(3)(3)f x f x +=-,当[]0,1x ∈时,4()2log (1)1x f x x =++-,则( )A . ()f x 的图象关于(2,0)-对称B .()f x 的图象关于(2,0)对称C . 4(2021)3log 3f =+D . 3(2021)2f = 【解析】因为(2)f x +为奇函数,所以(2)(2)f x f x -+=-+,即(2)(2)f x f x +=--,,所以()f x 的图象关于(2,0)对称.故选项B 正确,由(2)(2)f x f x +=--可得(4)()f x f x +=--,由(3)(3)f x f x +=-可得()(6)f x f x -=+,所以(4)(6)f x f x -+=+,可得(2)()f x f x +=-,所以()2(()4)f x f x f x -+=+=,所以()f x 周期为4,所以()f x 的图象关于(2,0)-对称,故选项A 正确,43(2021)(45051)(1)2log 212f f f =⨯+==+-=.故选项D 正确,选项C 不正确,故选: ABD .12.已知函数()f x 的定义域为R ,满足(2)(6),(2)(6)f x f x f x f x +=+-=-,当02x ≤≤时,()22f x x x =-,则下列说法正确的是( )A .(2021)(1)f f =B .函数(2)f x +是偶函数C .当06x ≤≤时,()f x 的最大值为6D .当68x ≤≤时,()f x 的最小值为14- 【解析】对任意实数x 满足(2)(6)f x f x +=+,(4)()f x f x ∴+=即函数()f x 是周期函数,周期为4.(2)(6)(2)(42)(2)f x f x f x f x f x -=-⇒-=+-=-,那么()()f x f x -=,∴函数()f x 是偶函数,(2)(6)f x f x -=-,可得函数()f x 关于2x =对称轴, 又当02x 时,2()2f x x x =-,故函数对应图像大致如图,∴函数()f x 在区间1[4,2]上单调递增.∴函数()f x 在区间[0,1]4上单调递减. ∴当02x 时,函数()f x 的最小值为11()48f =-,最大值为f (2)6=. 且(2021)f f =(1)成立,函数(2)f x +是偶函数成立,当06x 时,()f x 的最大值为6,当68x 时,()f x 的最小值为14-不成立,故正确答案为ABC . 三、填空题13.已知定义在R 上的函数()f x 满足1(1)()f x f x +=,当(0,1]x ∈时,()2x f x =,则23(log )(2018)16f f +=___________. 【解析】函数()f x 满足:()()11f x f x +=,可得:对x R ∀∈,都有()()()121f x f x f x +==+,∴ 函数()f x 的周期2T =. ∴ ()()()()2log 2223123112log log 34log 3163132log f f f f -⎛⎫=-==== ⎪-⎝⎭, 由()()11012f f ==得()()1201802f f ==, ∴()23217log 201816326f f ⎛⎫+=+= ⎪⎝⎭. 14.已知定义在R 上的奇函数()f x 满足(3)(3)0f x f x ++-=,且当(3,0)x ∈-时,2()log (3)f x x a =+-,若(7)2(11)f f =,则实数a =______.【解析】因为函数是奇函数,所以()()33f x f x -=--,即()()()()()()33330,33f x f x f x f x f x f x ++-=+--=+=-,所以函数()f x 的周期为6, ()()()()()721112121f f f f f =⇔=-=-,即()10f =,()()110f f -=-=,而()21log 20f a -=-=,解得:1a =.15.设函数()f x 满足对任意x ∈Z ,都有()(1)(1)f x f x f x =-++成立,(1)f a -=,(1)f b =,则(2019)(2020)f f +=________【解析】∵函数()f x 满足()(1)(1)f x f x f x =-++,∴(1)()(2)f x f x f x +=++,两式相加得到0(1)(2)f x f x =-++,即()(3)0f x f x ++=,①,∴f (x +3)+f (x+6)=0,②由①②可得f (x )=f (x+6),∴函数f (x )的一个周期T =6,∴f (2019)=f (6×336+3)=f (3)=-f (0),f (2020)=f (6×336+4)=f (4)=-f (1),又(0)(01)(01)(1)(1)f f f f f a b =-++=-+=+,∴(2019)(2020)(0)(1)2f f f f a b +=--=--16.已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin F x f x x π=-,在区间[]2,m -上有2021个零点,则m 的取值范围是___________【解析】由题意,函数()f x 为R 上奇函数,所以(0)0f =,且()()f x f x -=-,又(2)()0f x f x -+=,可得(2)()f x f x -=-,可得函数()f x 的图象关于点()1,0对称,联立可得(2)()f x f x -=-,所以()f x 是以2为周期的周期函数,又由函数sin y x =π的周期为2,且关于点(,0)()k k Z ∈对称,因为当(0,1]x ∈时,2()log f x x =-,由图象可知,函数2()log f x x =-和sin y x =π的图象在[)1,1-上存在1234111,,0,22x x x x =-=-==四个零点, 即一个周期内有4个零点,要使得函数()()sin F x f x x π=-,在区间[2,]m -上有2021个零点, 其中1234312,,1,22x x x x =-=-=-=-都是函数的零点,即函数()()sin F x f x x π=-在[]0,m 上有2017个零点,如果m 是第2017个零点,则20171210084m -=⨯=,如果m 是第2018个零点,则12017100822m =+=,即20171008,2m ⎡⎫∈⎪⎢⎣⎭.四、解答题17.设()f x 是定义在R 上的奇函数,且对任意实数x ,恒有(2)()f x f x +=-.当[0,2]x ∈时,2()2f x x x =-.(1)当[2,4]x ∈时,求()f x 的解析式;(2)计算(0)(1)(2)(2020)f f f f ++++的值.【解析】(1)因为(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=.所以()f x 是周期为4的周期函数.当[2,0]x ∈-时,[0,2]x -∈,由已知得22()2()2f x x x x x -=---=--,又()f x 是奇函数,所以2()()2f x f x x x -=-=--,所以2()2f x x x =+.当[2,4]x ∈时,4[2,0]x -∈-,所以2(4)(4)2(4)f x x x -=-+-,又()f x 是周期为4的周期函数,所以22()(4)(4)2(4)68f x f x x x x x =-=-+-=-+.故当[2,4]x ∈时,2()68f x x x =-+.(2)(0)0f =,(1)1f =,(2)0f =,(3)1f =-,又()f x 是周期为4的周期函数,所以(0)(1)(2)(3)(4)(5)(6)(7)f f f f f f f f +++=+++(2012)(2013)(2014)(2015)f f f f ==+++(2016)(2017)(2018)(2019)0f f f f =+++=,所以(0)(1)(2)(2020)(2020)(0)0f f f f f f =+++=+=. 18.设()f x 是定义在R 上的函数,且[0,2]x ∈时,2()2f x x x =-,(2)()f x f x +=-.(1)当[2,0]x ∈-时,求()f x 的表达式;(2)求(1)(2)(3)(2008)f f f f ++++的值;(3)判断()f x 的奇偶性,并求出()f x 的单调区间及()f x 的解析式.【解析】(1)当[2,0]x ∈-时,2[0,2]x +∈,()(2)f x f x =-+=22[2(2)(2)]2x x x x -+-+=+;(2)由(2)()f x f x +=-,得()f x 的周期为4.(1)1f =,(2)0f =,(0)0f =,(1)1f -=-.∴(3)1f =-,(4)0f =,(1)(2)(3)(2008)0f f f f ++++=;(3)由(1)(2)可知:222,[0,2]()2,[2,0)x x x f x x x x ⎧-∈=⎨+∈-⎩,当[2,0)x ∈-时,22()2()()(2)()f x x x x x f x -=---=-+=-,当2(]0,x ∈时,22()()2()(2)()f x x x x x f x -=-+-=--=-,而(0)0f =,所以当[2,2]x ∈-时,函数是奇函数,因为函数的周期为4,所以函数在整个定义域内是奇函数;当[0,2]x ∈时,()()22211f x x x x =-=--+, 则有当[0,1]x ∈时,函数单调递增,当[1,2]x ∈函数单调递减,当[2,0)x ∈-时,()222(1)1f x x x x =+=+-,则有当[2,1]x ∈--时,函数单调递减,当[1,0)x ∈-函数单调递增,而(0)0f =因此有当[2,1]x ∈--时,函数单调递减,当[1,1]x ∈-函数单调递增,当[1,2]x ∈函数单调递减,而函数的周期为4,所以函数单调区间为:()f x 在[41,41]k k -+上递增,在[4143]k k ++,递减,其中k Z ∈.因为[2,2]x ∈-时,222,[0,2]()2,[2,0)x x x f x x x x ⎧-∈=⎨+∈-⎩ 由函数的周期为4,所以函数的解析式为:222(4)(4),[4,42]()()(4)2(4),[42,4)x k x k x k k f x k Z x k x k x k k ⎧---∈+=∈⎨-+-∈-⎩. 19.已知函数()y f x =,()f x 对于任意实数x 满足条件()()12f x f x +=,且()15f =-. (1)求()f x 的一个周期;(2)求()()25f f 的值.【解析】(1)由()()12f x f x +=,所以()()()142f x f x f x +==+, 所以函数的一个周期为4(2)()()251f f =,又()15f =-,所以()()2515f f ==-,所以()()()()()11255115f f f f f =-=-==- 20.已知()f x 是定义在R 上的函数,满足()1()11()f x f x f x -+=+. (1)若1122f ⎛⎫= ⎪⎝⎭,求52f ⎛⎫ ⎪⎝⎭; (2)证明:2是函数()f x 的周期;(3)当[)0,1x ∈时,()f x x =,求()f x 在[)1,0x ∈-时的解析式,并写出()f x 在[)()21,21x k k k Z ∈-+∈时的解析式.【解析】(1)1122f ⎛⎫= ⎪⎝⎭,1111312211231122f f f ⎛⎫-- ⎪⎛⎫⎝⎭∴=== ⎪⎛⎫⎝⎭++ ⎪⎝⎭, 3111512313221132f f f ⎛⎫-- ⎪⎛⎫⎝⎭∴=== ⎪⎛⎫⎝⎭++ ⎪⎝⎭; (2)因为()1()11()f x f x f x -+=+,令x 取1x +得, 所以1()11(1)1()(2)()1()1(1)11()f x f x f x f x f x f x f x f x ---+++===-++++, 所以,2是函数()f x 的周期.(3)当[)1,0x ∈-时,[)10,1x +∈,则()11f x x +=+,又()1()11()f x f x f x -+=+,即1()11()f x x f x -=++,解得()2x f x x =-+. 所以,当[)1,0x ∈-时,()2x f x x =-+.所以,[)[),1,0()2,0,1x x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩. 因为()f x 的周期为2,所以当[)()21,21x k k k Z ∈-+∈时, ()[)[)2,21,2()2222,2,21x k x k k f x f x k x k x k x k k -⎧-∈-⎪=-=-+⎨⎪-∈+⎩.21.已知定义域为R 的函数()f x 是以2为周期的周期函数,当[]0,2x ∈时,()()21f x x =-; (1)求()2015f 的值;(2)求()f x 的解析式;(3)若()()lg g x f x x =-,求函数()g x 的零点的个数.【解析】(1)由题意,()f x 是以2为周期的周期函数,∴()()()()220152*********f f f =⨯+==-=.(2)由题意,对于任意的x ∈R ,必存在一个k Z ∈,使得(]2,22x k k ∈+,则(]20,2x k -∈,∴()()()2221f x f x k x k =-=--, ∴()f x 的解析式为:()()(]()221,2,22,f x x k x k k k Z =--∈+∈. (3)由()0g x =,()lg 0f x x -=,即()lg f x x =,∵当[]0,2x ∈时,()01f x ≤≤.()f x 最小值为0,最大值1,其它区间可根据周期性进行平移. 又∵lg101=,∴当010x <<时,lg 1x <;当10x >时,lg 1x作出()y f x =与lg y x =的大致图像如下:()y f x =与lg y x =的图像在(]0,10上有10个交点,在()10,+∞上没有交点.∴函数()g x 的零点的个数为10.22.设()f x 是定义在R 上的奇函数,对任意的x ∈R 有3()2f x f x ⎛⎫+=-⎪⎝⎭成立. (1)证明:对任意实数x ,等式(3)()f x f x +=成立;(2)若(1)2f =,求(2)(3)+f f 的值; (3)若函数2()3g x x ax =++,且函数()|()|()h x f x g x =⋅是偶函数.求函数21y x x a=++的单调区间. 【解析】(1)由3()2f x f x ⎛⎫+=- ⎪⎝⎭,且()()f x f x -=-, 可知33(3)22f x f x ⎡⎤⎛⎫+=++ ⎪⎢⎥⎝⎭⎣⎦[]3()()2f x f x f x ⎛⎫=-+=--= ⎪⎝⎭,所以()y f x =是周期函数,且3T =是其一个周期.所以对任意实数x ,等式(3)()f x f x +=成立.(2)因为()f x 为定义在R 上的奇函数,所以(0)0f =,且(1)(1)2f f -=-=-,又3T =是()y f x =的一个周期, 所以()()()()2310202f f f f +=-+=-+=-;(3)因为|()|()y f x g x =⋅是偶函数,由于|()||()||()|-=-=f x f x f x ,所以|()|y f x =是偶函数,所以2()3g x x ax =++为偶函数,即()()g x g x -=恒成立.于是22()()33x a x x ax -+-+=++恒成立,于是20ax =恒成立,所以0a =. 所以()22111==1y x x a x x x x =++++,1x ≠-且0x ≠,由复合函数的单调性可知, 函数单调递增为1(,1),(1,)2-∞---;单调递减为1(,0),(0,)2-+∞.。
专题05-函数的基本性质(周期)
专题05-函数的基本性质(周期)
函数的周期性可以说是函数的一个重要的性质,它也是高考命题员非常关注的一个知识点。
下面就专题解读函数的周期性。
同学们主要理解和掌握
1、什么叫做周期函数?什么是周期?
2、什么是函数的正周期等重要的性质。
对于函数y=f(ⅹ),如果存在常数A≠0,使得函数定义域内任意一个ⅹ都有f(ⅹ+A)=f(x)成立,我们称f(x)为周期函数。
常数A叫做函数f(x)的周期。
并且把满足上述关系的最小正数A叫做f(ⅹ)的最小正周期。
同学们注意,周期性一般指的是函数的周期。
即指的是函数的最小的正周期。
例如:正弦函数y=sinx的周期为2π。
如果f(ⅹ)最小的正周期为
A,则A的整数倍为
nA(n≠0。
±1,±2…)均为函数f(x)的周期。
并且f(Kx)(K∈Z,且K≠0,也是周期函数。
其最小的正周期为A/丨K丨。
关于函数周期性的基本概念就简要解读到这里,希望同学们要理解和掌握好函数周期这个重要的性质,以便更好的学习函数周期这个重要的知识点。
函数周期性
函数周期性定义及推论1. 函数的周期性定义:若T 为非零常数,对于定义域内的任一x ,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期。
--------引申:证明函数为周期函数(1) 12log cos2y x = 证明:函数定义域为{|,},44D x k x k k ππππ=-<<+∈Z 若取T π=,那么对每一个,x D ∈,x T D +∈且有 1122log cos2()log cos2,x x x D π+=∈所以, y 是周期函数.(2) tan(sin )y x =证明:函数定义域为R , 若取2Tπ=, 那么有 t a n (s i n (2))t a n (s i n ),x x x π+=∈R 所以, y 是周期函数.(3) 22cos tan cot 10x y x x =+ 证明:函数定义域为{|,},2k D x x k π=≠∈Z 若取10T π=, 那么对每一个,x D ∈,x T D +∈且有 2102cos tan cot cos()2cos()2,1055x x x x x x D π++=+=+∈ 所以, y 是周期函数.(4) 21cos 4(sin cos )22sin 2x y x x x-=-++ 证明:函数定义域为{|,},2k D x x k π=≠∈Z 那么对每一个,x D ∈,x T D +∈有 s i n 21s i n 221,y x x x D =--+=∈.所以, y是周期函数,周期为任意x D2.最小正周期的概念:对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期。
对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得。
所以正弦函数和余弦函数的最小正周期是2π。
(说明:如果以后无特殊说明,周期指的就是最小正周期。
数学周期变化知识点总结
数学周期变化知识点总结1. 周期函数在数学中,周期函数是指其函数值在一定的间隔内呈现重复性变化的函数。
即存在一个正数T,对于函数f(x),满足f(x+T) = f(x)。
这里T即为函数的周期,也称为基本周期。
周期函数可以分为正弦函数、余弦函数、正切函数等三角函数,以及其他常见的函数如正弦余弦函数、指数函数等。
正弦函数是最基本的周期函数之一,其公式为y=Asin(Bx+C)+D,其中A、B、C、D为常数,B控制周期的长度,也可以表示为2π/k,其中k为正整数,即函数的周期为2π/k。
余弦函数的公式为y=Acos(Bx+C)+D,其特点与正弦函数类似,但相位差不同。
正切函数的公式为y=Atan(Bx+C)+D,也是一个周期函数,但其周期与正弦余弦函数不同。
2. 周期变化的图像周期函数在坐标平面上的图像表现为一种重复性的波动形状,可以是正弦波、余弦波等不同的形状。
在图像上,周期函数的波形会在一定的间隔内反复出现,形成一种规律性的变化。
通过观察其图像特点,可以确定周期函数的周期、振幅、相位等重要参数。
以正弦函数为例,当B=1时,周期函数的图像将呈现正弦波形状,其周期为2π。
当振幅A增大时,波形将变得更加陡峭;相位C的变化可以控制波形的水平平移;常数D则可以控制波形的上下平移。
通过调整这些参数,可以得到不同形式的周期函数图像。
在三角函数中,还有一些其他形式的周期函数,如正弦余弦函数y=Asin(Bx+C)+Acos(Dx+E)+F等,其图像将呈现一种叠加的波动形状。
根据具体的函数表达式,可以通过分析图像特点来确定其周期、振幅、相位等参数。
3. 周期变化的应用周期变化在实际生活和科学研究中有着广泛的应用,例如在电路分析、机械振动、天文学、气候变化等领域。
周期函数的图像特点可以描述许多自然现象和物理规律,因此被广泛应用于建立模型和解决实际问题。
在电路分析中,周期函数可以用来描述电流、电压等随时间的变化规律,帮助工程师设计和优化电路。
设f(x)是周期为2派的周期函数
设f(x)是周期为2派的周期函数定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期。
周期函数f(X)的定义域M必定是至少一方无界的集合。
期函数共分以下几个类型:⑴若T(≠0)是f(X)的周期,则-T也是f(X)的周期⑵若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期.⑶若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期.⑷若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍.⑸若T1、T2是f(X)的两个周期,且T1/T2不是无理数,则f(X)存在最小正周期⑹若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期.公式及推导:f(x+a)=-f(x)那么f(x+2a)=f[(x+a)+a]=-f(x+a)=-[-f(x)]=f(x)所以f(x)是以2a为周期的周期函数。
f(x+a)=1/f(x)那么f(x+2a)=f[(x+a)+a]=1/f(x+a)=1/[1/f(x)]=f(x)所以f(x)是以2a为周期的周期函数。
f(x+a)=-1/f(x)那么f(x+2a)=f[(x+a)+a]=-1/f(x+a)=1/[-1/f(x)]=f(x)所以f(x)是以2a为周期的周期函数。
周期为2π的函数f(x)为奇函数时,其傅里叶基数是正弦级数。
an=1/L∫(-L~L)f(x)cos(nπx/L)dx (n=0,1,2...)bn=1/L∫(-L~L)f(x)sin(nπx/L)dx (n=1,2,3...)当f(x)是奇函数的时候f(x)cos(nπx/L)是奇函数,而且它的定义域关于y轴对称,所以此时an=0,f(x)sin(nπx/L)此时为偶函数bn=1/L∫(-L~L)f(x)sin(nπx/L)dx (n=1,2,3...)=2/L∫(0~L)f(x)sin(nπx/L)dx (n=1,2,3...)f(x)~∑bnsin(nπx/L)即为正弦级数。
函数对称性、周期性的应用(含解析)
函数对称性、周期性的应用高考对函数性质的考查往往是综合性的,如将奇偶性、周期性、单调性及函数的零点综合考查,因此,复习过程中应注意在掌握常见函数图象和性质的基础上,注重函数性质的综合应用的演练.(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称 在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可.例如:关于轴对称,或得到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称.① 要注意偶函数是指自变量取相反数,函数值相等,所以在中,仅是括号中的一部分,偶函数只是指其中的取相反数时,函数值相等,即,要与以下的命题区分: 若是偶函数,则:是偶函数中的占据整个括号,所以是指括号内取相反数,则函数值相等,所以有② 本结论也可通过图像变换来理解,是偶函数,则关于轴对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.2、中心对称的等价描述:(1)关于中心对称(当时,恰好就是奇函数)(2)关于中心对称 在已知对称中心的情况下,构造形如的等式同样需注意两点,一是等式两侧和()()f a x f a x -=+⇔()f x x a =0a =()()()f a x f b x f x -=+⇔2a b x +=()()f a x f b x -=+f x ,a b 2a b x +=()f x 1x =()()2f x f x ⇒=-()()31f x f x -=-+()f x ()f x a +()()f x a f x a +=-+()f x x a =()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=-+⎡⎤⎣⎦()f x x ()()f x a f x a +=-+⎡⎤⎣⎦()f x a +()f x a +0x =()f x ()f x a +a a ()f x x a =()()f a x f a x -=-+⇔()f x (),0a 0a =()()()f a x f b x f x -=-+⇔,02a b +⎛⎫ ⎪⎝⎭()()f a x f b x -=-+f前面的符号均相反;二是的取值保证为所给对称中心即可.例如:关于中心对称,或得到均可,同样在求函数值方面,一侧是更为方便(3)是奇函数,则,进而可得到:关于中心对称.① 要注意奇函数是指自变量取相反数,函数值相反,所以在中,仅是括号中的一部分,奇函数只是指其中的取相反数时,函数值相反,即,要与以下的命题区分: 若是奇函数,则:是奇函数中的占据整个括号,所以是指括号内取相反数,则函数值相反,所以有② 本结论也可通过图像变换来理解,是奇函数,则关于中心对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:(1)可利用对称性求得某些点的函数值(2)在作图时可作出一侧图像,再利用对称性得到另一半图像(3)极值点关于对称轴(对称中心)对称(4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同(二)函数的周期性1、定义:设的定义域为,若对,存在一个非零常数,有,则称函数是一个周期函数,称为的一个周期2、周期性的理解:可理解为间隔为的自变量函数值相等3、若是一个周期函数,则,那么,即也是的一个周期,进而可得:也是的一个周期4、最小正周期:正由第3条所说,也是的一个周期,所以在某些周期函数中,往往寻找x ,a b 2a b x +=()f x ()1,0-()()2f x f x ⇒=---()()35f x f x -=--+()f x ()f x a +()()f x a f x a +=--+()f x (),0a ()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=--+⎡⎤⎣⎦()f x x ()()f x a f x a +=--+⎡⎤⎣⎦()f x a +()f x a +()0,0()f x ()f x a +a a ()f x (),0a ()f x D x D ∀∈T ()()f x T f x +=()f x T ()f x T ()f x ()()f x T f x +=()()()2f x T f x T f x +=+=2T ()f x ()kT k Z ∈()f x ()kT k Z ∈()f x周期中最小的正数,即称为最小正周期.然而并非所有的周期函数都有最小正周期,比如常值函数5、函数周期性的判定:(1):可得为周期函数,其周期(2)的周期分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:所以有:,即周期注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期(3)的周期 分析: (4)(为常数)的周期分析:,两式相减可得:(5)(为常数)的周期(6)双对称出周期:若一个函数存在两个对称关系,则是一个周期函数,具体情况如下:(假设)① 若的图像关于轴对称,则是周期函数,周期分析:关于轴对称关于轴对称的周期为② 若的图像关于中心对称,则是周期函数,周期③ 若的图像关于轴对称,且关于中心对称,则是周期函数,周期()f x C =()()f x a f x b +=+()f x T b a =-()()()f x a f x f x +=-⇒2T a =()()2f x a f x a +=-+()()()()()2f x a f x a f x f x +=-+=--=2T a =()()()1f x a f x f x +=⇒2T a =()()()()1121f x a f x f x a f x +===+()()f x f x a k ++=k ()f x ⇒2T a =()()()(),2f x f x a k f x a f x a k ++=+++=()()2f x a f x +=()()f x f x a k ⋅+=k ()f x ⇒2T a =()f x ()f x b a >()f x ,x a x b ==()f x ()2T b a =-()f x x a =()()2f x f a x ⇒-=+()f x x b =()()2f x f b x ⇒-=+()()22f a x f b x ∴+=+()f x ∴()222T b a b a =-=-()f x ()(),0,,0a b ()f x ()2T b a =-()f x x a =(),0b ()f x ()4T b a =-7、函数周期性的作用:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质.(1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值(2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制+粘贴”(3)单调区间:由于间隔的函数图象相同,所以若在上单调增(减),则在上单调增(减)(4)对称性:如果一个周期为的函数存在一条对称轴 (或对称中心),则 存在无数条对称轴,其通式为 证明:关于轴对称函数的周期为关于轴对称 注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法.【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( ) ()kT k Z ∈()f x ()(),a b b a T -≤()f x ()(),a kT b kT k Z ++∈T ()f x x a =()f x ()2kT x a k Z =+∈()f x x a =()()2f x f a x ∴=-()f x T ()()f x kT f x ∴+=()()2f x kT f a x ∴+=-()f x ∴2kT x a =+A .6B .8C .12D .16例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭ D.⎫⎪⎪⎝⎭例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( )A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-= 例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( ) A .0 B .6 C .12 D .18例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >> 例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( )①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点.A .①③B .②④C .①③④D .②③④ 例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( ) A .222e e +B .25050e e +C .2100100e e +D .222e e --例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =()A .2-B .2log 3C .3D .2log 5- 2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .201940963.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( ) A .2 B .3 C .4 D .54.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .05.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( ) A .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .78.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( ) A .c a b >> B .c b a >> C .b a c >> D .a c b >>9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x x x x y e e ----=+的曲线有下列说法: ①该曲线关于2x =对称;②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数.其中正确的是( )A .②③B .①④C .②④D .①③11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3B .4C .5D .612.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1m i i i x y =+=∑( ) A .0 B .m C .2m D .4m【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称 【答案】D【思路导引】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C ,D .【解析】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对,故选:D .【专家解读】本题考查了三角函数图象及其性质,考查三角函数周期公式,考查数形结合思想,考查数学运算、直观想象等学科素养.解题关键是熟记三角函数的性质.例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【解析】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( )A .6B .8C .12D .16【答案】D【解析】对任意x ∈R ,()()11f x f x -=+恒成立,故()()2f x f x -=+,又()f x 为偶函数,所以()()2f x f x =+,2T =,且当10x -≤≤时,()()()221122f x x x x =-+=-,设()293log log h x x x ==,则()h x 为偶函数,求方程()29log f x x =根的个数转化为求()f x 与()g x 的交点个数,画出当0x >时()y f x =与()y g x =的图像,如图:可知两图像有8个交点,又()f x 与()g x 都为偶函数,所以()f x 与()g x 有16个交点,即方程()29log f x x =根的个数为16.故选:D.例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.0,6⎛⎫⎪ ⎪⎝⎭B.6⎛⎫⎪ ⎪⎝⎭C.0,5⎛ ⎝⎭D.5⎛⎫⎪ ⎪⎝⎭【答案】A【解析】由题可知:cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像 在0x >的交点至少有3对,可知()0,1a ∈, 如图所示,当6x =时,log 62a >-,则0a <<故实数a的取值范围为0,6⎛ ⎝⎭故选:A例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( ) A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-=【答案】D【解析】∵函数(1)f x +的图象关于()1,0对称, ∴函数()f x 的图象关于(2,0)对称,令()(1)F x f x =+,∴()()2F x F x =--,即()(3)1f x f x -=-+,∴()()4f x f x -=- …⑴ 令()(3)G x f x =+,∵其图象关于直线对称,∴()()2G x G x +=-,即()()53f x f x +=-,∴()()44f x f x +=- …⑵ 由⑴⑵得,()()4f x f x +=-,∴()()8f x f x += …⑶ ∴()()()844f x f x f x -=-=+-,由⑵得()()()()()4444f x f x f x +-=--=,∴()()f x f x -=;∴A 对; 由⑶,得()()282f x f x -+=-,即()()26f x f x -=+,∴B 对; 由⑴得,()()220f x f x -++=,又()()f x f x -=, ∴()()(2)(2)220f x f x f x f x -++--=-++=,∴C 对;若()()330f x f x ++-=,则()()6f x f x +=-,∴()()12f x f x +=,由⑶得()()124f x f x +=+,又()()4f x f x +=-,∴()()f x f x =-,即()0f x =,与题意矛盾,∴D 错.故选:D.例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( )A .0B .6C .12D .18【答案】D 【解析】()211211x g x x x -==+--,由此()g x 的图像关于点()1,2中心对称,()12y f x =+-是奇函数()()1212f x f x -+-=-++,由此()()114f x f x -+++=,所以()f x 关于点()1,2中心对称,1266x x x +++=,12612y y y +++=,所以12612618x x x y y y +++++++=,故选D例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >>【答案】C 【解析】(1)(1)f x f x +=-,∴()f x 关于1x =对称,又1≥x 时,()f x 是增函数,()()3339log 22log 2log 2f f f ⎛⎫=-= ⎪⎝⎭,33392log 4,log 4log 321-==<<<, ∴b a c <<.故选:C.例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( ) ①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点. A .①③ B .②④ C .①③④ D .②③④【答案】C【解析】由()()2f x f x +=,得()()2f x f x -=-, 结合()f x 为偶函数,得()()2f x f x -=, 则曲线()y f x =关于直线1x =对称,则①正确; 无法推出()()3f x f x -=-,则②不一定正确;由曲线()()12y f x x =≤≤可得曲线()()01y f x x =≤≤, 即得曲线()()02y f x x =≤≤,恰好是在一个周期内的图象; 再根据()f x 是以2为周期的函数,得到曲线()()24y f x x =≤≤,因为在()y f x =在[]1,2上是减函数,()y f x =在[]3,4上是减函数,则③正确; 因为()y f x =在[]1,2上是减函数,()110f =>,()210f =-<,所以()y f x =在[]1,2上有唯一的一个零点,根据对称性,()f x 在区间()4,4-内有8个零点.故选:C.例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( )A .222e e +B .25050e e +C .2100100e e +D .222e e --【答案】A【解析】由()()22f x f x -=+得:()f x 关于2x =对称 又()f x 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+,故选:A例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【答案】B 【解析】()f x 是奇函数且满足()()210f x f x -++=,(1)(2)(2)f x f x f x ,(3)()f x f x ∴+=,()f x ∴是以3为周期的函数,且(0)0f =,()()()()()()()0122020674067416732f f f f f f f ∴+++⋅⋅⋅+=++=故选:B.【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =() A .2- B .2log 3C .3D .2log 5-【答案】D 【解析】已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,()()(3)f x f x f x ∴-=-=-,∴()f x 的周期为3.3,02x ⎛⎫∴∈- ⎪⎝⎭时,2()log (27)f x x =+,22(2020)(36731)(1)(1log (27)lo )5g f f f f =⨯+==-=--+-=-,故选D .2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .20194096【答案】B【解析】由()()4f x f x +=,得函数()f x 的周期是4. 由()()0f x f x -+=,则()f x 在R 上是奇函数, 且当()0,2x ∈时,()2xf x =,210log 201911<<,所以()()()222log 2019log 20191212log 2019f f f =-=--212log 2019409622019-=-=-.故选:B 3.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( )A .2B .3C .4D .5【答案】D【解析】由题意可得,函数()f x 为偶函数,且是周期为2的周期函数. 方程1()()3xf x =在[0x ∈,4]上解的个数,即函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数,再根据当[0x ∈,1]时,()1f x x =-, 设1,(0)11()()()()330x xx g x g f x =--∴-==.因为1211113()1()0223236g -=--=-=<,数形结合可得,函数()y f x =的图象与函数1()3xy =的图象在[0,1)内存在两个交点,画出函数()f x 在[0,4]上的图象,如图,故函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数为5.(在[0,1]内有2个,在[1,2]有1个,在(2,4]有2个),故选:D .4.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .0【答案】D【解析】根据题意,函数()f x 满足()()2f x f x +=-,则()4()f x f x +=,即()f x 是周期为4的周期函数,当2(]0,x ∈时,()sin f x x x π=-,则()11sin 1f π=-=,()22sin 22f π=-=, 又由()()2f x f x +=-,则()()()()311,422f f f f =-=-=-=-, 所以(1)(2)(3)(4)0f f f f +++=,所以20201()505((1)(2)(3)(4))0i f i f f f f ==⨯+++=∑.故选:D .5.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe-=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭【答案】B【解析】当[0,3]x ∈时,2()xf x xe =,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(2,3]x ∈时,()0f x '<,当[0,2)x ∈时,()0f x '>, 所以函数()f x 在(2,3]x ∈单调递减,在2(]0,x ∈单调递增,(0)0f =,32(3)30f e -=>,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-,所以(3)(3)(3)f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322,3t e e --⎡⎫∈⎪⎢⎣⎭.故选:B.6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos xf x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭【答案】C【解析】∵f (x )是奇函数;∴f (x+2)=f (-x )=-f (x );∴f (x+4)=-f (x+2)=f (x ); ∴f (x )的周期为4;∴f (2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ ∵x ∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫⎪⎝⎭∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C.7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .7【答案】A【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数.又[1,1]x ∈-时,()||f x x =,所以函数()f x 的图象如图所示.再作出3log y x =的图象,易得两图象有4个交点,所以方程3()log ||f x x =有4个零点.故应选A . 8.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( )A .c a b >>B .c b a >>C .b a c >>D .a c b >>【答案】C【解析】:∵当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立, ∴()()()122121,1,,0x x x x f x f x ∀∈+∞>-<且,有 , ∴f (x )在(1,+∞)上单调递减, 又∵函数f (x )的图象关于直线x =1对称, ∴a=f (12-)=f (52),∵e>52>2>1, ∴f (e)<f (52)<f (2) 即b>a>c,故选:C.9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( ) A .[4,)+∞ B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】C【解析】函数()f x 的图象关于点()1,0对称且在(,0)-∞上单调递增,所以()f x 在(2,)+∞上单调递增,所以对称轴22m≤,即4m ≤.故选:C 10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x xx x y e e ----=+的曲线有下列说法:①该曲线关于2x =对称; ②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数. 其中正确的是( ) A .②③ B .①④ C .②④ D .①③【答案】D【解析】因为曲线方程为()222(1)(3)x xx x y e e ----=+,而220x x e e --+>恒成立,故等价于()()()22213x xx x y f x ee----==+.①因为()()()()21122xxx x f x f x e e-+-+==-+,故该曲线关于2x =对称;②要该曲线关于()2,1-对称,则需满足()()2212f x f x ++-=-,而由①中所求,显然()()22f x f x ++-不是常数,故该曲线不关于()2,1-对称; ③当0x <时,()()2130x x -->,且220x x e e --+>,则()0f x >恒成立, 故该曲线不经过第三象限;④容易知()()()21,10,30f f f =-==,此外该曲线上没有其它横纵坐标都是整数的点. 事实上,本题可以利用导数和函数对称性可知,函数图像如下所示:,则容易知该曲线的各种性质. 故选:D.11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3 B .4 C .5 D .6【答案】C【解析】由()()f x f x -=,得()f x 的图象关于y 轴对称. 由()()2f x f x =-,得()f x 的图象关于直线1x =对称.当[]01x ∈,时,()3f x x =,所以()f x 在[]1,2-上的图象如图. 令()()0g x cos x f x π-==,得()cos x f x π=,两函数()y f x =与y cos x π=的图象在13,22⎡⎤-⎢⎥⎣⎦上的交点有5个.故选:C.12.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<【答案】B【解析】∵函数()f x 满足()()13f x f x +=-,∴()()163f x f x +=-+=()1f x 1f x -=-(), ∴f (x )在R 上是以6为周期的函数,∴f (12.5)=f (12+0.5)=f (0.5),()()()4.5 4.56 1.5f f f -=-+=又()3y f x =+为偶函数,∴f (x )的对称轴为x =3,∴f (3.5)=f (2.5), 又∵0<0.5<1.5<2.5<3,且()f x 在(0,3)内单调递减,∴f (2.5)<f (1.5)<f (0.5) 即f (3.5)<f (-4.5)<f (12.5),故选B .13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 【答案】D【解析】依题意知()f x 图象关于点(2,0)对称, 作出()f x 图象如图,可知()f x 在R 上为减函数,由图象可得(,2]x ∈-∞时,()(4)(2)(4)f x f x x x =--=--,由(2)(4)x x x x --=⇒=或x 舍去), 由图象可知()f x x >的解为⎛ ⎝-⎭∞,故选:D .14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A .0B .mC .2mD .4m【答案】C【解析】因为函数()f x (x ∈R )满足()()4f x f x -=-,即函数()f x (x ∈R )满足()()22f x f x -+=,所以()y f x =是关于点(0,2)对称,函数21x y x +=等价于12y x =+, 所以函数21x y x +=也关于点(0,2)对称,所以函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y 也关于点(0,2)对称,故交点()11,x y ,()22,x y ,…,(),m m x y 成对出现,且每一对点都关于(0,2)对称,故()12121()()0422mi i m m i mx y x x x y y y m =+=+++++++=+⨯=∑. 故选:C.。
周期为2的函数
周期为2的函数
周期为2的函数指的是传递函数T(t)到其本身,每隔2个单位复位,即满足条件:
T(t+2)=T(t)。
也就是说,这种函数具有一个特定的周期,这个周期永远都是2。
它的定义也可以描述为,当一个函数的有效时间区间复位到本身,就是周期为2的函数。
周期为2的函数一般用来表示循环性或者重复性的事物,比如声音和图像等,通常这
些函数有两个参数,分别为时段和频率。
另外,一般地任何非整数周期的函数可以通过周
期为2的函数来表示。
关于周期为2的函数,由于它对参数的要求,可以将它分为正弦函数和余弦函数两类。
正弦函数指的是定义在实数轴上的一个函数,其函数图像形状是一个曲线,它的函数形式为:y=sin(x)。
此函数可以用于描述某种循环的状态,比如振动,重复等状态。
同样,余
弦函数也是一种描述循环状态的函数,其函数形式为:y=cos(x),余弦函数形式代表一种
有规则循环状态,比如振动,重复等。
虽然周期为2的函数各有其专属特点,但是它们在实际应用上有着十分重要的意义,
它们可以用于振动的模拟,以及描述事物多次重复的状态,这也是它们在运算机等科技领
域的应用最为广泛的地方。
总的来说,周期为2的函数是一种有规则的函数,其函数图像有着特定的循环性和重
复性,它们常用于模拟声音和图像等,也可以用于描述某种特定循环状态,有着十分重要
的应用意义。
高中数学-函数的周期性
高中数学——函数的周期性一、知识回顾1.周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.3.关于函数周期性常用的结论(1)若满足()()f x a f x +=-,则()(2)[()]()f x a f x a a f x a f x +=++=-+=,所以2a 是函数的一个周期(0a ≠);(2)若满足1()()f x a f x +=,则(2)[()]f x a f x a a +=++= 1()f x a +=()f x ,所以2a 是函数的一个周期(0a ≠);(3)若函数满足1()()f x a f x +=-,同理可得2a 是函数的一个周期(0a ≠). (4)如果)(x f y =是R 上的周期函数,且一个周期为T ,那么))(()(Z n x f nT x f ∈=±.(5)函数图像关于b x a x ==,轴对称)(2b a T -=⇒.(6)函数图像关于()()0,,0,b a 中心对称)(2b a T -=⇒.(7)函数图像关于a x =轴对称,关于()0,b 中心对称)(4b a T -=⇒.二、方法规律技巧1.求函数周期的方法求一般函数周期常用递推法和换元法,形如y =Asin(ωx +φ),用公式T =2π|ω|计算.递推法:若f(x +a)=-f(x),则f(x +2a)=f[(x +a)+a]=-f(x +a)=f(x),所以周期T =2a.换元法:若f(x +a)=f(x -a),令x -a =t ,x =t +a ,则f(t)=f(t +2a),所以周期T =2a .2.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.3.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.4.关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题,体现了转化思想.三、例题讲解:1、设定义在R 上的函数()f x 满足()()22012f x f x ⋅+=,若()12f =,则()99________f =.2、已知f (x )是R 上的奇函数,对x ∈R 都有f (x+4)=f (x )+f (2)成立,若f (﹣1)=﹣2,则f (2013)等于( )A .2B .﹣2C .﹣1D .20133、定义在R 上的函数的图象关于点3,04⎛⎫- ⎪⎝⎭成中心对称,且对任意的实数x 都有f(x)=-f 32x ⎛⎫+ ⎪⎝⎭,f(-1)=1,f(0)=-2,则f(1)+f(2)+…+f(2013)=( ) A .0 B .-2C .1D .-44、已知周期函数f(x)的定义域为R ,周期为2,且当-1<x≤1时,f(x)=1-x 2.若直线y =-x +a 与曲线y =f(x)恰有2个交点,则实数a 的所有可能取值构成的集合为( )A .{a|a =2k +34或2k +54,k ∈Z} B .{a|a =2k -14或2k +34,k ∈Z} C .{a|a =2k +1或2k +54,k ∈Z} D .{a|a =2k +1,k ∈Z}5、设f(x)是定义在R 上且周期为2的函数,在区间[-1,1]上,f(x)=1,102,01ax x bx x x a+-≤<⎧⎪+⎨≤≤⎪+⎩,其中a ,b ∈R.若f 12⎛⎫⎪⎝⎭=f 32⎛⎫ ⎪⎝⎭,则a +3b 的值为________.四、新题变式探究【变式一】已知定义在R 上的函数()f x 满足条件;①对任意的x R ∈,都有()()4f x f x +=;②对任意的[]()()121212,0,2x x x x x f x ∈<<且,都有f ;③函数()2f x +的图象关于y 轴对称.则下列结论正确的是( )A.()()()7 6.5 4.5f f f <<B.()()()7 4.5 6.5f f f <<C.()()()4.5 6.57f f f <<D.()()()4.57 6.5f f f <<【变式二】设g(x)是定义在R 上,以1为周期的函数,若函数f(x)=x+g(x)在区间[0,1]上的值域为[-2,5],则f(x)在区间[0,3]上的值域为 .【综合点评】充分利用周期函数的定义将所求函数值的问题转化为已知区间的求值问题是解题关键.五、易错试题常警惕易错典例1:若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________. 易错典例2:定义在R 上的函数f(x)既是奇函数,又是周期函数,T 是它的一个正周期.若将方程f(x)=0在闭区间[-T ,T]上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .5 【变式】设()f x 是连续的偶函数,且当0x >时,()f x 是单调函数,则满足3()()4x f x f x +=+的所有x 之和为 ( )A .-3B .3C .-8D .8练习:A 基础测试1.【江苏省南京市2014届高三9月学情调研】设函数()f x 是定义在R 上的偶函数,当0x ≥时,()21xf x =+.若()3f a =,则实数a 的值为 . 2.【2014届吉林市普通高中高中毕业班复习检测】给出下列函数①cos y x x =②2sin y x =③2y x x =-④x x y e e -=-,其中是奇函数的是( )A. ①②B. ①④C. ②④D. ③④3.【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知)(x f y =是定义在R 上的偶函数,且在),0[∞+上单调递增,则满足)1()(f m f < 的实数m 的范围是 .4.【吉林市普通中学2013-2014学年度高中毕业班摸底测试理】()tan sin 1f x x x =++,若2)(=b f ,则=-)(b f ( )A. 0B. 3C. -1D. -25. 【安徽省示范高中2014届高三上学期第一次联考数学(理)】已知偶函数()f x 对任意x R ∈均满足(2)(2)f x f x +=-,且当20x -≤≤时,3()log (1)f x x =-,则(2014)f 的值是 .B 能力提升训练1. 【江西省2014届高三新课程适应性考试理科数学】已知函数()y f x =是周期为2的周期函数,且当[1,1]x ∈-时,||()21x f x =-,则函数()()|lg |F x f x x =-的零点个数是( )A .9B .10C .11D .122. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】定义在R 上的奇函数)(x f y =满足0)3(=f ,且不等式)()(x f x x f '->在),0(+∞上恒成立,则函数)(x g =1lg )(++x x xf 的零点的个数为( )A. 4B. 3C. 2D. 13. 【广东省中山市一中2014届高三第二次统测】奇函数()f x 满足对任意x R ∈都有()()2f x f x +=-成立,且()18f =,则(2012)(2013)(2014)f f f ++的值为( )A . 2B . 4C . 6D . 8 4. 【广东省广州市海珠区2014届高三入学摸底考试数学理试题】已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 ( ) A .1- B. 2- C. 2 D.15.【2014届山东省日照市高三校际联考】已函数()f x 是定义在[]1,1-上的奇函数,在[0,1]上时()()2ln 11xf x x =++- (Ⅰ)求函数()f x 的解析式;(Ⅱ)解不等式2(21)(1)0f x f x -+-≥.C 思维扩展训练1. 【湖北孝感高中2014届高三年级九月调研考试】已知()y f x =是定义在R 上周期为4的奇函数,且02x ≤≤时,2()2f x x x =-则1012x ≤≤时,()f x =_________________2. 【2014届新余一中宜春中学高三年级联考数学(理)】已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或-12C .-14或-12D .0或-14 3. 定义在R 上的奇函数()f x ,满足(3)()f x f x +=,(2)0f =,则函数()y f x =在区间()0,6内零点个数的情况为( )A .2个B .4个C .6个D .至少6个4. 已知定义在R 上的函数()y f x =对任意的x 都满足(1)()f x f x +=-,当11x -≤< 时,3()f x x =,若函数()()log a g x f x x =-至少6个零点,则a 的取值范围是 .5. 【2014届上海市青浦区高三上学期末】定义在R 上的奇函数()f x 有最小正周期4,且()0,2x ∈时,142)(+=x xx f (1)判断并证明()f x 在()0,2上的单调性,并求()f x 在[]2,2-上的解析式;(2)当λ为何值时,关于x 的方程()f x λ=在[]6,2上有实数解?.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。