基于物联网的鱼塘智能化养殖系统
物联网生态鱼塘
8
方案介绍
感知层:由各种传感器组成,包括水温、PH值、溶解氧、氨氮等传感器,用于实时监 测鱼塘环境参数
网络层:由物联网平台和通信网络组成,将感知层采集的数据传输到云平台进行处理 和分析
应用层:基于云平台的数据处理和分析结果,提供各种智能化应用,包括养殖管理、 销售管理、数据分析等
9
技术特点
10
技术特点
智能化管理:通过物联网技术,实现了对鱼塘环境的实时监测和数据分析,可以根据 不同品种的鱼类调节最佳生长环境
提高养殖效益:通过智能化管理,可以减少人力成本,提高养殖效率和质量
保障产品质量:通过实时监测和数据分析,可以及时发现鱼类生长中的问题,保障产 品质量和安全
易于管理:通过手机APP或电脑端管理平台,可以随时随地查看鱼塘环境和鱼类生长情 况,方便快捷
17
注意事项
综上所述,物联网生态鱼塘是一种具有广泛应用前景的智能渔业养殖系统。在未来的发展 中,需要不断进行技术创新和完善,以适应不断变化的市场需求和社会环境。同时,也需 要关注数据安全、技术升级和维护、用户培训、兼容性和能耗等问题,确保系统的稳定性 和可持续性
-
THE END
感谢您的观看
THANK YOU FOR WATCHING
中国人民大学
物联网生态鱼塘
XXX:XXX
XXX:XXX
2
物联网生态鱼塘
背景介绍
目录
方案介绍
技术特点
应用场景
总结评价
注意事项
3
物联网生态鱼塘
物联网生态鱼塘是一种基于物联网技术的智能鱼塘系统,它可以帮助您更好地管理鱼 塘,提高养殖效率,降低养殖成本,同时为消费者提供更加安全、健康的鱼类产品
简析基于物联网的水产养殖监控系统
简析基于物联网的水产养殖监控系统
物联网的飞速发展,为各个行业带来了创新的机遇,水产养殖行业也不例外。
基于物
联网的水产养殖监控系统,利用传感器、智能控制、大数据分析等技术手段,对水质、鱼体、水位等重要参数进行实时监控,改善养殖环境,提高养殖效率,保障水产养殖的安全
与可持续发展。
首先,物联网的水产养殖监控系统中运用了多种传感器,如温度传感器、PH值传感器、溶解氧传感器等,不仅可精确测量养殖水域的各项指标,还可通过无线网络实现与中心控
制系统的实时数据传输,实现远程监控和控制。
同时,系统可根据养殖物种的需求,调节
水质参数,确保养殖水域的水质平衡,防止水质污染。
其次,水产养殖监控系统还可利用智能识别技术,对养殖动态进行监控。
通过智能识
别系统,可实现对养殖物种、数量、成长状态等信息的快速捕捉,及时发现养殖异常,保
障鱼类健康成长。
而且,养殖场的管理人员也可随时获取相关数据,通过分析和处理数据,掌握养殖概况,为管理养殖场提供有力保障。
再次,物联网的水产养殖监控系统经常用于养殖水位监控和控制。
系统可通过水位传
感器实时监测和记录水位数据,设计可自动控制水位,解决养殖场灌溉、水肥配比等问题,实现节水增产效果。
智慧鱼塘系统简述设计方案
智慧鱼塘系统简述设计方案智慧鱼塘系统是一种基于物联网和人工智能技术的智能化管理系统,旨在提高鱼塘的养殖效率和管理便捷性。
以下是该系统的简述设计方案。
一、系统架构智慧鱼塘系统主要由以下三个部分构成:1. 传感器节点:负责采集鱼塘中的环境数据,如水温、水质、溶解氧等。
2. 数据传输网络:负责将传感器节点采集的数据传输到云服务器。
3. 云服务器:负责存储和处理鱼塘数据,并提供数据展示、分析和管理功能。
二、功能模块1. 数据采集模块:通过布置在鱼塘中的传感器节点,实时采集鱼塘的环境数据,并将数据传输到云服务器。
2. 数据存储模块:将采集到的鱼塘数据存储在云数据库中,并进行合理的组织和管理。
3. 数据分析模块:根据采集到的数据进行分析,提供鱼塘水质、气候等信息的监测和预测功能。
4. 报警提醒模块:当鱼塘环境数据异常或达到设定的阈值时,系统会自动发送报警信息给养殖户,提醒其及时处理。
5. 远程控制模块:通过手机APP或网页端,养殖户可远程控制鱼塘的灯光、水泵、投食器等设备,实现远程操作和管理。
6. 数据展示模块:将鱼塘的环境数据以直观的方式展示给养殖户,帮助其掌握鱼塘的实时状态和趋势。
7. 数据分享模块:养殖户可以选择将鱼塘数据分享给其他人,例如专家、朋友等,以便获取更多的意见和建议。
三、实施步骤1. 部署传感器节点:根据鱼塘的大小和形状,合理布置传感器节点,确保能够全面准确地采集鱼塘的环境数据。
2. 搭建数据传输网络:使用无线传输技术,将传感器节点采集到的数据传输到云服务器,确保数据的实时性和稳定性。
3. 构建云服务器:搭建云服务器,部署数据库和相应的软件平台,用于存储和处理鱼塘数据,并提供相应的功能模块。
4. 开发手机APP或网页端:根据系统的需求,开发适用于手机APP或网页端的用户界面,方便养殖户对鱼塘进行远程操作和管理。
5. 测试与调试:在实际场景中对系统进行测试和调试,确保系统的稳定性和可靠性。
6. 推广和应用:将智慧鱼塘系统推广给养殖户,提供相关的培训和技术支持,帮助其合理使用系统,提高养殖效益。
基于物联网的水产养殖环境智能监控系统
基于物联网的水产养殖环境智能监控系统尝试按照通过物联网(IoT)实现水产养殖环境智能监控系统的格式撰写文章:标题:基于物联网的水产养殖环境智能监控系统摘要:随着科技的迅速发展,物联网(IoT)在各个领域都起到了极为重要的作用。
本文将探讨基于物联网技术的水产养殖环境智能监控系统的应用,介绍系统的构成和工作原理,并阐述其在水产养殖行业中的潜在优势和发展前景。
1. 引言水产养殖业是农业经济的重要组成部分,但传统的养殖方式存在着监控困难、人力成本高、环境调控不灵活等问题。
针对这些问题,物联网技术为水产养殖业带来了全新的解决方案。
2. 系统构成基于物联网的水产养殖环境智能监控系统主要由传感器节点、数据传输网络、云平台和终端设备组成。
2.1 传感器节点:通过温度、湿度、水质等传感器感知环境参数并将数据传输给数据传输网络。
2.2 数据传输网络:将传感器节点采集到的数据传输至云平台,常用的数据传输方式有有线网络、无线网络和蓝牙等。
2.3 云平台:接收传感器节点上传的数据,并进行数据存储和处理,提供实时监控和预警功能。
2.4 终端设备:用户可以通过手机、电脑等终端设备实时查看监控数据、控制环境参数。
3. 工作原理基于物联网的水产养殖环境智能监控系统工作流程如下:3.1 传感器感知:传感器节点通过感知环境参数,例如温度、湿度、氧浓度等,将数据上传至云平台。
3.2 数据存储和处理:云平台接收传感器上传的数据,并进行存储和处理。
系统可以实时监测环境参数的变化,并根据预设条件进行数据分析和处理。
3.3 数据展示和控制:用户可以随时通过终端设备访问云平台,实时查看水产养殖环境的监控数据,并进行远程控制,例如调节水温、湿度等环境参数。
3.4 预警和报告:系统可以根据数据分析的结果进行异常预警,并及时发送报警信息给用户。
同时,系统也可以生成环境参数变化的报告,用于数据分析和决策参考。
4. 潜在优势和发展前景基于物联网的水产养殖环境智能监控系统具有以下优势:4.1 实时监控:系统可以实时监测环境参数,并及时进行调控,减少生产风险。
基于物联网的鱼塘智能化养殖系统
基于物联网的鱼塘智能化养殖系统简介现代养殖技术的发展已经走上一条基于物联网的智能化养殖系统之路。
在鱼塘养殖中,随着智能化技术的发展,传统的养鱼方式已经逐渐被智能化鱼塘养殖系统所替代。
基于物联网的智能化养殖系统可以实现实时监测水质、自动喂食、自动清洁等功能,有效提高了养殖效率和养殖质量。
系统组成基于物联网的智能化鱼塘养殖系统由如下组成部分:1. 传感器网络传感器网络是智能化鱼塘养殖系统的核心部分,通过水质传感器、氧气传感器、PH传感器等多种传感器组成的传感器网络,实时监测养殖水质参数,避免因养殖缺水、水质恶化等情况导致的鱼病、群体死亡等问题。
传感器数据会上传至服务器,并提供数据分析接口。
2. 控制系统鱼塘智能化养殖系统通过控制系统与传感器网络实现自动化调节和控制。
控制系统可以通过应用程序这样的前端软件来实现,实现自动化控制调节以及实时监测鱼塘的状态。
通过控制系统实现自动化喂食、自动化清洁、自动化供氧和调节温度等养殖过程中的重要环节。
3. 应用程序应用程序是智能化鱼塘养殖系统的操作管理软件,用户可以通过应用程序实现养殖指标查看、报表分析以及远程控制等功能。
系统特点1. 自动控制整个鱼塘智能化养殖系统是基于物联网的自动化控制系统。
传感器网络实时监测养殖水域中的温度、PH值、氧气含量、水质、在线投喂等作用。
控制系统会对这些数据进行处理,从而使鱼塘养殖过程得到自动化调节,具有自动喂食、自动清洁等特点,能大大提高养殖效率。
2. 多功能显示通过应用程序实现多功能显示,实现远程养殖指标查看以及报表分析,如PH值、浊度指数、温度、氧气含量、投喂次数等养殖指标,使养殖人员更好的管理和掌握鱼塘养殖情况。
3. 远程控制智能化鱼塘养殖系统支持远程控制,用户无需到达养殖场,就能远程监测自己的鱼塘。
通过特定的远程控制协议,用户可以远程启动自动化投喂机或是调节氧气泵的出气量等,实现对鱼塘养殖的实时监控和控制。
应用前景智能化养殖技术融合了物联网、云计算、大数据等新兴技术,将养殖场从传统的人工养殖向自动化、智能化的方向转化,提高了饲养效率,降低了饲养成本。
简析基于物联网的水产养殖监控系统
简析基于物联网的水产养殖监控系统物联网(IoT)是一种通过物理设备和传感器网络连接互联网来传输和收集数据的技术。
基于物联网的水产养殖监控系统通过在养殖场上安装传感器和监控设备,可以实时监测和控制水产养殖的环境条件和生长状态。
下面将对基于物联网的水产养殖监控系统进行简析。
基于物联网的水产养殖监控系统采用传感器网络来监测水质和环境条件。
传感器可以监测水中的温度、溶解氧、pH值等关键参数,以及周围气温、湿度等环境条件。
这些数据可以通过无线传输到中央控制系统,并通过云平台进行存储和处理。
养殖场的管理人员可以通过手机应用程序或电脑来访问和监控实时数据。
基于物联网的水产养殖监控系统还可以通过视频监控设备来实时观察养殖场的情况。
监控摄像头可以安装在养殖池、水道和设备上,可以实时监测鱼类的生长情况、饲料的投放情况以及设备工作状态。
管理人员可以通过手机或电脑上的监控平台来观察养殖场的实时视频,并根据需要进行调整和控制。
基于物联网的水产养殖监控系统还可以通过智能设备自动控制养殖环境。
通过设定一些参数和规则,系统可以自动控制水温、水质、饲料投放等养殖条件。
当水温超过一定范围时,系统可以自动打开或关闭冷却设备;当水质不达标时,系统可以调整水质控制设备进行处理。
这样一来,可以减少人为操作的误差,提高水产养殖效率。
基于物联网的水产养殖监控系统还可以与其他信息系统集成,以进一步提升运营效率。
可以将养殖场的数据与市场供求信息进行对比,帮助管理人员做出更合理的销售和运营决策。
还可以与供应链管理系统进行整合,实现养殖场与供应商和零售商之间的信息交换,以便及时调整生产计划和配送渠道。
简析基于物联网的水产养殖监控系统
简析基于物联网的水产养殖监控系统随着物联网技术的不断发展和应用,各行各业都在逐步应用物联网技术来提升效率和管理水平。
在农业领域,特别是水产养殖领域,也可以利用物联网技术来建立监控系统,实现对水产养殖环境和生物的实时监测和管理。
本文将就基于物联网的水产养殖监控系统进行简要分析和探讨。
一、系统概述基于物联网的水产养殖监控系统主要包括传感器、数据传输模块、数据处理和分析模块、监控中心以及远程控制模块。
传感器可以采集水产养殖场的水质、温度、PH值、溶解氧和养殖生物的生长情况等信息。
数据传输模块负责将传感器采集到的数据传输到数据处理和分析模块,该模块对数据进行处理、分析和存储,提供给监控中心实时监测和控制。
监控中心可以随时了解养殖场的情况,并实现对养殖环境的远程监控和控制。
二、功能特点1. 实时监测:系统可以实时监测水质、温度、PH值、溶解氧和养殖生物的生长情况,及时发现异常情况并采取相应的措施。
2. 数据分析:系统可以对从传感器采集的数据进行处理和分析,为养殖管理提供科学依据和决策支持。
3. 远程控制:系统可以实现对养殖环境的远程监控和控制,可以随时调整水质、温度等环境因素,保障养殖生物的生长和健康。
4. 预警功能:系统可以根据数据分析结果进行预警提示,提醒养殖人员注意可能出现的问题,避免损失发生。
三、应用优势1. 提高养殖效率:通过实时监测和数据分析,可以更科学地管理水体环境和养殖生物,提高生产效率和养殖效益。
2. 减少损失:通过系统的预警功能和远程控制功能,可以及时发现和处理问题,避免损失的发生。
3. 降低成本:合理的养殖管理可以降低水产养殖的成本,提高资源利用效率。
4. 保障产品质量:科学的养殖管理可以保障产品的质量和安全,提高产品的市场竞争力。
四、发展趋势随着物联网技术的不断发展和完善,基于物联网的水产养殖监控系统将会越来越智能化和集成化。
传感器、数据处理和分析技术、远程控制技术等方面的进步,将进一步提高监控系统的效能和智能化水平。
简析基于物联网的水产养殖监控系统
简析基于物联网的水产养殖监控系统随着物联网技术的发展和普及,越来越多的行业开始利用物联网技术进行监控和管理。
水产养殖行业也不例外,利用物联网技术进行水产养殖监控系统已经成为了一种趋势。
物联网技术是指利用无线传感器网络、RFID技术、嵌入式系统等各种信息通信技术,将传感器、执行器、通讯设备、数据处理设备及软件系统等互相连接成一个网络,实现对物品的感知、识别、定位、追踪、监控、管理和控制的一种技术。
水产养殖行业利用物联网技术进行水产养殖监控系统可以实现实时监控、远程管理、自动化控制等功能,大大提高了养殖效率和养殖品质。
基于物联网的水产养殖监控系统可以实现实时监控。
通过在养殖水体中部署各种传感器设备,如水质监测传感器、温度传感器、溶氧传感器、PH值传感器等,实时监测养殖水体的各项指标。
通过这些传感器采集到的实时数据,可以随时了解养殖水体的情况,及时发现问题并进行处理,大大提高了养殖的效率和养殖的成功率。
基于物联网的水产养殖监控系统可以实现远程管理。
传感器采集到的数据可以通过互联网传输到远程服务器,养殖场主可以通过手机、电脑等终端随时随地查看养殖水体的情况。
即使不在现场,也能及时了解养殖情况,及时制定养殖计划,保障养殖的顺利进行。
基于物联网的水产养殖监控系统可以实现自动化控制。
结合各种传感器设备和执行器设备,可以实现自动控制养殖水体的温度、PH值、溶氧量等关键指标。
一旦监测到异常情况,系统可以立即进行处理,保障养殖水体的稳定。
还可以利用自动化控制系统进行饲料投放、水质调节等操作,减轻了养殖场主的劳动负担,提高了养殖的效率和成本效益。
基于物联网的水产养殖监控系统是水产养殖行业信息化、智能化的必然趋势。
它可以帮助养殖场主及时发现问题、及时处理,提高养殖效率和养殖品质。
基于物联网的水产养殖监控系统还可以帮助养殖场主降低成本、提高经济效益,对水产养殖行业起到了积极的推动作用。
在实际应用中,基于物联网的水产养殖监控系统也存在一些问题和挑战。
基于物联网技术的水产养殖智能化监控技术与系统方案
基于物联网技术的水产养殖智能化监控技术与系统一、项目可行性报告(一)立项的背景和意义我国水产养殖业的快速发展,对繁荣农村经济,优化产业结构,提高农民生活水平、建设和谐的社会主义新农村具有重要意义。
〈国家中长期科学和技术发展规划纲要(2006-2020 )》已明确将农业精准作业与信息化”和畜禽水产健康养殖与疫病防控”纳入优先主题,因此,建设现代化的水产养殖业、发展农村经济和提高水产养殖业在国际市场竞争力,成为我国当前和今后相当一段时间内水产业发展的重要任务。
结合浙江省的区位优势和浙江海洋经济发展示范区规划》,发展现代水产养殖业,对浙江省建设海洋大省和海洋强省具有重要意义。
本项目应用现代物联网技术,结合水产养殖特色,构建一套水产养殖水质环境信息感知一无线传感网路和可视化监控一智能化终端控制和预警预报系统,实现高效、生态、安全的现代水产养殖,对构建具有鲜明浙江特色的现代水产养殖新格局,促进我省社会主义新农村建设具有重要推动作用。
统计显示,到2010年,我省水产养殖面积稳定在480万亩,产量达到190万吨,净增20万吨;产值(一产)达到350亿元,新增130亿;出口额达到10亿美元,新增6.5亿美元。
但随着我省土地资源紧缺,水产养殖池塘逐步老化、病害多发、效益下降等突出问题,如何提高养殖产品的品质、直接增加了渔农民的经济收入,实现高效、生态、安全的现代水产养殖产业成为我省亟待解决的重大问题。
传统的粗放水产养殖方式,采用人工观察,单纯靠经验进行水产养殖的方法,很容易在养殖过程中造成调控不及时,反馈较慢,出现浮头”和大面积死亡等惨象,造成重大的经济损失,上述方法已经不能满足现代水产养殖精准化和智能化的发展要求。
基于上述问题,本项目重点研究水产养殖水质和环境关键因子立体分布规律和快速检测技术、水产养殖智能化和可视化无线传感网络监控系统、开发水产养殖环境关键因子(温度、pH值、溶解氧、氨氮、盐度和氧化还原电位等)的实时控制技术和智能化管理系统,对提高水产养殖精准化生产和智能化监控具有重要意义,符合我省生态、健康、循环、集约”水产养殖业发展要求,对促进我省渔业结构调整,促进社会主义新农村建设,提高渔农民生活水平具有重要意义。
简析基于物联网的水产养殖监控系统
简析基于物联网的水产养殖监控系统
物联网技术将智能化和信息化的概念应用于水产养殖行业,使水产养殖更加智能化和
自动化。
基于物联网的水产养殖监控系统,是一种利用物联网技术,对水产养殖各个环节
进行实时监测和数据采集的系统。
该系统主要包括传感器、数据采集设备、数据传输网络、数据分析和处理平台等组成
部分。
传感器可以用于监测水质、水温、养殖密度、饲料量等水产养殖的重要参数,并将
数据传输到数据采集设备中。
数据采集设备可以将传感器采集到的数据进行存储,并通过
数据传输网络将数据发送给数据分析和处理平台。
在数据分析和处理平台上,可以对采集
到的数据进行分析和处理,评估养殖环境的健康状况和效率,预测水产养殖产量和质量,
并及时向养殖管理者提供信息和警报。
基于物联网的水产养殖监控系统的优势在于实时监控和数据采集,以及高效的数据处
理和分析。
这种监控系统可以最大限度地减少人类干预,并且可以提高养殖效率和产出质量。
在水产养殖过程中,通过监测和调节参数,可以最大程度地实现养殖环境的稳定和优化,以提高产量和质量。
基于物联网的水产养殖监控系统也可以在保护水产养殖者的同时,保护水产资源,以实现可持续发展。
总之,基于物联网的水产养殖监控系统是一种智能、高效的水产养殖监测和管理系统,它可以帮助养殖者实现管理和生产的自动化,以及饲料和能源的有效利用。
这种深度整合
的系统还可以在生产流程中节省时间、成本和资源,并为水产养殖业增添更多的经济和社
会价值。
智慧鱼塘系统设计方案
智慧鱼塘系统设计方案智慧鱼塘系统设计方案一、引言智慧鱼塘系统是一种基于物联网技术的鱼塘管理系统,旨在提供对鱼塘水质、鱼类健康和环境条件等方面的实时监测和远程管理。
该系统能够提高养鱼的效率和质量,减少养殖过程中的风险和损失,实现鱼塘养殖的可持续发展。
二、系统架构智慧鱼塘系统由传感器节点、数据采集与处理节点、通信网络、云平台和用户终端组成。
1. 传感器节点:将部署在鱼塘中,用于监测水质参数(如温度、PH值、溶氧量等)、环境条件(如光照、湿度、气压等)以及鱼类行为(如游动速度、活动范围等)。
传感器节点将采集到的数据通过无线通信协议发送给数据采集与处理节点。
2. 数据采集与处理节点:负责接收传感器节点发送的数据,对数据进行处理和分析,并存储在数据库中。
同时,该节点还会将数据发送给云平台,以便进一步的处理和展示。
3. 通信网络:使用无线通信技术(如Wi-Fi、蓝牙、LoRa等)建立传感器节点与数据采集与处理节点之间的通信,以及数据采集与处理节点与云平台之间的通信。
4. 云平台:接收数据采集与处理节点发送的数据,通过数据分析、处理和展示,为用户提供实时监测和远程管理的功能。
云平台可通过手机App或网页应用等方式呈现给用户。
5. 用户终端:用户可以通过手机App或网页应用等方式,远程监测和管理鱼塘。
用户可以实时查看水质参数、环境条件和鱼类行为等信息,并能够远程控制鱼塘中的设备(如饵料投喂器、水泵等)。
三、系统功能智慧鱼塘系统提供以下主要功能:1. 实时监测:系统能够实时监测鱼塘水质参数、环境条件和鱼类行为等信息,并将数据以图表等形式展示给用户。
2. 数据分析与预测:系统能够对采集到的数据进行分析,通过机器学习等技术,预测鱼类健康状况、饵料供给量等指标,以便用户采取相应的措施。
3. 远程管理:用户可以通过手机App或网页应用远程监测和管理鱼塘,包括对饵料投喂、水质调节等操作。
4. 报警提示:系统能够监测到鱼塘中异常情况(如水质异常、鱼类活动异常等),并通过手机App或短信等方式向用户发送报警提示。
基于物联网技术的智慧养殖系统设计与实现
基于物联网技术的智慧养殖系统设计与实现智慧养殖系统是利用物联网技术将传感器、设备和互联网连接起来,通过数据采集、远程监控和自动化控制等手段,优化养殖环境,提高养殖效率和养殖质量的一种养殖管理系统。
本文将围绕基于物联网技术的智慧养殖系统的设计和实现展开讨论。
一、系统设计需求分析智慧养殖系统的设计应该根据养殖企业的需求和实际情况进行定制化设计。
在进行设计之前,首先需要进行详尽的需求分析,包括但不限于以下几个方面:1. 养殖场环境监测:通过传感器实时获取养殖场的温度、湿度、氨气等环境参数数据,以便及时监测和调节养殖环境,提供良好的生长条件。
2. 喂饲管理:利用智能喂饲器和传感器监测动物饲料的消耗情况,合理控制饲料供给量,减少浪费,确保动物的饲养能量和营养需求。
3. 疾病预警与防控:通过物联网技术实时监测动物的生理参数,如体温、体重等,利用数据分析和预测模型,及时发现异常情况,预警并采取相应措施进行疾病预防和控制。
4. 水质监测与处理:利用传感器监测水质参数,如溶解氧、pH值等,及时发现水质问题并采取相应的水质处理措施,保证水质的稳定和安全。
5. 数据分析与决策支持:通过采集的大量数据,结合数据分析和人工智能技术,提供养殖场的数据分析报告和决策支持,优化养殖管理,提高养殖效益。
二、系统实现技术和方案智慧养殖系统的实现离不开以下几种核心技术和方案:1. 传感器与物联网连接技术:选择合适的传感器和物联网连接技术,如Wi-Fi、ZigBee、LoRa等,将传感器与云平台进行连接,实现数据的实时采集和传输。
2. 数据存储与云计算:采用云计算技术,实现海量数据的存储和处理,提供高效的数据管理和分析功能,为养殖场提供定制化的数据报告和决策支持。
3. 数据分析与预测模型:利用数据分析和机器学习技术,构建养殖场的数据模型和预测模型,通过对历史数据的分析和挖掘,提供养殖过程中的异常检测和预警功能。
4. 远程监控与自动化控制:通过实时监控和远程通信技术,实现对养殖场的远程监控和控制,包括远程调节环境参数、喂饲控制、疫苗接种等工作,减少人力投入和误操作。
基于物联网技术的水产养殖智能控制系统
基于物联网技术的水产养殖智能控制系统摘要:在当前的水产养殖行业中,面临着一系列的挑战和问题。
传统的养殖系统存在着一定的局限性,需要引入物联网技术来提高养殖效率、降低养殖成本,并最大程度地减少对环境的负面影响。
关键词:物联网技术;水产养殖;智能控制1现状1.1 挑战和问题1.1.1 养殖环境监测和控制不足传统的水产养殖系统通常依赖于人工对养殖环境进行监测和控制。
然而,由于养殖场规模庞大、环境复杂多变,人工监测往往存在盲区和滞后性。
此外,由于人为因素的干预,监测数据的准确性和一致性也无法得到保证。
这导致了养殖过程中可能出现的环境变化无法及时控制,进而影响到养殖效果和产量。
1.1.2 养殖过程管理困难在传统的养殖系统中,养殖过程管理通常依赖于人工经验和直觉。
然而,由于人工经验的局限性和主观性,养殖过程中的管理往往存在一定的盲点和不确定性。
同时,人工管理还需要大量的人力投入,劳动强度大且效率低下。
这限制了养殖规模的扩大和生产效率的提升。
1.2 传统养殖系统的局限性传统的水产养殖系统存在一系列的局限性,这些局限性不仅制约了养殖业的发展,也对环境造成了一定的负面影响。
1.2.1 生产效率低下传统的养殖系统无法实现对养殖过程的精确控制,导致生产效率低下。
例如,在养殖过程中,传统系统无法对水质、温度、氧气等关键参数进行精确监测和调控,从而无法提供最适宜的生长环境。
这不仅导致了养殖周期延长,生长速度慢,还增加了死亡率和损失。
1.2.2 资源浪费严重传统的养殖系统通常需要大量的水、饲料和能源等资源。
然而,由于缺乏精确的监测和控制手段,这些资源往往被浪费。
例如,传统系统无法准确调控水质,导致大量的水被浪费。
同时,由于养殖过程管理的不足,饲料的投放和能源的使用也无法得到合理的控制,进一步增加了资源的浪费。
1.3 物联网技术在水产养殖领域的应用为了解决传统养殖系统存在的问题和局限性,物联网技术被引入到水产养殖领域,为养殖业的发展提供了新的机遇和解决方案。
基于物联网的智慧养殖系统设计与应用
基于物联网的智慧养殖系统设计与应用智慧养殖系统,作为物联网技术在农业领域的应用之一,已经得到了广泛的关注和应用。
通过将传感器、物联网技术和数据分析等结合在一起,智慧养殖系统可以有效地提高养殖的效率和管理水平,促进养殖业的可持续发展。
一、智慧养殖系统的设计原理与组成智慧养殖系统的设计原理主要是基于物联网技术,通过在养殖区域布置传感器,采集和监测养殖环境中的各种数据指标。
这些数据指标包括温度、湿度、气压、光照强度、空气质量等。
传感器采集到的数据可以实时传输给中央控制中心,并通过云计算技术进行存储和处理,最终生成可视化的数据报表和分析结果。
智慧养殖系统通常由以下几个组成部分构成:1. 传感器节点:负责采集养殖环境中的各种数据指标,通过使用不同类型的传感器来满足不同数据采集需求。
2. 网络通信模块:用于传输传感器节点采集到的数据,常见的通信方式包括Wi-Fi、LoRaWAN、NB-IoT等。
3. 中央控制中心:负责接收、存储和处理传感器采集到的数据,同时还可以进行数据分析和决策支持。
4. 数据可视化界面:将经过处理和分析的数据以图表、报表等形式展示给用户,帮助用户了解养殖环境的变化趋势和状态。
二、智慧养殖系统的应用价值与前景智慧养殖系统的应用可以带来许多价值和好处。
首先,智慧养殖系统可以实现对养殖环境的实时监测和控制,帮助养殖场主及时了解养殖环境的变化,提前采取相应的措施,从而降低养殖风险,提高养殖效率。
其次,智慧养殖系统还可以通过数据分析来优化养殖过程和管理决策。
通过对大量的养殖数据进行分析,可以发现养殖环境中的规律和趋势,从而制定合理的养殖方案和管理策略,提高养殖效益。
另外,智慧养殖系统还可以提供养殖过程的追溯和溯源能力。
通过对养殖过程中的各种数据进行记录和存储,可以追溯到养殖过程中的各个环节,为产品质量监管和溯源提供便利。
未来,智慧养殖系统有着广阔的应用前景。
随着物联网技术的不断发展和成熟,智慧养殖系统将进一步提升养殖业的信息化和智能化水平,为养殖业的可持续发展提供更多的支持和助力。
基于物联网技术的智能水产养殖监控系统设计
基于物联网技术的智能水产养殖监控系统设计智能水产养殖监控系统的设计是基于物联网技术的一项重要应用,它能够帮助养殖业主实时监测水质、温度、溶氧等关键指标,提高养殖效益并降低养殖风险。
本文将介绍智能水产养殖监控系统的设计原理、功能及实施步骤。
一、设计原理智能水产养殖监控系统的设计原理是将传感器设备与物联网技术相结合。
通过在养殖场设置多个传感器,可以实时监测水质、温度、溶氧等参数。
这些传感器将采集到的数据通过物联网技术传输给养殖场控制中心,再通过云端平台进行数据存储和分析。
养殖场主可以通过手机应用或电脑端登录云端平台,实时掌握养殖场的运行情况。
二、功能设计1. 实时监测水质参数:通过在鱼塘或水池中安装水质传感器,系统能够实时监测水质参数,如PH值、溶解氧含量、氨氮含量等。
一旦出现异常情况,系统会及时发出警报,提醒养殖场主进行相应的处理。
2. 温度控制功能:智能水产养殖监控系统可以通过温度传感器实时监测养殖水温,对养殖水温进行自动控制。
当水温过高或过低时,系统能够自动调节加热或降温设备,以维护水温在合适的范围内,提供良好的生长环境。
3. 氧气供给管理:通过溶氧传感器监测养殖水中的溶氧含量,智能水产养殖监控系统能够实时掌握水中溶氧情况。
系统还可以自动控制氧气供给设备,确保水中氧气含量维持在合适的范围,提高水产养殖的效益。
4. 数据分析和报表生成:智能水产养殖监控系统会将采集到的数据进行分析,生成相应的报表。
养殖场主可以通过云端平台查看历史数据和趋势分析,进行科学决策和精细管理。
5. 远程监控和操作:养殖场主可以通过手机应用或电脑端远程监控和操作智能水产养殖监控系统。
无论身处何地,养殖场主都可以实时了解养殖环境,进行远程设备控制和管理。
三、实施步骤1. 传感器布置:根据养殖场的实际情况,确定合适的传感器类型和数量,并进行布置。
传感器的布置应考虑到水质均匀性以及传感器与养殖动物的适应性。
2. 网络设备安装:安装并配置相应的物联网网络设备,确保养殖场内的传感器和控制中心可以正常通信。
基于物联网技术的智能水产养殖系统设计与开发
基于物联网技术的智能水产养殖系统设计与开发一、引言随着世界人口的不断增加和城市化发展,人们对食品的需求也在不断增加。
而传统的水产养殖所面临的问题,如水质、养殖环境、生产效率等,都需要更加先进的技术手段来解决。
物联网技术的出现,为这一行业的发展带来了新的机遇和挑战。
本文将介绍基于物联网技术的智能水产养殖系统设计与开发。
二、智能水产养殖系统的概述智能水产养殖系统是指利用物联网技术来实现对水产养殖过程的全面监测和控制的系统。
该系统能够监测水质、水位、氧气含量、温度等多个参数,并通过智能算法进行分析,提高养殖效率、降低养殖成本。
三、智能水产养殖系统的架构设计1.物联网传感器节点物联网传感器节点是智能水产养殖系统中最核心的组成部分,其主要功能是将水产养殖过程中的各项参数变化转化为数据,传输到云端服务器进行处理。
常用的物联网传感器节点有温度传感器、水质传感器、氧气含量传感器、水位传感器等。
2.云端服务器云端服务器是智能水产养殖系统的数据处理中心,负责存储和分析传感器节点采集的数据。
服务器可以通过各种算法,如人工智能算法、机器学习算法等对数据进行处理和分析,提高养殖效率、降低养殖成本。
3.手机APP或者网站智能水产养殖系统需要一个微信小程序或者APP来让用户查看各项参数变化,掌握养殖情况以及得到系统的指引和建议。
一般用户可通过微信小程序或者APP远程操控智能养殖系统,控制灌溉、通风、配合饲料和其他养殖生产环节。
四、智能水产养殖系统的工作流程1.数据采集智能水产养殖系统中的传感器节点采集水质、水位、温度、氧气含量等参数变化数据,并将其发送至云端服务器进行处理和分析。
2.数据处理和分析云端服务器对传感器采集的数据进行处理和分析,运用各种算法对数据进行分析,制定最佳的水产养殖方案,优化养殖环境,提高养殖效率,降低养殖成本。
3.结果展示云端服务器将处理后的结果通过微信小程序或者APP形式向用户展示。
用户可通过这些结果了解养殖情况,得到指引和建议,及时调整产量和质量。
基于物联网的智能化水产养殖系统设计
基于物联网的智能化水产养殖系统设计随着科技的飞速发展,智能化已经渐渐地走进了各个行业。
水产养殖是我国传统的农业生产方式之一,但是它存在着一些问题。
比如传统的水产养殖方式对环境的污染越来越严重,而且也会影响到水产养殖的质量和产量。
为了解决这些问题,基于物联网的智能化水产养殖系统应运而生。
本文将会详细介绍基于物联网的智能化水产养殖系统设计。
一、智能化水产养殖系统概述智能化水产养殖系统是一种利用物联网技术对水产养殖进行实时监测和控制的系统。
它可以通过传感器获取水质、气温、水温等数据,通过数据分析和算法模型进行预测和调控,从而提高水产养殖的效益和产量。
二、物联网技术在智能化水产养殖系统中的应用智能化水产养殖系统的设计需要运用到许多物联网技术,包括传感器技术、云计算技术、大数据分析技术和人工智能技术等。
1. 传感器技术传感器是智能化水产养殖系统的重要组成部分,可以通过测量水温、溶氧量、酸碱度等指标,实现对水产养殖环境的实时监测。
将这些数据上传到云端,可以为农民和有关企业提供稳定的数据来源。
2. 云计算技术云计算是将计算机处理能力、存储能力、应用能力等以服务的形式对外提供的一种计算模式,具有高效、弹性、低成本、易扩展等优点。
在智能化水产养殖系统中,云计算可以将传感器收集到的数据存放起来,便于提供数据服务。
3. 大数据分析技术通过大数据分析技术,可以将海量数据进行高效的分析处理,从而为养殖业提供辅助决策的数据支持。
分析氮磷浓度、水温、溶氧量、酸碱度等因素对生长产量的影响等,可以最大限度地避免不必要的损失。
4. 人工智能技术人工智能技术可以在智能化水产养殖系统中完成智能决策,优化运营和监测效率。
可以使用这些技术来开发一些水产养殖行业的应用程序。
例如,分析鱼体型、湖泊等数据得出的养殖方案,可以帮助提高养殖策略的准确性。
三、智能化水产养殖系统的技术架构智能化水产养殖系统的技术构架,主要包括传感器、数据采集、传输、云平台、应用与终端设备等模块。
基于物联网的鱼塘智能化养殖系统
基于物联网的鱼塘智能化养殖系统摘要针对目前我国水产养殖规模越来越大,种类越来越丰富,传统养殖方式已不能满足要求的现状,国家的战略要求,将智能农业推向了风口,“互联网+”必将带动农业的升级。
本作品将物联网技术相结合应用到水产养殖领域,设计了鱼塘养殖智能化系统的架构及应用实施方案。
系统分为现场管理单元、远程管理单元云平台三个部分。
根据鱼塘养殖基本流程,对水产品养殖环节的生长环境进行分析,总结影响水产品生长的环境因素并确定出进行水产品高密度养殖的最佳环境,从而实现环境资源的充分利用。
关键词:物联网、智能化鱼塘、CC3200目录摘要 (I)一、概述 (3)1.1 设计背景 (3)1.2 所涉技术发展现状 (3)1.2.1 国内外技术发展 (3)1.2.2 存在的技术问题 (4)1.3 创新点 (5)1.3.1 主要解决的问题 (5)1.3.2 设计内容简介 (5)二、系统的总体方案和功能设计 (6)系统的总体方案和功能 (6)三、系统的硬件设计 (9)3.1传感器节点的设计 (9)3.2控制节点设计与实现 (9)3.3现场监控中心设计 (10)四、系统软件设计 (12)4.1 节点的软件功能设计 (12)4.2路由器的软件功能设计 (13)五、总结 (14)一、概述1.1设计背景农业物联网是一种新兴农业信息化技术,其体系架构分为用户层、应用层、传输层、感知层和对象层5个层次,其技术可用于实现农产品安全溯源、精准化农业生产管理、远程及自动化农业生产管理和农产品智能储运。
农业物联网具有提高生产效率、降低循环流转成本、节约能源资源、提高农产品附加值、推动农业物联网设备和软件产业发展、保护生态环境、保障食品安全、平衡产业结构及解放人员“在场”等社会经济效益。
水产养殖产业的发展对我国渔业结构调整有着重要的意义,主要表现在渔民有效地使用养殖水域,收入提高,城镇居民生活质量的改善。
设施渔业代表着水产养殖业的最高水平,也是渔业现代化的必然产物,具有稳产、高产、品质好、耗水少等优点,能有效检测与控制养殖水中的各种环境参数,建立适于鱼类生长的最佳环境。
基于物联网的智能化渔业养殖系统及使用方法与相关技术
本技术公开了一种基于物联网的智能化渔业养殖系统,包括数据采集模块、养殖调控模块、数据库、物联网服务平台、警示模块、运行监测模块和智能终端,所述数据采集模块包括温度采集单元、湿度采集单元、亮度采集单元、PH值采集单元和氧含量采集单元,所述养殖调控模块包括水温控制单元、增氧控制单元、换水控制单元和亮度调节单元;该系统可对养殖区多种环境条件进行数据采集,可对数据采集设备和养殖调控设备的运行状态进行监测,可对养殖区的水温、亮度、含氧量和PH值进行调节控制,可及时发现问题及时处理,可及时了解养殖区的具体数据信息;本技术还提供了一种基于物联网的智能化渔业养殖系统使用方法,操作方便快捷,便于推广。
技术要求1.一种基于物联网的智能化渔业养殖系统,包括数据采集模块(1)、养殖调控模块(2)、数据库(3)、物联网服务平台(4)、警示模块(5)、运行监测模块(6)和智能终端(7),其特征在于:所述数据采集模块(1)、所述养殖调控模块(2)、所述数据库(3)、所述智能终端(7)和所述运行监测模块(6)的输出端均分别与所述物联网服务平台(4)的输入端连接,所述物联网服务平台(4)的输出端分别与所述养殖调控模块(2)、所述数据库(3)、所述警示模块(5)、所述智能终端(7)和所述运行监测模块(6)的输入端连接,所述数据库(3)的输出端与所述智能终端(7)的输入端连接,所述运行监测模块(6)分别与所述数据采集模块(1)和所述养殖调控模块(2)连接,所述数据采集模块(1)包括温度采集单元(8)、湿度采集单元(9)、亮度采集单元(10)、PH值采集单元(11)和氧含量采集单元(12),所述养殖调控模块(2)包括水温控制单元(13)、增氧控制单元(14)、换水控制单元(15)和亮度调节单元(16),所述物联网服务平台(4)包括中央处理单元(17)、信息收发单元(18)和存储单元(19),所述智能终端(7)包括显示单元(20)和输入单元(21)。
物联网环境下的智能水产养殖管理系统设计
物联网环境下的智能水产养殖管理系统设计随着物联网技术的飞速发展,智能化水产养殖管理系统正逐渐成为水产养殖行业发展的趋势。
智能化的养殖管理系统可以通过传感器和网络技术实现对养殖环境的实时监测和远程控制,提高养殖效率、降低养殖成本,进而提高养殖产量和养殖品质。
本文将重点介绍物联网环境下的智能水产养殖管理系统的设计原则、关键技术和应用场景。
一、设计原则1. 数据采集:智能水产养殖管理系统需要采集养殖环境中的各种数据,如水质、水温、光照、氧气含量、饲料投放量等。
采集的数据需要准确、可靠,并且实时传输到系统中进行处理和分析。
2. 数据分析:通过对采集到的数据进行分析和处理,可以及时发现养殖环境中的问题,如水质异常、饲料消耗过多等,从而及时采取相应的措施避免产生养殖损失。
3. 远程监控:系统应该具备远程监控能力,运营人员可以通过手机、电脑等终端设备远程查看养殖环境的实时数据和监控视频,实时了解养殖情况,并及时做出调整和处理。
4. 自动化控制:通过智能设备和控制系统,实现对养殖环境的自动化控制。
比如,根据不同的生长阶段自动调节水温、饲料投放量等,提高养殖品质和产量。
二、关键技术1. 传感器技术:选择合适的传感器对水质、水温、光照、氧气含量等参数进行实时准确的采集。
传感器可以选择常见的温度传感器、PH传感器、溶解氧传感器等。
2. 网络技术:将传感器采集到的数据传输到云端服务器或本地服务器进行处理和存储。
可以使用无线传输技术如Wi-Fi、蓝牙或者GSM网络,保证数据实时传输并具备一定的安全性。
3. 数据处理与分析技术:利用大数据技术对采集到的大量数据进行处理和分析,提取有价值的信息。
可以运用数据挖掘、机器学习等技术,预测养殖环境中可能发生的问题。
4. 自动化控制技术:根据养殖的需求和特点,制定相应的控制策略和算法,实现对养殖环境的自动化控制。
如根据水质自动调节水温,根据鱼的生长阶段自动调整饲料投放量等。
三、应用场景1. 污水处理:智能水产养殖管理系统可以应用于水产养殖废水处理过程中,通过实时监测水质参数,调控废水处理设施,保持池塘水质的稳定性和优良性,减少水质污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于物联网的鱼塘智能化养殖系统摘要针对目前我国水产养殖规模越来越大,种类越来越丰富,传统养殖方式已不能满足要求的现状,国家的战略要求,将智能农业推向了风口,“互联网+”必将带动农业的升级。
本作品将物联网技术相结合应用到水产养殖领域,设计了鱼塘养殖智能化系统的架构及应用实施方案。
系统分为现场管理单元、远程管理单元云平台三个部分。
根据鱼塘养殖基本流程,对水产品养殖环节的生长环境进行分析,总结影响水产品生长的环境因素并确定出进行水产品高密度养殖的最佳环境,从而实现环境资源的充分利用。
关键词:物联网、智能化鱼塘、CC3200目录摘要 (I)一、概述 (3)1.1 设计背景 (3)1.2 所涉技术发展现状 (3)1.2.1 国内外技术发展 (3)1.2.2 存在的技术问题 (4)1.3 创新点 (5)1.3.1 主要解决的问题 (5)1.3.2 设计内容简介 (5)二、系统的总体方案和功能设计 (6)系统的总体方案和功能 (6)三、系统的硬件设计 (9)3.1传感器节点的设计 (9)3.2控制节点设计与实现 (9)3.3现场监控中心设计 (10)四、系统软件设计 (12)4.1 节点的软件功能设计 (12)4.2路由器的软件功能设计 (13)五、总结 (14)一、概述1.1设计背景农业物联网是一种新兴农业信息化技术,其体系架构分为用户层、应用层、传输层、感知层和对象层5个层次,其技术可用于实现农产品安全溯源、精准化农业生产管理、远程及自动化农业生产管理和农产品智能储运。
农业物联网具有提高生产效率、降低循环流转成本、节约能源资源、提高农产品附加值、推动农业物联网设备和软件产业发展、保护生态环境、保障食品安全、平衡产业结构及解放人员“在场”等社会经济效益。
水产养殖产业的发展对我国渔业结构调整有着重要的意义,主要表现在渔民有效地使用养殖水域,收入提高,城镇居民生活质量的改善。
设施渔业代表着水产养殖业的最高水平,也是渔业现代化的必然产物,具有稳产、高产、品质好、耗水少等优点,能有效检测与控制养殖水中的各种环境参数,建立适于鱼类生长的最佳环境。
目前国内外学者通过水产品生长营养需求的分析和研究,己得到了很多水产品营养需求的数据。
不同的鱼类对水场温度、氧容量等要素也均有它自己严格的要求。
如果没有进行综合技术的开发利用,以致水温不稳,影响养殖鱼类的生育和设施渔业的高产高效;另外水体溶解氧检测不到位影响鱼类同化作用的进行,造成水体危害,降低了经济效益。
水产养殖的智能化非常重要。
国家的战略要求,将智能农业推向了风口,“互联网+”必将带动农业的智能化升级。
1.2所涉技术发展现状1.2.1国内外技术发展丹麦、日本等一些水产养殖业较为发达的国家,己实现对养殖水体中的温度、pH值、氨氮、COD、BOD等多项具有重要意义的水质参数进行在线检测,以计算机技术、控制技术、通信技术、为基础,通过某种通信网络将分布在目标现场的智能设备和控制中心连接起来,以实现对现场设备分散控制和集中管理的一种先进控制方式。
国外的发展的趋势是在计算机中研究鱼类生长的外界影响因素,主要是水体的溶氧、温度可视化建模,离应用还有一定的距离。
实际上,将科学理论基础与各种建模方法集成,并有机地将环境状况与生态生理两个模型结合生长机理模型是建模研究的主要内容。
水体环境控制的执行机构如何协调动作,使调控的环境满足鱼类生长需求,目前依靠的仅是经验。
这是制约工厂化渔业发展的共性问题之一;复杂性的另一个问题是环境作用的对象是有生命的,它的生长机理或功能模型存在着许多未建模的动态信息,基于该模型提供的信息,作为控制系统的给定值是制约工厂化渔业发展的共性问题之二;另一个复杂性表现在目前的调控手段并没有完全与水体的生产经济效益联系起来,缺少一个智能决策支持系统,这是目前设施渔业,特别是示范经济效益不好的重要原因之一,是制约工厂化农业发展的共性问题之三。
从整体上看,西方经济发达国家水产养殖业已签本实现了水产养殖机械化、水产养殖品种良种化、水产养殖管理自动化、水产养航经背符理专业化、水产养殖产品市场营销信息化。
这标志着这些国家水产养殖业生产和装备的现代化水平相当高,如果不加快水产科技现代化的步伐,就有可能落后世界水产科技进步的进程。
1.2.2存在的技术问题工厂化养殖大多采用循环流水方式进行,水体经过沉淀和过滤等处理,又流入养鱼池继续使用。
如何对流水水体的各种成份进行有效的控制,是一个难点。
由于实际的水体处理不好,水体含有很多复杂的成分,造成水中残馆、粪便增多,引起溶氧下降、氨氮升高,造成鱼池水环境污染,使鱼发生疾病甚至引起死亡。
日照时间缩短是温室内水产养殖的又一大问题。
如何在光照条件下,最大程度有效地利用日光能量,为鱼类创造良好的生长环境,是以前研究的一个重点。
目前,绝大多数水产养殖温室是钢架构筑的,并且还安装有不同的设备,同时在内部还建有砖混结构的水池。
所有这些都是阳光的遮蔽物,均可明显缩短日照长度并使得透光性能变差,影响水产养殖物的正常生长和发育。
设施渔业是高效益、高技术、高投入、高风险的产业。
目前,由于我国设施渔业生产过程中环境管理水平还比较低,基本上没有同水产养殖的生产效益联系起来,加之水产养殖结构调整不够、市场行情把握不好,因而形成了设施渔业不景气的现象。
1.3创新点1.3.1主要解决的问题1、实现养殖生产自动化,初步设计的软、硬件系统,对养殖水体进行水温、溶氧、酸碱度、气温等参数进行在线自动监测,准确地为科学管理提供技术参数,对提高集约化养殖程度。
2、利用TI公司的CC3200构造了智能鱼塘的模型的环境模型,系统可定制方便扩充,可为智能化鱼塘养殖业提供较好的技术方案,也便于推广。
1.3.2设计内容简介本作品主要目的是实现鱼塘养殖场的智能化,可分为现场管理单元和远程管理单元两部分。
1、现场管理单元,或称为无线传感器网络单元(WSN),位于系统结构的下层,主要实现通过对养殖现场的水质参数进行监测与控制的功能,并通过WiFi传至鱼塘监控中心,以供远程客户使用。
现场管理单元需要硬件与软件配合实现其功能。
2、远程管理单元位于系统结构的上层,主要实现下层上传数据的综合分析与处理和养殖专家支持系统两种功能。
远程管理单元主要依靠软件系统实现其功能。
3、通过将所有数据上传到中央计算机进行数据处理分析(云计算),从而实现对养殖环境、饲料质量与养殖效果、养殖鱼体健康的监测,饲养投喂量、需求量预测、质量的判断,养殖水域环境质量状态、技术对策等。
二、系统的总体方案和功能设计系统的总体方案和功能本作品把鱼塘环境因子的情况送到控制中心,由控制中心根据其具体情况进行处理,WSN技术应用于水产养殖的远程监控中,在生产现场构建一个小型无线数据传输网络。
系统主要组成部分包括:溶解氧传感器、溶解氧变送器、图像采集系统、信号转换单元、CC3200、人机界面、控制电路以及同计算机的通信接口等。
系统方案如图1所示,本系统采取分散监控、集中操作、分级管理的方法,硬件架构主要包括3部分: 信息采集模块、处理模块、输出及控制模块。
图1 基于物联网的水产养殖智能化监控系统硬件架构图物联网智能化养殖监控系统主要有水质监测、环境监测、视频监测、远程控制、闭环控制等功能,该系统综合利用电子技术、传感器技术、计算机与网络通信技术,实现对水产养殖各阶段的水温、pH值和溶氧量等各项基本参数进行实时监测与预警,一旦发现问题,能及时自动处理。
通过一些控制措施来调节水产养殖的溶解氧、温度、pH值和水位等养殖水质的环境因子,同时根据水产品不同生长阶段的需求制定出测控标准,通过对水产养殖环境的实时检测,将测得参数和系统设定的标准参数进行比较后自动调整水产养殖生态环境各控制设备的状态,以使各项环境因子符合既定要求。
系统综合利用物联网传感技术、智能处理技术及智能控制技术,集数据、图像实时采集、无线传输、智能处理和预测预警信息发布、辅助决策等功能于一体,实现现场及远程系统数据获取和设备控制。
通过远程控制输氧设备及时补充水中的氧气,启动供氧调节装置等,从而实现对水产品生长环境因子的实时监控依靠无线网络进行数据传输,将检测数据实时传送到中央处理系统进行处理,中央处理系统再将分析结果发送到控制中心,控制中心则根据各种信息进行全局事务的控制养殖户可以通过手机或Web页面实时了解养殖池内各项参数和启闭设备,真正实现水产养殖技术的信息化、传感化,使水产品在最适宜的环境下生长,达到智能、节能和增产的目的。
水产品在养殖过程中的环境因子如pH值和溶氧量等数据流,采集进入信息采集模块并做进一步处理后通过网络通信模块传送到中心控制系统,以形成优化控制的策略,然后现场监控中心或者远程控制中心进行智能控制或者下达命令让现场人员进行人工控制,进而对下一时刻的环境因子数据流进行调控。
系统功能设计如图2所示,除基本的节点及控制通信单元,本作品还通过将所有数据上传到中央计算机进行数据处理分析(云计算),从而实现对饲料质量与养殖效果、养殖鱼体健康、养殖产量等的预测,饲养投喂量、需求量预测、质量的判断,养图2 鱼塘智能化养殖功能框图三、系统的硬件设计现场管理单元主要由:传感器节点、路由节点、协调器、控制节点以及现场管理中心计算机等设备组成。
远程管理系统主要采取客户机/服务器(C/S模式)和浏览器/服务器(B/S模式)实现数据的传输与共享。
3.1传感器节点的设计传感器节点是无线传感器网络的基本元素,其主要实现采集现场数据,并进行数据通信的功能。
系统传感器节点结构如图3所示。
各种传感器如温度传感器、溶氧传感器、pH传感器等,将采集到的模拟数据通过调理电路进行去干扰和整定,然后通过CC3200芯片的通用I/O 口送入芯片内部集成的A/D转换器,然后将得到的数字信号送入芯片处理器进行处理,最终数据被送入CC3200芯片的WiFi无线单元,该单元具有在WiFi网络内进行数据的发送与接收。
传感器节点由电池或太阳能提供能量,由CC3200作为核心单元,放置于传感器节点柜内部,并固定于池中,各种传感器放置于养殖池水体中,通过集成于内部的无图3 传感器节点结构上位机的软件发送来的控制命令和控制参数,控制电磁阀和增氧机的运行。
控制节点由控制模块和执行模块两部分组成,控制节点面向执行模块,用于对一个或若干个养殖池进行相应的动作,由一块CC3200作为节点的处理中心,负责接收现场管理中心监控计算机发送过来的控制信号,并驱动执行模块动作。
图5 控制节点结构图3.3现场监控中心设计网络摄像头和监控系统软件具有实时监控、历史数据、系统配置、帮助四大功能构成,如图6所示。
图6 监控软件结构图四、系统软件设计智能化监控系统的软件设计以可靠性、安全性为基本原则,以模块化、可扩展升级为指导来进行设计。