离子交换法提取谷氨酸
等电点-离子交换法提取谷氨酸的实验应用
等电点-离子交换法提取谷氨酸的实验应用
谷氨酸在生物体内具有重要的生理功能,因此,对谷氨酸的提取和研究具有重要意义。
等
电点-离子交换法是一种常用的谷氨酸提取方法,可以有效地提取谷氨酸,并且操作简便、快捷。
实验步骤:
1.准备样品:将需要提取谷氨酸的样品(如动物组织、植物组织、微生物组织)研磨成粉末,加入适量的水,搅拌均匀,得到悬浮液。
2.等电点-离子交换提取:将悬浮液加入等电点-离子交换柱中,改变柱内的溶液浓度,使
谷氨酸结合在离子交换柱的表面上,并用碱性溶液洗脱,得到谷氨酸溶液。
3.纯化:将提取的谷氨酸溶液经过离子交换柱精确纯化,得到纯度较高的谷氨酸溶液。
4.分析:将提取的谷氨酸溶液进行光谱分析,测定谷氨酸的浓度,以确定提取效果。
等电点-离子交换法提取谷氨酸的实验应用,可以有效地提取谷氨酸,并且操作简便、快捷,是一种常用的谷氨酸提取方法。
谷氨酸的发酵和提取工艺综述
⾕氨酸的发酵和提取⼯艺综述综述:⾕氨酸的发酵与提取⼯艺第⼀部分⾕氨酸概述⾕氨酸⾮⼈体所必需氨基酸,但它参与许多代谢过程,因⽽具有较⾼的营养价值,在⼈体内,⾕氨酸能与⾎氨结合⽣成⾕氨酰胺,解除组织代谢过程中所产⽣的氨毒害作⽤,可作为治疗肝病的辅助药物,⾕氨酸还参与脑蛋⽩代谢和糖代谢,对改进和维持脑功能有益。
另外,众所周知的⾕氨酸钠盐即味精有很强烈的鲜味,是重要的调味品。
1996、1997、1998年味精年产量分别为55.0万吨、56.64万吨、59.03万吨。
尽管如此,我国⼈均年消耗味精量还只有400g左右,⽽台湾省已达2000g。
因此,中国将是世界上最⼤的潜在味精消费市场,也就是说,味精⽣产会稳步发展。
这也意味着⾕氨酸的⽣产不断在扩⼤[1]。
⾕氨酸⽣产⾛到今天就⽣产技术⽽⾔已有了长⾜进步,⽆论是规模还是产能都今⾮昔⽐,与此同时各⼚家还在追求完美, 这是⾏业进步的动⼒,也是⽣存之所需。
实际上⽣产⼯艺是与时俱进的,没有瑕疵的⼯艺是不存在的。
如:配⽅及提取⽅法现在是多种多样,有单⼀⽤纯⽣物素的,也有⽤⽢蔗糖蜜加纯⽣物素的, 还有加⽟⽶浆⼲粉或麸⽪⽔解液及⾖粕⽔解液等等;提取⽅法有:等电-离交、等电-离交-转晶、连续等点-转晶等等[2]。
本综述简述⾕氨酸⽣产的流程及发酵机制,着重介绍⾕氨酸的提取⼯艺。
第⼆部分⾕氨酸⽣产原料及其处理⾕氨酸发酵的主要原料有淀粉、⽢蔗糖蜜、甜菜糖蜜、醋酸、⼄醇、正烷烃(液体⽯蜡)等。
国内多数⾕氨酸⽣产⼚家是以淀粉为原料⽣产⾕氨酸的,少数⼚家是以糖蜜为原料进⾏⾕氨酸⽣产的,这些原料在使⽤前⼀般需进⾏预处理。
(⼀)糖蜜的预处理⾕氨酸⽣产糖蜜预处理的⽬的是为了降低⽣物素的含量。
因为糖蜜中特别是⽢蔗糖蜜中含有过量的⽣物素,会影响⾕氨酸积累。
故在以糖蜜为原料进⾏⾕氨酸发酵时,常常采⽤⼀定的措施来降低⽣物素的含量,常⽤的⽅法有以下⼏种:(1)活性炭处理法; (2)⽔解活性炭处理法;(3)树脂处理法。
谷氨酸发酵
谷氨酸发酵目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。
我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。
谷氨酸除用于制造味精外,还可以用来治疗神经衰弱以及配制营养注射液等。
我国的谷氨酸发酵虽然在产量、质量等方面有了较大的提高,但与国外先进水平相比还存在一定差距。
主要表现在:设备陈旧,规模小,自控水平、转化率和提取率低,易受噬菌体污染,废水污染问题尚未完全解决等。
一、菌种的选育主要通过基因突变、基因工程、细胞工程得到优良的菌种。
可以从自然界中先分离出相应的菌种,再用物理或化学的方法使菌种产生突变,从突变个体中筛选出符合生产要求的优良菌种。
在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。
研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。
因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,以提高细胞膜对谷氨酸的通透性,如生物素缺陷型菌种的选育。
1.谷氨酸生产菌的生化特征1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低.2. 谷氨酸脱氢酶活性强.3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱.4. 异柠檬酸裂解酶活力微弱.5. 不利用谷氨酸.6. 耐高糖耐高谷氨酸 .7. CO2固定能力强.8 .解除谷氨酸反馈抑制.9. 具有向胞外分泌谷氨酸的能力.2.谷氨酸产生菌棒杆菌属:北京棒杆菌钝齿棒杆菌谷氨酸棒杆菌短杆菌属:黄色短杆菌产氨短杆菌小杆菌属:嗜氨小杆菌节杆菌属:球形节杆菌3.共同点:1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低.2. 谷氨酸脱氢酶活性强.3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱.4. 异柠檬酸裂解酶活力微弱.5. 不利用谷氨酸.6. 耐高糖耐高谷氨酸 .7. CO2固定能力强.8 .解除谷氨酸反馈抑制.9. 具有向胞外分泌谷氨酸的能力.谷氨酸棒状杆菌谷氨酸棒状杆菌(Corynebacterium glutamicum)是好氧细菌,可用于微生物发酵工程生产谷氨酸来制取谷氨酸钠(味精),谷氨酸棒状杆菌在发酵过程中要不断地通入无菌空气,并通过搅拌使空气形成细小的气泡,迅速溶解在培养液中(溶氧);在温度为摄氏30到37度,pH为7到8的情况下,经28到32小时,培养液中会生成大量的谷氨酸。
氨基酸类药物的发酵生产—谷氨酸的发酵生产
生物素的来源:氨基酸生产上可以作为生物素来源的原料 有玉米浆、麸皮水解液、糖蜜及酵母水解液等,通常选取 几种混合使用。例如,许多工厂选择纯生物素、玉米浆、 糖蜜这三种物质来配制培养基。各种原料来源及加工工艺 不同,所含生物素的量不同。玉米浆含生物素500μg/kg, 麸皮含生物素300μg/kg,甘蔗糖蜜含生物素1500μg/kg。
操作简单 周期长,占地面积大。
直接常温等电点法工艺流程
发酵液
起晶中和点(pH4-4.5) 育晶(2h)
盐酸
菌体及细小的 谷氨酸晶体
等电点搅拌pH3-3.22 静置沉降4-6h 离心分离
成品
母液
干燥
湿谷氨酸晶体
2、离子交换法
可用阳离子交换树脂来提取吸附在树脂上的谷氨 酸阳离子,并可用热碱液洗脱下来,收集谷氨酸 洗脱流分,经冷却、加盐酸调pH 3.0~3.2进行结 晶,之后再用离心机分离即可得谷呈棒形或短杆形; 革兰氏阳性菌,无鞭毛,无芽孢;不能运动; 需氧性的微生物; 生物素缺陷型; 脲酶强阳性; 不分解淀粉、纤维素、油脂、酪蛋白、明胶等;
发酵中菌体发生明显形态变化,同时细胞膜渗透性改变; 二氧化碳固定反应酶系强; 异柠檬酸裂解酶活力欠缺或微弱,乙醛酸循环弱; α-酮戊二酸氧化能力微弱; 柠檬酸合成酶、乌头酸酶、异柠檬酸脱氢酶、谷氨酸脱氢酶活
有机氮丰富有利于长菌,因此谷氨酸发酵前期要 求一定量的有机氮,通常在基础培养基中加入适 量的有机氮,在发酵过程中流加尿素、液氨或氨 水来补充无机氮。
(3)无机盐
磷酸盐 :工业生产上可用K2HPO4·3H2O、KH2PO4、 Na2HPO4·12H2O、NaH2PO4·2H2O等磷酸盐,也可用磷酸。 过高:代谢转向合成缬氨酸。 过低:菌体生长缓慢。
5谷氨酸的提取
• •
三、离子交换法提取谷氨酸的基本理论
• 目前味精厂均采用732强酸性阳离子交换树 脂,利用阳离子交换树脂对谷氨酸阳离子 的选择性吸附,使发酵液中妨碍谷氨酸结 晶的残糖及糖的聚合物,蛋白质、色素等 非离子性杂质得以分离,后经洗脱达到浓 缩提取谷氨酸的目的。
影响谷氨酸晶型的主要因素
6. 7. 8. 9. 10. 11. 12. 13. 菌体 残糖 L-谷氨酰胺 杂菌和噬菌体 水解糖液质量 不同谷氨酸产生菌种对谷氨酸结晶晶型的影响 玉米浆胶体过多时对结晶的影响 某些氨基酸、多肽类物质及杂质的影响:L- 天冬氨酸、L-苯丙氨酸,L-酪氨酸,L- 亮氨酸及L-胱氨酸能促进а-晶型的生成。
提取谷氨酸的方法
– 等电点法
– 离子交换法 – 金属盐法 – 盐酸水解-等电点法 – 离子交换膜电渗析法
第三节 等电点法提取谷氨酸
• 直接常温等电点法
– 常温下等电点母液含谷氨酸1.5-2%,一次提取收率仅 60-70%。(发醇醪中谷氨酸含量为5%左右)
• 水解等电点法 • 低温等电点法
– 一次冷冻等电点法提取工艺,收率达78-82%母液谷 氨酸含量为1.2%左右。低温提取谷氨酸)
二、离子交换树脂的性能
• • • • • 交联度:交联剂的百分含量。732树脂交联度通常按树脂母体中二乙烯苯的 总量所占重量百分数计。 粒度:颗粒在水中充分膨胀后的直径,732树脂粒度为16-60目(碎米大小) 形状:不定形颗粒与球状两种 含水量:在指定活性基团形式下,树脂充分膨胀后树脂内部水分占树脂的百 分比。交联度小内部容量大,含水量高。一般树脂含水量40%-60% 相对密度:
谷氨酸生产工艺
生物工程专业综合实训(2016 年 11 月谷氨酸生产工艺摘要:谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。
不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。
现代生产谷氨酸的工艺主要是利用微生物发酵提取而来.不同的发酵方法和不同的发酵条件会造成产量的很大不同.本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。
通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法. 关键词:谷氨酸;发酵;工艺;等电点。
引言谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义.不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。
谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应.医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。
食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。
过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产.不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。
谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。
谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。
用于食品内,有增香作用。
甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。
谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用.一、谷氨酸简介谷氨酸一种酸性氨基酸。
分子内含两个羧基,化学名称为α-氨基戊二酸.谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。
大量存在于谷类蛋白质中,动物脑中含量也较多。
谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。
医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。
第六章谷氨酸的提取
• (4)发酵液中尚有其它一些含量很少的发 酵副产物。
• 有机酸类有乳酸、酮戊二酸、琥珀酸等; 氨基酸类有天门冬氨酸、丙氨酸、缬氨酸、 脯氨酸、异亮氨酸、亮氨酸、甘氨酸、组 氨酸和谷氨酰胺等。各种氨基酸含量小于1 %。
• (5)谷氨酸发酵液中含有铵离子0.6-0.8%, 残糖1%以下。
• 一般地说,开始加酸中和至PH5左右,这 段时间加酸速度可以快一些,PH5以下,起 晶前后,加酸速度要慢,须倍加小心,发 现晶核时,应立即停止加酸,育晶2h,使 晶核成长壮大,继续缓慢加酸中和至 PH3.2,搅拌育晶。
• 目前工厂一般采用盐酸中和,若用硫酸中 和,要避免局部温度过高,防止形成β-型结 晶,更需缓慢加酸。同时要选用硫酸含量 高,含杂质少,减少溶解度,可提高收得 率。
• (1)从谷氨酸发酵液中提取腺嘌呤。腺嘌呤 是肌苷发酵的必要原料,同时它还可合成 ATP。腺嘌呤是发酵过程核酸降解产物, 利用其解离度不一,在732离子交换树脂中, 用氢氧化钠洗脱时出现两个峰,见图6-1。
可以分开收集。前者为谷氨酸,后者为腺 嘌呤。再精制就可制得腺嘌呤磷酸盐或腺 嘌呤盐酸盐。
(4)盐酸水解-等电点法
• 发酵液中除含有谷氨酸外,尚含有一定量 的谷氨酰胺,焦谷氨酸和菌体蛋白,这些 物质用等电点、离子交换、锌盐法提取是 无法回收的。
• 发酵液经浓缩后加盐酸水解,可回收部分 谷氨酸,从而使谷氨酸的提取收率和谷氨 酸质量得到提高。
(5)离子交换膜电渗析法提取谷氨酸
• 根据渗透膜对各种离子物质的选择透性不 同而将谷氨酸分离,如电渗析和反渗透法。
• 因而在等电点时,谷氨酸的溶解度最小。 工业生产中等电点法提取谷氨酸就是根据 这一特性,将发酵液PH调至3.2,使谷氨 酸处于过饱和状态而结晶析出。
学习手册-谷氨酸提取技术
学习手册《子情境:谷氨酸提取技术》引导文-单元设计-技能考核标准-实训指导书子情境:引导文谷氨酸提取技术阅读材料材料一:谷氨酸发酵液的性质一、谷氨酸的性质1、谷氨酸的主要物理性质谷氨酸结晶为无色正四面体晶体,相对分子质量为147.13,相对密度为1.538 (20℃),熔点为202~203℃,在2mol/L HCl中的比旋光度为[α]D20=+31.8°(HCl浓度为10%)。
2、谷氨酸的主要化学性质①成盐反应谷氨酸分子中含有2个酸性的羧基和1个碱性的氨基,是一个既有酸性基团又有碱性基团的两性电解质,与酸或碱作用都可以生成盐。
②脱羧反应在谷氨酸脱羧酶的作用下,谷氨酸脱去α-羧基放出二氧化碳,同时生成γ-氨基丁酸。
用瓦勃氏呼吸仪测量二氧化碳的生成量,就可以计算谷氨酸的量,这是测定谷氨酸的方法之一。
③与茚三酮反应谷氨酸和其它氨基酸一样,在pH2.5~4.7时与水合茚三酮共热,生成紫蓝色产物,其颜色深浅与谷氨酸含量成正比。
在没有其它氨基酸存在时,可利用这个反应来定量分析谷氨酸。
④生成焦谷氨酸谷氨酸经长时间加热,脱水生成焦谷氨酸(L-吡咯烷酮酸)。
⑤生成谷氨酸盐酸盐谷氨酸在浓盐酸中会生成并析出谷氨酸盐酸盐。
谷氨酸盐酸盐与碱作用生成谷氨酸。
如果碱过量则生成谷氨酸一钠甚至生成谷氨酸二钠。
⑥与金属盐反应在一定pH下,谷氨酸与金属盐反应生成难溶于水的复盐。
这个性质也被用于提取发酵液中的谷氨酸。
二、谷氨酸发酵液的性质谷氨酸发酵属于细菌发酵,培养基的主要成分是葡萄糖、铵离子和磷酸盐等,因此发酵液较稀薄、不黏稠。
发酵结束放罐时,发酵液中除了含有谷氨酸外,还有菌体和培养基的残留物以及其它代谢产物等。
从外观上看,发酵结束时整个发酵液呈浅黄色浆状,表面浮有少许泡沫,发酵液温度一般为34~36℃,pH为6.5~7.0,近中性。
发酵液中的主要成分和含量取决于发酵条件的控制和生产菌种的类型。
发酵液中的主要成分有以下几种:①谷氨酸发酵液中所含的谷氨酸均为L-型,一般以谷氨酸铵盐的形式存在,即C5H8O4N·NH4。
发酵液中谷氨酸的提取纯化
一、实验原理:谷氨酸,学名: 2-氨基-5-羧基戊酸,为酸性氨基酸,是构成蛋白质的20 种常见α-氨基酸之一。
谷氨酸又名“麸酸” 或写作“夫酸”,是制造味精的原料。
D-谷氨酸参与多种细菌细胞壁和某些细菌杆菌肽的组成。
发酵制造L-谷氨酸是以糖质为原料经微生物发酵,发酵液中存在菌体、蛋白质、残糖、色素、其它氨基酸、有机酸等杂质。
目前国内提取谷氨酸的主要方法:1.等电点法; 2.离子交换法;3.金属盐法;4.盐酸水解等电法;5.离子交换膜电渗析法。
国外大规模提取谷氨酸的方法:日本采用浓缩等电点工艺;美国采用旋转真空膜过滤。
谷氨酸等电点pI=3.22,在等电点时谷氨酸的溶解度最小,且谷氨酸的溶解度随温度降低而减小,所以调节pH以及降低温度可以令溶液中的谷氨酸析出沉淀即为等电点法提取谷氨酸。
氨基酸为两性电解质,等电点较低的谷氨酸在pH小于pI 3.2时,主要以GA+型式存在,故可用强酸性阳离子交换树脂提取,当发酵液流过交换柱时,发酵液中各成分依亲和力的不同进行交换,吸附GA的树脂再用洗脱液(5% NaOH)洗脱,收集富含GA的流分(高流液)。
二、材料与器材:(1)实验材料:谷氨酸发酵液(2)实验药品:NaOH、HCl、酸性离子交换树脂、壳聚糖醋酸溶液、硅藻土(3)实验仪器:圆底烧瓶、离心机、离心管、天平、玻璃棒、磁力搅拌器、一次性塑料滴管、pH计、铁架台配有十字夹、色谱柱、SBA、3mL离心管(用于柱层析接收样品)、烧杯(500mL1个;250mL1个;50mL1个)、量筒2个(10mL 和100mL,)。
三、实验步骤:(1)发酵液的预处理壳聚糖醋酸溶液:先配置2%体积比的醋酸溶液;然后加入壳聚糖配置成1%的壳聚糖醋酸溶液。
取100mL发酵液,再加入含量为1%的壳聚糖醋酸溶液,此时溶液pH值在5.52,谷氨酸含量为22mg/dl,加入量为发酵液体积的1.4%,轻轻搅拌加入1g硅藻土,静置2h。
(2)发酵液的固液分离取上清测谷氨酸含量,进行固液分离,采用离心(6000rpm 20min)方式进行固液分离,再次取上清测谷氨酸含量为30mg/dL。
实验二离子交换法提取谷氨酸
实验⼆离⼦交换法提取⾕氨酸实验⼆离⼦交换法提取⾕氨酸⼀、实验⽬的掌握离⼦交换装置的结构和使⽤⽅法。
掌握离⼦交换法提取⾕氨酸的⼯艺流程。
掌握等电点沉淀法提取⾕氨酸。
了解认识离⼦交换树脂的处理和再⽣。
⼆、实验原理⾕氨酸是两性电解质,是⼀种酸性氨基酸,等电点为pH3.22,当pH>3.22时,羧基离解⽽带负电荷,能被阴离⼦交换树脂交换吸附;当pH<3.22时,氨基离解带正电荷,能被阳离⼦交换树脂交换吸附。
也就是说,⾕氨酸可被阴离⼦交换树脂吸附也可以被阳离⼦交换树脂吸附。
由于⾕氨酸是酸性氨基酸,被阴离⼦交换树脂的吸附能⼒强⽽被阳离⼦交换树脂的吸附能⼒弱,因此可选⽤弱碱性阴离⼦交换树脂或强酸性阳离⼦交换树脂来吸附氨基酸。
但是由于弱碱性阴离⼦交换树脂的机械强度和稳定性都⽐强酸性阳离⼦交换树脂差,价格⼜较贵,因此就都选强酸性阳离⼦交换树脂⽽不选⽤弱碱性阴离⼦交换树脂。
⽬前各味精⼚均采⽤732#强酸性阳离⼦交换树脂,本实验就是采⽤732#树脂。
⾕氨酸溶液中既含有⾕氨酸也含有其他如蛋⽩质、残糖、⾊素等妨碍⾕氨酸结晶的杂质存在,通过控制合适的交换条件,在根据树脂对⾕氨酸以及对杂质吸附能⼒的差异,选择合适的洗脱剂和控制合适的洗脱条件,使⾕氨酸和其他杂质分离,以达到浓缩提纯⾕氨酸的⽬的。
三、实验装置1、离⼦交换装置本实验采⽤动态法固定床的单床式离⼦交换装置。
离⼦交换柱是有机玻璃柱,柱底⽤玻璃珠及玻璃碎⽚装填,以防树脂漏出。
2、树脂本实验⽤苯⼄烯型强酸性阳离⼦交换树脂,编号为732#,其性能如下表:732#树脂的主要性能常数3、树脂的处理对市售⼲树脂,先经⽔充分溶胀后,经浮选得到颗粒⼤⼩合适的树脂,然后加3倍量的2mol/L HCL溶液,在⽔浴中不断搅拌加热到80℃,30min后⾃⽔溶液中取出,倾去酸液,⽤蒸馏⽔洗⾄中性,然后⽤2mol/L NaOH溶液,同上洗树脂30min后,⽤蒸馏⽔洗⾄中性,这样⽤酸碱反复轮洗,直到溶液⽆黄⾊为⽌。
第五章谷氨酸的提取
备简单、操作简便、投资少等优点,谷氨酸发酵液不经除菌或 除菌、不经浓缩或浓缩处理、在常温或低温下加盐酸调至谷 氨酸的等电点pH3.22,使谷氨酸呈过饱和状态结晶析出。
谷氨酸分子中含有2个酸性的羧基和一个碱性的氨基,在不 同的pH值溶液中以GA+、GA± 、GA-、GA=、表示。
III:谷氨酸等电点的性质: 在pI时,正负电荷相等,形成偶极离子,在直流电场中不流动。 谷氨酸的溶解度最小。 (2)谷氨酸溶解度 I:pH值对谷氨酸溶解度的影响: II: 温度对谷氨酸溶解度的影响:温度越低,溶解度越小 III:杂质对谷氨酸溶解度的影响:杂质含量越高,溶解度越大
第五章 谷氨酸的提取
pH2.4
(C5H8O4N)2Zn + 2H+
2C5H9O4N + Zn++
谷氨酸锌盐的溶解度受pH值影响较大,由于锌离 子的存在,使谷氨酸的等电点改变为pI2.4
1、一步锌盐法
工艺流程
发酵液
加ZnSO4、NaOH调 pH6.3,搅拌、沉淀
含锌废液
glu锌盐
加水蒸汽加热45℃, 调pH2.4,搅拌、沉淀
第五章 谷氨酸的提取 第二节 谷氨酸发酵液的性质和发酵废液的综合利用
二、菌体分离方法: 1、机械分离:离心分离机6500r/min——15000r /min 2、加热沉淀:加热至80℃以上,使蛋白质凝固沉淀 3、添加絮凝聚剂 三、发酵液的综合利用 1、作肥料 2、作饲料 3、提炼核苷酸 4、培养单细胞蛋白。
当pH>3.2时,羧基离解带负 当pH<3.2时,氨基离解带正 电荷,与阴离子树脂交换吸附 电荷,与阳离子树脂交换吸附
各种氨基酸的生产工艺
各种氨基酸的生产工艺1、谷氨酸(1)等电离交工艺方法——从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0-3.2),温度降到10以下沉淀,离心分离谷氨酸,再将上清液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗脱下来的高流分再用硫酸调PH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。
该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。
(2)连续等电工艺——将谷氨酸发酵液适当浓缩后控制40℃左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40℃进行结晶。
该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。
(3)发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20〜3.25,然后进入常温的等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整pH值至4.5〜7,蒸发、浓缩、再在第三调酸罐中调pH值至3.20〜3.25 后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。
(4)水解等电点法发酵液--- 浓缩(78.9kPa,0.15MPa蒸汽)——盐酸水解(130 ℃, 4h ) ——过滤 ---- 滤液脱色——浓缩——中和,调pH至3.0-3.2(NaOH或发酵液)——低温放置,析晶谷氨酸晶体此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省(5)低温等电点法发酵液--- 边冷却边加硫酸调节pH4.0-4.5 --- 加晶种,育晶2h --- 边冷却边加硫酸调至pH3.0-3.2 ---- 冷却降温 ---- 搅拌16h ------ 4 ℃ 静置4h ---- 离心分离------ 谷氨酸晶体此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省(6)直接常温等电点法发酵液加硫酸调节pH4.0-4.5 -------- 育晶2-4h --- 加硫酸调至pH3.5-3.8 ---- 育晶2h ---- 加硫酸调至pH3.0-3.2 -----育晶2h ----- 冷却降温------ 搅拌16-20h ----- 沉淀2-4h ----- 谷氨酸晶体此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。
谷氨酸分离提取工艺进展
谷氨酸分离提取工艺进展一、本文概述谷氨酸,作为一种重要的氨基酸,在生物体内发挥着至关重要的作用,包括蛋白质合成、能量代谢、神经传导等多个方面。
近年来,随着生物技术的不断发展和人们对谷氨酸需求量的增加,谷氨酸的分离提取工艺受到了广泛关注。
本文旨在综述谷氨酸分离提取工艺的最新进展,包括传统的提取方法、新型的分离技术,以及工艺优化和经济效益分析等方面。
通过对这些内容的探讨,希望能够为谷氨酸的生产和应用提供有益的参考,推动相关产业的可持续发展。
二、谷氨酸的传统分离提取工艺谷氨酸作为一种重要的氨基酸,其分离提取工艺一直是生物化学领域的研究重点。
传统的谷氨酸分离提取工艺主要基于发酵液的预处理等电点沉淀、离子交换、结晶和精制等步骤。
发酵液预处理是关键的一步,旨在去除发酵液中的杂质,如蛋白质、糖类、无机盐等,以提高后续分离提取的效率。
这一步通常包括离心、过滤和调节pH值等操作。
接下来,等电点沉淀法是利用谷氨酸在特定pH值下溶解度降低的特性,通过调整溶液的pH值至谷氨酸的等电点,使其沉淀析出。
这一方法操作简便,但谷氨酸的纯度和收率往往受到等电点附近其他杂质的干扰。
离子交换法则是利用离子交换树脂对谷氨酸的选择性吸附能力,将谷氨酸从发酵液中分离出来。
此方法对谷氨酸的纯度提升效果显著,但设备投资和操作成本相对较高。
在结晶步骤中,通过控制温度、浓度和pH值等条件,使谷氨酸以晶体的形式析出,进一步提高其纯度。
然而,结晶过程中可能出现的杂质共结晶现象会影响谷氨酸的质量。
精制步骤通常包括重结晶、脱色、脱盐等操作,以进一步提高谷氨酸的纯度。
精制后的谷氨酸产品可以满足不同领域的应用需求。
尽管传统的谷氨酸分离提取工艺已经相对成熟,但在操作成本、产品纯度、环境友好性等方面仍有改进空间。
因此,研究者们一直在探索更加高效、环保的谷氨酸分离提取新工艺。
三、谷氨酸分离提取工艺的新进展近年来,随着科学技术的不断进步,谷氨酸的分离提取工艺也取得了显著的进展。
任务工单离子交换法提取谷氨酸
日期:
任务名称
离子交换法提取谷氨酸
任务内容要求
1.工艺流程
2.工艺说明
1)先将新树脂进行预处理,清水浸泡12小时,再用2-3倍树脂体积的10%食盐水浸泡4小时,清水清洗干净残留的氯化钠,然后用4%的氢氧化钠浸泡4小时,水洗pH8.0以下,加入4%盐酸浸泡4小时,用自来水清洗至Ph2.0左右;
6)用4%的氢氧化钠溶液或液氨、pH9.0的等电点母液对离子交换柱进行洗脱;
7)洗脱液的收集,主要是看流出液的pH,在1.5-2.5之间的为前流分,用于重新上柱;在2.5-9.0之间的为高流分,用于等电点提取谷氨酸;在9.0以上的一般作为洗脱液或重新上柱回收了;
8)再生,洗脱结束后用1.2-1.5倍例子树脂的再生剂进行再生,一般先用热水洗后再用4%的盐酸溶液清洗,再生速度控制是上柱速度的50%左右。
2)调节上柱液的pH至5.0-5.5;
3)开始上柱,顺流上柱流速控制1.5-2m3/h,逆流上柱流速控制2-3m3/h,总量控制6.5-8.5mmol/ml湿树脂;
4)当上柱进行到一定阶段后要不断用5%的印三酮溶液做显色实验,当上柱流出液谷氨酸含量大于0.2%时,说明有漏吸了,要立即停止;
5)上柱结束后要50-60℃热水冲洗、疏松和预热离子交换柱;
知识点及技能目标:
1.熟悉离子交换原理
2.熟练离子交换树脂的预处理、上柱、再生等操作
3.理解“漏吸”的检测
4.熟悉再生液的配置
5.理解影响离子交换效果的因素
任务所需设备、试验器材
离子交换柱一套/组、谷氨酸发酵液1000ml/组、盐酸、氢氧化钠、印三酮等。
任务负责人名单
任务执行人名单
任务过程情况Байду номын сангаас述
任务完成情况评价
谷氨基提取与精制技术
(三)影响谷氨酸结晶的主要因素 1.发酵液性质对结晶晶型的影响 ① 谷氨酸含量对结晶晶型的影响 若发酵液中谷氨酸含量过低,低于4.5%时,不容易达到过饱和度,即使提取温度 很低,所形成晶核数量也不会太多。如果谷氨酸含量较高,在室温条件下已经容易形 成β-型结晶,导致分离困难,影响谷氨酸收率,且谷氨酸含水量较大、纯度较低。 ② 菌体对结晶晶型的影响 当带菌体进行等电点提取谷氨酸时,如果菌体数量多,发酵液黏度大,易使结晶 形成β-型结晶。 ③ 杂菌和噬菌体结晶晶型的影响 如果谷氨酸发酵感染杂菌和噬菌体,发酵液中胶体物质增多,泡沫多,残糖高, 发酵液黏度大,容易形成β-型结晶。 ④ 残糖对结晶晶型的影响 如果发酵液残糖过高,不仅会影响谷氨酸的溶解度,而且易产生β-型结晶。 ⑤ 发酵液杂质对结晶晶型的影响 发酵液的杂质,如消泡剂,糊精、焦糖、蛋白质、色素等杂质,如果过多,对提取 带来影响。 2. 温度对结晶晶型的影响 温度越低,析出α-型结晶纯度越高。当等电点调酸时,发酵液温度高于30℃, β-型 结晶增加;当温度低于30℃,β-型结晶减少。温度在20℃以下时主要是α-型结晶析出。
二、离子交换法提取谷氨酸 (一) 离子交换法提取谷氨酸的基本原理 谷氨酸是两性电解质,是一种酸性氨基酸,含有可交 换的 -NH4+和COOH—,与酸、碱两种树脂都能发生交换。 谷氨酸的等电点为pH 3.22,当pH>3.22时,羧基离解, 而带负电荷,它能被阴离子交换树脂交换吸附;当pH< 3.22时,谷氨酸在酸性介质中,呈阳离子状态,氨基离解, 带正电荷,它能被阳离子交换树脂交换吸附。 离子交换法从发酵液提取谷氨酸,是谷氨酸与发酵液 中其它同性离子性质不同,树脂对这些离子的吸附能力有 差别,采用不同的树脂将这些离子分别选择地吸附,然后 根据吸附能力差别,用洗脱剂分别先后洗脱。 目前各味精厂均采用732#强酸性阳离子交换树脂。 离子交换法提取谷氨酸,就是利用阳离子交换树脂对谷氨 酸阳离子的选择性吸附,以使发酵液中妨碍谷氨酸结晶的 残糖及糖的聚合物、蛋白质、色素等非离子性杂质得以分 离,后经洗脱达到浓缩提取谷氨酸的目的。
《谷氨酸提取》PPT课件
除了温度和溶液的pH对谷氨酸的溶解度有影响外,溶液中杂质也影 响其溶解度。如谷氨酸发酵液中含有的残糖、其它氨基酸、菌体、胶体物 质等,都将影响谷氨酸的溶解度。
当发酵液中有其它氨基酸存在时,会导致谷氨酸的溶解度增加。这种 现象在提取谷氨酸时严重影响谷氨酸的收率。另外,发酵液中碳水化合物水 解物的存在,也会使谷氨酸的溶解度有所增加。
6.2 谷氨酸发酵液的性质
6.2.1 谷氨酸的性质
6.2.1.1 谷氨酸的主要物理性质 谷氨酸结晶为无色正四面体晶体,相对分子质量为147.13,相
对密度为1.538 (20℃),熔点为202~203℃,在2mol/L HCl中的比旋光度 为[α]D20=+31.8°(HCl浓度为10%)。
谷氨酸的两性解离及等电点
β-型谷氨酸结晶为粉状或针状、鳞片状结晶,晶粒微细、纯度低、难 沉降,结晶时常与发酵液中胶体物质粘结,悬浮在母液中或搅拌轴周围,不易 沉淀分离,故称为轻质谷氨酸(轻质麸酸)。因此在操作中要控制结晶条件, 避免β-型结晶析出。
⑵ 影响谷氨酸结晶的主要因素
影响谷氨酸结晶的因素很多。发酵液的纯度和中和结晶操作条件是影 响谷氨酸结晶的主要因素。如发酵液中谷氨酸含量、温度、残糖、菌体以及 是否染菌(尤其是否染噬菌体);中和时的加酸速率、搅拌、加晶种与否、晶 种质量等,对谷氨酸的结晶及收率都有很大影响。
表6-1 溶液的酸碱性与谷氨酸离子状态的关系
酸性
谷氨酸 COOH
离子 存在 形式
CHNH3+ CH2 CH2 COOH
表示符号 GA+
等电点
COO- CHNH3+ CH2 CH2 COOH
GA±
中性
COO- CHNH3+ CH2 CH2 COO-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子交换法回收提取谷氨酸
一、实验目的
通过实验掌握新树脂的预处理方法及动态离子交换的基本操作;了解谷氨酸提取的原理和方法。
二、实验原理
树脂的选择,选择离子交换树脂的主要依据是被分离物的性质和分离目的。
包括被分离物和主要杂质的解离特性、分子量、浓度、稳定性、所处介质的性质以及分离的具体条件和要求。
然后从性质各异的多种树脂中选择出最适宜的品种进行分离操作。
其中最重要的一条是根据分离要求和分离环境保证分离目的物与主要杂质对树脂的吸附力有足够的差异。
当目的物具有较强的碱性和酸性时,宜选用弱酸性弱碱性的树脂。
这样有利于提高选择性,并便于洗脱。
如目的物是弱酸性或弱碱性的小分子物质时,往往选用强碱、强酸树脂。
如氨基酸的分离多用强酸树脂,以保证有足够的结合力,便于分步洗脱。
对于大多数蛋白质,酶和其它生物大分子的分离多采用弱碱或弱酸性树脂,以减少生物大分子的变性,有利于洗脱,并提高选择性。
就树脂而言,要求有适宜的孔径,孔径太小交换速度慢,有效交换量下降(尤对生物大分子),若孔径太大也会导致选择性下降。
此外树脂的化学稳定性及机械性能也需考虑.在既定的操作条件下有足够的化学耐受性和良好的物理性能以利操作。
一般树脂都有较高的化学稳定性,能经受酸、碱和有机溶剂的处理。
但含苯酚的磺酸型树脂及胺型阴离子树脂不宜与强碱长时间接触,尤其是在加热的情况下。
对树脂的特殊结合力也要给予足够的注意,如树脂对某些金属离子的结合以及辅助力的作用。
氨基酸为两性电解质,等电点较低的谷氨酸在pH小于pI 3.2时,主要以GA+型式存在,故可用强酸性阳离子交换树脂提取。
当发酵液流过交换柱时,发酵液中各成分依亲和力的不同进行交换。
吸附GA的树脂再用洗脱液(5%NaOH)洗脱,收集富含GA的流分(高流液)。
从而实现与杂质的分离及GA的富集,高流液调等电点pH 3.2,GA结晶析出。
用过的树脂用稀酸再生以用于下轮交换(图1)。
主要化学反应有:
交换: RSO3H + NH4+ = RSO3NH4+
RSO3H + GA+ = RSO3GA + H+
洗脱: RSO3-GA+ + NaOH = RSO3Na+ + GA+ + H2O
RSO3-GA+ + NH4OH = RSO3HN4+ + GA+ + H2O
再生: RSO3Na+ + HCl = RSO3H + NaCl
图 1 GA 离子交换操作循环
本实验所用树脂为732型苯乙烯强酸型阳离子交换树脂。
732型树脂的理论交换容量为4.5毫克当量/g干树脂,最高工作温度为90°C,使用pH范围1-14,对水的溶胀率为22.5%,湿密度为0.75-0.85 g/mL。
732型树脂对阳离子的亲和力大小顺序依次为:
Ca2+>Mg2+>K+>NH4+>Na+>碱性氨基酸>中性氨基酸>谷氨酸>天冬氨酸
反之,洗脱时,先下来的是谷氨酸,其后是NH4+、金属离子等,达到分离目的。
三、实验仪器与药品
仪器:离交柱(1.5×40 cm)、恒流泵、分部收集器、铁架台、水浴锅、量筒、止水夹、离心机、小烧杯等。
药品:732(H)树脂、GA发酵液、5%NaOH,5%HCl等。
四、实验内容
1、树脂的装柱与洗涤
未经使用的树脂在使用之前,根据需要进行预处理。
将干树脂在烧杯中用水浸泡一定时间,充分溶胀后(注:务必不可干树脂直接装柱,以防树脂溶胀挤破柱子),倾去溶胀时溶出的杂质及碎小树脂;用量筒量取20 mL湿树脂(732,Na型)于小烧杯中带水在搅动悬浮下倒入柱中(可借用漏斗)将柱下端的止水夹打开,使柱内水慢慢流出,树脂自由沉降,保持柱中水位高于树脂床2-4 cm,(以防树脂夹杂气泡),关闭止水夹。
新购树脂夹杂有合成过程中生成的低分子量聚合物、单体、溶胀剂、催化剂及树脂存放时进一步分解的产物,合成时容器腐蚀也会产生一些金属离子,故需对树脂进行洗涤。
酸(碱)性树脂通常以Na(Cl)型供应。
洗涤时不管原来型式,一般都要用3倍于树脂体积的5%HCl、H2O、5%NaOH、H2O在柱中依次交替重复洗2-3次,洗涤速度与交换相同,(控制约30滴/分),最后一次过柱的是酸还是碱取决于使用时所要求的离子型式,所用的洗涤水必须是去离子水。
2、转型
树脂经洗涤后转化成所要的型式以供交换。
为使转型完全,通常用过量试剂(再生剂)
在离交柱中进行。
本实验用5%HCl流洗至流出液pH<0.5,即Na型732转化成H型,再用蒸馏水洗至近中性即可进入交换。
3、上柱交换
将调配好的稀GA发酵液(pH 4、约GA1.0%,已除菌体用泵从贮液瓶中正上柱(工业上为常温带菌体反上柱)控制好流速(30滴/min、6-8床体积))。
流速太快,GA来不及交换即流出;流速太慢不利于生产。
流出液用烧杯(500 mL)收集,当收集液达100 mL后需不断用茚三酮显色剂(灵敏度为2 μg/mL)检验柱下流出液,若有紫红色反应,证明有GA 漏出,即停止上柱,关闭止水夹,量出烧杯中流出液体积。
残留的发酵液用水置换出用于再上柱。
4、洗脱
洗脱是用洗脱剂(5%NaOH)将吸附的GA解吸出来。
洗脱前,先用水反洗以排除树脂中残留的杂质,同时,疏松树脂;再用40 mL 70℃热去离子水反洗以预热树脂以防树脂骤冷骤热破碎,同时也起到温柱以防GA在柱中析出(结柱)之作用。
待树脂自由沉降,降液面至高于床层2-4 cm,通5%NaOH正洗脱,洗脱流速控制约15滴/min。
洗脱速度不宜太快,否则洗脱峰不集中,拖尾长,即GA尚未洗脱完pH已升高,尾液中残留较多GA。
洗脱时,不断用茚三酮测试流出液,并用pH试纸测试pH变化。
有GA流出时即开始收集,每2 mL 收集液换一支试管至pH 1.0,这部分流出液GA深度较高,称为高流分。
当pH达2.5-3.2时,GA含量最高。
随后收集pH 8.0-10.0流分为碱尾液(后流分)前流分与后流分可用于再交换。
pH>10的流分为稀氨水,工业上用作肥料(用湿试纸检验,闻有无氨味)。
5、树脂再生(转型)
洗脱完毕,用热蒸馏水正洗离交柱至pH 9后,再反洗至中性,降液面,用5%HCl正洗,使Na型和HN4+型,树脂再生为H型,至柱下pH 0.5用水洗至pH 4即可再交换。
再生流速控制10滴/分。
五、结果分析
1、测试收集液各管pH,用SBA生化分析仪检测谷氨酸浓度,画出洗脱曲线。
2-10mL左右pH变化不大是因为洗脱碱液正在进入柱中,收集液中含有大量交换时产生的H+。
随着洗脱反应的进行,收集液的pH逐渐升高,收集液的OD值也在升高,这表明已经有GA被洗脱下来。
由图可知,pH的峰值出现在26mL左右,而洗脱出氨基酸的峰值出现在20mL,这是由于在洗脱未完成时,碱性物质基本全部与RSO3-GA+反应,当洗脱基本完成后,pH才会迅速上升,故pH达到峰值也是洗脱完成的表现。
当pH>10时,流出液为稀氨水。
2、将有谷氨酸的各试管内液体合并,计量体积及浓度与上柱稀发酵液量比较看是否达到浓缩目的?
含谷氨酸的各试管体积之和为25.5mL,浓度为80 mg/mL;上柱稀发酵液体积为180mL,浓度为15 mg/mL,故已达到浓缩的目的。
思考题
1、对发酵液中共存的杂质如NH4+, K+, Na+, Ca2+, Mg2+及中性和碱性氨基酸,其交换
与洗脱次序大体如何?
答:732型树脂对阳离子的亲和力大小顺序依次为:
Ca2+>Mg2+>K+>NH4+>Na+>碱性氨基酸>中性氨基酸>谷氨酸>天冬氨酸
反之,洗脱时,先下来的是谷氨酸,其后是NH4+、金属离子等。
2、为何上柱液pH不必调到pI 3.22以下?
答:交换时发生如下反应:
RSO3H + NH4+ = RSO3NH4+
RSO3H + GA+ = RSO3GA + H+
由上述反应可看出,氨基酸在于树脂进行结合是可以产生H+。
并且,若pH过低,既上柱液中含有过多的H+,则会使氨基酸与树脂的结合反应向反方向进行,离子交换树脂的利用率降低。
3、怎样提高树脂的利用率?
答:交换时控制流速,使GA与树脂充分结合;适当降低母液中NH4+的浓度,减少竞争吸附,提高交换树脂的利用率。