弧弦与圆心角关系定理PPT课件

合集下载

弧弦圆心角课件

弧弦圆心角课件

应用三:求解多边形内角和
弧弦圆心角定理
多边形内角和等于(n-2)×180°,其中n为多边形的边数。
弧弦圆心角在多边形中的应用
通过弧弦圆心角定理,可以求解多边形内角和,进而解决与多边形内角相关的问题。同时,也可以利 用多边形内角和的求解方法,推导其他几何图形的内角和公式。
05
弧弦圆心角在三角函数中应用
心角之差。
弧弦圆心角在波动中的应用
02
利用弧弦圆心角可以直观地表示波动的相位,从而方便地描述
两个波之间的相位差以及波的干涉、衍射等现象。
应用实例
03
利用弧弦圆心角分析两个同频率波的干涉现象,可以方便地得
出干涉加强或减弱的条件。
应用三:描述圆周运动中角速度与线速度关系
角速度与线速度关系
在圆周运动中,角速度与线速度之间的关系可以通过弧弦圆心角来描述。具体地,角速度 等于单位时间内转过的弧弦圆心角所对应的弧度数,而线速度则等于角速度与半径的乘积 。
要点二
利用弧弦圆心角关系判断三角函 数方程的解的存在性
在解三角函数方程时,有时需要判断方程是否有解。此时 ,可以利用弧弦圆心角关系来判断方程是否有解。例如, 当方程中的三角函数值超出其定义域时,可以判断该方程 无解。
06
弧弦圆心角在物理中应用
应用一:描述简谐振动中相位差
相位差定义
两个同频率简谐振动的相位之差,等于它们所对应的弧弦圆心角 之差。

性质定理二
在同圆或等圆中,如果两条弧相等 ,那么它们所对的圆心角相等,所 对的弦也相等。
性质定理三
在同圆或等圆中,如果两条弦相等 ,那么它们所对的弧相等,所对的 圆心角也相等。
判定方法二:利用三角函数判定

《圆心角、弧、弦之间的关系》课件

《圆心角、弧、弦之间的关系》课件
得∠AOB=∠A′OB′,=''.
相等.
探究点一
圆心角、弧、弦之间的关系
[例 1]如图所示,在☉O 中,=,∠ACB=60°.求证:∠AOB=∠AOC=∠BOC.
[导学探究]
1.由=,可得 AB=AC
,即△ABC 是 等腰 三角形.
2.由∠ACB=60°,可得△ABC 是 等边 三角形,易得∠AOB=∠AOC=∠BOC.
2.圆的对称性
第1课时
圆心角、弧、弦之间的关系
一、圆的对称性
1.圆是旋转对称图形,无论绕
是 圆心 .
圆心
旋转多少度,都能与自身重合,对称中心
2.圆是轴对称图形,任意一条 直径 所在的直线都是它的对称轴.
二、圆心角、弧、弦之间的关系
1.在同一个圆中,如果圆心角相等,那么它们所对的 弧 相等,所对的 弦 相等.
.
证明:如图所示,连结 OC,
因为 C 为的中点,
所以=.
所以∠MOC=∠NOC.
又因为 M,N 分别是 OA,OB 的中点,




所以 OM= OA,ON= OB.
因为 OA=OB,所以 OM=ON.
= ,
在△OMC 和△ONC 中, ∠ = ∠,
= ,
所以△OMC≌△ONC.所以 MC=NC.
圆心角、弧、弦三者之间的关系可以理解为:在同圆或等圆中,(1)圆心角相等;
(2)两条劣弧(或优弧)相等;(3)两条弦相等,三项“知一推二”,即一项相等,
其余两项皆相等.
证明:因为=,所以 AB=AC,
即△ABC 是等腰三角形.
又∠ACB=60°,
所以△ABC 是等边三角形.
所以 AB=BC=CA.

圆心角弧弦之间的关系课件

圆心角弧弦之间的关系课件
圆心角弧弦之间的关系 ppt课件
在几何中,圆心角、弧和弦是圆形中的三个基本概念。它们之间有着密切的 关系和数学公式,通过本课件将深入探讨它们间的关联和实际应用。
圆心角的定义
圆心角是指以圆心为顶点,两条与圆相交的射线所夹的角度。
弧的定义
弧长
弧长是指弧上的一段线段的长度。
对应弧
对应弧是指与圆心角相对应的弧。
弦弧中点角
弦弧中点角是指弦所对应的弧的一半的圆心角。
弦的定义
1 中心弦
中心弦是指连接圆的两个不同点,并通过圆心的弦。
2 切线弦
切线弦是指与圆相切并通过圆心的弦。
3 弦弧中点角和弦角
弦弧中点角和弦角是弦所对应的圆心角。
圆心角和弧的关系
1
圆心角和对应弧的关系2圆心角等于对来自弧所包含的弧度数的两倍。
3
圆心角度数等于对应弧的弧度数
圆心角的度数等于对应弧的弧度数。
圆心角和弧长的关系
圆心角的度数等于弧长除以圆的半径。
圆心角和弦的关系
圆心角和弦垂直
圆心角和弦的所对应的两条弧都 与弦垂直。
圆心角是所对应弦弧中点 角的两倍
圆心角的度数等于所对应弦弧中 点角度数的两倍。
所对应弦弧中点角是圆心 角的一半
所对应弦弧中点角的度数等于圆 心角度数的一半。
圆心角和弧弦的计算公式
圆心角 圆心角 弦角 弦弧中点角
弧长/圆半径 弧对应的弧度数 圆心角的一半 圆心角/2
实际问题的应用
建筑设计
在建筑设计中,圆心角和弦的 关系可用于计算建筑物的弧线 结构。
车辆转弯
在车辆转弯的计算中,圆心角 和弦的关系可用于确定转弯半 径和最佳转弯角度。
天文学
在天文学中,圆心角和弧的关 系可用于计算星体之间的距离 和角度。

《弧线圆心角》人教版数学九年级上册PPT课件

《弧线圆心角》人教版数学九年级上册PPT课件
圆是中心对称图形,圆心就是它的对称中心。
探究
剪一个圆形纸片,把它绕圆心旋转任意角度呢?你发现了什么?
旋转60°
旋转90°
旋转120°
结论:一个圆绕圆心旋转任意角度,所得图形和原图形重合。
圆心角概念
顶点在圆心的角叫做圆心角。
(注意:判断是否圆心角时需观察顶点是否在圆心)
⌒⌒
∠AOB = ∠COD
(2)如果 AB=CD,那么____________,_____________.
AB=CD
෽ =


AB=CD
(3)如果∠AOB=∠COD,那么_____________,_________.
A
E
B
·
O
D
F
随堂测试
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?
෽ +
෽ =෾


+
෽.
෽ =

∴AB=CD.
随堂测试
3.如图,⊙中,弦与相交于点, = ,连接、.
෽ ;⑵ = .
෽ =
求证:⑴
证明(1)∵AB=CD,
෽ =
෽ ,即
෽ +
෽ =
෽ +
෽,

B
∴点A与A1重合,B与B1重合
B1
∴射线OB与OB1重合,射线OA与OA1重合
·
O
∴∠AOB=∠A1OB1
A
而同圆的半径相等OA=OA1,OB=OB1
∴AB=A1B1 (SAS)
在同圆或等圆中,
相等的弧所对的圆心角相等,
所对的弦相等

弦弧圆心角弦心距课件

弦弧圆心角弦心距课件

弧的性质
弧是连接圆上两点的曲线,其长度和所对的 圆心角大小有关。
圆心角的定义与性质
圆心角的定义
在圆中,弧所对的中心角称为圆 心角。
圆心角的性质
圆心角的大小与所对的弧长和半 径有关。
弦与圆心角的关系
弦与圆心角的关系
弦的长度与所对的圆心角大小有关, 当弦所对的圆心角增大时,弦的长度 也增大。
弦长与弧长的关系
弦弧圆心角弦心距课件
目录
CONTENTS
• 弦弧与圆心角的基础知识 • 弦弧的长度计算 • 弦心距的基本概念 • 弦弧圆心角弦心距的应用 • 弦弧圆心角弦心距的作图方法
01
弦弧与圆心角的基础知识
弦弧的定义与性质
弦弧的定义
在圆中,连接圆上任意两点的线段称为弦, 其所对的弧称为弧。
弦的性质
弦是连接圆上两点的线段,其长度取决于圆 的大小和两点的相对位置。
定理证明
根据圆心角、弦、弧的定 义和垂径定理的推论可以 证明。
定理应用
在求解与圆有关的轨迹问 题时,常常需要借助弦弧 所对的圆周角来分析问题 和寻找解题途径。
弦心距在解直角三角形中的应用
定义
弦心距是指从圆心到弦的距离, 用符号表示为OC。
定理证明
利用勾股定理和垂径定理的推论可 以证明。
定理应用
在求解与圆有关的轨迹问题时,常 常需要借助弦心距来分析问题和寻 找解题途径。
05
弦弧圆心角弦心距的作图方法
用量角器作图法
总结词:通过已知的弧长和圆心角,用 量角器直接测量并作图。
3. 根据弧长Lห้องสมุดไป่ตู้θ,在图纸上画出弧线。 2. 使用量角器测量θ;
详细描述 1. 已知弧长L和圆心角θ;

3.弧弦圆心角课件

3.弧弦圆心角课件

顶点在圆心的圆心角等分成360份时,每 一份的圆心角是1°的角,整个圆周被等分成 360份,我们把每一份这样的弧叫做1°的弧。
(同圆中,相等的圆心角所对的弧相等)
C
1度弧
D
结论:圆心角的度数和
它所对的弧的度
判断
在两个圆中,分别有 AB和CD , 若 AB 的度 数和 CD 相等,则有
是圆周长的 1/6 。 4、一条弦长恰好等于半径,则此弦所对的圆
心角是 60 度。
课堂检测
5.已知:如图,⊙O中, AB、CD
︵︵
交于E, ACB与DBC的度数相等。线
段DE与线段BE相等吗?证明你的结
论.

A
C
E
D
O B
2.如图,在⊙O中,∠B=37°, 劣弧AB的度数是多少?
对应练习
1.在半径相等的⊙O和⊙´ O⌒中,A´⌒B和´ A B 所对的圆 心
角都⌒是6⌒´0°´ . (1)⌒AB和´⌒A´B各是多少度?
(2)AB和A B 相等吗?
(3)在同圆或等圆中,度数相度的弧相等.为什么?
2.若把圆5等分,那么每一份弧是多少度?若把圆8 等分,那么
(1)AB 和 CD 相等
(2)AB 所对的圆心角和 CD 所对的圆 心角相等
例题分析
例1:已知:如图,在△ABC中, ∠C=90°, ∠A=34°,以点C为圆心,CB为半径的圆交 AB于D点,求BD弧的度数.
A
问题:求BD弧的度数,可转化
为求什么?需添辅助线吗?
D
如何添?
C
B
对应练习
1.下列说法,正确的是( ) A.等弦所对的弧相等 B.等弧所对的弦相等 C.圆心角相等,所对的弦相等 D.弦相等所对的圆心角相等

圆心角之圆心角与弧的度数PPT课件

圆心角之圆心角与弧的度数PPT课件

交点为 M , 求 弦 AB 的长.
1.过⊙o内一点M的最长的弦长为10㎝,最短弦长为8
㎝,那么⊙o的半径是 5㎝
2.已知⊙o的弦AB=6㎝,直径CD=10㎝,且AB⊥CD,那 么C到AB的距离等于 1㎝或9㎝
3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1㎝,
那么⊙O的半径为
5 Cm
4.如图,在⊙O中弦AB⊥AC,
C
E
·O
A
D
B
SUCCESS
THANK YOU
2019/7/24
已知:如图,点O在∠EPF的平分线上,⊙O和 ∠ EPF的两边分别交于点A,B和C,D。
求证:AB=CD
M
A
O
P
C
N
E
B
D
F
已知:如图,AD=BC. 求证:AB=CD
C
A
E
O
B
D
已知AB和CD为⊙O的两条直径,弦EC//AB,弧EC的 度数为40°,求∠BOD的度数。
②AB=A′B′
④ OD=O′D′
把圆分成360等份,
每一份所对的角叫做一度角。
记作 “1°” 。
∵把圆心角等分成360份,则每一份的圆心 角是1º.同时整个圆也被分成了360份.
则每一份这样的弧叫做1º的弧.
这样,1º的圆心角对着1º的弧, 1º的弧对着1º的圆心角. n º的圆心角对着nº的弧, n º的弧对着nº的圆心角.
110°
E
70°
A
C
70°O40°
D B
已知:如图, PB=PD. 求证: AB=CD 。
C
A
F PE
O
B

圆心角弧弦弦心距之间的关系省名师优质课赛课获奖课件市赛课一等奖课件

圆心角弧弦弦心距之间的关系省名师优质课赛课获奖课件市赛课一等奖课件
B′
A′ B
B′
·
O
A
·
O
A
根据旋转旳性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′旳
位置时, ∠AOB=∠A′OB′,射线 OA与OA′重叠,OB与OB′重
叠.而同圆旳半径相等,OA=OA′,OB=OB′,∴点 A与 A′重
叠,B与B′重叠.
∴A︵B与

A'B
'
.
重叠,AB与A′B′重叠.
︵︵
AB A' B '.
O B'
(2)在⊙O和⊙O’中,假如
A'
B
︵︵ AB=A’B’,那么AB=A`B`.
A
(不对)
圆心角、弧、弦、弦心距之间旳关系
(1)定理:在同圆中,相等旳圆心角所正确弦 相等,所正确弧相等,所正确弦心距相等。
思索定理旳条件和结论分别是什么?并回答:
条件: 在等圆或同圆中 圆心角相等
结论:
演示
圆心角所对弧相等
∴ AC-BC=BD-BC (等式旳性质) 图 23.1.5 ∴ AB=CD ∴ ∠1=∠2=45° (在同圆中,相等旳弧所正确
圆心角相等)
六、练习
如图,AB是⊙O 旳直径,BC = CD = DE ∠COD=35°,求∠AOE 旳度数.
解:
ED
∵ BC = CD = DE
C
BOC=COD=DOE=35
1A
1 50, 则 2 _5_0_o_ .
C 2O
D
四、练习
如图,AB、CD是⊙O旳两条弦. (1)假如AB=CD,那么__A ___B __=___C _,D _______A_O_B_____C__O_D.

弧弦与圆心角关系定理课件

弧弦与圆心角关系定理课件

弧弦与圆心角的关系定理
定理
在同圆或等圆中,弧弦与所对应的圆 心角相等。
证明思路
利用圆的基本性质,通过作图和角度 测量进行证明。
02
定理的证明过程
证明方法一:解析法
01
02
03
定义变量ห้องสมุดไป่ตู้
设圆心角为α,弧长为l, 半径为r。
建立数学方程
根据弧长公式,可建立以 下方程:l = αr / 180°
解析证明
对后续学习的建议与展望
加强基础知识的掌握
弧弦与圆心角关系定理是圆的基本性质之一,后续的学习需要建立 在扎实的基础知识之上,因此建议加强基础知识的掌握。
深入探究圆的性质
圆是几何学中的重要内容之一,后续的学习可以进一步深入探究圆 的性质和相关定理,如圆周角定理、相交弦定理等。
加强应用能力的培养
学习数学的目的在于解决实际问题,建议加强应用能力的培养,提高 解决实际问题的能力。
THANKS FOR WATCHING
感谢您的观看
结合解析法和几何法
将解析法和几何法相结合,综合两种方法的证明过程。
推导公式
通过综合法推导出弧长和圆心角的公式,并证明其正确性。
证明关系
结合解析法和几何法的证明结果,进一步证明弧长和圆心角之间的 关系。
03
定理的应用举例
弧长计算问题
总结词
利用弧弦与圆心角关系定理,可以根据圆心角的大小来计算弧线的长度。
详细描述
在圆中,弧线与弦的长度和所对应的圆心角的大小有着密切的关系。对于同一 个圆,圆心角越大,对应的弧线就越长。通过弧弦与圆心角关系定理,我们可 以根据圆心角的大小来计算弧线的长度。
圆心角计算问题
总结词

《弧弦圆心角》完整版课件

《弧弦圆心角》完整版课件

那么A⌒B与C⌒D,弦AB与弦CD有 (1)如果AB=CD,那么___________,____________.
在同圆或等圆中,如果两条弦相等呢?
在同圆或等圆中,如果两条弦相等呢? (1)判断四边形BDCO的形状,并说明理由; (1)判断四边形BDCO的形状,并说明理由;
· O
问题1:圆是中心对称图形吗?它的对称中心在哪里?
(1)判断四边形BDCO的形状,并说明理由;
1 判断四边形BDCO的形状,并说明理由; (2)如果
,那么____________,_____________.
如图,在⊙O中,AB=AC,∠ACB=60°.
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?
圆心角、弧、弦之间的关系
AB
C
O
E
D
18
变式
CD AB
CD=2AB也成立吗?请说明理由;如不是,那它们之间
的关系又是什么?
AB
C
O
E
D
19
6.如图所示,CD为⊙O的弦,在CD上取CE=DF, 连接OE、OF,并延长交⊙O于点A、B.
((12))试求判证断:△A⌒CO=EB⌒FD的. 形状,并说明理由;
O
E C
A
F D
B
如图,等边△ABC的三个顶点A、B、C都在⊙O
求证: ∠AOB=∠BOC=∠AOC.
∴∠COB=∠COD=∠DOE=35°
圆心角∠AOB所对的弦为 AB, 所对的弧为A⌒B.
B
3
1.判别下列各图中的角是不是圆心角,并说明理由.
圆内角
圆外角

圆周角(后

面会学到)

2圆心角、弧、弦、弦心距之间的关系PPT课件

2圆心角、弧、弦、弦心距之间的关系PPT课件
D
下面我们一起来视察一下圆心角与它所对的弦、弧有什么关系?
如图:
A
AOB= COD
B
o
C
D
下面我们一起来视察一下圆心角与它所对的弦、弧有什么关系?
如图:
A
AOB= COD
B
o
C
D
下面我们一起来视察一下圆心角与它所对的弦、弧有什么关系?
如图:
A
AOB= COD
B
o
C
D
下面我们一起来视察一下圆心角与它所对的弦、弧有什么关系?
A E B
o
C F D
解 (2:)(∵1)∠AOB=∠AOC=∠BOC, ∵ AB∠、AAOCB、+B∠CA分O别C+是∠∠BAOOCB=、36∠0°A,OC、 ∠ABOBC=所∠对A的O弦C=,120° ∴弦∠ABBO、CA=C36、0°BC-1的20弦°心-12距0°相=等12。0° 得 ∵∠BCA的O弦B=心∠距A为OC3厘=∠米B,OC ∴AB、=AACC=的BC弦心距为3厘米。
圆心角:以圆心为顶点,以两条半径为边所 组成的夹角。
圆弧:圆上任意两点之间的部分。
圆的任意一条直径的两个端点将圆分成两条弧, 每条弧都叫做半圆。
优弧:大于半圆的弧。
劣弧:小于半圆的弧。 弦:联结圆上任意两点的线段。
过圆心的弦就是直径。
1、判别下列各图中的角是不是圆心角,并说明理由。




下面我们一起来视察一下:在⊙O中有哪些圆心角?
半径长相等的两个圆一定能够重合,我们把半径长相 等的两个圆称为等圆。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的 弦也相等。
AB=CD吗?
弧AB与弧CD呢?

弧、弦、圆心角课件(共22张PPT)人教版数学九年级上册

弧、弦、圆心角课件(共22张PPT)人教版数学九年级上册
(2)证明:∵OA=OC,∠AOC=30°,∴∠ACE=75°,
∴∠ACE=∠AEC, ∴AC=AE,同理,BF=BD.易知AC=
CD=BD,∴AE=BF=CD.
【题型三】利用弧、弦、圆心角证明
෢ = ,
෢ ⊥ 于点D,CE⊥
例5:如题图,在⊙O中,
OB于点E,求证:AD=BE.
D.3 个

例4:如题图,已知∠ AOB=90°, C, D 是的三等分点,
连接AB分别交OC, OD 于点 E, F.(1)求∠AEC的度数;

(1)解:连接AC, BD,如答图.∵C,D是的三等分点,
෢ =
෢ = ,∴∠AOC=∠COD=∠BOD.


∵∠ = 90°, ∴ ∠ =
相等,所对的弦相等.
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角
相等,所对的优弧和劣弧分别相等.
教师讲评
注:理解弦、弧、圆心角的关系思维图:
典型精讲
【题型一】弧、弦、圆心角概念的理解与认识
例1: 下列语句中,正确的有( A )
①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度
证明:如答图,连接OC.
෢ = ,
෢ ∴ ∠ = ∠.

∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90° .
又∵CO=CO,∴△COD≌△COE,∴OD=OE.
又∵OA=OB, ∴OA-OD=OB-OE,∴AD=BE.
例6:如题图,AB为⊙O的直径,AE为⊙O的弦,C为⊙O上一点,
心角相等,所对的优弧和劣弧分别相等)
5.如果没有“在同圆或等圆中”这个条件,还能得出对应的结论吗?
(不能)

弧、弦、圆心角PPT教学课件

弧、弦、圆心角PPT教学课件

H O H
H O HH O
C2H5
比较下表含相同碳原子数、不同羟基数的醇的沸点
名称
分子中羟基数目
沸点/℃
乙醇
1
78
乙二醇
2
197.3
1-丙醇
1
97.2
1,2-丙二醇
2
188
1,2,3-丙三醇
3
259
〔结论〕含相同碳原子数、不同羟基数的多元醇的沸点
比一元醇二元醇都高,多元醇具有易溶于水的性质。
〔原因〕是因为多元醇分子中羟基多,一方面增加了分子间 形成氢键的几率;另一方面增加了醇与水分子间形成氢键的几率。
小结
• 饱和一元醇 1、通式 CnH2n+1OH
2、随着C数的增多,熔沸点逐渐增,相对密度呈增大 趋势。 对于同碳数的,支链越多,熔沸点越低,密度越小。
3、随着碳数增多,水溶性降低。 4、比Mr接近的烷烃或烯烃的沸点要高(氢键的影响).
二、醇的化学性质
〔阅读〕P57交流研讨,以1-丙醇为例分析结构
第 3 课时 弧、弦、圆心角
弧、弦、圆心角之间的相等关系 在同圆或等圆中,相等的圆心角所对的弧_相__等__,所对的弦 _相__等___. 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心 角__相__等____,所对的弦也__相__等____. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心 角__相__等____,所对的弧也__相__等____.
2、能够利用系统命名法对简单的饱和一元 醇进行命名。
3、了解饱和一元醇的沸点和水溶性特点。 4、根据饱和一元醇的结构特征,说明醇的
化学性质及应用。
1、CH3CH2OH 2、
3、 4、 5、
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


D
∵ OA﹦OC ∴ RT△AOE≌RT △COF
F
∴ OE﹦OF
C
实例讲解 例1. 如图,在⊙O中, AB⌒=AC⌒,∠ACB=60°,
求证:∠AOB=∠BOC=∠AOC
A
证明:
∵ AB = AC
∴ AB=Aห้องสมุดไป่ตู้ 又∵∠ACB=60°
∴ ⊿ABC是等边三角形
∴ AB=BC=CA ∴ ∠AOB=∠BOC=∠AOC.
人教版九年级上册
圆心角的认识
顶点在圆心的角叫做圆心角.
A

B
练一练:找出右上图中的圆心角。
O
A DB
圆心角有: ∠AOD,∠BOD,∠AOB
小练习
下列图形中表示的角是圆心角的是( A )
观察
1.如图,将圆心角∠AOB绕圆心O旋转到∠ A’OB’
的位置,你能发现哪些等量关系?为什么?
A′
B B′
O
M
N
A
B
C
4.如图,在☉O中,C,D是直径AB上两点,且AC=BD,
MC⊥AB,ND⊥AB,M,N在☉O上.求证:AM BN.
小结
同圆或等圆中,两个圆心角、两条 弧、两条弦中有一组量相等,它们所对 应的其余各组量也相等.
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
ED C
解:
∵ BC = CD = DE
A
·
B BOC=COD=DOE=35
O
AOE 180 335
75
2.如图,已知AB、CD为⊙O的两条弦,A⌒D=B⌒C, 求证:AB=CD
C
B O
D A

3.如图,已知OA、OB是⊙O的半径,点C为AB 的中点,M、N分别为OA、OB的中点, 求证:MC=NC
AB A' B '.成立吗 ?
(1)
(2)在︵ 同圆︵中,如果 AB A' B '. 那么∠AOB=∠A′OB′,
AB A' B '. 成立吗 ?
(2)
弧、弦与圆心角的关系定理
1、在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等. 2、在同圆或等圆中,相等的弧所对的圆心角__相__等_, 所对的弦__相__等____; 3、在同圆或等圆中,相等的弦所对的圆心角__相__等__, 所对的弧_________. 相等
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
圆心角 相等
弧 相等
弦 相等
思考
定理“在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.”中,可否把条件“在同圆或等圆 中”去掉?为什么?
探究
(1)在同圆中如果
︵︵
AB A'B '.
那么∠AOB=∠A′OB′,
圆心角 相等
弧 相等
弦 相等
【方法一点通】
“知一推二”及两限定 在同圆或等圆中,两个圆心角、两条弧、两条弦
这三组量中有一组量相等,其余的各组量也相等,简 称“知一推二”. 1.当知两个圆心角相等时,必须限定同圆或等圆. 2.当两弦相等推圆心角相等时,必须限定同圆或等圆.
练习1
如图,AB、CD是⊙O的两条弦. (1)如果AB=CD,那么_A_B__=___C_D_,_A__O_B______C.OD
【方法一点通】 同一圆中证明两弦相等的“四种方法” 1.若两弦位于两个不同的三角形,证明两弦所在的 三角形全等. 2.若两弦位于同一个三角形中,根据等角对等边证 明两弦相等. 3.在同一圆中证明两弦所对的弧相等(同一类弧). 4.证明两弦所对的圆心角相等.
练习2
1.如图,AB是⊙O 的直径, BC = CD = DE ∠COD=35°,求∠AOE 的度数.
·O 60°
B
C
例2.如图,BC为⊙O的直径,OA是⊙O的半径, 弦BE∥OA,求证:A⌒C=A⌒E C
证明:
O A
E
B
【方法一点通】
证明两条弧相等:
在同圆或等圆中,证明两条弧相等,可证明这 两条弧所对的圆心角相等.
同一圆中证明两弦相等: 1.若两弦位于两个不同的三角形,证明两弦所在的 三角形全等. 2.若两弦位于同一个三角形中,根据等角对等边证 明两弦相等. 3.在同一圆中证明两弦所对的弧相等(同一类弧). 4.证明两弦所对的圆心角相等.
22
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
(2)如果 AB = CD ,那么A__B_=_C__D__,____A__O_B______C.OD
(3)如果∠AOB=∠COD,那么___AB___=__C,D ____A__B_=_C.D (4)如果AB=CD,为什么弦心距OE与OF相等?
证明:∵ OE⊥AB OF ⊥CD
A
E
B
∵ AB﹦CD ∴ AE﹦CF
A′ B
B′
·O
A
·
O
A
显然∠AOB=∠A′OB′
︵︵
可得到: AB A ' B '. AB A' B '.
2.如图,在等圆中,如果∠AOB=∠A′O ′B′,
你发现的等量关系是否依然成立?为什么?
A
B
A′
B′

·O ′
由∠AOB=∠A′O ′ B′可得到:
︵︵
AB A' B '.
AB A' B '.
相关文档
最新文档