初一数学绝对值典型例题精讲

合集下载

初一数学知识点精讲精练——绝对值不等式

初一数学知识点精讲精练——绝对值不等式
|<3.
(3)解不等式|x﹣3|>5.
(4)直接写出不等式|x﹣1|+|x+2|<5 的解集:

【练习解析】
1. 解:由绝对值的性质得:
7 x 5

7

x

5

解得:2≤x≤12. 故绝对值不等式|7﹣x|≤5 的解集为:2≤x≤12.
2. 解:由于零点是 1 和 2,故将数轴分成三段来讨论. ⑴ 当 x≤1 时,原不等式可化为-(x-1)-(x-2)>x+3,即 x<0.故不等式的解集是 x<0. ⑵ 当 1<x≤2 时,原不等式可化为(x-1)-(x-2)>x+3,即 x<-2.故不等式的解集是无解. ⑶ 当 x>2 时,原不等式可化为(x-1)+(x-2)>x+3,即 x>6.故不等式的解集是 x>6. 综上可知,原不等式的解集是 x<0 或 x>6. 3. 解:(1)|x+5|+|2x﹣3|=
③|x﹣3|+|x+2|=8, 当 x<﹣2 时, 3﹣x﹣x﹣2=8, 解得,x=﹣3.5; 当 x=﹣2 时, |﹣2﹣2|+|﹣2+2|=4≠8, ∴x=﹣2 不能使得|x﹣3|+|x+2|=8 成立; 当﹣2<x≤3 时, 3﹣x+x+2=5≠8, 在﹣2<x≤3 时,不能使得|x﹣3|+|x+2|=8 成立; 当 x>3 时, x﹣3+x+2=8, 解得,x=4.5,; 故|x﹣3|+|x+2|=8 的解是 x=﹣3.5 或 x=4.5.
方法一是利用绝对值的几何意义: | x | 表示 x 到原点的距离;
| x | a(a 0) 的解为 x a

七年级数学绝对值的十一种常见题型

七年级数学绝对值的十一种常见题型

绝对值的十一种常见题型一、绝对值的意义绝对值的定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.题型一:已知一个数,求该数的绝对值例1、(1)-3.5的绝对值是__;75-的绝对值是_________. (2)=-3 -437-=(3)若4<a ,则=-4a(4)=-π14.3【解】(1)3.5,75;(2)3,437-;(3)a -4(4)14.3-π 例2、计算11111134451920-+-+⋅⋅⋅+-【解】原式6017201-31201-19151-4141-31==+⋯++=题型二:已知一个数的绝对值,求这个数例3、(1)在数轴上距原点4个单位长度的点表示的数是______.(2)若2=a ,则a = .(3)若b a =,且a =-0.5,则b= .(4)绝对值不大于5的的所有整数为 .(5)若)10(--=-m ,则m = .(6)若06=-x ,则x= .(7)若21=-y ,则y= .【解】(1)4±(2)2±(3)5.0±(4)0,5,4,3,2,1±±±±±(5)10±(6)6=x (7)3或-1题型三:已知绝对值的式子,求字母的取值范围例4、(1)若a =a ,则a 是 .(2)若a =-a ,则a 是 .(3)若0≥a ,则a 是 .(4)若0≤a ,则a 是 .(5)若x x -=-44,则x 的取值范围是 .(6)若44-=-y y ,则y 的取值范围是 .【解】(1)非负数(2)非正数(3)全体有理数(4)0 (5)4<x (6)4>y题型四:利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.例5、比较下面各对数的大小(1)-15____-7;(2)-π____-3.14.【解】(1)< (2)<题型五:求字母的值例6、(1)已知2=a ,3=b ,且b a π,求a,b 的值(2)已知4=m ,9=n ,且0φn m +,求m-n 的值【解】(1)因为2=a ,3=b ,所以3,2±=±=b a又因为b a π,所以3,2=-=b a 或者3,2==b a(2)因为4=m ,9=n ,所以9,4±=±=n m又因为0φn m +,所以9,4==n m 或者9,4=-=n m那么13-5或者-=-n m题型六:求数轴上表示两个数的点之间的距离用两个数的差的绝对值表示数轴上表示两个数的点之间的距离 例7、(1)在数轴上表示-3.5和2的点之间的距离是 .(2)在数轴上到表示-1的点的距离是3的数是 .【解】(1)5.5 (2)-4或者2二、绝对值的非负性任何一个数的绝对值都是正数或0,绝对值最小的数是0. 题型七:求最值例8、(1)当a= 时,23+-a 的最小值是(2)当x= 时,x -5的最大值是(3)当m= 时,101-+m 有 (最小值或最大值),是【解】(1)3,2 (2)0,5 (3)-1,最小值,-10题型八:若几个非负数的和为0,则这几个数均为0.例9、(1)已知032=-++b a ,求a,b 的值.(2)若3-x 与2)1(+y 互为相反数,求x,y 的值【解】(1)因为03,02≥-≥+b a ,所以03,02=-=+b a那么3,2=-=b a(2)由题意得()0132=++-y x ,因为()01,032≥+≥-y x 所以1,3-==y x题型九:化简含绝对值符号的式子例10、若z y x <<<0,则化简=--+-z y x 0【解】z y x --例11、已知a 、b 、c 均不为零,求ab c abc a b c abc +++的值.【解】(1)当a 、b 、c 均为正数时,11114;a b c abc a b c abc +++=+++=(2)当a 、b 、c 中,有两个正数,一个负数时,不妨设a 、b 为正,c 为负.11(1)(1)0;a b c abc a b c abc +++=++-+-=(3)当a 、b 、c 中,有一个正数,两个负数时,不妨设a 为正, b 、c 为负.1(1)(1)10;a b c abc a b c abc +++=+-+-+=(4)当a 、b 、c 均为负数时,(1)(1)(1)(1) 4.a b c abc a b c abc +++=-+-+-+-=-因此,原式的值为-4,0,4 .题型十:绝对值的实际应用例12、中学生校园足球争霸赛中,裁判组随机抽取了5个比赛用球进行检验,将超过规定质量的克数记作正数,不足规定质量的克数记作负数,检验结果如下:-10,-7,+8,-2,+5(1)哪一个足球的质量最好?(2)请你用学过的知识进行解释.【解】(1)第四个足球质量最好;(2)绝对值分别是:10,7,8,2,5绝对值越小,误差越小,足球的质量越好.所以第四个足球质量最好,第一个足球质量最次.例13、某煤炭码头将运进煤炭记为正,运出煤炭记为负.某天的记录如下:(单位:t)+100,-80,+300,+160,-200,-180,+80,-160.(1)当天煤炭库存是增加了还是减少了?增加或减少了多少吨?(2)码头用载重量为20 t 的大卡车运送煤炭,每次运费100元,问这一天共需运费多少元?【解】(1)100+(-80)+300+160+(-200)+(-180)+80+(-160)=20t 答:当天煤炭库存增加了20吨.(2)(|+100|+|-80|+|+300|+|+160|+|-200|+|-180|+|+80|+|-160|)÷20×100=6300元.题型十一:相反数、绝对值、数轴的综合应用例14、已知a>0,b<0,且b>a,试比较a、a-、b、b-的大小.【解】根据题意画出数轴,如图在数轴上表示a-、b-的点.根据“数轴上的点表示的数,右边的总比左边的大”,可得 b<-a<a<-b。

七年级上册数学绝对值难题类型

七年级上册数学绝对值难题类型

七年级上册数学绝对值难题类型七年级上册数学绝对值难题类型及解析一、绝对值的定义与性质1. 绝对值的定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作\vert a\vert。

2. 绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

互为相反数的两个数的绝对值相等。

二、绝对值的化简1. 已知字母的取值范围化简绝对值当a \geq 0时,\vert a\vert = a;当a 0时,\verta\vert = a。

例如:已知x 0,化简\vert x 2\vert。

因为x 0,所以x 2 0,则\vert x 2\vert = (x 2) = 2 x。

2. 多重绝对值的化简从内向外依次化简绝对值。

例如:化简\vert\vert 3 x\vert 1\vert,需要先求出\vert 3 x\vert的值,再进一步化简。

三、绝对值方程1. 形如\vert x\vert = a(a > 0)的方程方程的解为x = \pm a。

例如:\vert x\vert = 5,则x = \pm 5。

2. 形如\vert ax + b\vert = c(c > 0)的方程当ax + b \geq 0时,ax + b = c;当ax + b 0时,ax + b = c。

例如:\vert 2x 1\vert = 3,当2x 1 \geq 0,即x\geq \frac{1}{2}时,2x 1 = 3,解得x = 2;当2x 1 0,即x \frac{1}{2}时,2x 1 = 3,解得x = 1。

四、绝对值不等式1. 形如\vert x\vert a(a > 0)的不等式不等式的解集为a x a。

例如:\vert x\vert 2,则2 x 2。

2. 形如\vert x\vert > a(a > 0)的不等式不等式的解集为x a或x > a。

例如:\vert x\vert > 3,则x 3或x > 3。

初一数学绝对值知识点、考点及例题梳理

初一数学绝对值知识点、考点及例题梳理

初一数学绝对值知识点、考点及例题梳理绝对值是初一上册数学的重难点之一,很多同学绝对值的学习中都存在着一些问题,所有问题的根源大都是对绝对值的概念理解不透彻,没有建立起完整的知识体系,在此梳理下在绝对值学习中需要注意的一些要点。

在绝对值的学习中,首先需要去理解和掌握的就是绝对值的概念,什么是绝对值呢?在数轴上,一个数所对应的点与原点之间的距离。

在概念的理解中需要注意,绝对值这个概念是从数轴引出的,它表示的是距离,绝对值本质上是数轴上两点之间的距离,哪两点之间的距离呢?表示某个数的点和原点。

那么由绝对值的定义,我们可以得到有关绝对值的那些性质呢?因为绝对值表示的是距离,从日常经验可知,距离最小为0,不可能为负数,所以就得出了绝对值最重要的一条性质:绝对值具有非负性。

从绝对值的定义出发,结合绝对值的非负性,可以得到绝对值的代数意义,也看成是绝对值性质的推广:正数的绝对值等于它本身;0的绝对值是0;负数的绝对值等于它的相反数。

以上三条需要牢记。

这是求绝对值和简化绝对值的方法基础。

除过绝对值的定义和性质之外,在绝对值的学习中还需要注意以下细节和要点:任何数都有绝对值,只有一个,而且是非负的。

但是有两个数的绝对值等于正数,而且是相反的。

很多同学容易漏掉其中的一个,比较容易出错。

在有关绝对值的运算,在解含有绝对值的方程中,经常需要运用到分类讨论思路。

绝对值的概念来源于数轴,代表数轴上两点之间的距离。

绝对值与数轴有着密切的关系,在绝对值相关题目的分析和求解中,一定要注意数形结合思想的应用。

特别是在绝对值的几何意义的理解和应用上,需要结合数轴来分析和解决。

绝对值等于它本身的数是正数和0,绝对值等于它的相反数的数是负数和0.1.解决问题的关键是理解绝对值的定义和性质,把握其非负性。

2、求一个数的绝对值,先判定这个数是正数、负数还是0,再根据绝对值的性质确定最终的结果。

3、利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。

初一数学绝对值典型例题精讲[最新]-10页精选文档

初一数学绝对值典型例题精讲[最新]-10页精选文档

第三讲 绝对值它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。

绝对值的定义及性质绝对值 简单的绝对值方程化简绝对值式,分类讨论(零点分段法)绝对值几何意义的使用绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。

绝对值的性质:(1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0)(2) |a|= 0 (a=0) (代数意义)-a (a <0)(3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0;(4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a ,且|a|≥-a ;(5) 若|a|=|b|,则a=b 或a=-b ;(几何意义)(6) |ab|=|a|·|b|;|b a |=||||b a (b ≠0); (7) |a|2=|a 2|=a 2;(8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|[例1](1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?分析:(1) 结合数轴画图分析。

绝对值大于2.1而小于4.2的整数有±3,±4,有4个(2) 答案C 不完善,选择D.在此注意复习巩固知识点3。

(3) 选择D 。

(4) 根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9[巩固] 绝对值小于3.1的整数有哪些?它们的和为多少?<分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。

初一数学绝对值知识点与经典例题

初一数学绝对值知识点与经典例题

绝对值的性质及化简【绝对值必考题型】例1:已知|x -2|+|y -3|=0,求x+y 的值。

【例题精讲】(一)绝对值的非负性问题1. 非负性:若有几个非负数的和为0,那么这几个非负数均为0.2. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c = 【例题】若3150x y z +++++=,则x y z --= 。

总结:若干非负数之和为0, 。

【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【巩固】先化简,再求值:ab b a ab ab b a2)23(223222+⎥⎦⎤⎢⎣⎡---.其中a 、b 满足0)42(132=-+++a b a .(二)绝对值的性质【例1】若a <0,则4a+7|a|等于( )A .11aB .-11aC .-3aD .3a【例2】一个数与这个数的绝对值相等,那么这个数是( )A .1,0B .正数C .非正数D .非负数【例3】已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例4】若1-=xx ,则x 是()A .正数B .负数C .非负数D .非正数【例5】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a【例6】已知a .b 互为相反数,且|a-b|=6,则|b-1|的值为( )A .2B .2或3C .4D .2或4【例7】a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A .6B .-4C .-2a+2b+6D .2a-2b-6【例8】若|x+y|=y-x ,则有( )A .y >0,x <0B .y <0,x >0C .y <0,x <0D .x=0,y≥0或y=0,x≤0【例9】已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A .是正数B .是负数C .是零D .不能确定符号【例12】若x <-2,则|1-|1+x||=______若|a|=-a ,则|a-1|-|a-2|= ________【例15】已知数,,a b c则下列各式:①()0b a c ++->;②0)(>+--c b a ;③1=++ccb b a a ;④0>-a bc ; ⑤b c a b c b a 2-=-++--.其中正确的有 .(请填写番号)【巩固】已知a b c ,,是非零整数,且0a b c ++=,求a b c abc+++的值 ca 0b(三)绝对值相关化简问题(零点分段法)零点分段法的一般步骤:找零点→分区间→定符号→去绝对值符号.(1)求出2x +和4x -的零点值 (2)化简代数式24x x ++-【巩固】化简1. 12x x +++2. 12m m m +-+-的值3. 523x x ++-.4. (1)12-x ;变式5.已知23++-x x 的最小值是a ,23+--x x 的最大值为b ,求b a +的值。

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!例题1、【归纳】(1)观察下列各式的大小关系:|-2|+|3|>|-2+3||-6|+|3|>|-6+3||-2|+|-3|=|-2-3||0|+|-8|=|0-8|归纳:|a|+|b|_____|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.参考答案:(1)≥(2)由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m-n=13,则n=m-13,|m+m -13|=1,m=7或6当m为负数,n为正数时,-m+n=13,则n=m+13,|m+m+13|=1,m=-7或-6综上所述,m为±6或±7(3)分析:若按a、b、c中0的个数进行分类,可以分成四类:第一类:a、b、c三个数都不等于0①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除第二类:a、b、c三个数中有1个0 【结论同第(1)问】①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|第三类:a、b、c三个数中有2个0①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除第四类:a、b、c三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除综上所述:1个负数2个正数、1个正数2个负数、1个0,1个正数和1个负数.例题2、已知:b是最小的正整数,且a、b满足(c-5)^2 +|a+b|=0(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,线段AB的中点为M,线段BC的中点为N,P为动点,其对应的数为x,点P在线段MN上运动(包括端点).①求x的取值范围.②化简式子|x+1|-|x-1|+2|x-4/9|(写出化简过程).详细解析考点:数轴的定义,绝对值的性质分析:本题考查了数轴与绝对值,需掌握绝对值的性质,正确理解AB,BC的变化情况是关键;第(1)题根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c 的值;第②题以①为分界点,根据x的范围分0≤x≤4/9、4/9<x≤1、1<x≤3确定x+1,x-1,x-4/9的符号,然后根据绝对值的意义即可化简.解答:(1)根据题意得:c-5=0,a+b=0,b=1,∴a=-1,b=1,c=5.(2)①(-1+1)÷2=0,(1+5)÷2=3,∴x的取值范围为:0≤x≤3.②当0≤x≤4/9时,x+1>0,x-1<0,x-4/9≤0,∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)-2(x-4/9)=x+1+x-1-2x+8/9=8/9;当4/9<x≤1时,x+1>0,x-1≤0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)+2(x-4/9)=x+1+x-1+2x-8/9=4x-8/9;当1<x≤3时,x+1>0,x-1>0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1-(x-1)+2(x-4/9)=x+1-x+1+2x-8/9=2x-10/9;例题3、数轴上从左到右的三个点A,B,C 所对应数的分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c 的值.(2)若原点O在A,B两点之间,求 |a|+|b|+ |b-c| 的值.(3)若O是原点,且OB=17,求a+b-c的值.参考答案(1)以B为原点,点A,C对应的数分别-2017,1000,a+b+c=-2017+0+1000=-1017.(2)当原点O在A,B两点之间时,|a|+|b|=2017,|b-c|=1000,∴ |a|+|b|+|b-c|2017 +1000 = 3017 .附另解:点 A,B,C 对应的数分别 b-2017,b,b+1000,∴ |a|+|b|+|b-c|=2017-b+b+1000= 3017 .(3)若原点O在点B的左边,则点A,B,C 所对应数分别是 a=-2000,b=17, c=1017,则 a+b-c=-2000+17-1017=-3000;若原点O在点B的右边,则点A,B,C所对应数分别是a=-2034,b=-17, c=983,则 a+b-c=-2034+(-17)-983=-3034绝对值压轴题小结绝对值作为初一数学的重点和难点,解题时一定要注意分类讨论。

初一数学绝对值经典例题

初一数学绝对值经典例题

初一数学绝对值经典例题初一数学的绝对值问题,可能很多同学一开始都觉得有点迷糊,感觉好像是个“虚无缥缈”的概念,听起来就是不太懂,做起来也糊里糊涂的。

但是,别急,今天我们就来好好聊聊这个“绝对值”,让大家能轻松搞定,保证你以后遇到这类题目,头都不会疼了!咱们就像在讲故事一样,把它从头到尾讲明白,绝对不让你有半点疑问。

绝对值到底是什么?简单来说,绝对值就是“数值的大小”,不管这个数是正数还是负数,它的绝对值永远都是正数。

比如说,数轴上的0就是“起点”,正数向右走,负数向左走。

那绝对值其实就像一个量尺,量的是距离,无论是向右还是向左,都是正的。

你看看,正3的绝对值是3,负3的绝对值也是3,咱们把它说的简单点,绝对值就是“数值本身的大小”,不管它是不是带有负号,都会把负号给去掉,变成正数。

明白了吧?这就是绝对值的秘密。

举个例子,你平时如果走路,也许有时候走得很远,走到负数位置了,哈哈,没错,就像走到某个地方特别远,可能是负数的意思,但不管你怎么走,最终你走的这段距离,都是一个正的长度。

比如说你离家出走,走了5步,最后的绝对值就是5,说明你离家的距离就是5步。

再看一个例子:假设有一个小朋友站在0点上,他往前走了4步,那么4的绝对值就是4。

假如他转个弯走回去了,走了4步,负号表示他是往回走的,但他到底走了多少步,还是4步。

所以4和4的绝对值一样,都是4!你看,这不就是很简单嘛。

这时候可能有人会问了:那如果我碰到一个像7这样的负数,绝对值不是应该还是7吗?哈哈,这就是个误会啦!负数的绝对值肯定是正数,7的绝对值就是7,不管它长得多么“凶猛”,都得变得温顺,像个小猫一样,变成正7才对!所以说,绝对值永远都不带负号,大家记住了没有?有个小窍门,帮助你记住绝对值:它就像是一个“魔术师”,它能让所有的负数都“变脸”,让它们看起来都像正数一样。

它的工作就是消除负号,保留数值的大小。

有同学可能会觉得,这些数的绝对值,怎么看都是比较简单的,可是要是碰到像“|x5|”这种看起来有点复杂的东西怎么办?哈哈,别怕!其实这就像是一个谜题,看看它前面是什么,弄清楚它的“心思”就行了。

初一七年级数学绝对值练习题及答案解析

初一七年级数学绝对值练习题及答案解析

初一七年级数学绝对值练习题及答案解析数学绝对值是初中数学中的一个重要概念,它常常在方程、不等式、函数等各个章节中出现。

掌握绝对值的概念和性质对于解决数学问题非常重要。

下面是一些初一七年级的数学绝对值练习题及答案解析,帮助你巩固对绝对值的理解。

1. 计算以下数的绝对值:a) |-5|b) |0|c) |3|答案:a) |-5| = 5b) |0| = 0c) |3| = 3解析:绝对值表示一个数与0点之间的距离。

所以绝对值的结果总是非负数。

对于a) |-5|,-5与0之间的距离是5,所以结果是5。

对于b) |0|,0与0之间的距离是0,所以结果是0。

对于c) |3|,3与0之间的距离是3,所以结果是3。

2. 求解以下方程:a) |x| = 5b) |2x - 3| = 7答案:a) x = 5 或 x = -5b) x = 5 或 x = -2解析:对于a) |x| = 5,由于绝对值的定义是非负数,所以x可以是5或-5。

因为5与-5的绝对值都是5。

对于b)|2x - 3| = 7,需要分情况讨论。

当2x - 3 = 7时,解得x = 5。

当2x - 3 = -7时,解得x = -2。

3. 解以下不等式:a) |x + 2| < 3b) |3x - 1| ≥ 5答案:a) -5 < x < 1b) x ≤ -2 或x ≥ 2解析:对于a) |x + 2| < 3,我们可以使用绝对值的定义进行讨论。

当x + 2 > 0时,即x > -2,方程等价于x + 2 < 3,解得x < 1。

当x + 2 < 0时,即x < -2,方程等价于-(x + 2) < 3,解得x > -5。

所以综合起来,-5 < x < 1。

对于b) |3x - 1| ≥ 5,我们也需要分情况讨论。

当3x - 1 > 0时,即3x > 1,方程等价于3x - 1 ≥ 5,解得x ≥ 2。

初一数学绝对值综合专题讲义

初一数学绝对值综合专题讲义

绝对值综合专题讲义之蔡仲巾千创作绝对值的界说:绝对值的性质:(1)绝对值的非负性, 可以用下式暗示(2)|a|=(3)若|a|=a, 则;若|a|=-a, 则;任何一个数的绝对值都不小于这个数, 也不小于这个数的相反数,(4)若|a|=|b|, 则(5)|a+b||a|+|b| |a-b|||a|-|b|||a|+|b||a+b| |a|+|b||a-b|【例1】(1)绝对值年夜于2.1而小于4.2的整数有几多个?(2)若ab<|ab|, 则下列结论正确的是()A.a<0, b<0B.a>0, b<0C.a<0, b>0D.ab<0(3)下列各组判断中, 正确的是()A.若|a|=b, 则一定有a=b B.若|a|>|b|,则一定有a>bC. 若|a|>b, 则一定有|a|>|b|D.若|a|=b, 则一定有a2=(-b)2(4) 设a, b 是有理数, 则|a+b|+9有最小值还是最年夜值?其值是几多?(5) 若3|x-2|+|y+3|=0, 则x y 的值是几多?(6) 若|x+3|+(y-1)2=0, 求n x y )4(--的值【巩固】1、绝对值小于3.1的整数有哪些?它们的和为几多?2、有理数a 与b 满足|a|>|b|, 则下面哪个谜底正确( )3、若|x-3|=3-x, 则x 的取值范围是____________4、若a >b, 且|a|<|b|, 则下面判断正确的是( )A.a <0B.a >0C.b <0D.b >05、设b a ,是有理数, 则||8b a ---是有最年夜值还是最小值?其值是几多?小知识点汇总:若(x-a)2+(x-b)2=0,则;若|x-a|+(x-b)2=0,则;若|x-a|+|x-b|=0, 则;(1)已知x 是有理数, 且|x|=|-4|, 那么x=____ (2)已知x 是有理数, 且-|x|=-|2|, 那么x=____ (3)已知x 是有理数, 且-|-x|=-|2|, 那么x=____ (4) 如果x, y 暗示有理数, 且x, y 满足条件|x|=5,|y|=2, |x-y|=y-x, 那么x+y 的值是几多?(5) 解方程05|5|23=-+x(6) 解方程|4x+8|=12(7)若已知a 与b互为相反数, 且|a-b|=4, 求12+++-ab a b ab a 的值 【巩固】1、巩固|x|=4, |y|=6, 求代数式|x+y|的值2、解方程 |3x+2|=-13、已知|x-1|=2, |y|=3, 且x 与y互为相反数, 求y xy x 4312--的值(1) 已知a=-21, b=-31, 求||32|34|2|2|4)2(|42|2--+-+-++a b b a b a b a 的值(2)若|a|=b, 求|a+b|的值 (3)化简:|a-b| (4) 轴上对应点如图所示, 化简|b+a|+|a+c|+|c-b|【巩固】1、π| (2)|8-x|(x ≥8)C B 0 A2、已知a, b, c 在数轴上的位置如图所示, 化简|a|+|c-b|+|a-c|+|b-a|3、数a, b 在数轴上对应的点如图所示, 是化简|a+b|+|b-a|+|b|-|a-|a||【例4】(1)若a<-b 且0>b a , 化简|a|-|b|+|a+b|+|ab|(2)若-2≤a ≤0, 化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值(4)已知x<-3,化简|3+|2-|1+x|||(5)化简|x+5|+|2x-3|(6)若a<0, 试化简||3|||3|2a a a a --(7)若abc ≠0, 则||||||c c b b a a ++的所有可能值【巩固】 1、如果0<m<10而且m ≤x ≤10, 化简|x-m|+|x-10|+|x-m-10|2、有理数a, b, c, d, 满足1||-=abcd abcd , 求d d c c b b a a ||||||||+++的值 3、化简:|2x-1|4、求|m|+|m-1+|m-2|的值|a|的几何意义:;|a-b|的几何意义:【例5】求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值【巩固】1、如图, 在接到上有A 、B 、C 、D 、E 五栋居民楼, 现在设立一个邮筒, 为使五栋楼的居 民到邮筒的就努力之和最短, 邮局应立于何处?2、设a1、a2、a3、a4、a 5为五个有理数, 满足a 1< a 2< a 3< a 4< a 5,求|x- a 1|+|x- a 2|+|x- a 3|+|x- a 4|+|x- a 5|的最小值3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值, 并求出此时x 的取值题后小结论:求|x-a 1|+|x-a 2|+…+|x-a n |的最小值:【例1】 若|a|=1, |b|=2, |c|=3, 且a>b>c,那么a+b-c=______【例2】 已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0, 那么ab=______ 【例3】 对|m-1|, 下列结论正确的是( )A.|m-1|≥|m|B.|m-1|≤|m|C. |m-1|≥|m|-1 D. |m-1|≤|m|-1【例4】 设a, b, c 为实数, 且|a|+a=0, |ab|=ab, |c|-c=0, 化简|b|-|a+b|-|c-b|+|a-c|【例5】 化简:||x-1|-2|+|x+1|A B C D E【例6】 已知有理数a, b, c 满足1||||||=++c c b b a a , 求abc abc ||的值【例7】 若a, b, c, d 为互不相等的有理数, 且|a-c|=|b-c|=|d-b|=1, 求|a-d|1、当b 为何值时, 5-12-b 有最年夜值, 最年夜值是几多? 2、已知a 是最小的正整数, b 、c 是有理数, 而且有|2+b |+(3a +2c )2=0.求式子4422++-+c a cab 的值.3、|m+3 |+|n-27|+|2p-1|=0,求p+2m+3n 的值 4、若a, b, c 为整数, 且|a-b |19+|c-a |99=1, 试计算|c-a |+|a-b |+|b-c |的值5、(1)已知|x|=2, |y|=3且x-y>0, 则x+y 的值为几多?(2)解方程:|4x-5|=86、(1)有理数a, b, c 在数轴上对应点如图所示, 化简|a-b|-|a+b|+|b-c|-|c|(2)若a <b, 求|b-a+1|-|a-b-5|的值(3)若a <0, 化简|a-|-a||7、已知a 是非零有理数, 求||||||3322a a a a a a ++的值 8、化简|x-1|-|x-3|9、6、设a<b<c, 求当x取何值时|x-a|+|x-b|+|x-c|的最小值10、若3+-yx与1999-+yx互为相反数, 求yxyx-+2的值11、若2x+|4-5x|+|1-3x|+4的值恒为常数, 求x该满足的条件及此常数的值.12、不相等的有理数a, b, c在数轴上的对应点分别为A, B, C, 如果|a-b|+|b-c|=|a-c|, 那么B点应为( ).(1)在A, C点的右边;(2)在A, C点的左边;(3)在A, C点之间;(4)以上三种情况都有可能13、设T=|x-p|+|x-15|+|x-p-15|, 其中0<p<15, 对满足p≤x≤15的x来说, T的最小值是几多?。

初一数学绝对值典型例题精讲

初一数学绝对值典型例题精讲

第三道 千万于值之阳早格格创做基础思维及数教要收是初中数教教习的基石,期视共教们通过教习、坚韧对付千万于值的相闭知识不妨掌握办法. 千万于值的定义及本量千万于值 简朴的千万于值圆程化简千万于值式,分类计划(整面分段法) 千万于值几许意思的使用千万于值的定义:正在数轴上,一个数所对付应的面与本面的距离称为该数的千万于值,记做|a|.千万于值的本量:(1) 千万于值的非背性,不妨用下式表示:|a|≥0,那是千万于值非常要害的本量;a (a >0)(2) |a|= 0 (a=0) (代数意思)-a (a <0)(3)若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 所有一个数的千万于值皆没有小于那个数,也没有小于那个数的差异数,即|a|≥a ,且|a|≥-a ;(5) 若|a|=|b|,则a=b 大概a=-b ;(几许意思)(6) |ab|=|a|·|b|;|b a |=||||b a (b≠0); (7)|a|2=|a 2|=a 2; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b||a|+|b|≥|a -b|[例1](1)千万于值大于2.1而小于4.2的整数有几个? (2)若ab<|ab|,则下列论断精确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 (3)下列各组推断中,精确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b)2 (4)设a ,b 是有理数,则|a+b|+9有最小值仍旧最大值?其值是几? 分解: (1)分离数轴绘图分解.千万于值大于2.1而小于4.2的整数有±3,±4,有4个 (2)问案C 没有完备,采用D.正在此注意复习坚韧知识面3.(3)采用D. (4) 根据千万于值的非背性不妨了解|a+b|≥0,则|a+b|≥9,有最小值9[坚韧] 千万于值小于3.1的整数有哪些?它们的战为几? <分解>:千万于值小于3.1的整数有0,±1,±2,±3,战为0.[坚韧] 有理数a 与b 谦脚|a|>|b|,则底下哪个问案精确( ) 分解:采用D.[坚韧] 若|x-3|=3-x ,则x 的与值范畴是____________分解:若|x-3|=3-x ,则x-3≤0,即x≤3.对付知识面3的复习坚韧[坚韧] 若a >b ,且|a|<|b|,则底下推断精确的是( )A.a <0B.a >0C.b <0D.b >0分解:采用C[坚韧] 设a ,b 是有理数,则-8-|a-b|是有最大值仍旧最小值?其值是几?分解:|a-b|≥0,-8-|a-b|≤-8,所以有最大值-8[例2](1)(竞赛题)若3|x-2|+|y+3|=0,则xy 的值是几? (2)若|x+3|+(y-1)2=0,供n xy )4(--的值 分解:(1)|x-2|=0,|y+3|=0,x=2,y=-3,x y =23-(2)由|x+3|+(y-1)2=0,可得x=-3,y=1.x y --4=314+-=-1 n 为奇数时,本式=1;n 为奇数时,本式=-1 小知识面汇总:(基础 |a|≥0 b 2≥0)若(x-a)2+(x-b)2=0,则x-a=0且x-b=0;若|x-a|+(x-b)2=0,则x-a=0且x-b=0;若|x-a|+|x-b|=0,则x-a=0且x-b=0;天然各项前里存留正系数时仍旧创造,非背项减少到多项时,每一项均为0,二个非背数互为差异数时,二者均为0(1)已知x 是有理数,且|x|=|-4|,那么x=____ (2)已知x 是有理数,且-|x|=-|2|,那么x=____ (3)已知x 是有理数,且-|-x|=-|2|,那么x=____ (4) 如果x ,y 表示有理数,且x ,y 谦脚条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y 的值是几?分解:(1)4,-4 (2)2,-2, (3)2,-2(4)x=±5,y=±2,且|x-y|=y-x ,x-y≤0;当x=5,y=2时没有谦脚题意;当x=5,y=-2时没有谦脚题意;当x=-5,y=2时谦脚题意;x+y=-3;当x=-5,y=-2时谦脚题意,x+y=-7.【坚韧】坚韧|x|=4,|y|=6,供代数式|x+y|的值分解:果为|x|=4,所以x=±4,果为|y|=6,所以y=±6当x=4,y=6时,|x+y|=|10|=10; 当x=4,y=-6时,|x+y|=|-2|=2;当x=-4,y=6时,|x+y|=|2|=2; 当x=-4,y=-6时,|x+y|=|10|=10【例4】解圆程:(1)05|5|23=-+x (2)|4x+8|=12(3)|3x+2|=-1(4)已知|x-1|=2,|y|=3,且x 与y 互为差异数,供y xy x 4312--的值 分解:(1)本圆程可变形为:|x+5|=310,所以有x+5=±310,从而可得:x=-35,-325; (2)4x+8=±12,x=1,x=-5(3)此圆程无解(4)|x-1|=2,x-1=±2,x=3,x=-1,|y|=3,y=±3,且x与y 互为差异数,所以x=3,y=-3,244312=--y xy x 【例5】 若已知a 与b 互为差异数,且|a-b|=4,供12+++-ab a b ab a 的值分解:a 与b 互为差异数,那么a+b=0.12+++-ab a b ab a =,4,4||,1001)(±=-=--=+⨯-=++-+b a b a ab a ab b a a ab b a 当a-b=4时,且a+b=0,那么a=2,b=-2,-ab=4; 当a-b=-4时,且a+b=0,那么a=-2,b=2,-ab=4; 综上可得12+++-ab a b ab a =4(1) 已知a=-21,b=-31,供||32|34|2|2|4)2(|42|2--+-+-++a b b a b a ba 的值(2)若|a|=b ,供|a+b|的值 (3) 化简:|a-b|分解:(1)本式=718||31|334|2|3221|4)3221(|341|2-=---+--------- (2)|a|=b ,咱们不妨了解b≥0,当a<0时,a=-b ,|a+b|=0;当a≥0时,a=b ,|a+b|=2b(3)分类计划.当a-b >0时,即a >b ,|a-b|=a-b ;当a-b=0时,即a=b ,|a-b|=0;当a-b <0时,即a <b ,|a-b|=b-a.【坚韧】 化简:(1)|3.14-π| (2)|8-x|(x≥8)分解:(1)3.14<π,3.14-π<0,|3.14-π|=π-3.14(2)x≥8,8-x≤0,|8-x|=x-8.【例7】有理数a ,b ,c 正在数轴上对付应面如图所示,化简|b+a|+|a+c|+|c-b|分解:|b+a|+|a+c|+|c-b|=b+a-(a+c )-(c-b )=2b-2c【坚韧】已知a ,b ,c 正在数轴上的位子如图所示,化简|a|+|c-b|+|a-c|+|b-a|分解:|a|+|c-b|+|a-c|+|b-a|=-a+b-c-a+c+b-a=2b-3a【坚韧】数a ,b 正在数轴上对付应的面如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||分解:|a+b|+|b-a|+|b|-|a-|a||=-(a+b )+(b-a )+b-(-2a )=b【例8】(1)若a<-b 且0>ba ,化简|a|-|b|+|a+b|+|ab| (2)若-2≤a≤0,化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,供|x+z|+|y+z|-|x-y|的值 分解:(1)若a<-b 且0>ba ,a<0,b<0,a+b<0,ab>0 |a|-|b|+|a+b|+|ab|=-a+b-a-b+ab=ab-2a(2)果为-2≤a≤0,所以a+2≥0,a-2≤0,|a+2|+|a-2|=(a+2)-(a-2)=4(3)由x<0<z,xy>0可得:y<0<z,又|y|>|z|>|x|,可得:y<x<z;本式=x+z-y-z-x+y=0【坚韧】如果0<m<10而且m≤x≤10,化简|x-m|+|x-10|+|x-m-10| 分解:|x-m|+|x-10|+|x-m-10|=x-m+10-x+m+10-x=20-xC B 0A【例9】(1)已知x<-3,化简|3+|2-|1+x|||(2)若a<0,试化简||3|||3|2a a a a -- 分解:(1)当x<-3时,|3+|2-|1+x|||=|3+|2+1+x||=|3+|3+x||=|3-3-x|=|-x|=-x(2)||3|||3|2a a a a --=|3|32a a a a --+=aa 45-=-45 【例10】若abc≠0,则||||||c c b b a a ++的所有大概值 分解:从完齐思量:(1)a ,b ,c 齐正,则||||||c c b b a a ++=3; (2)a ,b ,c 二正一背,则||||||c c b b a a ++=1; (3)a ,b ,c 一正二背,则||||||c c b b a a ++=-1; (4)a ,b ,c 齐背,则||||||c c b b a a ++=-3 【坚韧】有理数a ,b ,c ,d ,谦脚1||-=abcd abcd,供d d c c b b a a ||||||||+++的值 分解:有1||-=abcd abcd知abcd<0,所以a ,b ,c ,d 里含有1个背数大概3个背数:(1)若含有1个背数,则d d c c b b a a ||||||||+++=2; (2) 若含有3个背数,则dd c c b b a a ||||||||+++=-2 【例11】化简|x+5|+|2x-3|3,整面不妨将分解:先找整面.x+5=0,x=-5;2x-3=0,x=2数轴分成几段.3,x+5>0,2x-3≥0,|x+5|+|2x-3|=3x+2;当x≥23,x+5≥0,2x-3<0,|x+5|+|2x-3|=8-x;当-5≤x<2当x<-5,x+5<0,2x-3,|x+5|+|2x-3|=-3x-2【坚韧】化简:|2x-1|1,依次整面不妨将数轴分成分解:先找整面.2x-1=0,x=2几段1,2x-1<0,|2x-1|=﹣(2x-1)=1﹣2x;(1)x<21,2x-1=0,|2x-1|=0(2)x=21,2x-1>0,|2x-1|=2x-1.也可将(2)与(1)合(3)x>2并写出截止【例12】供|m|+|m-1+|m-2|的值分解:先找整面,m=0,m-1=0,m-2=0,解得m=0,1,2依那三个整面将数轴分为四段:m<0,0≤m<1,1≤m<2,m≥2.当m<0时,本式=﹣m﹣(m-1)-(m-2)=-3m+3当0≤m<1时,本式=m-(m-1)-(m-2)=-m+3当1≤m<2时,本式=m+(m-1)-(m-2)=m+1当m≥2时,本式m+(m-1)+(m-2)=3m-3|a|的几许意思:正在数轴上,表示那个数的面离启本面的距离|a-b|的几许意思:正在数轴上,表示数a,b对付应数轴上二面间的距离【例13】供|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值分解:由上题可知,本题中的式子值应为x所对付应的面分别到3,5,2,-1,-7所对付应的面距离战.通过数轴不妨瞅到,当x=2时,五段距离的战有最小值16.那里咱们不妨把小教奥数中的相闭知识通联到所有道解:【小教奥数相闭题目】如图,正在交到上有A、B、C、D、E五栋住户楼,当前创造一个邮筒,为使五栋楼的住户到邮筒的便齐力之战最短,邮局应坐于那边?A B C D E分解:咱们去分解以下A、E二个面,没有管那个邮筒搁正在AE之间的哪一面,A到邮筒的距离加上E到邮筒的距离便是AE的少度.也便是道邮筒搁正在哪没有会做用那二个面到邮筒的距离之战.那么咱们便使其余的3个面到邮筒的距离之战最短,再瞅为了使B、D二个到邮筒的距离之战也是没有变的,等于BD.末尾,只需要思量C面到邮筒的距离迩去便止了.那么天然也便是把邮筒搁正在C面了.那里便体现了一个“背核心靠拢的思维”题后小论断:供|x-a1|+|x-a2|+…+|x-an|的最小值:当n为奇数时,把a1、a2、…an从小到大排列,x等于最中间的数值时,该式子的值最小.当n为奇数时,把a1、a2、…an从小到大排列,x与最中间二个数值之间的数(包罗最中间的数)时,该式子的值最小.【坚韧】商量|a|与|a-b|的几许意思分解:|a|即为表示a的面A与本面之间的距离,也即为线段AO的少度.闭于|a-b|,咱们不妨引进简直数值加以分解:当a=3,b=2时,|a-b|=1;当a=3,b=-2时,|a-b|=5;当a=3,b=0时,|a-b|=3;当a=-3,b=-2时,|a-b|=1;从上述四种情况分别正在数轴上标注出去,咱们没有克没有及易创造:|a-b|对付应的是面A与面B之间的距离,即线段AB的少度.【坚韧】设a1、a2、a3、a4、a5为五个有理数,谦脚a1<a2<a3<a4<a5,供|x-a1|+|x-a2|+|x-a3|+|x-a4|+|x-a5|的最小值分解:当x=a3时有最小值,a4+a5-a1-a2【例14】设a<b<c<d,供y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并供出此时x的与值分解:根据几许意思不妨得到,当b≤x≤c时,y有最小值为c+d-a-b【例1】若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______分解:根据题意可得:a=±1,b=-2,c=-3,那么a+b-c=0大概2【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=______分解:果为(a+b)2+|b+5|=b+5,咱们不妨了解b+5>0,所以本式不妨表示为:(a+b)2+b+5=b+5,(a+b)2=0,a=-b ,又果为|2a-b-1|=0,从而2a-b-1=0,从而2a-b-1=0,3a=1,a=31,b=-31,ab=-91【例3】对付于|m-1|,下列论断精确的是( )A.|m-1|≥|m|B.|m -1|≤|m|C.|m -1|≥|m|-1D.|m-1|≤|m|-1分解:咱们不妨分类计划,但是那样对付于干采用题皆过于贫苦了.咱们不妨用特殊值法代进考验,对付于千万于值的题目咱们普遍需要戴进正数、背数、0,3种数助闲找到准确问案.易得问案为C.【例4】设a ,b ,c 为真数,且|a|+a=0,|ab|=ab ,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|分解:|a|+a=0,|a|=-a ,a≤0;|ab|=ab ,ab≥0;|c|-c=0,|c|=c ,c≥0.所以不妨得到a≤0,b≤0,c≥0;|b|-|a+b|-|c-b|+|a-c|=-b+(a+b )-(c-b )-(a-c )=b【例5】化简:||x-1|-2|+|x+1|分解:先找整面.x-1=0,x=1,|x-1|-2=0,|x-1|=2,x-1=2大概x-1=-2,可得x=3大概者x=-1;x+1=0,x=-1;综上所得整面有1.,-1,3,依次整面不妨将数轴分成几段.(1) x≥3,x-1>0,|x-1|-2≥0,x+1>0,||x-1|-2|+|x+1|=2x-2; (2) 1≤x<3,x-1≥0,|x-1|-2<0,x+1>0,||x-1|-2|+|x+1|=4; (3)-1≤x≤1,x-1<0,|x-1|-2<0,x+1≥0,||x-1|-2|+|x+1|=2x+2;(4) x<-1,x-1<0,|x-1|-2<0,x+1<0,||x-1|-2|+|x+1|=-2x-2 【例6】已知有理数a ,b ,c 谦脚1||||||=++cc bb aa ,供abcabc ||的值分解:对付于任性的整数a ,有1||±=aa ,若1||||||=++cc b b a a ,则a ,b ,c 中必是二正一背,则abc<0,abcabc ||=-1【例7】若a ,b ,c ,d 为互没有相等的有理数,且|a-c|=|b-c|=|d-b|=1,供|a-d|分解:从|a-c|=|b-c|咱们不妨了解,c 到a ,b 的距离皆是1,且三者没有相等,那么正在数轴上便有:(b)(a)果为|d-b|=1,且a ,b ,c ,d 为互没有相等的有理数,则有:隐然易得|a-d|=32供p+2m+3n 的值分解:千万于值为非背数,|m+3 |+|n-27|+|2p-1|=0,所以m+3=0,n-27=0,2p-1=0,即得m=-3,n=27,p=21,所以p+2m+3n=21-6+3×27=52、(1)已知|x|=2,|y|=3且x-y>0,则x+y 的值为几? (2)解圆程:|4x-5|=8 分解:(1)x=±2,y=±3,当x=2,y=3时,没有谦脚x-y >0;x=2,y=-3时,谦脚x-y >0,那么x+y=-1; x=-2,y=3时,没有谦脚x-y >0;x=-2,y=-3时,谦脚x-y >0,那么x+y=-5. 综上可得x+y 的值为-1,-5(2)4x-5=±8,x=413,x=-433、(1)有理数a ,b ,c 正在数轴上对付应面如图所示,化简|a-b|-|a+b|+|b-c|-|c|(2)若a <b ,供|b-a+1|-|a-b-5|的值 (3)若a <0,化简|a-|-a||(b)(a)分解:(1)a-b <0,b-c >0,a+b <0|a-b|-|a+b|+|b-c|-|c|=-(a-b )+(a+b )+(b-c )+c=3b (2)|b-a+1|-|a-b-5|=b-a+1+a-b-5=-4 (3)|a-|-a||=|a+a|=|2a|=-2a 4、已知a 利害整有理数,供||||||3322a a a a a a ++的值分解:若a >0,那么||||||3322a a a a a a ++=1+1+1=3;若a <0,那么||||||3322a a a a a a ++=-1+1-1=-15、化简|x-1|-|x-3|分解:先找整面.x-1=0,,x=1;x-3=0,x=3,依照整面不妨将数轴分成几段.(1) x≥3,x-1>0,x-3≥0,|x-1|-|x-3|=x-1-(x-3)=2; (2) 1≤x <3,x-1≥0,x-3<0 ,|x-1|-|x-3|=x-1+(x-3)=2x-4; (3)x <1,x-1<0,x-3<0,|x-1|-|x-3|=-(x-1)+(x-3)=-26、设a <b <c ,供当x 与何值时|x-a|+|x-b|+|x-c|的最小值 分解:|x-a|+|x-b|+|x-c|本量表示x 到a ,b ,c 三面距离战,绘图可知当x=b 时,本式有最小值c-a。

初一数学绝对值的化简

初一数学绝对值的化简

变式训练1、已知x <﹣1,(1)化简22x --;(2)化简222x ---2、已知﹣2≤x <3,化简1312x x --+题型二、利用数形结合的方法化简绝对值根据数轴,我们可以确定未知数的取值范围和大小关系,进而可以判断相关代数式的正负性,从而根据绝对值的意义去掉绝对值的符号。

例题:(1)已知:实数a ,b 在数轴上的位置如图所示,化简:b a ﹣﹣(2)已知有理数a 、b 在数轴上的位置如图所示,化简:b a b a b a ﹣﹣++﹣+要点提示:1.零点的左边都是负数,右边都是正数;2.右边点表示的数总大于左边点表示的数;3.离原点远的点表示的数的绝对值较大;4.在一个数的前面添加一个负号就可以得到这个数的相反数。

变式训练:1.已知有理数a ,b 在数轴上的位置如图所示,化简:b a ++a b ﹣2.已知有理数a 、b 、c 在数轴上的位置如图所示,化简:b c b a ﹣﹣+题型三、零点分段讨论法例题:化简224x x --+分析:本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于x -2、x +4的正负不能确定,由于x 是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论。

解:令x -2=0得零点:x =2 ;令x +4=0得零点:x =﹣4 ,把数轴上的数分为三个部分(如图)①当x ≥2时,②当﹣4≤x <2时,③当x <﹣4时,综上所述,归纳总结:虽然x -2、x +4的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,运用此方法的一般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个);2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定;3.在各区段内分别考察问题;4.将各区段内的情形综合起来,得到问题的答案。

绝对值典型例题讲解

绝对值典型例题讲解

绝对值典型例题讲解【学习目标】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4. 理解并会熟练运用绝对值的非负性进行解题.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0. 要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法: 两个数比较大小,按数的性质符号分类,情况如下: 两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号正数大于负数 -数为0 正数与0:正数大于0负数与0:负数小于0利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b <,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】类型一、绝对值的概念1.求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭ 【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】解法一:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 解法二:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0.因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.下列说法正确的是( )A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【答案】D .【解析】A 、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B 、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C 、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D 、最小的正整数是1,正确.【总结升华】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【变式2】已知一个数的绝对值是4,则这个数是 .【答案】±4.【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 .【答案】6或-6类型二、比较大小3.比较大小: ﹣(﹣1.8)(填“>”、“<”或“=”).【思路点拨】先化简,再比较大小,即可解答.【答案】<.【解析】解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8,∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<.【总结升华】本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.举一反三:【变式1】比大小:653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-&&______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1【答案】C 类型三、绝对值非负性的应用4. 已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m=0,n-3=0所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型四、绝对值的实际应用5.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.举一反三:【变式1】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数+0.0018 -0.0023 +0.0025-0.0015 +0.0012 +0.0010(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶.(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.【变式2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) .小虫得到的芝麻数为54×2=108(粒) .。

(人教版数学)七年级竞赛专题讲解:第五讲 解读绝对值

(人教版数学)七年级竞赛专题讲解:第五讲  解读绝对值

第五讲 解读绝对值绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l .去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质 ①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b ba b a ;④222a a a ==. 3.绝对值的几何意义从数轴上看,a 表示数a 的点到原点的距离(长度,非负);b a -表示数a 、数b 的两点间的距离.例题【例1】(1)已知321===c b a ,,,且c b a >>,那么c b a -+= . (北京市“迎春杯”竞赛题)(2)已知d c b a 、、、是有理数,169≤-≤-d c b a ,,且25=+--d c b a , 那么=---c d a b .( “希望杯”邀请赛试题)思路点拨 (1)由已知条件求出c b a 、、的值,注意条件c b a >>的约束;(2)若注意到9+16=25这一条件,结合绝对值的性质,问题可获解.【例2】 如果c b a 、、是非零有理数,且0=++c b a ,那么abc abc c c b b a a +++的所有可能的值为( ).A .0B . 1或一lC .2或一2D .0或一2(山东省竞赛题)思路点拨 根据b a 、的符号所有可能情况,脱去绝对值符号,这是解本例的关键【例3】已知12--b •ab 与互为相反数,试求代数式:)2002)(2002(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值. (“五羊杯”竞赛题)思路点拨 运用相反数、绝对值、非负数的概念与性质,先求出b a 、的值.【例4】化简(1)12-x ; (2)31-+-x x ; (3)121++--x x .思路点拨 (1)就012012<-≥-x x ,两种情形去掉绝对值符号;(2)将零点1,3在同一数轴上表示出来,就1<x ,1≤x<3,x ≥3三种情况进行讨论;(3)由02101=--=+x x ,,得3,11==-=x x x ,.【例5】已知a 为有理数,那么代数式4321-+-+-+-a a a a 的取值有没有最小值?如果有,试求出这个最小值;如果没有,请说明理由.思路点拨 a 在有理数范围变化,4321----a a a a 、、、的值的符号也在变化,解本例的关键是把各式的绝对值符号去掉,为此要对a 的取值进行分段讨论,在各种情况中选取式子的最小值.注:①我们把大于或等于零的数称为非负数,现阶段a 、n a 2是非负数的两种重要形式,非负数有如下常用性质:(1) a ≥0,即非负敷有最小值为0;(2)若0=+++h b a ,则0====h b a②形如(2)的问题称为多个绝对值问题,解这类问题的基本步骤是:求零点、分区间、定性质、去符号、即令各绝对值代数式为0,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可.请读者通过本例的解决,仔细体会上述解题步骤.学力训练1.若有理数x 、y 满足2002(x 一1)2 +0112=+-y x ,则=+22y x .2.已知3,5==b a ,且a b b a -=-,那么b a += .3.已知有理数c b a 、、在数轴上的对应位置如图所示: 则b a c a c -+-+-1化简后的结果是 .湖北省选拔赛题)4.若b a 、为有理数,那么,下列判断中:(1)若b a =,则一定有b a =; (2)若b a >,则一定有b a >; (3)若b a >,则一定有b a >;(4)若b a =,则一定有22)(b a -=.正确的是 (填序号)5.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,一l ,那么1+a 表示( ).A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和 (江苏省竞赛题)6.已知a 是任意有理数,则a a --的值是( ).A .必大于零B .必小于零C 必不大于零D .必不小于零7.若1++b a 与2)1(+-b a 互为相反数,则a 与b 的大小关系是( ).A .b a >B .b a =C .b a <D .b a ≥8.如图,有理数b a 、在数轴上的位置如图所示,则在4,2,,,2,--+---+b a b a a b a b b a 中,负数共有( )A . 1个B .2个C .3个D .4个9.化简:(1)3223++-x x ; (2)1331++--x x .10.求满足1=+-ab b a 的非负整数对(a ,b)的值.(全国初中联赛题)11.若2-<x ,则=+-x 11 ;若a a -=,则=---21a a .12.能够使不等式0)1)((<+-x x x 成立的x 的取值范围是 .l3.a 与b 互为相反数,且54=-b a ,那么12+++-ab a b ab a = . 14.设c b a 、、分别是一个三位数的百位、十位和个位数字,并且c b a ≤≤,则a c c b b a -+-+-可能取得的最大值是 .(江苏省竞赛题) .15.使代数式x xx 43-的值为正整数的x 值是( ).A .正数B .负数C .零D . 不存在的16.如果02=+b a ,则21-+-ba b a 等于( ).A .2B .3C .4D .517.如果150<<p ,那么代数式1515--+-+-p x x p x 在15≤≤x p 的最小值是( ).A .30B .0C .15D .一个与p 有关的代数式18.设0=++c b a ,0>abc ,则cb a b ac a c b +++++的值是( ). A .-3 B .1 C .3或-1 D .-3或119.有理数c b a 、、均不为零,且0=++c b a ,设b a ca c bc b ax +++++=,试求代数式20029919+-x x 的值.20.若c b a 、、为整数,且19919=-+-a c b a ,求c b b a a c -+-+-的值.21.已知1,1≤≤y x ,设421--++++=x y y y x M ,求M 的最大值与最小值.22.已知02003200232120032002321=-+-++-+-+-x x x x x , 求代数式20032002212222x x x x +--- 的值.参考答案。

初一《绝对值》精讲与练习

初一《绝对值》精讲与练习

初一数学《绝对值》精讲与练习知识要点:1、绝对值的几何意义:在数轴上表示数a 的点与原点的距离叫作数a 的绝对值。

记为a ,b a -表示数a ,数b 两点间的距离。

2、绝对值的代数意义:()()()⎪⎩⎪⎨⎧<-=>=时当时当时当0000a a a a a a3、绝对值的性质:①0≥a a a ≥ a a -≥ ②222a a a == ③b a ab ⋅= ④()0≠=b ba b a⑤b a b a +≤+ b a b a -≥- ⑥0=+b a0==b a例1、如果2=a ,3=b ,那么b a 2的等于_________________。

练习:①若x 的相反数是3,5=y ,则y x +的值为______________。

②若7=a ,3=b , 且a 、b 异号,求b a b a --+的值。

③如果3=a ,5=b ,则b a b a --+的绝对值等于______________。

例2、若b c b a -<<<<0,则b c b a ++-=___________A .b a +B .c a --C .c a +D .c a -练习:4、实数a 、b 在数轴上的位置如图所求,则化简a b a -+的结果是( )A .b a +2B .a 2C .aD .b5、已知a 在数轴上的位置如图所示,化简11-+a a 的值是______。

6、使代数式xxx 43-的值为正整数的x 的值是__________。

A .正数 B .负数 C .零 D .不存在 例3、若()0322=++-b a ,则()2007b a +的值是( )A .0B .1C .-1D .2007练习:7、若()0212=++-m n ,则n m 2+的值为( ) A .-4 B .-1 C .0 D .48、若()01242322=-+-b b a ,则代数式⎪⎭⎫ ⎝⎛++--427141312b a a b 的值为_________.例4、11-++x x 的最小值是( )A .2B .0C .1D .-1练习:9、彼此不等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C ,如果c a c b b a -=-+-,那么A 、B 、C 的位置关系是_________________。

七年级上册数学绝对值必考八大经典题型pdf

七年级上册数学绝对值必考八大经典题型pdf

七年级上册数学绝对值必考八大经典题型题型一:定义考查例1:|-2|的相反数是分析:负数的绝对值等于它的相反数。

答案:-2例2:绝对值大于等于1,小于4的所有正整数和为分析:符合题意的正整数有1、2、3。

答案:6例3:已知|x|=5,则x=,已知|-x|=3,则x=分析:绝对值等于5的数有±5,同理-x=±3,则x=±3。

答案:±5;±3例4:已知|x-2|=3,则x=;已知|2-x|=1,则x=分析:|x-2|=3表示x与2的距离是3,故x=-1或5。

|2-x|=1表示x与2的距离是1,故x=1或3。

答案:-1或5;1或3题型二:非负性例1:已知|a+3|+|b-1|=0,则a+b的值是分析:多个非负数的和为0,则每一个都是0,故a=-3,b=1。

答案:-2例2:已知|a-1|+|b-2|+2|c-3|=0,则a+b+c的值是分析:多个非负数的和为0,则每一个都是0,故a=1,b=2,C=3。

答案:6例3:已知|x|=x,则x0;已知|x|=-x,则x0分析:绝对值具有非负性,所以等式右边一定≥0。

答案:≥;≤例4:已知|x-2|=x-2,则x2;已知|x-2|=2-x,则x2分析:绝对值具有非负性,所以等式右边一定≥0。

答案:≥;≤题型三:去绝对值例1:|3-π|+|π-4|=分析:去绝对值,必须先判断绝对值内的正负,3-π和π-4均为负数,绝对值应取相反数,故原式=π-3+4-π=1答案:1例2:已知|≤x≤5,则||-x|+|x-5|=分析:因为|≤x≤5,所以1-x≤0,x-5≤0,故原式=x-1+5-x=4。

答案:4例3:如图所示,则|a-b|-|2c+b|+|a+c|=分析:由图可知:C,1a-b>0,2c+b<0,a+c<0,故原式=a-b-(-2c-b)+(-a-c)=C答案:C题型四:分类讨论例1:若|a|=5,|b|=7,且|a+b|=a+b,则a-b=分析:a=±5,b=±7,且a+b≥0(非负性);故a=5、b=7,或a=-5,b=7答案:-2或-12例2:若|a|=1,|b|=2,|c|=3,且a>b>c。

七年级上册数学绝对值计算题

七年级上册数学绝对值计算题

七年级上册数学绝对值计算题
一、绝对值的基本概念
1. 绝对值的定义:
- 正数的绝对值是它本身,例如公式;
- 负数的绝对值是它的相反数,例如公式;
- 0的绝对值是0,即公式。

2. 数学表达式:设公式为实数,则公式
二、绝对值计算题及解析
1. 计算公式
- 解析:
- 根据绝对值的定义,公式,因为公式,它的绝对值是它的相反数;公式,因为公式,正数的绝对值是它本身。

- 所以公式。

2. 计算公式
- 解析:
- 公式,公式。

- 则公式。

3. 计算公式
- 解析:
- 先计算公式。

- 然后求公式,因为公式,所以公式。

4. 若公式,求公式的值。

- 解析:
- 根据绝对值的定义,当公式时,公式或者公式,因为正数公式的绝对值是公式,负数公式的绝对值也是公式。

5. 计算公式
- 解析:
- 由绝对值定义可得公式,公式。

- 所以公式。

6. 计算公式
- 解析:
- 先求公式。

- 再计算公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准实用文案大全第三讲绝对值绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。

绝对值的定义及性质绝对值简单的绝对值方程化简绝对值式,分类讨论(零点分段法)绝对值几何意义的使用绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。

绝对值的性质:(1)绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;a (a>0)(2)|a|= 0 (a=0)(代数意义)-a (a<0)(3)若|a|=a,则a≥0;若|a|=-a,则a≤0;(4)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a,且|a|≥-a;(5)若|a|=|b|,则a=b或a=-b;(几何意义)(6)|ab|=|a|·|b|;|ba|=||||ba(b≠0);(7)|a|2=|a2|=a2;(8)|a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|内容概述绝对值的定义及性质标准实用文案大全[例1](1)绝对值大于2.1而小于4.2的整数有多少个?(2)若ab<|ab|,则下列结论正确的是()A.a<0,b<0B.a>0,b<0C.a<0,b>0D.ab<0(3)下列各组判断中,正确的是()A.若|a|=b,则一定有a=b B.若|a|>|b|,则一定有a>b C. 若|a|>b,则一定有|a|>|b| D.若|a|=b,则一定有a2=(-b) 2(4)设a,b是有理数,则|a+b|+9有最小值还是最大值?其值是多少?分析:(1)结合数轴画图分析。

绝对值大于2.1而小于4.2的整数有±3,±4,有4个(2)答案C不完善,选择D.在此注意复习巩固知识点3。

(3)选择D。

(4)根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9 [巩固] 绝对值小于3.1的整数有哪些?它们的和为多少?<分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。

[巩固] 有理数a与b满足|a|>|b|,则下面哪个答案正确()A.a>bB.a=bC.a<bD.无法确定分析:选择D。

[巩固] 若|x-3|=3-x,则x的取值范围是____________分析:若|x-3|=3-x,则x-3≤0,即x≤3。

对知识点3的复习巩固[巩固] 若a>b,且|a|<|b|,则下面判断正确的是()A.a<0B.a>0C.b<0D.b>0 分析:选择C[巩固] 设a,b是有理数,则-8-|a-b|是有最大值还是最小值?其值是多少?分析:|a-b|≥0,-8-|a-b|≤-8,所以有最大值-8 [例2](1)(竞赛题)若3|x-2|+|y+3|=0,则xy的值是多少?(2)若|x+3|+(y-1)2=0,求n xy)4(??的值标准实用文案大全分析:(1)|x-2|=0,|y+3|=0,x=2,y=-3,xy=23?(2)由|x+3|+(y-1)2=0,可得x=-3,y=1。

xy??4=314??=-1n为偶数时,原式=1;n为奇数时,原式=-1 小知识点汇总:(本源 |a|≥0 b2≥0)若(x-a)2+(x-b)2=0,则x-a=0且x-b=0;若|x-a|+(x-b)2=0,则x-a=0且x-b=0;若|x-a|+|x-b|=0,则x-a=0且x-b=0;当然各项前面存在正系数时仍然成立,非负项增加到多项时,每一项均为0,两个非负数互为相反数时,两者均为0【例3】(1)已知x是有理数,且|x|=|-4|,那么x=____(2)已知x是有理数,且-|x|=-|2|,那么x=____(3)已知x是有理数,且-|-x|=-|2|,那么x=____(4)如果x,y表示有理数,且x,y满足条件|x|=5,|y|=2,|x-y|=y-x,那么x+y的值是多少?分析:(1)4,-4 (2)2,-2,(3)2,-2 (4)x=±5,y=±2,且|x-y|=y-x,x-y≤0;当x=5,y=2时不满足题意;当x=5,y=-2时不满足题意;当x=-5,y=2时满足题意;x+y=-3;当x=-5,y=-2时满足题意,x+y=-7。

【巩固】巩固|x|=4,|y|=6,求代数式|x+y|的值分析:因为|x|=4,所以x=±4,因为|y|=6,所以y=±6当x=4,y=6时,|x+y|=|10|=10;当x=4,y=-6时,|x+y|=|-2|=2; 当x=-4,y=6时,|x+y|=|2|=2;当x=-4,y=-6时,|x+y|=|10|=10 【例4】简单的绝对值方程标准实用文案大全解方程:(1)05|5|23???x(2)|4x+8|=12 (3)|3x+2|=-1(4)已知|x-1|=2,|y|=3,且x与y互为相反数,求yxyx4312??的值分析:(1)原方程可变形为:|x+5|=310,所以有x+5=±310,进而可得:x=-35,-325;(2)4x+8=±12,x=1,x=-5 (3)此方程无解(4)|x-1|=2,x-1=±2,x=3,x=-1,|y|=3,y=±3,且x与y互为相反数,所以x=3,y=-3,244312???yxyx【例5】若已知a与b互为相反数,且|a-b|=4,求12????abababa的值分析:a与b互为相反数,那么a+b=0。

12????abababa=,4,4||,1001)(???????????????babaabaabbaaabba当a-b=4时,且a+b=0,那么a=2,b=-2,-ab=4;当a-b=-4时,且a+b=0,那么a=-2,b=2,-ab=4;综上可得12????abababa=4【例6】(1)已知a=-21,b=-31,求||32|34|2|2|4)2(|42|2????????abbababa的值(2)若|a|=b,求|a+b|的值(3)化简:|a-b|分析:(1)原式=718||31|334|2|3221|4)3221(|341|2???????????????(2)|a|=b,我们可以知道b≥0,当a<0时,a=-b,|a+b|=0;当a≥0时,a=b,|a+b|=2b (3)分类讨论。

化简绝对标准实用文案大全当a-b>0时,即a>b,|a-b|=a-b;当a-b=0时,即a=b,|a-b|=0;当a-b<0时,即a<b,|a-b|=b-a。

【巩固】化简:(1)|3.14-π| (2)|8-x|(x≥8)分析:(1)3.14<π,3.14-π<0,|3.14-π|=π-3.14 (2)x≥8,8-x≤0,|8-x|=x-8。

【例7】有理数a,b,c在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|分析:|b+a|+|a+c|+|c-b|=b+a-(a+c)-(c-b)=2b-2c【巩固】已知a,b,c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|分析:|a|+|c-b|+|a-c|+|b-a|=-a+b-c-a+c+b-a=2b-3a【巩固】数a,b在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||分析:|a+b|+|b-a|+|b|-|a-|a||=-(a+b)+(b-a)+b-(-2a)=b 【例8】(1)若a<-b 且0?ba,化简|a|-|b|+|a+b|+|ab| (2)若-2≤a≤0,化简|a+2|+|a-2| (3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值分析:(1)若a<-b且0?ba,a<0,b<0,a+b<0,ab>0|a|-|b|+|a+b|+|ab|=-a+b-a-b+ab=ab-2a(2)因为-2≤a≤0,所以a+2≥0,a-2≤0,|a+2|+|a-2|=(a+2)-(a-2)=4(3)由x<0<z,xy>0可得:y<0<z,又|y|>|z|>|x|,可得:y<x<z;原式=x+z-y-z-x+y=0 【巩固】如果0<m<10并且m≤x≤10,化简|x-m|+|x-10|+|x-m-10| 分析:|x-m|+|x-10|+|x-m-10|=x-m+10-x+m+10-x=20-x 【例9】(1)已知x<-3,化简|3+|2-|1+x||| (2)若a<0,试化简||3|||3|2aaaa??分析:(1)当x<-3时,|3+|2-|1+x|||=|3+|2+1+x||=|3+|3+x||=|3-3-x|=|-x|=-xCB 0Aa0 cba0 b标准实用文案大全(2)||3|||3|2aaaa??=|3|32aaaa???=aa45?=-45【例10】若abc≠0,则||||||ccbbaa??的所有可能值分析:从整体考虑:(1)a,b,c全正,则||||||ccbbaa??=3;(2)a,b,c两正一负,则||||||ccbbaa??=1;(3)a,b,c一正两负,则||||||ccbbaa??=-1;(4)a,b,c全负,则||||||ccbbaa??=-3 【巩固】有理数a,b,c,d,满足1||??abcdabcd,求ddccbbaa||||||||???的值分析:有1||??abcdabcd知abcd<0,所以a,b,c,d里含有1个负数或3个负数:(1)若含有1个负数,则ddccbbaa||||||||???=2;(2)若含有3个负数,则ddccbbaa||||||||???=-2 【例11】化简|x+5|+|2x-3|分析:先找零点。

x+5=0,x=-5;2x-3=0,x=23,零点可以将数轴分成几段。

当x≥23,x+5>0,2x-3≥0,|x+5|+|2x-3|=3x+2;当-5≤x<23,x+5≥0,2x-3<0,|x+5|+|2x-3|=8-x;当x<-5,x+5<0,2x-3,|x+5|+|2x-3|=-3x-2 【巩固】化简:|2x-1| 分析:先找零点。

2x-1=0,x=21,依次零点可以将数轴分成几段(1)x<21,2x-1<0,|2x-1|=﹣(2x-1)=1﹣2x;(2)x=21,2x-1=0,|2x-1|=0标准实用文案大全(3)x>21,2x-1>0,|2x-1|=2x-1。

相关文档
最新文档