北师大版七年级下期末试卷
北师大版七年级下册数学期末考试试题及答案
北师大版七年级下册数学期末考试试卷一、单选题1.我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .2.下列计算中正确的是( ) A .235a b a +=B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-3.如图,直线a ,b 被直线c 所截,a∥b ,若∥2=45°,则∥1等于( )A .125°B .130°C .135°D .145°4.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.在下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6a a a +-=-C .222()2a b a ab b +=++D .22(2)(2)2x y x y x y -+=-8.如图,下列条件中能判定//AB CD 的是( )A .35∠=∠B .24∠∠=C .15180∠+∠=︒D .34∠=∠ 9.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性10.如图,∥CAB =∥DBA ,再添加一个条件,不一定能判定∥ABC∥∥BAD 的是( )A .AC =BDB .∥1=∥2C .∥C =∥D D .AD =BC二、填空题11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学计数法表示为________. 12.计算:22(3)ab =_________.13.如图,DA∥CE 于点A ,CD∥AB ,∥1=30°,则∥D=_____.14.一个不透明的布袋中装有3个红球,5个黄球,2个白球,每个球除颜色外都相同,任意摸出一球,摸到黄球的概率为______.15.如果三角形底边上的高是6,底边长为x ,那么三角形的面积y 可以表示为________________;16.如图,四边形ABDC 的对称轴是AD 所在的直线,AC=5,DB=7,则四边形ABDC 的周长为_______17.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∥ABC=120°,∥BCD=80°,则∥CDE=__________度.三、解答题18.计算:022(3)2(1)π---+-;19.如图,已知∥1=∥2,∥D =60˚,求∥B 的度数.20.如图,已知线段AC ,BD 相交于点E ,A D ∠=∠,BE CE =,求证ABE DCE ∆≅∆.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,∥ABC 的顶点均在格点上,直线a 为对称轴,点A ,点C 在直线a 上. (1)作∥ABC 关于直线a 的轴对称图形∥ADC ; (2)若∥BAC =35°,则∥BDA = ; (3)∥ABD 的面积等于 .22.先化简,再求值:2(4)(2)---x x y x y ,其中x =﹣1,y =1.23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()()22a b a b a b -=+- B 、2222a ab b a b C 、()2a ab a a b +=+(2)若22164x y x y -=+=,,求x y -的值;(3)计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.24.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)表中的a=________;(2)“摸到白球”的概率的估计值是___________(精确到0.1); (3)试估算口袋中黑、白两种颜色的球各有多少个?25.如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式; (3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?26.在∥ABC中,AB=AC,D是BC边的中点,E、F分别是AD、AC边上的点.(1)如图∥,连接BE、EF,若∥ABE=∥EFC,求证:BE=EF;(2)如图∥,若B、E、F在一条直线上,且∥ABE=∥BAC=45°,探究BD与AE的数量之间有何等量关系,并证明你的结论;(3)如图∥,若AB=13,BC=10,AD=12,连接EC、EF,直接写出EC+EF的最小值.参考答案1.B【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】根据幂的运算法则即可依次判断.【详解】A.23+不能计算,故错误;a bB.34÷=,故错误;a a aC.246⋅=,故错误;a a aD.()326-=-,正确a a故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.3.C【解析】【分析】根据两直线平行,同位角相等可得∥3=∥2,再根据邻补角的定义解答.【详解】如图,∥a∥b,∥2=45°,∥∥3=∥2=45°,∥∥1=180°−∥3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∥2+2=4,∥ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∥2+3<6,∥2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∥3+6>8,∥8cm、6cm、3cm能组成三角形,故符合题意;D. ∥4+6<11,∥11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.B【解析】【详解】∥y轴表示当天爷爷离家的距离,X轴表示时间又∥爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∥刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∥选项B中的图形满足条件.故选B.6.A【解析】【详解】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B 错误; 概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误; 故选A . 考点:随机事件. 7.C 【解析】 【分析】根据整式的运算法则即可判断. 【详解】A.222()2x y x xy y -=-+,故错误;B.2(2)(3)6a a a a +-=--,故错误;C.222()2a b a ab b +=++,正确D.22(2)(2)4x y x y x y -+=-,故错误; 故选C . 【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则. 8.D 【解析】 【分析】根据平行线的判定定理进行判断即可. 【详解】解:A 、根据同旁内角互补,两直线平行的判定定理可知35∠=∠不能判定//AB CD ; B 、2∠ 和4∠为对顶角,无法判定//AB CD ;C 、根据同位角相等,两直线平行的判定定理可知15180∠+∠=︒不能判定//AB CD ; D 、根据内错角相等,两直线平行的判定定理可知34∠=∠可得//AB CD . 故选:D . 【点睛】本题主要考查了平行线的判定定理,包括:∥同位角相等,两直线平行;∥内错角相等,两直线平行;∥同旁内角互补,两直线平行.9.D【解析】【分析】用木条EF固定矩形门框ABCD,即是组成∥AEF,故可用三角形的稳定性解释.【详解】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的∥EAF,故这种做法根据的是三角形的稳定性.故选:D.【点睛】本题考查三角形稳定性的实际应用,熟悉相关性质是解题的关键.10.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.∥AC=BD,∥CAB=∥DBA,AB=AB,∥根据SAS能推出∥ABC∥∥BAD,故本选项错误;B.∥∥CAB=∥DBA,AB=AB,∥1=∥2,∥根据ASA能推出∥ABC∥∥BAD,故本选项错误;C.∥∥C=∥D,∥CAB=∥DBA,AB=AB,∥根据AAS能推出∥ABC∥∥BAD,故本选项错误;D.根据AD=BC和已知不能推出∥ABC∥∥BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.5.8 ×10-6【解析】【详解】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=5.8,10的指数为﹣6.故答案为:5.8×10-6.考点:科学记数法.12.249a b【解析】【分析】根据积的乘方:()n n n ab a b =和幂的乘方()nm mn a a =计算即可. 【详解】解:()22222422933ab a b a b ⨯==故答案为:249a b .【点睛】此题考查的是幂的运算性质,掌握积的乘方和幂的乘方是解决此题的关键.13.60°【解析】【分析】先根据垂直的定义,得出∥BAD=60°,再根据平行线的性质,即可得出∥D 的度数.【详解】∥DA∥CE ,∥∥DAE=90°,∥∥1=30°,∥∥BAD=60°,又∥AB∥CD ,∥∥D=∥BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.14.1 2【解析】【分析】让黄球的个数除以球的总数即为摸到红球的概率.【详解】3个红球,5个黄球,2个白球,一共是10个搅拌均匀后从中任意摸出一个球,则摸出的球是黄球的概率是51 102=.故答案为:12.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.15.3y x=【解析】【分析】直接利用三角形面积求法得出答案即可.【详解】∥三角形的底边长为xcm,底边上的高为6cm,∥三角形的面积y(cm2)可以表示为:y=3x.故答案为y=3x.【点睛】此题主要考查了函数关系式以及三角形面积求法,正确记忆三角形面积公式是解题关键.16.24【解析】【详解】∥四边形ABDC的对称轴是AD所在的直线,AC=5,DB=7,∥AB=AC=5,CD=BD=7,∥四边形ABDC的周长=AC+CD+BD+AB=5+7+7+5=24.故答案为24.17.20【解析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB∥DE ,过点C 作CF∥AB ,则CF∥DE ,由平行线的性质可得,∥BCF+∥ABC=180°,所以能求出∥BCF ,继而求出∥DCF ,又由CF∥DE ,所以∥CDE=∥DCF .【详解】解:过点C 作CF∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∥AB∥DE ,∥CF∥DE ,∥∥BCF+∥ABC=180°,∥∥BCF=60°,∥∥DCF=20°,∥∥CDE=∥DCF=20°.故答案为:20.【点睛】此题考查的知识点是平行线的性质,关键是过C 点先作AB 的平行线,由平行线的性质求解.18.314【解析】【分析】根据实数的性质进行化简即可求解.【详解】解:022(3)2(1)π-----1114=-+ 314=.此题主要考查实数的运算,解题的关键是熟知负指数幂的运算法则.19.120B ∠=︒;【解析】【分析】首先证出∥1=∥3,从而得出AB∥CD ,然后推出∥D+∥B=180°,代入求出即可.【详解】解:如图:∥∥1=∥2,∥2=∥3,∥∥1=∥3,∥AB∥CD ,∥∥D+∥B=180°,∥∥D=60°,∥∥B=120°.【点睛】本题考查平行线的判定与性质,难度不大,掌握平行线的判定定理和性质定理是解题关键.20.见解析【解析】【分析】根据AAS 即可证明ABE DCE ∆≅∆.【详解】证明:在∥ABE 和∥DCE 中A D AEB DEC BE CE ∠∠⎧⎪∠=∠⎨⎪=⎩=∥∥ABE∥∥DCE(AAS).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.21.(1)如图见解析;(2)∥BDA=55°;(3)∥ABD的面积等于28.【解析】【分析】(1)根据网格结构找出点B关于直线a的对称点D的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.【详解】解:(1)∥ADC如图所示;(2)∥BAD=2∥BAC=2×35°=70°,∥AB=AD,∥∥BDA=1(180°-∥BAD)=55°;2故答案为55°;×8×7=28,(3)∥ABD的面积=12故答案为28.【点睛】本题考查了利用轴对称变换作图以及三角形面积的计算,熟练掌握网格结构准确找出对应点的位置.22.﹣4y 2,-4【解析】【分析】根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:x (x ﹣4y )﹣(x ﹣2y )2=x 2﹣4xy ﹣x 2+4xy ﹣4y 2=﹣4y 2,当y =1时,原式=﹣4×12=﹣4.【点睛】本题考查单项式乘多项式和完全平方公式的计算,掌握计算法则和公式结构正确计算是本题的解题关键.23.(1)A ;(2)4;(3)20214040 【解析】【分析】(1)观察图1与图2,根据图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-,得到验证平方差公式;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可; (3)先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)根据图形得:图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-, ∴上述操作能验证的等式是22()()a b a b a b -=+-,故答案为: A ;(2)22()()16x y x y x y -=+-=,4x y +=,4x y ∴-=;(3)22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111(1)(1)(1)(1)(1)(1)223320202020=-+-+⋯-+20213243201920212233402020=⨯⨯⨯⨯⨯⋯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】此题考查了平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键,注意此类题目每一步都为后续解题提供了解题条件或方法.24.(1)0.58;(2)0.6;(3)白球的个数约为20×0.6=12个,黑球有20-12=8个【解析】【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率和球的总数求得两种球的数量即可.(1)a=290÷500=0.58,故答案为:0.58;(2)由表可知,当n 很大时,摸到白球的频率将会接近0.6,所以“摸到白球”的概率的估计值是0.6;故答案为:0.6;(3)因为当n 很大时,摸到白球的频率将会接近0.6;所以白球的个数约为20×0.6=12个,黑球有20-12=8个.【点睛】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考常考题型.25.(1)小正方形的边长是自变量,阴影部分的面积为因变量;(2)21444y x =-;(3)阴影部分的面积由140cm 2变到44cm 2【解析】【分析】(1)根据当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,则小正方形的边长是自变量,阴影部分的面积为因变量;(2)根据阴影部分的面积=大正方形的面积-4个小正方形的面积,即可解答;(3)根据当小正方形的边长由1cm 变化到5cm 时,x 增大,x 2也随之增大,-4x 2则随着x 的增大而减小,所以y 随着x 的增大而减小.(1)∥当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,∥小正方形的边长是自变量,阴影部分的面积为因变量;(2)由题意可得:2221241444y x x =-=-;(3)由(2)知:21444y x =-,当x=1cm 时,14441140y -⨯==(cm 2).当x=5cm 时,21444544y =-⨯=(cm 2).∥当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积由140cm 2变到44cm 2【点睛】本题考查了函数关系式,解决本题的关键是列出函数关系式.26.(1)证明见解析;(2)2AE BD =,证明见解析;(3)12013【解析】【分析】(1)连接CE ,根据等腰三角形的性质可得BE CE =、A ABC CB =∠∠,经过倒角及角的和差运算可得∥ABE =∥ACE ,利用等边对等角即可得证;(2)根据已知易得ABF 和CEF △都是等腰直角三角形,通过证明CBF EAF ≌即可得出结论;(3)由(1)可得EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,利用等面积法即可求解.【详解】解:(1)连接CE ,,∥AB =AC ,D 是BC 边的中点,∥AD 为线段BC 的垂直平分线,A ABC CB =∠∠,∥BE CE =,∥EBC ECB ∠=∠,∥ABC EBC ACB ECB ∠-∠=∠-∠,即∥ABE =∥ACE ,∥∥ABE =∥EFC ,∥∥ACE =∥EFC ,∥EF CE =,∥BE EF =;(2)连接CE ,由(1)可得∥ABE =∥ACE , ∥∥ABE =∥BAC =45°, ∥ABF 和CEF △都是等腰直角三角形, ∥AF BF =,CF EF =, ∥CBF EAF ≌, ∥BC AE =,∥2AE BD =;(3)由(1)可知BE CE =, ∥EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,1122ABC S BC AD AC BP =⋅=⋅, 解得12013BP =,∥EC+EF 的最小值为12013.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、线段最值等内容,掌握等腰三角形的性质是解题的关键.21。
北师大版数学七年级下册期末考试试题附答案
北师大版数学七年级下册期末考试试卷本试卷满分120分,考试时间90分钟,试题共25题,选择12道、填空6道、解答7道.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定2.下列计算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(2b2)3=6b6D.(﹣a+b)(﹣b﹣a)=a2﹣b23.下列微信表情图标属于轴对称图形的是()A.B.C.D.4.如图,点C,F,B,E在同一直线上,∠C=∠DFE=90°,添加下列条件,仍不能判定∠ACB与∠DFE 全等的是()A.∠A=∠D,AB=DE B.AC=DF,CF=BEC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E5.如图,在∠ABC中,AB=AC,∠A=30°,直线a∠b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A.40° B.45° C.50° D.35°6.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A .B .C .D .7.下列计算正确的是( )A .(﹣2y +1)(﹣2y ﹣1)=1﹣4y 2B .(12x +1)2=14x 2+1+xC .(x ﹣2y )2=(x +2y )2﹣6xyD .(x +3)(2x ﹣5)=2x 2﹣x ﹣158.如图,已知AB =AC ,AB =5,BC =3,以A ,B 两点为圆心,大于12AB 的长为半径画圆弧,两弧相交于点M ,N ,连接MN 与AC 相交于点D ,则∠BDC 的周长为( )A .8B .10C .11D .139.如图,在Rt∠ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N .再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =12,则∠ABD 的面积是( )A .12B .24C .36D .4810.如图,AB =AC ,BE ∠AC 于E ,CF ∠AB 于F ,BE ,CF 交于D ,则以下结论:∠∠ABE ∠∠ACF ;∠∠BDF ∠∠CDE ;∠点D 在∠BAC 的平分线上.正确的是( )A .∠B .∠C .∠∠D .∠∠∠11.小虎和小丽一起玩一种转盘游戏.转盘分成面积相等的三个区域,分别用“1”,“2”,“3”表示,固定指针转动转盘,任其自由停止.若指针所指的数字为奇数,小虎获胜;否则小丽获胜.则在该游戏中小虎获胜的概率是( )A .12B .49C .59D .2312.如图,有A ,B ,C 三个地点,且AB ∠BC ,从A 地测得B 地的方位角是北偏东43°,那么从C 地测B 地的方位角是( )A .南偏东47°B .南偏西43°C .北偏东43°D .北偏西47° 二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上 13.计算:﹣12016﹣(−13)﹣2+(π+1)0= ;(34)2007×(﹣113)2008= .14.等腰三角形的一个角为40°,则它的顶角为 . 15.计算:2019×2021﹣20202= .16.如图,在∠ABC 中,AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 的直线GH 与DE 平行,若∠C =40°,则∠GAD 的度数为 .17.如图,从以下给出的四个条件中选取一个: (1)∠1=∠2;(2)∠3=∠4;(3)∠A=∠DCE;(4)∠A+∠ABD=180°.恰能判断AB∠CD的概率是.18.如图,这是用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成…按照这样的规律排列下去,则第6个图案中共有个白子.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤),只有一项是符合题目要求的.19.(1)(2x2y﹣3xy2)﹣(6x2y﹣3xy2)(2)(−32ax4y3)÷(−65ax2y2)⋅8a2y(3)(ab+1)2﹣(ab﹣1)2(4)20153﹣2014×2015×2016(5)(4y+3x﹣5z)(3x+5z﹣4y)(6)(34a4b7−12a3b8+19a2b6)÷(13ab3)2,其中a=12,b=﹣4.20.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图1中涂黑一块小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图2中涂黑一块小正方形,使涂黑的四个小正方形组成一个中心对称图形.21.如图,是一个材质均匀的转盘,转盘分成8个全等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,(若指针指向两个扇形的交线时,当作指向右边的扇形),转动一次转盘:(1)求指针指向绿色扇形的概率;(2)指针指向红色扇形的概率大,还是绿色扇形概率大?为什么?22.如图,在∠ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∠BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.23.如图,已知AB=DC,AB∠CD,E、F是AC上两点,且AF=CE.(1)求证:∠ABE∠∠CDF;(2)连接BC,若∠CFD=100°,∠BCE=30°,求∠CBE的度数.24.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.25.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)答案一、选择题1.C .2.D .3.C .4.D .5.A .6.C .7.B .8.A .9.B .10.D .11.D .12.A . 二、填空题 13.:﹣9,43.14.:40°或100°. 15.:﹣1. 16.:55°. 17.:12.18.54. 三、解答题19.【解析】(1)原式=2x 2y ﹣3xy 2﹣6x 2y +3xy 2=﹣4x 2y ; (2)原式=10x 2y 2;(3)原式=(ab +1+ab ﹣1)(ab +1﹣ab +1)=4ab ;(4)原式=20153﹣(2015﹣1)×2015×(2015+1)=20153﹣(20152﹣1)×2015=20153﹣(20153﹣2015)=20153﹣20153+2015=2015;(5)原式=9x 2﹣(4y ﹣5z )2=9x 2﹣16y 2+40yz ﹣25z 2; (6)原式=(34a 4b 7−12a 3b 8+19a 2b 6)÷19a 2b 6=274a 2b −92ab 2+1,当a =12,b =﹣4时,原式=−274−36+1=﹣4134. 20.【解析】(1)如图1所示:∠、∠、∠、∠处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图2所示:∠、∠使涂黑的四个小正方形组成一个中心对称图形..21.【解析】按颜色把8个扇形分为2红、3绿、3黄,所有可能结果的总数为8,(1)指针指向绿色的结果有3个, ∠P (指针指向绿色)=38; (2)指针指向红色的结果有2个, 则P (指针指向红色)=28=14, 由(1)得:指针指向绿色扇形的概率大. 22.【解析】(1)∠AB =AC , ∠∠C =∠ABC , ∠∠C =36°, ∠∠ABC =36°, ∠D 为BC 的中点, ∠AD ∠BC ,∠∠BAD =90°﹣∠ABC =90°﹣36°=54°. (2)∠BE 平分∠ABC , ∠∠ABE =∠EBC , 又∠EF ∠BC , ∠∠EBC =∠BEF , ∠∠EBF =∠FEB , ∠BF =EF .23.【解答】(1)证明:∠AB ∠CD , ∠∠A =∠DCF , ∠AF =CE , ∠AE =CF ,在∠ABE 和∠CDF 中, {AB =CD∠A =∠DCF AE =CF, ∠∠ABE ∠∠CDF (SAS ).(2)∠∠ABE ∠∠CDF , ∠∠AEB =∠CFD =100°, ∠∠BEC =180°﹣100°=80°, ∠∠CBE =180°﹣80°﹣30°=70°.24.【解析】(1)∠乌龟是一直跑的而兔子中间有休息的时刻, ∠折线OABC 表示赛跑过程中兔子的路程与时间的关系; 由图象可知:赛跑的全过程为1500米; 故答案为:兔子,1500; (2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米). (3)700÷30=703(分钟), 所以乌龟用了703分钟追上了正在睡觉的兔子.(4)∠兔子跑了700米停下睡觉,用了2分钟, ∠剩余800米,所用的时间为:800÷400=2(分钟), ∠兔子睡觉用了:50.5﹣2﹣2=46.5(分钟). 所以兔子中间停下睡觉用了46.5分钟.25.【解析】(1)方法1:大正方形的面积为(a +b )2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b )2=a 2+2ab +b 2, 故答案为:(a +b )2=a 2+2ab +b 2. (2)如图,(3)设DG 长为x .∠S 1=a [x ﹣(a +2b )]=ax ﹣a 2﹣2ab ,S 2=2b (x ﹣a )=2bx ﹣2ab , ∠S =S 2﹣S 1=(2bx ﹣2ab )﹣(ax ﹣a 2﹣2ab )=(2b ﹣a )x +a 2, 由题意得,若S 为定值,则S 将不随x 的变化而变化, 可知当2b ﹣a =0时,即a =2b 时,S =a 2为定值, 故答案为:a =2b ,a 2.。
北师大版七年级下册数学期末考试试题含答案
北师大版七年级下册数学期末考试试卷一、单选题1.下列运算正确的是()A.a+b=ab B.(x+1)2 =x2+1C.a10÷ a5=a2D.(﹣a3)2=a62.某种细胞直径是0.00000095米,将0.00000095用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣6D.95×10﹣83.以每组数为线段的长度,可以构成三角形三边的是()A.5,6,10B.5,6,11C.3,4,8D.4,4,84.下列图形是轴对称图形的是()A.B.C.D.5.下列事件中,是必然事件的是()A.内错角相等B.掷两枚硬币,必有一个正面朝上,一个反面朝上C.13人中至少有两个人的生肖相同D.打开电视,一定能看到三水新闻6.如果∠A=50°,那么∠A的余角是()A.30°B.40°C.90°D.130°7.如图,把一副三角板放在桌面上,当AB∠DC时,∠CAE等于()A.10°B.15°C.20°D.25°8.一个长方体的长、宽、高分别是3m-4,2m和m,则它的体积是()A.3m3-4m2B.3m2-4m3C.6m3-8m2D.6m2-8m39.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b] [(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)] [a+(b﹣c)]D.[a﹣(b﹣c)] [a+(b﹣c)]10.如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()∠体育场离张强家3.5千米∠张强在体育场锻炼了15分钟∠体育场离早餐店1.5千米∠张强从早餐店回家的平均速度是3千米/小时A.1个B.2个C.3个D.4个二、填空题11.计算:(﹣a)2•a3=_______.12.若a x=2,a y=3,则a x-y=______.13.如图所示,在∠ABC中,AB=AC,∠B=50°,则∠A=________.14.有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的概率为_____.15.已知等腰三角形的两边长为3和6,则它的周长为_____.16.三角形的底边长为8,高是x,那么三角形的面积y与高x之间的关系式是______.17.如图,已知∠ACB=90°,BC=6,AC=8,AB=10,点D在线段AB上运动,线段CD的最短距离是_____.三、解答题)﹣2+(﹣1)202018.﹣32+50﹣(1219.先化简再求值:[(x﹣y)2﹣(y﹣x)(y+x)]÷2x,其中x=2021,y=1.20.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?21.如图,AB=CD,AF=CE,∠A=∠C,那么BE=DF吗?请说明理由.22.三水区响应“绿色环保”号召,鼓励市民节约用电,对电费采用分段收费标准,若某户居民每月应交电费y(元)与用电量x(度)之间关系的图象如图所示:(1)当用电量不超过50度时,每度收费多少元?超过50度时,超过的部分每度收费多少元?(2)若某户居民某月交电费120元,该户居民用电多少度?23.如图,在∠ABC中,∠C=60°,∠A=40°.用尺规作图作边AB的垂直平分线,交AC于点D,交AB于点E(要求:不写作法,保留作图痕迹).24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1)观察图2,写出所表示的数学等式:_________________________=____________________________.(2)观察图3,写出所表示的数学等式:_________________________=____________________________.(3)已知(2)的等式中的三个字母可以取任何数,若a=7x-5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37.请利用(2)中的结论求ab+bc+ac的值.25.如图(1),AB=7cm,AC∠AB,BD∠AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t (s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,∠ACP与∠BPQ全等,此时PC∠PQ吗?请说明理由.(2)将图(1)中的“AC∠AB,BD∠AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s.当点P、Q运动到某处时,有∠ACP与∠BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=__________.(直接写出结果)参考答案1.D【分析】根据合并同类项法则、完全平方公式、同底数幂的的除法的运算法则、幂的乘方的运算法则进行计算后判断即可.【详解】解:A、a与b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(x+1)2=x2+2x+1,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、(-a3)2=a6,原计算正确,故此选项符合题意;故选:D.2.A【解析】【分析】用科学记数法表示较小数时的形式为10n a -⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0 的数字后面即可,确定n 的值时,n 等于该数从左起第一个不为0的数字前所有0的个数.【详解】易知9.5a =,从左起第一个不为0的数字前面有7个0,所以7n =∠70.000000959.510-=⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.A【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A 、5+6=11>10,能组成三角形;B 、5+6=11,不能够组成三角形;C 、3+4=7<8,不能组成三角形;D 、4+4=8,不能组成三角形.故选:A .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.D【解析】【分析】一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、B、C不符合轴对称图形的定义,D符合轴对称图形的定义,故选D.【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.5.C【解析】【分析】直接利用随机事件的定义分别分析得出答案.【详解】解:A.内错角相等,是随机事件,不合题意;B.掷两枚硬币,必有一个正面朝上,一个反面朝上,是随机事件,不合题意;C.13人中至少有两个人的生肖相同,是必然事件,符合题意;D.打开电视,一定能看到三水新闻,是随机事件,不合题意;故选:C.【点睛】此题主要考查了随机事件,正确把握相关定义是解题关键.6.B【解析】【分析】和为90°的两个角是互为余角,∠A的余角为(90°-∠A),代入计算即可.【详解】解:90°-∠A=90°-50°=40°,故选:B.【点睛】本题主要考查余角的意义和计算方法,关键是掌握如果两个角的和为90°,那么这两个角互为余角.7.B【解析】【分析】根据三角形的内角和定理和平行线的性质定理可得结果.解:∠AB∠DC,∠∠EAB=∠AED=45°,∠∠BAC=30°,∠∠CAE=∠EAB-∠BAC=45°-30°=15°,故选:B.【点睛】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握性质定理.8.C【解析】【分析】根据长方体体积的计算方法,列出算式进行计算即可.【详解】解:根据长方体体积的计算公式得,(3m-4)•2m•m=6m3-8m2,故选:C.【点睛】本题考查单项式乘以多项式的计算方法,掌握计算方法是正确计算的前提.9.D【解析】【分析】由于平方差公式是把多项式分解为两个数的和与两个数的差的积的形式,所以根据这个特点即可判定选择项.【详解】解:(a-b+c)(a+b-c)=[a-(b-c)][a+(b-c)].选项A,B,C不符合平方差公式的结构特征,只有选项D是正确的,故选:D.【点睛】此题主要考查了因式分解的平方差公式的特点:两个数的和乘以两个数的差,此题解题关键是分别找出两个括号的符号相同的和符号不同的项,然后变形就比较简单.10.A【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】解:∠由纵坐标看出,体育场离张强家3.5千米,故∠正确;∠由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故∠正确;∠由纵坐标看出,3.5-2.0=1.5千米,体育场离早餐店1.5千米,故∠正确;∠由纵坐标看出早餐店离家2千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小=4千米/小时,故∠错误;时,2÷12故选:A.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.11.a5【解析】【分析】先计算积的乘方,再根据“同底数幂相乘,底数不变,指数相加”进行计算即可.【详解】解:(﹣a)2•a3= a2•a3=a5,故答案是:a5.【点睛】本题考查了积的乘方、同底数幂的乘法,解题的关键是注意符号的确定..12.23【解析】【详解】试题解析:∠a x=2,a y=3,.∠a x-y=a x÷a y=2÷3=23考点:同底数幂的除法.13.80°【解析】略【详解】根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A的度数解:∠在∠ABC中,AB=AC,∠B=50°∠∠C=50°∠∠A=180°﹣50°﹣50°=80°故答案为80°.【点睛】略14.3 5【解析】【分析】直接利用概率公式得出答案.【详解】解:有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的是2,4,6,故抽出标有数字为偶数的概率为:35.故答案为:35.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.15.15【解析】【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【详解】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,∠3+3=6,∠3,3,6不能组成三角形,综上所述,等腰三角形的三边长为3,3,6,周长为15;故答案为:15.【点睛】本题考查了等腰三角形的定义以及三角形的三边关系定理,是基础知识,要熟练掌握.注意分类讨论思想的应用.16.y=4x【解析】【分析】根据三角形的面积计算方法可得函数关系式.【详解】解:y=12×8x=4x ,故答案为:y=4x .【点睛】本题考查用函数关系式表示变量之间的关系,掌握三角形面积的计算方法是得出关系式的前提.17.4.8【解析】【分析】当CD∠AB 时,线段CD 的长度最短,依据三角形的面积即可得到CD 的长.【详解】解:∠点D 在线段AB 上运动,∠当CD∠AB 时,线段CD 的长度最短,又∠∠ACB=90°,BC=6,AC=8,AB=10, ∠12AC×BC=12AB×CD ,86 4.810AC BC CD AB ⨯⨯∴===, 故答案为:4.8.【点睛】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.18.-11【解析】【分析】先分别化简乘方,零指数幂,负整数指数幂,然后进行有理数的混合运算.【详解】解:原式=-9+1-4+1=-11.【点睛】本题考查乘方,零指数幂,负整数指数幂及有理数的混合运算,掌握法则和运算顺序正确计算是解题关键.19.x-y;2020【解析】【分析】原式中括号中利用完全平方公式,以及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】解:[(x-y)2-(y-x)(y+x)]÷2x=(x2-2xy+y2-y2+x2)÷2x=(2x2-2xy)÷2x=x-y,当x=2021,y=1时,原式=2021-1=2020.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.(1)34;(2)125【解析】【分析】根据题意求出概率,进行简单计算即可求解.【详解】解:(1)指针指向1,2,3,5,6,8都获奖,∠获奖概率P=68=3,4(2)获得一等奖的概率为18, 100018⨯=125(人),∠获得一等奖的人数可能是125人.【点睛】本题考查了概率的简单应用,概率的求法,属于简单题,熟悉概率的实际含义是解题关键.21.见解析【解析】【分析】由“SAS”可证∠ABF∠∠CDE ,可得BF=DE ,可得BE=DF .【详解】解:BE=DF .理由如下:在∠ABF 和∠CDE 中,AB CDA CAF CE=⎧⎪∠=∠⎨⎪=⎩∠∠ABF∠∠CDE (SAS ),∠BF=DE ,∠BF -EF=DE -EF ,∠BE=DF .【点睛】本题考查了全等三角形的判定和性质,证明∠ABF∠∠CDE 是本题的关键.22.(1)0.6元;1元 (2)140度【解析】【分析】(1)根据图象上点的坐标进行列式计算即可;(2)根据(1)的结论求出超过50度部分的用电量即可求解.【详解】解:(1)不超过50度时每度收费:30÷50=0.6(元),超过50度时,超过的部分每度收费:(60-30)÷(80-50)=1(元);答:当用电量不超过50度时,每度收费0.6元,超过50度时,超过的部分每度收费1元.(2)120-0.6×50=90(元),90÷1=90(度),50+90=140(度).答:该户居民用电140度.【点睛】本题主要考查一次函数的应用,关键学会读懂图象信息,学会构建一次函数解决问题.23.作图见解析【解析】【分析】AB长为半径画弧,两弧交于点M,N,作直线MN交AC于分别以A.B为圆心,大于12D,交AB于E.【详解】解:如图,直线DE即为所求.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)(a+2b)(a+b);a2+3ab+2b2;(2)(a+b+c)2;a2+b2+c2+2ab+2ac+2bc;(3)-18【解析】【分析】(1)根据大矩形的面积=各矩形的面积之和求解即可;(2)根据正方形的面积=各矩形的面积之和求解即可;(3)先求出(a+b+c)2的值,再根据(2)中关系式求得结果.【详解】解:(1)大矩形的面积=(a+2b)(a+b),各部分面积和=a2+3ab+2b2,∠(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b);a2+3ab+2b2;(2)正方形的面积可表示为=(a+b+c)2;各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∠(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.故答案为:(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(3)由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∠(a+b+c)2=(7x-5-4x+2-3x+4)2=1,∠1=a2+b2+c2+2ab+2ac+2bc,∠a2+b2+c2=37,∠1=37+2(ab+bc+ac),∠2(ab+bc+ac)=-36,∠ab+bc+ac=-18.【点睛】本题考查了因式分解的应用,完全平方公式的几何背景,以及完全平方公式在几何图形相关计算中的应用,本题具有一定的综合性,难度中等略大.25.(1)PC∠PQ,理由见解析;(2)t=1,x=2或t=74,x=207;(3)60°【解析】【分析】(1)利用SAS证得∠ACP∠∠BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由∠ACP∠∠BPQ,分两种情况:∠AC=BP,AP=BQ,∠AC=BQ,AP=BP,建立方程组求得答案即可;(3)根据题意得P、Q两点的运动速度为2,得到BP=AC,根据全等三角形的性质得到∠C=∠BPQ,于是得到结论.【详解】解:(1)当t=1时,AP=BQ=2,BP=AC=5又∠AC∠AB,BD∠AB,∠∠A=∠B=90°在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS),∠ACP BPQ∠=∠,∠90APC BPQ APC ACP∠+∠=∠+∠=∠∠CPQ=90°,即线段PC与线段PQ垂直;(2)∠若∠ACP∠∠BPQ,则AC=BP,AP=BQ,7-2t=5,2t=xt,解得t=1,x=2,∠存在t=1,x=2,使得∠ACP与∠BPQ全等,∠若∠ACP∠∠BQP,则AC=BQ,AP=BP,5=xt,2t=7 2解得t=74,x=207,∠存在t=74,x=207,使得∠ACP与∠BPQ全等,综上所述,存在t=1,x=2或t=74,x=207使得∠ACP与∠BPQ全等(3)∠∠A=∠B=60°∠P、Q两点的运动速度相同,∠P、Q两点的运动速度为2,∠t=1,∠AP=BQ=2,∠BP=5,∠BP=AC,在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS);∠∠C=∠BPQ,∠∠C+∠APC=120°,∠∠APC+∠BPQ=120°,∠∠CPQ=60°.故答案为:60°.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,余角的性质,正确的识别图形是解题的关键.。
2023-2024学年北师大版七年级数学下册期末试题
2023-2024学年北师大版七年级数学下册期末试题一、单选题1.小华抛一枚硬币,连续3次正面朝上,第四次()A.一定正面朝上B.一定反面朝上C.可能正面(也可能反面)朝上2.下列四个图案中,不是轴对称图形的是()A.B.C.D.3.如图,下面图象表示小红从家里出发去散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,请根据图象,确定下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回C.从家里出发,一直散步(没有停留),然后回家了D.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了4.若等腰三角形的一个内角是50︒,则这个三角形最大的内角的度数是()A.65︒B.80︒C.50︒D.65︒或80︒5.以7和3及另一边组成的边长都是整数的三角形共有( )A .2个B .3个C .4个D .5个6.甲、乙两名同学在一次用频率估计概率的实验中,统计了某一个结果出现的频率,绘制了如下的表格,则符合这一结果的实验可能是( )A .抛一枚质地均匀的硬币,出现正面的概率B .从一个装有3个红球和2个白球的不透明袋子里任取1球,取出红球的概率C .掷一枚均匀的正方体骰子,出现的点数是3的倍数的概率D .从正方形、正五边形、正六边形中任意取一个图形,是轴对称图形的概率7.如图所示,小亮数学书上的直角三角形的直角处被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,小亮画出这个三角形的依据是( )A .ASAB .SAS 或AASC .HLD .SSS8.下列运算中,正确的是( )A .326326x x x ⋅=B .224()-=x y x yC .236(2)6x x =D .54122x x x ÷= 9.下列说法正确的个数( )①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形. A .1个 B .2个 C .3个 D .4个10.广东省和计划生育委员会6月6日通报,广东新增一例输入性寨卡病毒病例,截至目前,广东省今年共报告13例寨卡病毒病例,寨卡病毒是一种通过蚊虫叮咬进行传播的虫蝶病毒,典型的症状包括急性起病的地热、斑丘疹、关节疼痛(主要累及手、足小关节),其他症状包括肌痛、头痛、眼眶痛及无力,易导致新生儿小头症,其直径为20纳米(1米=1000000000纳米),用科学记数法表示为( )A .7210⨯米B .8210⨯米C .7210-⨯米D .8210-⨯米二、填空题11.如图,Rt ABC △中,90ACB ∠=︒,50A ∠=︒,将其折叠,使点A 落在边CB 上A '处,折痕为CD ,则A DB '∠=.12.如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=54°,则∠2=°.13.(1)已知正n 边形的一个外角是45︒,则n =;(2)如图,在ABC V 中,10BC =,AB 的垂直平分线交BC 于D ,AC 的垂直平分线交BC 与E ,则ADE V 的周长等于;(3)如图所示,在ABC V 中,已知点D ,E ,F 分别为BC ,AD ,BE 的中点.且28cm ABC S =V ,则图中CEF △的面积=;(4)ABC V 中,12AB AC ==厘米,B C ∠=∠,8BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP V 全等时,v 的值为厘米/秒.14.若多项式225x mx ++是一个完全平方式,则m = .三、单选题15.下列计算中,()(1)()b x y bx by -=-;(2)()b xy bxby =;(3)x y x y b b b -=-;(4)443216(6)=;(5)212122n n n x y xy ---=A .只有(1)与(2)正确B .只有(1)与(3)正确C .只有(1)与(4)正确D .只有(2)与(3)正确四、填空题16.计算:(4×105)×(5×104)=. 17.将图1中阴影部分的小长方形变换到图2的位置,你能根据两个图形的面积关系得到的数学公式是.18.有下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④在同一平面中,两条直线不相交就平行.其中正确的结论是(填序号).19.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC V 和正CDE V ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ;以下四个结论:①AD BE =;②PQ AE ∥;③100AOE ∠=︒;④PA QE PD QB +=+;其中正确的的结论是(填序号).20.已知ABC DEF ≌△△,ABC V 的三边长分别为4、m 、n ,DEF V 的三边长分别为5、p 、q .若ABC V 的三边长均为整数,则m n p q +++的最大值为.五、解答题21.计算:()130411*******π-⎛⎫⎛⎫+⋅-- ⎪ ⎪⎝⎭⎝⎭. 22.已知:如图,AB AC =,D 是AB 上一点,DE BC ⊥于点E ,ED 的延长线交CA 的延长线于点F .求证:ADF △是等腰三角形.23.如图,已知ABC V 是等边三角形,D 为边AC 的中点,,AE EC BD EC ⊥=.(1)求证:≌BDC CEA V V .(2)请判断ADE V 是什么三角形,并说明理由.24.先化简,再求值:()()()2()2x y x y x y y x y +-+-+-,其中x =1,y =−1.25.如图,在四边形ABCD 中,=AB BC ,BF 是ABC ∠的平分线,//AF DC ,连接AC CF ,,求证:CA 是DCF ∠的平分线.。
北师大版七年级数学下学期期末达标测试卷
北师大版七年级数学下学期期末达标测试卷一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形且对称轴最多的是( )A.B.C.D.2.下列运算正确的是( )A.5ab﹣ab=4B.a4﹣a=a3C.a6÷a2=a4D.(a2b)3=a5b33.某新型冠状病毒直径为0.000 000 178米,那么该新型冠状病毒的直径约为( )米.A.1.78×10﹣7B.1.78×10﹣11C.0.178×10﹣8D.178×10﹣94.一个不透明的袋子里装有8个形状大小完全相同的球,其中4个红球,1个黄球( )A.B.C.D.5.下列可以运用平方差公式运算的有()(a+b)(−b+a)(−a+b)(a−b)(a+b)(−a−b)(a−b)(−a−b)①;②;③;④A.1个B.2个C.3个D.4个6.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是( )A. B. C. D.7.如图,公园里有一座假山,要测假山两端A,B的距离,先在平地上取一个可直接到达A和B的点C,分别延长AC,BC到D,E,使CD=CA,CE=CB,连接DE.这样就可利用三角形全等,通过量出DE的长得到假山两端A,B的距离.其中说明两个三角形全等的依据是( )A.SSS B.ASA C.AAS D.SAS8.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180° B.∠1+∠2-∠3=90°C.∠1-∠2+∠3=90° D.∠2+∠3-∠1=180°9.如图,,,于点,于点,,,则的长为()A.B.C.D.10.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45° C.45°或60° D.30°或60°11.如图,△ABC中,D、E两点分别在BC、AD上,若∠ABE=∠C,AE:ED=2:1( )A.16:45B.1:9C.2:9D.1:312.如图,点F,C在BE上,BF=EC,AB=DE,则与2∠DFE相等的是( )A .∠A +∠DB .3∠BC .180°﹣∠FGCD .∠ACE +∠B二.填空题(共6小题,满分24分,每小题4分)1. 若,则________,________.(x +m)(x +2)=x 2−6x +n m =n =2.已知三角形的两边长分别为3cm 和9cm ,则第三边的取值范围 .3.当,时,代数式________.a 2−b 2=16a−b =13a +b =4.如图,在中,分别以点和点为圆心,大于为半径画弧,两弧相交于点、,作直线,△ABC A B 12AB M N MN 交于点,的周长为,,则的周长为________.BC D △ADC 15AB =7△ABC5.已知等腰三角形的两边长分别为6cm 、8cm ,那么它的周长为 cm .6.A 、B 两地相距80km ,甲、乙两人沿同一条路从A 地到B 地.l 1,l 2分别表示甲、乙两人离开A 地的距离s (m )与时间t (h )之同的关系.当甲车出发1小时时 km .三.解答题(共8小题,满分78分)1.计算:; .(1)(x 2y )4÷(x 2y)+(x 2y )3(2)(−14)−1+(−2)2×50−(12)−22.阅读并完成下列推理过程,在括号内填写理由.已知∠ABC =∠ACB ,BD 平分∠ABC ,CE 平分∠ACB ,F 是BC 延长线上一点,且∠DBC =∠F .求证:∠CED +∠EDF =180°.证明:∵BD 平分∠ABC ,CE 平分∠ACB (已知)∴∠DBC =∠ABC ,∠BCE =∠ACB (______)1212∴∠DBC =______(等式的性质)∵∠DBC =∠F (已知)∴∠F =_______(等量代换)∴(_______)CE DF ∥∴∠CED +∠EDF =180°(_______)3.如图,在中,,分别是边上的中线和高,,.求和的△ABC AD AE BC AE =3cm S △ABC =12cm 2BC DC 长.4.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图像.根据图像回答下列问题∶(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?5.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.40.32b1(1)频数、频率分布表中a=______ ,b=____ ;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是_____ .6.如图,在正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应)(2)△ABC的面积为 .(3)在直线l上找一点P,使得PA+PC的和最小.AM△ABC D AM A DE//AB AC F CE//AM7.如图,是的中线,是射线上一点(不与点重合).交于点,连接AE BD,.(1)D M AE=BD如图①,当点与点重合时,易证(不需要证明);(2)D M AE BD如图②、图③,当点不与点重合时,线段,又有怎样的关系呢?选择一个图形证明你的结论.8已知:如图,AB=AC,AD=AE,BE与AC、CD分别相交于点N、M.(1)求证:BE=CD;(2)求∠BMC的大小.(用α表示).。
七年级下册北师大版数学期末试卷【含答案】
七年级下册北师大版数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 26厘米3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形4. 一个等差数列的前三项分别是2,5,8,那么这个数列的第四项是多少?A. 7B. 10C. 11D. 125. 下列哪个图形是中心对称图形?A. 正方形B. 长方形C. 三角形D. 梯形二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 一个三角形的内角和一定是180度。
()3. 任何两个等边三角形都是全等的。
()4. 一个等差数列的相邻两项之差是常数。
()5. 任何两个等腰三角形都是相似的。
()三、填空题(每题1分,共5分)1. 一个数的因数是______和______。
2. 一个等腰三角形的底角是______度,顶角是______度。
3. 一个正方形的对角线长是______厘米,它的面积是______平方厘米。
4. 一个等差数列的公差是______,它的第10项是______。
5. 一个平行四边形的对角线互相______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述等腰三角形的性质。
3. 简述轴对称图形的定义。
4. 简述中心对称图形的定义。
5. 简述勾股定理的定义。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
3. 一个正方形的对角线长是10厘米,求这个正方形的面积。
4. 一个平行四边形的对角线互相垂直,其中一条对角线长是12厘米,另一条对角线长是16厘米,求这个平行四边形的面积。
北师大版七年级下册数学期末考试试题及答案
北师大版七年级下册数学期末考试试题及答案北师大版七年级下册数学期末考试试卷一、单选题1.下面的图案中,不是轴对称图形的是()A。
B。
C。
D。
2.下列运算正确的是()A。
a^2*a^3=a^6B。
a^8/a^4=a^2C。
5a-3a=2D。
(-ab^2)/a^2b^43.绿色植物靠吸收光量子来进行光合作用,已知每个光量子的波长约为688纳米,1纳米=0.xxxxxxxx1米,则每个光量子的波长可用科学记数法表示为()米A。
6.88×10^-11B。
6.88×10^-7C。
0.688×10^-3D。
0.688×10^-64.下列说法正确的是()A。
“守株待兔”是必然事件B。
“概率为0.0001的事件”是不可能事件C。
“在一个只装有5个红球的袋中随机摸出1个球是红球”是必然事件D。
任意掷一枚质地均匀的硬币20次,正面向上的次数一定是10次5.变量x与y之间的关系是y=2x+1,当x=5时,函数值y 的值是()A。
2B。
3C。
11D。
126.若长度分别为a,3,5的三条线段能组成一个三角形,则a 的值可以是()A。
1B。
2C。
3D。
87.如图,用尺规作图作∠BAC的平分线AD,第一步是以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;第二步是分别以E,F为圆心,以大于EF长为半径画弧,两圆弧交于D点,连接AD,那么AD为所作,则说明∠CAD=∠BAD的依据是()A。
SSSB。
SASC。
ASAD。
AAS8.如图,直线a//b,直线l与直线a相交于点O,与直线b相交于点P,OM⊥l于点O.若∠1=55°,则∠2=()A。
35°B。
45°C。
55°D。
65°9.某班共有45名同学,其中有3名同研究惯用左手写字,其余同学都惯用右手写字,老师随机请1名同学解答问题,惯用左手写字的同学被选中的概率是()A。
1/3B。
1/15C。
北师大版七年级下册数学期末考试试卷及答案_百度文库
25、 (1)12 点,30 千米 (2
15 千米/思维导图经典案例 小时 (4)10 66份文档
Excel键盘快捷键 职场生存攻略
一、
50份文档 题 1 号
2
a∥b m∥n
3
4
7
5
6
7
8
9
10
千米 / 小时 Photoshop的抠图技巧分
您的评论 答 案
x -1
2
AC=BD 18052 或∠A=∠D 或∠ABC= ∠DCB 3n+1 ±1
黄 蓝 蓝 蓝
蓝 红 黄
26、 (10 分)把两个含有 45°角的直角三角板如图放置,点 的关系,并说明理由。
第3页
共4 页
第4页
今日推荐
七年级数学(下)期末考试卷答案
2014年注册会计师考试 笑翻神图 爆笑图片汇集 搞笑图片乐翻人 78份文档 cs3简单制作动态搞笑图片 2014年注册会计师考试攻略 2013年注会经济法统考真题 2013年注会设计统考真题及答案
(1)玲玲到达离家最远的地方是什么时间?离家多远? (2)她何时开始第一次休息?休息了多长时间? (3)她骑车速度最快是在什么时候?车速多少? (4)玲玲全程骑车的平均速度是多少?
甲
A
B
(8 分)超市举行有奖促销活动:凡一次性购物满 300 元者即可获得 22、 一次摇奖机会。摇奖机是一个圆形转盘,被分成 16 等分,摇中 红、黄、蓝色区域,分获一、二、三获奖,奖金依次为 60、50、 40 元。一次性购物满 300 元者,如果不摇奖可返还现金 15 元。 (1)摇奖一次,获一等奖的概率是多少? (2)老李一次性购物满了 300 元,他是参与摇奖划算 还是领 15 元现金划算,请你帮他算算。
北师大版七年级数学下期末考试试卷(含解析)
北师大版七年级(下)期末数学试卷一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知三角形的三边长分别为2、x、3,则x可能是()A.1B.4C.5D.63.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量4.计算(π﹣3.14)0+()﹣2=()A.5B.﹣3C.D.5.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球6.如图,直线AB∥CD,EF分别与AB、CD交于G、H,∠1=55°,则∠2的度数为()A.105°B.115°C.125°D.135°7.下列说法错误的是()A.对顶角一定相等B.在同一平面内,有且只有一条直线和已知直线垂直C.同位角相等,两直线平行D.如果两个角的和是90°,那么称这两个角互为余角8.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.AB=2BD B.AD⊥BC C.AD平分∠BAC D.∠B=∠C9.下列各图中,a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.只有乙C.甲和丙D.乙和丙10.下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此规律,第n个图形中白色正方形的个数为()A.4n+1B.4n﹣1C.3n﹣2D.3n+2二.填空题(共7小题)11.某红外线波长为0.00 000 094米,数字0.00 000 094用科学记数法表示为.12.化简:(2x﹣y)(x﹣3y)=.13.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是.14.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为°.15.如图,三角形ABC的高AD=4,BC=6,点E在BC上运动,若设BE的长为x,三角形ACE的面积为y,则y与x的关系式为.16.若m(m﹣2)=3,则(m﹣1)2的值是.17.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠AFE;②BF=DE:③∠BFE=∠BAE;④∠BFD=∠CAF.其中正确的结论是.(填写所正确结论的序号).13题图14题图15题图17题图三.解答题18.计算:(﹣2x2)2+x3•x﹣x5÷x19.先化简,再求值:(a2b+2ab2)÷b+(a﹣b)2,其中a=﹣1,b=﹣2.20.填空:把下面的推理过程补充完整,并在括号内注明理由.已知:如图,BC∥EF,AB=DE,BC=EF,试说明∠C=∠F.解:∵BC∥EF(已知)∴∠ABC=()在△ABC与△DEF中AB=DE∴△ABC≌△DEF().∴∠C=∠F().21.如图,在△ABC中,∠C=90°,PD=P A,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.22.某商场的打折活动规定:凡在本商场购物,可转动转盘一次,并根据所转结果付账.(1)分别求出打九折,打八折的概率;(2)求不打折的概率;(3)小红和小明分别购买了价值200元的商品,活动后一共付钱360元,求他俩获得优惠的情况..23.图书馆与学校相距600m,明明从学校出发步行去图书馆,亮亮从图书馆骑车去学校两人同时出发,匀速相向而行,他们与学校的距离S(m)与时间t(s)的图象如图所示:根据图象回答:(1)明明步行的速度为m/s;亮亮骑车的速度为m/s.(2)分別写出明明、亮亮与学校的距离S1、S2与时间t的关系式.(3)通过计算求出a的值.24.阅读下列学习材料并解决问题.定义:如果一个数i的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.它的加,减,乘法运算与整式的加,减,乘法运算类似,例如计算:(2+i)+(3﹣4i)=5﹣3i,(2+i)﹣(3﹣4i)=﹣1+5i,(2+i)(3﹣4i)=6﹣8i+3i﹣4i2=10﹣5i.问题:(1)填空:i3=,i4=.(2)计算:①(2+i)(2﹣i);②(2+i)2;(3)试一试:请利用以前学习的有关知识将化简成a+bi的形式(即分母不含i的形式).25.如图,在△ABC中,BC=7,高线AD、BE相交于点O,且AE=BE.(1)∠ACB与∠AOB的数量关系是;(2)试说明:△AEO≌△BEC;(3)点F是直线AC上的一点且CF=BO,动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,问是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请在备用图中画出大致示意图,并直接写出符合条件的t值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.2.已知三角形的三边长分别为2、x、3,则x可能是()A.1B.4C.5D.6【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,先求出x的取值范围,再根据取值范围选择.【解答】解:∵2+3=5,3﹣2=1,∴1<x<5.故选:B.3.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以5和y分别是常量,变量,据此判断即可.【解答】解:一本笔记本5元,买x本共付y元,则5和y分别是常量,变量.故选:C.4.计算(π﹣3.14)0+()﹣2=()A.5B.﹣3C.D.【分析】先根据负整数指数幂:a﹣p=(a≠0,p为正整数),零指数幂:a0=1(a≠0)计算,再算加法即可.【解答】解:原式=1+4=5,故选:A.5.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球【分析】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.【解答】解:∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,∴从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,∴A、这个球一定是黑球,错误;B、摸到黑球、白球的可能性的大小一样,错误;C、这个球可能是白球,正确;D、事先能确定摸到什么颜色的球,错误;故选:C.6.如图,直线AB∥CD,EF分别与AB、CD交于G、H,∠1=55°,则∠2的度数为()A.105°B.115°C.125°D.135°【分析】由直线AB∥CD,利用“两直线平行,同位角相等”可求出∠CHE的度数,再结合邻补角互补,即可求出∠2的度数.【解答】解:∵直线AB∥CD,∴∠CHE=∠1=55°.又∵∠CHE+∠2=180°,∴∠2=180°﹣∠CHE=180°﹣55°=125°.故选:C.7.下列说法错误的是()A.对顶角一定相等B.在同一平面内,有且只有一条直线和已知直线垂直C.同位角相等,两直线平行D.如果两个角的和是90°,那么称这两个角互为余角【分析】根据对顶角相等,垂线的定义与性质,平行线的判定,余角的定义即可求解.【解答】解:A、对顶角一定相等是正确的,不符合题意;B、在同一平面内,过一点有且只有一条直线和已知直线垂直,原来的说法错误,符合题意;C、同位角相等,两直线平行是正确的,不符合题意;D、如果两个角的和是90°,那么称这两个角互为余角是正确的,不符合题意.故选:B.8.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.AB=2BD B.AD⊥BC C.AD平分∠BAC D.∠B=∠C【分析】根据等腰三角形“三线合一”的性质解答.【解答】解:∵△ABC中,AB=AC,D是BC中点,∴AD⊥BC(故B正确)AD平分∠BAC(故C正确)∠B=∠C(故D正确)无法得到AB=2BD,(故A不正确).故选:A.9.下列各图中,a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.只有乙C.甲和丙D.乙和丙【分析】利用三角形全等的判定方法对各选项进行判断.【解答】解:根据“SAS”判断图乙中的三角形与△ABC全等;根据“AAS”判断图丙中的三角形与△ABC全等.故选:D.10.下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此规律,第n个图形中白色正方形的个数为()A.4n+1B.4n﹣1C.3n﹣2D.3n+2【分析】第一个图形中有5个白色正方形;第2个图形中有5+3×1个白色正方形;第3个图形中有5+3×2个白色正方形;…由此得出第n个图形中有5+3×(n﹣1)=3n+2个白色正方形.【解答】解:第一个图形中有5个白色正方形;第2个图形中有5+3×1个白色正方形;第3个图形中有5+3×2个白色正方形;…第n个图形中有5+3×(n﹣1)=3n+2个白色正方形.故选:D.二.填空题(共7小题)11.某红外线波长为0.00 000 094米,数字0.00 000 094用科学记数法表示为9.4×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 094=9.4×10﹣8,故答案是:9.4×10﹣8.12.化简:(2x﹣y)(x﹣3y)=2x2﹣7xy+3y2.【分析】利用多项式乘以多项式法则计算即可得到结果.【解答】解:(2x﹣y)(x﹣3y)=2x2﹣6xy﹣xy+3y2=2x2﹣7xy+3y2;故答案为:2x2﹣7xy+3y2.13.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是2.【分析】过P作PE⊥OA于点E,根据角平分线的性质得PE=PD=2.【解答】解:过P作PE⊥OA于点E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD,∵PD=2,∴PE=2,∴点P到边OA的距离是2.故答案为2.14.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为45°.【分析】先根据轴对称的性质得出△ABC≌△A′B′C′,由∠C′=30°求出∠C的度数,再根据三角形内角和定理即可得出∠B的度数.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∵∠C′=30°,∴∠C=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣105°﹣30°=45°.故答案为:45.15.如图,三角形ABC的高AD=4,BC=6,点E在BC上运动,若设BE的长为x,三角形ACE的面积为y,则y与x的关系式为y=﹣2x+12.【分析】根据线段的和差,可得CE的长,根据三角形的面积,可得答案.【解答】解:由线段的和差,得CE=6﹣x,由三角形的面积,得y=×4×(6﹣x)化简,得y=﹣2x+12,故答案为:y=﹣2x+12.16.若m(m﹣2)=3,则(m﹣1)2的值是4.【分析】由m(m﹣2)=3得m2﹣2m=3,根据完全平方公式,可得(m﹣1)2=m2﹣2m+1,再整体代入可得答案.【解答】解:∵m(m﹣2)=3,∴m2﹣2m=3,∴(m﹣1)2=m2﹣2m+1=3+1=4.故答案为:4.17.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠AFE;②BF=DE:③∠BFE=∠BAE;④∠BFD=∠CAF.其中正确的结论是①③④.(填写所正确结论的序号).【分析】由“SAS”可证△ABC≌△AEF,由全等三角形的性质和外角性质可依次判断即可求解.【解答】解:∵AB=AE,BC=EF,∠B=∠E,∴△ABC≌△AEF(SAS),∴∠C=∠AFE,∠EAF=∠BAC,AF=AC,∴∠AFC=∠C,∴∠AFC=∠AFE,故①符合题意,∵∠AFB=∠C+∠F AC=∠AFE+∠BFE,∴∠BFE=∠F AC,故④符合题意,∵∠EAF=∠BAC,∴∠EAB=∠F AC,∴∠EAB=∠BFE,故③符合题意,由题意无法证明BF=DE,故②不合题意,故答案为:①③④.三.解答题18.计算:(﹣2x2)2+x3•x﹣x5÷x【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【专题】11:计算题;512:整式;66:运算能力.【分析】利用积的乘方法则、同底数幂的乘除法法则,直接运算得结果.【解答】解:原式=4x4+x4﹣x4=4x419.先化简,再求值:(a2b+2ab2)÷b+(a﹣b)2,其中a=﹣1,b=﹣2.【考点】4J:整式的混合运算—化简求值.【专题】512:整式;66:运算能力.【分析】原式利用多项式除以单项式法则,以及完全平方公式化简得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2+2ab+(a2﹣2ab+b2)=a2+2ab+a2﹣2ab+b2=2a2+b2,当a=﹣1,b=﹣2时,原式=2×(﹣1)2+(﹣2)2=2+4=6.20.填空:把下面的推理过程补充完整,并在括号内注明理由.已知:如图,BC∥EF,AB=DE,BC=EF,试说明∠C=∠F.解:∵BC∥EF(已知)∴∠ABC=∠DEF(两直线平行,同位角相等)在△ABC与△DEF中AB=DE∠ABC=∠DEFBC=EF∴△ABC≌△DEF(SAS).∴∠C=∠F(全等三角形的对应角相等).【考点】KD:全等三角形的判定与性质.【专题】17:推理填空题.【分析】由于BC∥EF,所以∠ABC=∠DEF的根据是两直线平行,同位角相等,然后再根据已知条件,判定三角形全等,利用全等三角形的性质,求出∠C=∠F.【解答】解:∵BC∥EF(已知),∴∠ABC=∠DEF(两直线平行,同位角相等),在△ABC与△DEF中,AB=DE,∠ABC=∠E,BC=EF,∴△ABC≌△DEF(SAS),∴∠C=∠F(全等三角形的对应角相等).21.如图,在△ABC中,∠C=90°,PD=P A,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.【考点】KG:线段垂直平分线的性质;N2:作图—基本作图.【专题】13:作图题;64:几何直观.【分析】(1)利用基本作图作BD的垂直平分线EF;(2)先由P A=PD得到∠A=∠PDA,再根据线段垂直平分线的性质得到EB=ED,则∠B=∠EDB,从而得到∠PDA+∠EDB=90°,从而可判断PD⊥DE.【解答】(1)解:如图,EF为所作;(2)证明:∵P A=PD,∴∠A=∠PDA,∵EF垂直平分BD,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°﹣∠PDA﹣∠EDB=90°,∴PD⊥DE.22.某商场的打折活动规定:凡在本商场购物,可转动转盘一次,并根据所转结果付账.(1)分别求出打九折,打八折的概率;(2)求不打折的概率;(3)小红和小明分别购买了价值200元的商品,活动后一共付钱360元,求他俩获得优惠的情况.【考点】X4:概率公式.【专题】543:概率及其应用.【分析】(1)、(2)根据概率的计算方法,可得答案;(3)根据已知条件他俩获得优惠的情况分为两种情况,于是得到结论.【解答】解:(1)P(打九折)==;P(打八折)==;(2)P(不打折)==;(3)他俩获得优惠的情况分为:①一个不打折,一个打八折;②都打九折;两种情况.23.图书馆与学校相距600m,明明从学校出发步行去图书馆,亮亮从图书馆骑车去学校两人同时出发,匀速相向而行,他们与学校的距离S(m)与时间t(s)的图象如图所示:根据图象回答:(1)明明步行的速度为2m/s;亮亮骑车的速度为3m/s.(2)分別写出明明、亮亮与学校的距离S1、S2与时间t的关系式.(3)通过计算求出a的值.【考点】FH:一次函数的应用.【专题】533:一次函数及其应用.【分析】(1)根据图象可知学校和图书馆之间的距离为600米,亮亮用200秒骑车从图书馆到学校,而明明用300秒从到图书馆,于是可求出二人的速度,(2)用待定系数法分别求出函数关系式即可,(3)当S1=S2时,求出t的值就是a的值.【解答】解:(1)由图象可知:学校和图书馆之间的距离为600米,亮亮用200秒骑车从图书馆到学校,而明明用300秒从到图书馆,因此亮亮速度为:600÷200=3米/秒,明明的速度为600÷300=2米/秒,故答案为:2,3.(2)设明明的S1与t的关系式为S1=k1t,把(300,600)代入得:k1=2∴S1=2t,设亮亮的S2与t的关系式为S2=k2t+b,把(0,600)(200,0)代入得:,解得:k2=﹣3,b=600,∴S2=﹣3t+600,答:明明、亮亮与学校的距离S1、S2与时间t的关系式分别为S1=2t,S2=﹣3t+600.(3)当S1=S2时,即2t=﹣3t+600,解得t=120,即a=120s.答:a的值为120秒.24.阅读下列学习材料并解决问题.定义:如果一个数i的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.它的加,减,乘法运算与整式的加,减,乘法运算类似,例如计算:(2+i)+(3﹣4i)=5﹣3i,(2+i)﹣(3﹣4i)=﹣1+5i,(2+i)(3﹣4i)=6﹣8i+3i﹣4i2=10﹣5i.问题:(1)填空:i3=﹣i,i4=1.(2)计算:①(2+i)(2﹣i);②(2+i)2;(3)试一试:请利用以前学习的有关知识将化简成a+bi的形式(即分母不含i的形式).【考点】2C:实数的运算.【专题】21:阅读型;62:符号意识.【分析】(1)直接利用i2=﹣1,将原式变形计算即可;(2)①利用平方差公式计算得出答案;②利用完全平方公式计算得出答案;(3)利用分数的性质将原式变形进而得出答案.【解答】解:(1)i3=i2•i=﹣i,i4=i2×i2=(﹣1)×(﹣1)=1;故答案为:﹣i,1;(2)①(2+i)(2﹣i)=4﹣i2=4+1=5;②(2+i)2=4+4i+i2=4+4i﹣1=3+4i;(3)====.25.如图,在△ABC中,BC=7,高线AD、BE相交于点O,且AE=BE.(1)∠ACB与∠AOB的数量关系是∠ACB+∠AOB=180°;(2)试说明:△AEO≌△BEC;(3)点F是直线AC上的一点且CF=BO,动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,问是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请在备用图中画出大致示意图,并直接写出符合条件的t值;若不存在,请说明理由.【考点】KY:三角形综合题.【专题】152:几何综合题;69:应用意识.【分析】(1)结论:∠ACB+∠AOB=180°.利用三角形内角和定理以及外角的性质即可解问题.(2)根据AAS证明三角形全等即可.(3)分两种情形:①当Q在边BC上时,如图2,△BOP≌△FCQ,②当Q在BC的延长线上时,如图3,△BOP≌△FCQ,分别构建方程求解即可.【解答】解:(1)结论:∠ACB+∠AOB=180°.理由:如图1中,∵AD,BE是△ABC的高,∴∠AEO=∠ADC=90°,∴∠ACD+∠OAE=90°,∵∠AOB=∠AEB+∠OAE,∴∠AOB+∠ACD=∠AEO+∠OAE+∠ACD=90°+90°=180°.故答案为:∠ACB+∠AOB=180°.(2)如图1,∵BE是高,∴∠AEB=∠BEC=90°,由(1)得:∠AOB+∠ACB=180°,∵∠AOB+∠AOE=180°,∴∠AOE=∠ACB,在△AEO和△BEC中,∵,∴△AEO≌△BEC(AAS).(3)存在.由题意得:OP=t,BQ=4t,∵OB=CF,∠BOP=∠QCF,①当Q在边BC上时,如图2,△BOP≌△FCQ,∴OP=CQ,即t=7﹣4t,t=,②当Q在BC的延长线上时,如图3,△BOP≌△FCQ,∴OP=CQ,即t=4t﹣7,t=,综上所述,当秒或秒时,以点B,O,P为顶点的三角形与以点F,C,Q为顶点的三角形全等.故满足条件的t的值为或.。
北师大版七年级数学下册期末检测试题及答案
北师大版七年级数学下册期末检测试题及答案(时间100分钟,满分120分)一、选择题(共10小题,3*10=30)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )2.解方程3y -14-1=3y -73时,为了去分母,应将方程的两边同时乘( )A .12B .10C .9D .43.某红外线遥控器发出的红外线波长为0.000 000 94 m ,用科学记数法表示这个数据是( ) A .9.4×10-7 m B .9.4×107 m C .9.4×10-8 m D .0.94×10-6 m 4.若a >b ,则下列不等式变形错误的是( )A .a +2>b +2B .-a 3<-b3 C .3-a >3-b D .4a -1>4b -15.下列运算正确的是( ) A .2a -3=12a3B.⎝⎛⎭⎫12x +1⎝⎛⎭⎫12x -1=12x 2-1 C .(3x -y)(-3x +y)=9x 2-y 2 D .(-2x -y)(-2x +y)=4x 2-y 26. 袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A .3个B .不足3个C .4个D .5个或5个以上7.如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,若BF =AC ,那么∠ABC 的大小是( )A .40°B .45°C .50°D .60°8.已知关于x 、y 的方程组⎩⎪⎨⎪⎧x +2y =5m ,x -2y =9m的解满足3x +2y =19,则m 的值为( )A .1 B.32 C .5 D .79.不等式组⎩⎪⎨⎪⎧12x -1≤-12,5-x <6的解集在数轴上表示正确的是( )10.甲、乙两辆摩托车同时分别从相距20 km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km )与行驶时间t (h )之间的函数关系.则下列说法错误的是( )A .乙摩托车的速度较快B .经过0.3 h 甲摩托车行驶到A ,B 两地的中点C .经过0.25 h 两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地503 km二.填空题(共8小题,3*8=24) 11.计算:⎝⎛⎭⎫12-2+(π-3.14)0=________.12. 已知a m +1·a 2m -1=a 9,则m =________.13.如图所示,∠C =90°,∠B 的平分线BD 交AC 于点D ,且CD ∠AD =2∠3,AC =10 cm ,则点D 到AB 的距离等于____cm .14.不等式组⎩⎪⎨⎪⎧x +1>0,a -13x <0的解集是x >-1,则a 的取值范围是____________.15.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1 240本,则男生志愿者有________人 ,女生志愿者有________人.16.如图,在3×3的正方形网格中,网格线的交点称为格点.已知点A ,B 在格点上,如果点C 也在格点上,且使得∠ABC 为等腰直角三角形,则符合条件的点C 有________个.17.如图,BC =EC ,∠BCE =∠ACD ,要使∠ABC ∠∠DEC ,则应添加的一个条件为__________________(只需填一个).18.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正∠ABC 和正∠CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:∠AD =BE ;∠PQ ∠AE ;∠AP =BQ ;∠DE =DP ;∠∠AOB =60°.恒成立的结论有_________.(把你认为正确的序号都填上)三.解答题(共7小题, 66分) 19.(8分) 计算: (1)⎝⎛⎭⎫-14-1-|-3|-(3-π)0; (2)(a 2b -2ab 2-b 3)÷b -(a +b )(a -b ).20.(8分) 化简并求值 :(3x +2y )2-(3x -2y )2+2(x +y )(x -y )-2x (x +4y )其中,x =1,y =-1.21.(8分) 解不等式y +13-3y -52≥4,并将其解集在数轴上表示出来.22.(10分) 如图,直线AB ∠CD ,EF ∠CD ,F 为垂足,∠GEF =30°,求∠1的度数.23.(10分)“六一”儿童节期间,某商厦为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),如图,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准哪个区域,顾客就可以获得相应的奖品.小明和妈妈购买了125元的商品,请你分析计算:(1)小明获得奖品的概率是多少?(2)小明获得童话书的概率是多少?颜色奖品红色玩具熊黄色童话书绿色彩笔24.(10分)如图,在△ABC中,AB=AC,D,E,F分别在三边上,且BE=CD,BD=CF,G为EF的中点.(1)若∠A=40°,求∠B的度数;(2)试说明:DG垂直平分EF.25.(12分) 我国很多城市水资源缺乏,为了加强居民的节水意识,某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格).某用户每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示.(1)说出自来水公司在这两个用水范围内的收费标准;(2)当x>4时,求因变量y与自变量x之间的关系式;(3)若某用户该月交水费26元,求他用了多少吨水?参考答案1-5AAACD 6-10DBABC 11.5 12.3 13. 4 14, a ≤-1315. 12;16 16.617.AC =DC (答案不唯一) 18. ∠∠∠∠19.解:(1)原式=-4-3-1=-8.(2)原式=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab . 20. 解:原式=16xy -2y 2.当x =1,y =-1时,原式=-16-2=-18. 21. 解:去分母,得2(y +1)-3(3y -5)≥24, 去括号,得2y +2-9y +15≥24, 移项,合并同类项,得-7y ≥24-2-15, 系数化成1,得y ≤-1.在数轴上表示不等式的解集为:22. 解:∠EF ∠CD 于点F , ∠∠EFG =90°,∠∠EGF =90°-∠GEF =90°-30°=60°, ∠∠CGE +∠EGF =180°, ∠∠CGE =180°-60°=120°, ∠AB ∠CD ,∠∠1=∠CGE =120°(两直线平行,同位角相等)23.解:(1)因为转盘被平均分成16份,其中有颜色部分占6份, 所以P (小明获得奖品)=616=38.(2)因为转盘被平均分成16份,其中黄色部分占2份,所以P (小明获得童话书)=216=18.24. 解:(1)因为AB =AC , 所以∠C =∠B . 因为∠A =40°,所以∠B =180°-40°2=70°.(2)连接DE ,DF . 在△BDE 和△CFD 中, ⎩⎪⎨⎪⎧BD =CF ,∠B =∠C ,BE =CD ,所以△BDE ≌△CFD (SAS ). 所以DE =DF . 因为G 为EF 的中点, 所以DG ⊥EF . 所以DG 垂直平分EF .25. 解:(1)4吨以内,每吨为84=2(元),4吨以上,每吨以=3(元) (2)当x >4时,y =8+3(x -4)=3x -4,即y =3x -4 (3)∠y =26,∠3x -4=26,解得x =10,即他用了10吨水。
【重磅推出】新北师大版 七年级下册数学期末试卷及答案 (共五套)
七年级数学第二学期期末考试试卷(一)(全卷满分:100分,考试时间:120分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、选择题(每小题只有一个正确的选项,每小题3分,共计30分)1.下列图形中不是..正方体的展开图的是( )A B C D 2. 下列运算正确..的是( ) A .1055a aa =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =- 3. 下列结论中,正确..的是( ) A .若22b a ,b a ≠≠则 B .若22b a , b a >>则 C .若b a ,b a 22±==则 D .若b1a 1, b a >>则4. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30°5. 由四舍五入得到近似数3.00万( )A .精确到万位,有1个有效数字B . 精确到个位,有1个有效数字C .精确到百分位,有3个有效数字D .精确到百位,有3个有效数字 6. 观察一串数:0,2,4,6,….第n A .2(n -1) B .2n -1 C 7.下列关系式中,正确..的是( ) A .()222b a b a -=- B.(a +C .()222b a b a +=+ D.(a +8. 如图表示某加工厂今年前5则对这种产品来说,该厂( )A .1月至3月每月产量逐月增加,4、5两月产量逐月 减小B .1月至3月每月产量逐月增加,4、5两月产量与3月持平C .1月至3月每月产量逐月增加,4、5两月产量均停止 生产D . 1月至3月每月产量不变,4、5两月均停止生产 9.下列图形中,不一定...是轴对称图形的是( ) A .等腰三角形 B .线段 C .钝角 D .直角三角形 10. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A .1B .2C . 3D .4二、填空题(每小题2分,共计20)11. 计算:32x x ⋅ = ;2ab b 4a 2÷= .12.如果1kx x 2++是一个完全平方式,那么k 13.如图,两直线a 、b 被第三条直线c 所截,若∠∠2=130°,则直线a 、b 的位置关系是 . 14. 时说,2006年中央财政用于“三农”的支出将达到万元,这个数据用科学记数法可表示为 万元15. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .16. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 . 17. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .18.现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .9. 19、某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为 千米. 20.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示, 则该汽车的号码是 .三、计算题(21题3分,22题5分,共计8分)21.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.四、作图题(23题4分,24题4分,共计8分)23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)题小425.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(第27小题4分,第28小题5分,共计9分)27. 下面是我县某养鸡场2001~2006年的养鸡统计图:(1)从图中你能得到什么信息. (2)各年养鸡多少万只?(3)所得(2)的数据都是准确数吗?(4)这张图与条形统计图比较,有什么优点?28.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且AC =BD ,AB =CD .小明认为图中的两个三角形全等,他的思考过程是: 在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29.如图所示,要想判断AB 是否与CD 平行,我们可以测量那些角;请你写出三种方案,并说明理由.30.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式); (2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达). (4)运用你所得到的公式,计算下列各题:①7.93.10⨯② )2)(2(p n m p n m +--+八、信息阅读题(6分)31.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y (含备用零钱)的关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?七年级数学第二学期期末考试试题答案(一)一、填空题(每小题只有一个正确的选项,每小题3分,共计30分)二、填空题(每题2分,共计20)11. 5x ;2a . 12.±2. 13.平行. 14.3.397×10715.8316.26或22㎝ 17. AC=AE (或BC=DE ,∠E=∠C ,∠B=∠D) 18.-20 19. 45 20.B6395三、计算题(21题3分,22题5分,共计8分)21.解:=1212y 2y- =12y ……3分22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- …3分 当x=0时,原式四、作图题(23题4分,24题423.解:理由是: 垂线段最短 . ……2分 作图……2分24.解每作对一个给1分五、解答题(第25题小4分,第26小题6分,共计10分)25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +. ……2分 根据题意得2x +(x +2解得x=11.因此小王设计的长为x +2=11+此时鸡场的面积为11×13=143(平方米). ……2分 六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.(3)近似数.(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分添加的条件为:∠B=∠C (或∠A=∠D 、或符合即可)…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行 (3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)22b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=22b a -.(4): 评分标准:每空1分,(4)小题各1分八、信息阅读题(6分)31.(1)解:由图象可以看出农民自带的零钱为5元;(2)()元5.030520=- (3)()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.DCBA DC B AFED C BA EDCBA 第2题图nmba70°70°110°第3题图CBA2112第六题图DCBA 七年级数学第二学期期末考试试卷(二)(全卷满分:100分,考试时间:120分钟)选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211a a a =÷- C. 226)3(x x = D. 222)(y x y x +=+2、在“妙手推推推”游戏中,主持人出示了一个9位数,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.91B. 61 C. 51 D. 31 3、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s(单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是4、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小6、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130°7、平面上4条直线两两相交,交点的个数是 ( )A. 1个或4个B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 8、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( )A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④ 二、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)9、计算)1)(1(+-x x = 。
北师大七年级下册数学期末试卷【含答案】
北师大七年级下册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是多少厘米?A. 32厘米B. 36厘米C. 42厘米D. 46厘米3. 下列哪个图形是正方形?A. 四边相等的四边形B. 四个角都是直角的四边形C. 对角线互相垂直的四边形D. 四边相等且四个角都是直角的四边形4. 一个数加上6后乘以4,得到的结果是64,那么这个数是多少?A. 10B. 12C. 14D. 165. 下列哪个数是合数?A. 31B. 37C. 41D. 43二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个等边三角形的三个角都是60度。
()3. 任何两个负数相乘的结果都是正数。
()4. 一个数的立方根只有一个。
()5. 对角线相等的四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 两个质数相乘,其积一定是______。
2. 一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的周长是______厘米。
3. 下列各数中,______是最小的质数。
4. 一个数的平方是36,那么这个数的立方是______。
5. 下列各数中,______是最大的合数。
四、简答题(每题2分,共10分)1. 请简要说明什么是等边三角形。
2. 请简要说明什么是质数。
3. 请简要说明什么是立方根。
4. 请简要说明什么是等腰三角形。
5. 请简要说明什么是负数。
五、应用题(每题2分,共10分)1. 一个长方形的周长是34厘米,长是12厘米,求宽。
2. 一个等腰三角形的底边长是10厘米,高是12厘米,求面积。
3. 一个数的平方是49,求这个数的立方。
4. 一个正方形的对角线长是10厘米,求边长。
5. 一个数的立方是64,求这个数的平方。
六、分析题(每题5分,共10分)1. 请分析并说明如何判断一个数是质数还是合数。
北师大版数学七年级下册第二学期期末 达标测试卷(含答案)
第二学期期末达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四个汉字中,可以看作是轴对称图形的是()2.某种芯片每个探针单元的面积为0.000 001 68 cm2,则0.000 001 68用科学记数法可表示为()A.1.68×10-5B.1.68×10-6C.0.168×10-7D.0.168×10-5 3.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,将这些数据绘制成频率分布表,其中64.5~66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.下面的说法中,不正确的是()A.两直线平行,同位角相等B.若∠α=∠β,则∠α和∠β是一对对顶角C.若∠α与∠β互为补角,则∠α+∠β=180°D.如果一个角的补角是130°,那么这个角的余角等于40°6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=9 cm,则△DEB的周长是()A.6 cm B.7 cm C.8 cm D.9 cm(第6题)(第7题)7.如图,在△ABC和△DEF中,点B,F,C,D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DFC.∠ACD=∠BFE D.BF=CD8.如图,在Rt△ABC中,∠ACB=90°,点M为BA延长线上一点,∠ABC的平分线BE和∠CAM的平分线AD相交于点P,分别交AC和BC的延长线于E,D两点.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF,并延长交DH于点G,则下列结论:①∠APB=45°;②PF=P A;③BD-AH=AB,其中正确的是()A.①B.①②C.①②③D.②③(第8题)(第9题)(第13题)二、填空题(共5小题,每小题3分,计15分)9.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2 cm的正方形区域内,图中黑色部分的总面积为2 cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_________________________.10.规定a*b=2a×2b,如2*3=22×23=25=32.若2*(x+1)=16,则x的值为________.11.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x-2,2y+1,若这两个三角形全等,则x+y的值是__________.12.为了加强公民的节水意识,某市制定了如下用水收费标准:①每户每月的用水不超过10立方米时,水价为每立方米2.2元;②超过10立方米时,超出部3 分按每立方米3.8元收费,该市每户居民6月份用水x 立方米(x >10),应交水费y 元,则y 与x 的关系式为________________.13.如图,在△ABC 中,AB =AC ,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若BC =12,S △ABC =84,则线段PB +PD 的最小值为____________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)计算:(π-3)0+⎝ ⎛⎭⎪⎫-12-2+⎝ ⎛⎭⎪⎫142 023×(-4)2 024.15.(5分)化简:[(a +2b )(a -2b )-(a -2b )2]÷(-2b ).16.(5分)先化简,再求值:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y ,其中x =1,y =-2.17.(5分)已知:如图,DG ⊥BC ,AC ⊥BC ,∠1=∠2.试说明EF ∥CD . 小明给出了如下不完整的解题过程,请你帮助小明完成.(第17题)解:∵DG ⊥BC ,AC ⊥BC (已知),∴∠DGB =∠ACB =90°( ), ∴DG ∥AC ( ), ∴∠2=________( ), ∵∠1=∠2(已知),∴∠1=________(等量代换),∴EF ∥CD ( ). 18.(5分)尺规作图(不写作法,请保留作图痕迹).已知:如图,△ABC ,求作:在BC 边上求作点D ,使得S △ABD =S △ACD .(第18题)19.(5分)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(第19题)(1)试说明△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.20.(5分)一个不透明的袋子中装有9个红球和2个白球,这些球除颜色外都相同,从中任意摸出一个球.(1)“摸到红球”是________事件,“摸到黑球”是________事件;(填“不可能”或“必然”或“随机”)(2)如果要使摸到红球的概率为35,需要往袋子里再放入多少个白球?21.(6分)在高铁站广场前有一块长为(2a+b)m,宽为(a+b)m的长方形空地(如图).计划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为b m的人行通道.(第21题)(1)请用代数式表示广场面积并化简;(2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.522.(7分)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连接OF.(第22题)(1)试说明:ED∥AB;(2)若OF平分∠COD,∠OFD=70°,求∠1的度数.23.(7分)如图,点P关于OA,OB轴对称的对称点分别为C,D,连接CD,交OA于M,交OB于N.(第23题)(1)若CD的长为18 cm,求△PMN的周长;(2)若∠CPD=131°,∠C=21°,∠D=28°,求∠MPN.24.(8分)小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是________米;小明在书店停留了________分;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(第24题)(3)小明出发后多长时间离家的距离为900米?725.(8分)如图,AB=AC=16 cm,BC=10 cm,点D为AB的中点,点P在边BC上以每秒2 cm的速度由点B向点C运动,同时,点M在边CA上由点C 向点A匀速运动.(1)若点M的运动速度与点P的运动速度相同,经过1 s后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?(第25题)26.(10分)【问题发现】(1)如图①,在△ABC与△CDE中,∠B=∠E=∠ACD =90°,AC=CD,B,C,E三点在同一直线上,AB=3,ED=4,则BE=________;【问题提出】(2)如图②,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积;【问题解决】(3)如图③,在四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD的面积为12且CD的长为6,求△BCD的面积.(第26题)9答案一、1.A 2.B 3.B 4.A 5.B6.D 点拨:因为AD 平分∠CAB ,∠C =90°,DE ⊥AB ,所以∠CAD =∠BAD ,∠C =∠AED =90°.在△CAD 和△EAD 中,⎩⎨⎧∠C =∠DEA ,∠CAD =∠EAD ,AD =AD ,所以△CAD ≌△EAD ,所以AC =AE ,CD =DE . 因为AC =BC ,所以BC =AE .所以△DEB 的周长为DB +DE +BE =DB +CD +BE =CB +BE =AE +BE =AB =9 cm. 故选D. 7.D8.C 点拨:由题意可设∠MAP =∠P AC =x ,∠ABP =∠PBD =y ,则有⎩⎨⎧x =y +∠APB ,2x =2y +∠ACB , 可得∠APB =12∠ACB =45°,故①正确; 因为PF ⊥AD ,所以∠APF =90°, 所以∠APB =∠FPB =45°.在△PBA 和△PBF 中,⎩⎨⎧∠APB =∠FPB ,PB =PB ,∠ABP =∠FBP ,所以△PBA ≌△PBF ,所以P A =PF ,BA =BF ,故②正确;因为∠DPF =∠HCF =90°,∠DFP =∠HFC , 所以∠PDF =∠PHA .在△DPF 和△HP A 中,⎩⎨⎧∠DPF =∠HP A =90°,∠PDF =∠PHA ,PF =P A ,所以△DPF ≌△HP A ,所以DF =AH .11所以BD -AH =BD -DF =BF ,又因为BF =AB ,所以BD -AH =AB ,故③正确.所以其中正确的是①②③.故选C.二、9.0.5 10.1 11.152或712.y =3.8x -1613.14 点拨:连接AD ,AP .因为AB =AC ,D 是BC 边的中点,所以AD ⊥BC ,又因为BC =12,S △ABC =84,所以12×12×AD =84, 所以AD =14.因为EF 垂直平分AB ,所以P A =PB ,所以PB +PD =P A +PD ,所以当点A ,P ,D 在同一直线上时,PB +PD =P A +PD =AD ,即AD 的长度=PB +PD 的最小值,所以PB +PD 的最小值为14.三、14.解:原式=1+4+⎝ ⎛⎭⎪⎫-14×42 023×(-4) =1+4+(-1)×(-4)=1+4+4=9.15.解:原式=(a 2-4b 2-a 2+4ab -4b 2)÷(-2b )=(4ab -8b 2)÷(-2b )=-2a +4b .16.解:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y =(9x 2-12xy +4y 2-9x 2-2xy +9xy +2y 2)÷⎝ ⎛⎭⎪⎫-12y =(-5xy +6y 2)÷⎝ ⎛⎭⎪⎫-12y =10x -12y .当x =1,y =-2时,原式=10×1-12×(-2)=34.17.垂直的性质;同位角相等,两直线平行;∠ACD ;两直线平行,内错角相等;∠ACD ;同位角相等,两直线平行18.解:如图,点D 即为所求.(第18题)19.解:(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC .因为CB ⊥AB ,CD ⊥AD ,所以∠B =∠D =90°.在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌△ADC .(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB ·BC =12×4×3=6,所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.20.解:(1)随机;不可能(2)设需要往袋子里再放入x 个白球,根据题意,得35×(9+2+x )=9,解得x =4, 则需要往袋子里再放入4个白球.21.解:(1)广场面积为(a +b )(2a +b )=(2a 2+3ab +b 2)(m 2).(2)两个长方形喷泉(图中阴影部分)的面积为(a +b -2b )(2a +b -3b )=(a -b )(2a -2b )=(2a 2-4ab +2b 2)(m 2).22.解:(1)因为OC ⊥OD ,所以∠COD =90°,因为∠1+∠COD +∠BOD =180°,所以∠1+∠BOD =90°,因为∠D与∠1互余,所以∠1+∠D=90°,所以∠D=∠BOD,所以ED∥AB.(2)因为OF平分∠COD,∠COD=90°,所以∠FOD=45°,因为∠OFD=70°,所以∠D=180°-∠OFD-∠FOD=65°,因为∠1+∠D=90°,所以∠1=25°.23.解:(1)由题意知PM=CM,ND=NP.所以PN+PM+MN=CM+MN+ND=CD=18 cm,所以△PMN的周长为18 cm.(2)因为PM=CM,PN=ND,所以∠C=∠CPM=21°,∠D=∠DPN=28°,所以∠MPN=∠CPD-∠CPM-∠DPN=131°-21°-28°=82°.24.解:(1)1 500;4(2)由图象可知:12~14分时,平均速度=1 500-60014-12=450(米/分),因为450>300,所以小明买到书后继续骑车到学校的这段时间的骑车速度不在安全限度内.(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间:①在0~6分时,平均速度为1 2006=200(米/分),设距家900米的时间为t1,则t1=900÷200=4.5(分);②在6~8分内,平均速度为1 200-6008-6=300(米/分),设距家900米的时间为t2,则1 200-300(t2-6)=900,解得t2=7;13③在12~14分内,平均速度为450米/分,设距家900米的时间为t 3,则600+450(t 3-12)=900,解得t 3=1223.综上,小明出发后4.5分或7分或1223分离家的距离为900米.25.解:(1)△BPD 与△CMP 全等.理由如下:经过1 s 后,BP =2 cm ,CM =2 cm ,BD =12AB =8 cm ,CP =10-2=8(cm),所以BP =CM ,BD =CP .因为AB =AC ,所以∠B =∠C ,在△BDP 和△CPM 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CM ,所以△BDP ≌△CPM .(2)由题意知△BPD 与△CMP 全等,因为CM ≠PB ,所以CM =BD =8 cm ,PC =PB =5 cm ,所以点M 的运动速度为8÷52=165(cm/s).26.解:(1)7(2)过点D 作DE ⊥BC 交BC 的延长线于E ,如图①.因为DE ⊥BC ,CD ⊥AC ,所以∠E =∠ACD =90°,所以∠ACB =90°-∠DCE =∠CDE .在△ABC 和△CED 中,⎩⎨⎧∠ABC =∠E =90°,∠ACB =∠CDE ,AC =CD ,所以△ABC ≌△CED ,所以BC =ED =4,15所以S △BCD =12BC ·DE =8.(第26题) (3)过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 交DC 的延长线于点F ,如图②.因为△ACD 的面积为12且CD 的长为6,所以12×6×AE =12,所以AE =4.因为∠ADC =45°,AE ⊥CD ,所以△ADE 是等腰直角三角形,所以DE =AE =4,所以CE =CD -DE =2,因为∠ABC =∠CAB =45°,所以∠ACB =90°,AC =BC ,所以∠ACE =90°-∠BCF =∠CBF .在△ACE 和△CBF 中,⎩⎨⎧∠AEC =∠F =90°,∠ACE =∠CBF ,AC =BC ,所以△ACE ≌△CBF ,所以BF =CE =2,所以S △BCD =12CD ·BF =6.。
(2023年最新)北师大版七年级下册数学期末测试卷
北师大版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为36,则PD+PE+PF=()A.12B.8C.4D.32、下面各运算中,结果正确的是( )A.2a 3+3a 3=5a 6B.-a 2•a 3=a 5C.(a+b)(-a-b)=a 2-b2 D.(-a-b)2=a 2+2ab+b 23、已知,则、的值为()A. B. C. D.4、如图,平分,为上一点,分别在上,且满足,若,则的度数是()A.40°B.50°C.60°D.70°5、如图,把长短确定的两根木棍AB、AC的一端固定在A处,和第三根木棍BM 摆出△ABC,木棍AB固定,木棍AC绕A转动,得到△ABD,这个实验说明()A.△ABC与△ABD不全等B.有两边分别相等的两个三角形不一定全等 C.两边和它们的夹角分别相等的两个三角形全等 D.有两边和其中一边的对角分别相等的两个三角形不一定全等6、如图,已知a∥b,∠1=50°,则∠2=()A.40°B.50°C.120°D.130°7、如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CDB.∠3=∠4C.∠B=∠DD.AD∥BC8、如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A. B.4 C.3 D.9、下列计算正确的是()A. B. C. D.10、在△ABC中,若∠A:∠B=5:7,且∠C比∠A大10°,那么∠C的度数为()A.70°B.60°C.50°D.40°11、一只不透明的袋子中装有1个黑球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出1 个球,摸到黑球的概率为()A. B. C. D.12、1010可以写成()A.10 2·10 5B.10 2+10 5C.(10 2)5D.(10 5)513、如图,在,中,,,,点,,三点在同一条直线上,连结,则下列结论中错误的是()A. B. C. D.14、化简a2•a3的结果是()A.aB.a 5C.a 6D.a 815、世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076g,将数0.0000000076用科学记数法表示为()A.7.6×10 ﹣9B.7.6×10 ﹣8C.7.6×10 9D.7.6×10 8二、填空题(共10题,共计30分)16、如图,I为△ABC的角平分线交点,∠A=40°,则∠BIC的度数是________.17、已知等腰三角形的两边长是6cm和11cm,则它的周长是________.18、函数中自变量x的取值范围是________.19、等腰三角形的两边长分别为3 cm和7 cm,则它的周长为________cm。
北师大版七年级第二学期期末数学试卷及答案3
北师大版七年级第二学期期末数学试卷及答案一、选择题(共9小题).1.(2分)下列计算正确的是()A.a3•a3=2a3 B.3a3﹣a3=2a6C.a6÷a3=a2 D.(﹣2a3)2=4a62.(2分)下列图案不是轴对称图形的是()A.B.C.D.3.(2分)下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)4.(2分)“a是实数,a2≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件5.(2分)如图,AB∥CD,∠ACB=90°,CE⊥AB,垂足为E,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个6.(2分)如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE=3,则△ABE 的面积等于()A.15B.12C.10D.147.(2分)已知多项式x﹣a与x2+2x﹣1的乘积中不含x2项,则常数a的值是()A.﹣1B.1C.2D.﹣28.(2分)小明从家出发走了10分钟后到达了离家800米的书店买书,在书店停留了10分钟,然后用15分钟返回到家,下列图象能表示小明离家y(米)与时间x(分)之间关系的是()A.B.C.D.9.(2分)如图,AB∥CD,则下列等式正确的是()A.∠1=∠2+∠3B.∠1﹣∠2=180°﹣∠3C.∠1﹣∠3=180°﹣∠2D.∠1+∠2+∠3=180°二、填空题(每小题2分,共18分)10.(2分)医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为.11.(2分)若b m=8,b n=5,则b m+n=.12.(2分)一个等腰三角形的两边长分别是4和9,则周长是.13.(2分)已知x+y=5,xy=﹣24,则x2+y2=.14.(2分)一个等腰三角形的周长是60cm,腰为xcm,底为ycm,请列出y与x之间的关系式为.15.(2分)一个袋子里有n个除颜色外完全相同的小球,其中有8个黄球,每次摸球前先将袋子里的球摇匀,任意摸出一球记下颜色后放回,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4,那么可以推算出n大约是.16.(2分)已知△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,那么△DEF中EF边上的高是cm.17.(2分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点N,交AC于点M,连接BM,则∠MBC=度.18.(2分)如图,△ABC的面积为S,BD=BC,AE=AC,连接AD和BE交于点O,连接CO,则△ABO 的面积为.若BD=BC,AE=AC,则△ABO的面积为.三、计算(19题每小题8分,共8分;20题8分)19.(8分)(1)()0÷(4)﹣2(2)4xy•(﹣xy2z3)÷(2x2y3)20.(8分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中a=,b=﹣25.四、(21题6分,22题8分)21.(6分)如图,点B在线段AC上,点E在线段DF上,连接DB,EC,AF,若∠A=∠F,DB∥EC,下面写出了说明“∠C=∠D”的过程,请将说明过程补充完整.∵∠A=∠F(已知)∴DF∥.()∴∠DEC+∠C=180°.()∵DB∥EC(已知)∴∠DEC+∠=180°.()∴∠C=∠D.()22.(8分)现有除数字外完全相同的10张卡片,上面分别标有1,2,3,4,5,6,7,8,9,10.小明和小亮两人合作完成一个游戏,规则是小明先随意抽取1张卡片,然后由小亮猜这张卡片上标的数,如果小亮猜对了,则小亮获胜,如果猜错了,则小明获胜.(1)这个游戏对双方公平吗?(2)下面这几个游戏规则,你认为对双方公平的是哪几个?(只写出序号即可)①猜奇数还是偶数;②猜不是3的倍数;③猜是3的倍数;④猜大于5的数;⑤猜不大于5的数.(3)如果你是小亮,为了获胜,你想选择上面(2)中的哪一个猜法?并说明理由.五、(本题6分)23.(6分)校园的一角如图所示,其中线段AB,BC,CD表示围墙,围墙内是学生的一个活动区域,小明想在图中的活动区域中找到一点P,使得点P到三面围墙的距离都相等.请在图中找出点P.(用尺规作图,不用写作法,保留作图痕迹)六、(本题8分)24.(8分)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.(1)下表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.x/人次50010001500200025003000…y/元1000200040006000…(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入﹣支出费用)七、(本题10分)25.(10分)(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.八、(本题10分)26.(10分)已知:如图1,在△ABC和△ADE中,∠C=∠E,∠CAE=∠DAB,BC=DE.(1)请说明△ABC≌△ADE.(2)如图2,连接CE和BD,DE,AD与BC分别交于点M和N,∠DMB=56°,求∠ACE的度数.(3)在(2)的条件下,若CN=EM,请直接写出∠CBA的度数.参考答案一、选择题(下列各题的备选答案中,只有一一个是正确的.每小题2分,共18分)1.(2分)下列计算正确的是()A.a3•a3=2a3B.3a3﹣a3=2a6C.a6÷a3=a2D.(﹣2a3)2=4a6解:A.a3•a3=a6,故本选项不合题意;B.3a3﹣a3=2a3,故本选项不合题意;C.a6÷a3=a3,故本选项不合题意;D.(﹣2a3)2=4a6,故本选项符合题意.故选:D.2.(2分)下列图案不是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.3.(2分)下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)解:(﹣2x﹣y)(2x﹣y)=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;(﹣2x﹣y)(2x+y)=﹣(2x+y)2,不能用平方差公式进行计算;(2x﹣y)(y﹣2x)不能用平方差公式进行计算;(2x﹣y)(2x﹣y)=(2x﹣y)2,不能用平方差公式进行计算.故选:A.4.(2分)“a是实数,a2≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件解:a为实数,a2≥0,是一定成立的问题,是必然事件.故选:A.5.(2分)如图,AB∥CD,∠ACB=90°,CE⊥AB,垂足为E,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个解:∵CE⊥AB于点E,∴∠CEA=90°,∴∠CAB+∠ACE=90°,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵AB∥CD,∴∠ABC=∠DCB,∴∠DCB+∠CAB=90°,由上可得,图中与∠CAB互余的角有∠ACE、∠ABC、∠DCB,即图中与∠CAB互余的角有3个,故选:C.6.(2分)如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE=3,则△ABE 的面积等于()A.15B.12C.10D.14解:过点E作EF⊥AB于点F,如图:∵BD是AC边上的高,∴ED⊥AC,又∵AE平分∠CAB,DE=3,∴EF=3,∵AB=8,∴△ABE的面积为:8×3÷2=12.故选:B.7.(2分)已知多项式x﹣a与x2+2x﹣1的乘积中不含x2项,则常数a的值是()A.﹣1B.1C.2D.﹣2解:(x﹣a)(x2+2x﹣1)=x3+2x2﹣x﹣ax2﹣2ax+a=x3+2x2﹣ax2﹣x﹣2ax+a=x3+(2﹣a)x2﹣x﹣2ax+a令2﹣a=0,∴a=2故选:C.8.(2分)小明从家出发走了10分钟后到达了离家800米的书店买书,在书店停留了10分钟,然后用15分钟返回到家,下列图象能表示小明离家y(米)与时间x(分)之间关系的是()A.B.C.D.解:根据题意,在前10分钟,离家的距离随时间增加而增加,当时间为10分钟,距离达到离家800米,在书店停留了10分钟,离家的距离仍为800米不变,然后用15分钟离家的距离由800米逐渐减少到0米,返回到家,故选:D.9.(2分)如图,AB∥CD,则下列等式正确的是()A.∠1=∠2+∠3B.∠1﹣∠2=180°﹣∠3C.∠1﹣∠3=180°﹣∠2D.∠1+∠2+∠3=180°解:如右图所示,∵CD∥AB,∴∠4=∠3,∵∠4=∠2+(180°﹣∠1),∴∠3=∠2+(180°﹣∠1),∴∠1﹣∠2=180°﹣∠3,故选:B.二、填空题(每小题2分,共18分)10.(2分)医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为6×10﹣8.解:0.00000006=6×10﹣8.故答案为:6×10﹣8.11.(2分)若b m=8,b n=5,则b m+n=40.解:∵b m=8,b n=5,∴b m+n=b m×b n=8×5=40.故答案为:40.12.(2分)一个等腰三角形的两边长分别是4和9,则周长是22.解:当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故答案为:22.13.(2分)已知x+y=5,xy=﹣24,则x2+y2=73.解:∵x+y=5,xy=﹣24,∴x2+y2=(x+y)2﹣2xy=52﹣2×(﹣24)=73.故答案为73.14.(2分)一个等腰三角形的周长是60cm,腰为xcm,底为ycm,请列出y与x之间的关系式为y=﹣2x+60.解:依题意得2x+y=60,即y=﹣2x+60;故答案为:y=﹣2x+60.15.(2分)一个袋子里有n个除颜色外完全相同的小球,其中有8个黄球,每次摸球前先将袋子里的球摇匀,任意摸出一球记下颜色后放回,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4,那么可以推算出n大约是20.解:根据题意得:=0.4,解得:n=20,则n大约是20个;故答案为:20.16.(2分)已知△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,那么△DEF中EF边上的高是8cm.解:∵△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,∴BC•h=20,即h=8,则△DEF中EF边上的高是8cm,故答案为:8.17.(2分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点N,交AC于点M,连接BM,则∠MBC=30度.解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=×(180°﹣40°)=70°,∵AB的垂直平分线交AB于点N,交AC于点M,∴∠ABM=40°,∴∠MBC=∠ABC﹣∠ABM=70°﹣40°=30°.故答案为:30.18.(2分)如图,△ABC的面积为S,BD=BC,AE=AC,连接AD和BE交于点O,连接CO,则△ABO 的面积为.若BD=BC,AE=AC,则△ABO的面积为.解:∵BD=BC,AE=AC,∴S△ABD=S△ACD,S△OBD=S△OCD,∴S△ABO=S△ACO,同理:S△ABO=S△BCO,∴S△ABO=S△ACO=S△BCO,∵S△ABO+S△ACO+S△BCO=S△ABC,∴S△ABO=;若BD=BC,AE=AC,∴S△ABO+S BDO=S,S△ABO+S△AEO=,S△BCO=3S△BDO,S△ACO=3S△AEO,∴S△AEO=﹣S△ABO,S△BDO=S△AEO,∴S△ABO+6S△AEO=S,即S△ABO+6(﹣S△ABO)=S,∴S△ABO=,故答案为,.三、计算(19题每小题8分,共8分;20题8分)19.(8分)(1)()0÷(4)﹣2(2)4xy•(﹣xy2z3)÷(2x2y3)解:(1)==16;(2)4xy•(﹣xy2z)3÷(2x2y3)=4xy•(﹣x3y6z3)÷(2x2y3)=﹣4x4y7z3÷(2x2y3)=﹣2x2y4z3.20.(8分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中a=,b=﹣25.解:a(a+2b)﹣(a+1)2+2a=a2+2ab﹣(a2+2a+1)+2a=2ab﹣1,当,b=﹣25时,原式==﹣3.四、(21题6分,22题8分)21.(6分)如图,点B在线段AC上,点E在线段DF上,连接DB,EC,AF,若∠A=∠F,DB∥EC,下面写出了说明“∠C=∠D”的过程,请将说明过程补充完整.∵∠A=∠F(已知)∴DF∥AC.(内错角相等,两直线平行)∴∠DEC+∠C=180°.(两直线平行,同旁内角互补)∵DB∥EC(已知)∴∠DEC+∠D=180°.(两直线平行,同旁内角互补)∴∠C=∠D.(同角的补角相等)解:∵∠A=∠F(已知)∴DF∥AC.(内错角相等,两直线平行),∴∠DEC+∠C=180°.(两直线平行,同旁内角互补),∵DB∥EC(已知)∴∠DEC+∠D=180°.(两直线平行,同旁内角互补),∴∠C=∠D(同角的补角相等).故答案为:AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.22.(8分)现有除数字外完全相同的10张卡片,上面分别标有1,2,3,4,5,6,7,8,9,10.小明和小亮两人合作完成一个游戏,规则是小明先随意抽取1张卡片,然后由小亮猜这张卡片上标的数,如果小亮猜对了,则小亮获胜,如果猜错了,则小明获胜.(1)这个游戏对双方公平吗?(2)下面这几个游戏规则,你认为对双方公平的是哪几个?(只写出序号即可)①猜奇数还是偶数;②猜不是3的倍数;③猜是3的倍数;④猜大于5的数;⑤猜不大于5的数.(3)如果你是小亮,为了获胜,你想选择上面(2)中的哪一个猜法?并说明理由.解:(1)不公平,小明获胜的概率为,小亮获胜的概率仅为,小明获胜概率大于小刚的,所以不公平.(2))①公平,猜奇数或偶数的概率都是0.5,概率相等,所以是公平的;②③不公平,P(3的倍数)=,P(不是3的倍数)=,两者不相等,所以不公平;④⑤公平,P(大于5)==P(不大于5)=,所以是公平的;则双方公平的是①④⑤;(3)选择②,理由:不是3的倍数的数字有1,2,4,5,7,8,10共有7种情况,所以P(不是3的倍数)=>,获胜可能性大.五、(本题6分)23.(6分)校园的一角如图所示,其中线段AB,BC,CD表示围墙,围墙内是学生的一个活动区域,小明想在图中的活动区域中找到一点P,使得点P到三面围墙的距离都相等.请在图中找出点P.(用尺规作图,不用写作法,保留作图痕迹)解:如图,点P即为所求.六、(本题8分)24.(8分)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.(1)下表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.x/人次50010001500200025003000…y/元100020003000400050006000…(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入﹣支出费用)解:(1)表格中反映了收入y(元)与人次x(人)两个变量之间的变化关系,其中人次x是自变量,y是因变量;(2)补全表格如下:x/人次50010001500200025003000…y/元y/元100020003000400050006000…故答案为:3000、5000;(3)每人次乘坐的票价为:1000÷500=2(元),由题意得,2x=4000+10000,解得,x=7000,答:每月乘坐该路公交车要达到7000人次.七、(本题10分)25.(10分)(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.解:(1)AB∥CD,理由如下:∵∠BAM+∠D=180°,又∵∠BAM+∠BAE=180°,∴∠D=∠BAE,∵MA⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,∴∠BAE+∠B=90°,∠D+∠DCF=90°,∴∠B=∠DCF,∴AB∥CD;(2)∵AB∥CD,∴∠DCF=∠B,∵∠DCF=∠DEC+∠EDC,∴∠B=∠DEC+∠EDC,∵∠AEB=∠AEC=90°,∴∠BAE=90°﹣∠B,∵∠DEC=90°﹣∠AED,∴90°﹣∠BAE=∠EDC+∠90°﹣∠AED,∴∠BAE+∠EDC=∠AED;(3)延长CD至点N交EF于点H,过E作EM∥CN,∵EM∥CN,∴∠MEF=∠EHC,∵AB∥CD,∴AB∥EM,∴∠A=∠AEM,∵∠AEF=∠AEM+∠MEF,∴∠AEF=∠A+∠EHC,∴∠EHC=60°﹣32°=28°,∵EF∥CG,∴∠C=∠EHC=28°.八、(本题10分)26.(10分)已知:如图1,在△ABC和△ADE中,∠C=∠E,∠CAE=∠DAB,BC=DE.(1)请说明△ABC≌△ADE.(2)如图2,连接CE和BD,DE,AD与BC分别交于点M和N,∠DMB=56°,求∠ACE的度数.(3)在(2)的条件下,若CN=EM,请直接写出∠CBA的度数.解:(1)∵∠CAE=∠DAB,∴∠CAE+∠CAD=∠DAB+∠CAD,即∠CAB=∠EAD,在△ABC和△ADE中,∴△ABC≌△ADE(AAS);(2)∵△ABC≌△ADE,∴∠CBA=∠EDA,AC=AE,在△MND和△ANB中,∵∠EDA+∠MND+∠DMB=180°,∠CBA+∠ANB+∠DAB=180°,又∵∠MND=∠ANB,∴∠DAB=∠DMB=56°,∴∠CAE=∠DAB=56°,∵AC=AE,∴∠ACE=∠AEC=,∴∠ACE=62°;(3)连接AM,由图(1)的∠A=∠C得∠MEA=∠ACN,而AE=AC,CN=EM,∴△AME≌△ANC(SAS),∴AM=AN,∠EAM=∠CAN,∵∠EAM=∠CAN,∴∠MAD=∠EAC=56°,∵AM=AN,∴∠AMN=∠ANM=(180°﹣∠MAD)=(180°﹣56°)=62°=∠BND,由(2)知∠DAB=56°,∴∠CBA=∠BND﹣∠DAB=62°﹣56°=6°.。
七年级下学期期末数学测试题北师大版含答案共4套
七年级下学期期末数学测试题一.精心选一选 (以下每小题给出的四个选项中,只有一个选项是正确的,将正确选项前的字母填在题后的括号内.本题有10小题,每小题3分,共30分)1.下列各式计算结果正确的是( )A .2a a a =+B .()2263a a =C .()1122+=+a aD .2a a a =⋅2.2019年全年国内生产总值按可比价格计算,比上年增长9.5%,达到136515亿元,136515亿元用科学记数法表示(保留4个有效数字)为( )A .121.36510⨯元;B .131.365210⨯元;C .121.36510⨯元;D .121.36510⨯元3.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个4.下列说法正确的是( )A .如果一件事不可能发生,那么它是必然事件,即发生的概率是1;B.概率很大的事情必然发生;C.若一件事情肯定发生,则其发生的概率1P;D.不太可能发生的事情的概率不为05.下列关于作图的语句中正确的是()A.画直线AB=10厘米;B.画射线OB=10厘米;C.已知A.B.C三点,过这三点画一条直线;D.过直线AB外一点画一条直线和直线AB平行6.如图,已知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()A.60° B.70° C.80°D.90°7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性 B.两点之间线段最短C.两点确定一条直线 D.垂线段最短8.下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x-a) B.(a+b)(-a-b) C.(-x-b)(x-b) D.(b+m)(m-b)9.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l.2l分别表示步行和1骑车的同学前往目的地所走的路程y(千米)及所用时间x(分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟; B.步行的速度是6千米/时;C.骑车的同学从出发到追上步行的同学用了20分钟;D.骑车的同学和步行的同学同时达到目的地10.如图,在△ABC及△DEF中,给出以下六个条件:(1)AB =DE,(2)BC=EF,(3)AC=DF ,(4)∠A=∠D,(5)∠B=∠E,(6)∠C=∠F,以其中三个作为已知条件,不能..判断△ABC及△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(2)(3)(4)D.(4)(6)(1)二、耐心填一填(请直接将答案填写在题中的横线上,每题3分,共24分)11.等腰三角形的一个角为100°,则它的底角为 . 12.()32+-m (_________)=942-m ; ()232+-ab =_____________.13.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为__________.14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字3)= ,P(摸到偶数)= .(第15题) (第17题) (第18题)15.如图,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 及l 2相交及点E ,若∠1=43°,则∠2= 度.16.有一个多项式为a 8-a 7b +a 6b 2-a 5b 3+…,按照此规律写下去,这个多项式的第八项是_____________.17.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.18.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是 分钟.三、细心算一算: 19.(4分)①)()(2322c ab c ab ÷ (4分)②2)())((y x y x y x ++---20.(5分)先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a .21.(4分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?22.(6分)如图所示:ΔABC 的周长为24cm ,AB=10cm ,边AB的垂直平分线DE 交BC 边于点E ,垂足为D ,求ΔAEC 的周长.四、用心想一想23.(6分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F ,你能找出一对全等的三角形吗?为什么它们是全等的?24.(5分)如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的等式.25.(5分)已知如图,要测量水池的宽AB ,可过点A 作直线AC ⊥AB ,再由点C 观测,在BA 延长线上找一点B ’,使∠ACB ’= ∠AC B ,这时只要量出AB ’的长,就知道AB 的长,对吗?为什么?26.(6分)请你设计一个摸球游戏:在袋子中装有若干个黄球、绿球和红球,使摸到球的概率:P (摸到红球)=41;P (摸到黄球)=32;P (摸到绿球)=121,那么袋子中黄球、绿球和红球至少各需要多少个?五、识图及计算:27.(12分)如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按同路从A 地出发驶往B 地,如图所示,图中的折线PQR和线段MN 分别表示甲、乙所行驶的路程S 及该日下午时间t 之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个更早到达B 城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.28.(9分)下图是小明作的一周的零用钱开支的统计图(单位:元)分析上图,试回答以下问题:(1)周几小明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的?分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.答 案1~10:DACDD BABDC11.40°; 12.32--m ,912422+-ab b a ; 13.E6395;14.101,21; 15.133°; 16.7ab -; 17.AB=DC 或∠A=∠D ; 18.37.2;19.①)c ab ()c ab (2322÷=)c ab (c b a 23242÷=ab ②xy y 222+20.a a 332+,值为6.21.21 22.ΔAEC 的周长=AE+EC+AC=BE+EC+AC=BC+AC=24-10=14cm .23.△AED ≌△AFD .理由: 因为∠AED=∠AFD ,∠EAD=∠FAD ,AD 是公共边,所以它们全等(AAS ).(或理由:因为角的平分线上的点到这个角的两边距离相等,所以DE=DF ,AD 是公共的斜边,所以它们全等(HL ).)24.()()ab b a b a 422+==+等.25.对,用ASA 可以证明三角形全等.26.红球3个,黄球8个,绿球1个.27.(1)甲比乙出发更早,要早1小时(2)乙比甲早到B 城,早了2个小时(3)乙出发半小时后追上甲(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B 城(5)乙的速度为50千米/时,甲的平均速度为12.5千米/时.28.(1)周三,1元,10元,(2)周一及周五都是6元,周六和周日都是10元,(3)()67101065146=÷++++++(元);(4)略.七年级数学试题(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C .∠4=∠5D .∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x +=4.下列各式中,及2(1)a -相等的是A.21-- D.21a aa+ a-B.221a a-+C.2215.有一个两位数,它的十位数数字及个位数字之和为5,则符合条件的数有A.4个B.5个C.6个D.无数个6.下列语句不正确...的是A.能够完全重合的两个图形全等 B.两边和一角对应相等的两个三角形全等 C.三角形的外角等于不相邻两个内角的和 D.全等三角形对应边相等7.下列事件属于不确定事件的是A.太阳从东方升起 B.2019年世博会在上海举行C.在标准大气压下,温度低于0摄氏度时冰会融化 D.某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是A.SAS B.ASA C.AAS D.SSS二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为 cm.10.将方程2x+y=25写成用含x的代数式表示y的形式,则y= .11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E的大小是°.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是°.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者试验次数n正面朝上的次数m正面朝上的频率nm 布丰404020480.5069德·摩根409220480.5005(第16题那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出及△ABC 全等且有一个公共顶点的格点△C B A ''';在图②中画出及△ABC 全等且有一条公共边的格点△C B A ''''''.18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2019 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)O B(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b +的值. 22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么? 23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册测试卷 A 卷(共100分)
一、 选择题:(每小题3分,共30分) 1、下列计算正确的是( )
A 、22(3)9x x +=+
B 、236a a a ⋅=
C 、221
22x x
-= D 、236()a a =
2、纳米是一种长度单位,1纳米=910-米;某花粉的直径约为3.56纳米,这个数据保留两个有效数字并用科学记数法表示为( )米
A 、93.5610-⨯
B 、100.3610-⨯
C 、93.610-⨯
D 、93.510-⨯
3、在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球为白球的概率是( )
A 、0.2
B 、0.25
C 、0.4
D 、0.8
4、在这四种交通标志中,不是轴对称图形的是( )
A B C D 5、如图,在下列
四组条件中,不能判断AD//BC 的是( )
A 、∠DAC=∠A
B B 、∠ADB=∠DBC
C 、∠DAB+∠ABC=180º
D 、∠BAC=∠ACD
6、如图一条公路修道湖边时,需拐弯绕湖而过,如果第一次拐弯的角∠A 是120º ,第二次拐弯的角∠B 是150º,第三次拐弯的角是∠C ,这时道路恰好和第一次拐弯之前的道路是平行的,则∠C 是( )度
A 、120
B 、130
B 、140 D 、150 7、在△AB
C 和△'''A B C 中,AB=''A B ,∠A=∠'A ,若证△ABC ≌△
'''A B C 还要从下列条件中补选一个,错误的选法是( )
A 、∠B=∠'
B B 、∠C=∠'
C C 、BC=''B C
D 、AC=''
AC
8、下列说法中正确的是( )
A 、一个角的两边与另一个角的两边平行,则这两个角必定相等
B 、三角形的一个外角必定大于相邻的内角
C 、三个角对应相等的两个三角形不一定全等
D 、等腰三角形的对称轴是底边上的高
9、一只狗正在平面镜前欣赏自己的全身像,则它所看到的全身像是( )
10、有一游泳池中注满水,现按一定的速度将水排尽,然后进行清扫,再按相同的速度注满水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量V (立方米)随时间t (小时)变化的大致图像是( )
D A
C B A
二、 填空题(每小题3分,共15分)
11、如果二次三项式24x x m ++是一个完全平方式,则m= .
12、如图,∠C=∠D=90º ,要使△DAB ≌△CBA ,则只需要添加一个条件 。
13、成都和重庆两地相距400千米,若汽车以平均80千米/时的速度从成都开往重庆,则汽车的路程y (千米)与行驶的时间x(小时)之间的关系式是 。
14、如图,点D 、E 为△ABC 边BC 、AC 上的两点,将△ABC 沿线段DE 折叠,点C 落在BD 上的点'C 处,若∠C=40º,则∠AE 'C = 度。
15、如图,BD 平分∠ABC ,DE ⊥BC 于点E ,AB=4cm,DE=2cm,则(ABD S ∆=2 )cm
三、计算题(16题16分,17题7分,共23分)
16、化简(每小题4分) (1)
22(35)3()
x xy xy x +-+ (2)2323(3)(2)(18)x xy x y -⋅÷
(3)、2201120102012-⨯ (4)2222(21)(41)(21)a a a ++- 17、先化简,再求代数式:2(3)(2)(3)2()()x x x x y x y -+++--+的值 其中22(1)0x y ++-=
四、 解答题(18题6分,19题8分共14分)
18、如图口袋中有5张完全相同的卡片,分别写有2cm,3cm,4cm,5cm 和6cm,口袋外面有2张卡片,分别写有4cm 和6cm 。
现随机从口袋中取出一张卡片,与口袋外面的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:
(1)根据题目要求,写出组合成的三条线段的长度的所有可能的结果(2分) (2)求出这三条线段能组成三角形的概率(2分) (3)求这三条线段能组成等腰三角形的概率(2分) 19、为纪念爱国诗人屈原,我市在俯南河隆重举行了一次龙舟比赛,下图是甲、乙两支龙舟对在比赛时的路程s (米)与时间t (分钟)之间的图像,请你根据图像回答下列问题
(1)、在1.8分钟时,哪支龙舟队处在领先地位?
(2)、在这次龙舟比赛中哪支龙舟队先到达终点,先到多长时间/ (3)、比赛开始多少时间后,先到达终点的龙舟对就
开始领先? (4)、甲队在这次比赛中的平均速速是多少?
第15题
第14题
第12题
D
A
C
E B
E
C '
D
C B
A
D C
B
A
五、 几何题(20题4分,21题6分,22题8分,共18分)
20、有一个不小心撒上一片墨水的三角形,请重新画一个三角形使他与原来的三角形完全相同(要求:用尺规作图,不写画法,保留作图痕迹)(4分)
21、在△ABC 中,∠B=40º,∠C=60º,AD
E 为AD延长线上的点,
EF⊥BC于F,求∠DEF的度数?
22、已知AC 平分∠MAN ,∠MAN=120º,
(1)在图(1)中,若∠ABC=∠ADC=90AB+AD=AC 。
(4分) (2)在图(
2)中,若∠MAN=120º,∠ABC+∠º,则(1)中的结论任然成立吗?若成立请你给出证明,若不成立请说明理由?(4分)
B 卷(50
填空题4
分,共 23、已知
2323238222n n --⋅÷=则n= 。
24、如图,小明沿格线从A 点到B 点,在路程最短的情况下,经过点C 的概率为 。
25、已知:221
2204
x xy y y -+--=,则55x y -=
26、如图,在△ABC 中,AB=6cm ,AC=8cm ,BC 边上的中线AD 的长是偶数,则AD 的最大值是 cm.
27、在△ABC 中,点D 、E 分别为BC 、AD 的中点,F 为CE 的三等分点,2
4ABC S cm ∆=
则BFE S ∆= 。
28、如图在△ABC 中AB=AC ,∠BAD=28º,且AE=AD,则∠EDC= 度。
二:解答题
(6分) 29、已知:
2310
a a +-=,求:(1)
1a a -
;(2)22
1a a +;(3)
331
a a + 三、(共8分)
图(1)
C
D B
N
M
A
图(2)B
24题图
B
C
A
26题图
D C
B
A
27题图
B
28题图
E
D C
B A
30、某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求,需要完成总面积2
80m 的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下,请回答下列问题: (1)、从统计图中可知,擦玻璃、擦课桌椅、扫地拖地的面积分别为多少?(3分) (2)、如果x 人每分钟擦玻璃的面积为y 2
m ,试写出y 关于x 的关系式(2分)
(3)、他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,怎样分配两组人数才能最快完成任务(3分) 四(共12分) 31、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角
尺的一条直角
边经过点A ,且60º角的顶点E 在
BC 上滑动,(点E
不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F
(1)如图(1)当点B 在BC 边得中点位置时(6分)
○1猜想AE 与BF 满足的数量关系是 。
(1分)
○2连结点E 与AB边得中点N,猜想BE和CF满足的数量关系是 (1分)
○
3请证明你的上述猜想(4分) (2)如图(2)当点E在BC边得任意位置时:(6分)
此时AE和BF有怎样的数量关系,并说明你的理由?
扫地拖地擦课桌椅擦玻璃每人每分钟完成各项目工作量统计图各项目面积比例统计图课桌椅25%玻璃
20%
扫地拖地
55%图(1)
E
图(2)。