数列求和的典型方法 (学生版)
专题--数列求和的基本方法和技巧(学生版)
数列求和的基本方法与技巧一、利用常用求和公式求和:利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S n k n 5、213)]1(21[+==∑=n n k S nk n 例1 金榜108页典例1二、错位相减法求和:这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求各项是由一个等差数列和一个等比数列的对应项之积构成的数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列。
例2. 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①例3.设数列{}n a 满足21112,32n n n a a a -+=-= ,(1)求数列{}n a 的通项公式;(2)令n n b na =,求数列的前n 项和n S 。
变式练习:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和。
三、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
形如:①{}n n b a +,其中{}{}⎩⎨⎧是等比数列;是等差数列;n n b a ②()()⎩⎨⎧∈=-==*Nk k n n g k n n f a n ,2,,12, 例 4.已知数列{}n a 的通项公式为,132-+=n a n n 求数列{}n a 的前n 项和.变式练习: 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…1n n c a a +⎧⎫⎨⎬⎩⎭四、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
数列求和基本方法(学生版)
数列求和的基本方法和技巧教案梳理主干1、 公式法求和(1)如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况,要分1q =或1q ≠. (2)一些常见数列的求和公式①1234=n +++++… . ②13572-1=n +++++… . ③2+4+6+8++2=n … .④6)12)(1(3212222++=++++n n n n⑤23333]2)1([321+=++++n n n 2、 倒序相加法求和如果一个数列{}n a ,与首末两端等“距离”的两项和相等或有一定规律,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3、 错位相见发求和如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. 4、 列项相消法和把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5、 分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后相加减. 6、 并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和,形如(1)()n n a f n =-类型,可采用两项合并求解.一、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例1、(1)已知数列{}n a 的通项公式为2n n a n =+,则其前n 项和为 .(2)(2015届湖北龙泉中学高三模拟)已知数列{}n a满足*11),n a a n N +==∈n S 为数列{}n a 的前n 项和,2015S = .变式训练1、(2014年湖南卷)已知数列{}n a 的前n 项和2*,2n n nS n N +=∈. (1)、求数列{}n a 的通项公式;(2)、设2(1)n ann n b a =+-,求数列{}n b 的前2n 项和.二、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1))()1(n f n f a n -+= (2)111)1(1+-=+=n n n n a n (3)n n n n a n -+=++=111例2、(2015课标17)n S 为数列{}n a 的前n 项.已知0n a >,2243n n n a a S +=+.(1)、求{}n a 的通项公式; (2)、设11n n n b a a +=,求数列{}n b 的前n 项和.变式训练2、在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.三、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{}.n n a b 的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列.例3、(2015湖北,18)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,d q =,10100S =.(1)求数列{}n a ,{}n b 的通项公式; (2)当1d >时,记nn na cb =,求数列{}nc 的前项和n T .变式训练3、求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.专题训练 数列求和练习1、数列}{n a 的通项na n ++++=3211,则数列}{n a 的前n 项和为 ( )A .122+n nB .12+n nC .12++n nD .12+n n2、数列 ,1614,813,412,211的前n 项和可能为 ( )A .n n n 21)2(212-++B .12211)(21--++n n nC .n n n 21)2(212-+- D .)211(2)(212n n n -++3、已知数列}{n a 的前n 项和12-=n n S ,则22221na a a ++等于 ( ) A .2)12(-n B .)12(31-n C .14-n D .)14(31-n4、数列}{n a 的通项公式)(11*N n n n a n ∈++=,若前n 项和为10,则项数n 为 ( )A .11B .99C .120D .1215、在数列}{n a 中,2,121==a a 且)()1(1*2N n a a n n n ∈-+=-+,则=100S .6、已知)34()1(2117139511--++-+-+-=-n S n n ,则=+2215S S .7、已知等差数列}{n a 的前n 项和为n S ,若,0,,1211=-+∈>+-m m m a a a N m m 3812=-m S ,则m = . 8、(2015届云南玉溪一中高三月考)已知数列{}n a 与{}n b ,若13a =且对任意正整数n 满足12n n a a +-=,数列{}n b 的前n 项和2n n S n a =+. (1)、求数列{}n a ,{}n b 的通项公式; (2)、求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .9、等比数列}{n a 同时满足下列条件:①3361=+a a ,②3243=a a ,③三个数432,2,4a a a 依次成等差数列.(1)求数列}{n a 的通项公式; (2)记nn a nb ,求数列}{n b 的前n 项和T n .。
数列求和的8种常用方法
数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。
下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。
一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。
三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
数列求和掌握小学生数列求和的技巧
数列求和掌握小学生数列求和的技巧数列是由一系列按照一定规律排列的数所组成的序列。
数列求和是常见的数学问题,对于小学生来说,掌握数列求和的技巧可以帮助他们更好地理解数学知识。
本文将介绍几种应用于小学生数列求和的方法,并帮助他们加深对数列求和的理解。
一、等差数列求和等差数列是一种常见的数列形式,它的特点是相邻两项之间的差值是一个固定的常数。
为了求解等差数列的和,我们可以使用以下公式:Sn = (a1 + an) × n / 2其中,Sn表示等差数列的前n项和,a1表示第一项的值,an表示第n项的值,n表示项数。
例如,求解1,4,7,10,13……的前10项和,我们可以进行如下步骤:1. 确定a1=1,an=?,n=10;2. 通过计算,我们可以得到an = a1 + (n-1)×d = 1 + (10-1)×3 = 28;3. 将a1,an,n带入公式Sn = (a1 + an) × n / 2,即可得到Sn = (1 +28) × 10 / 2 = 145。
二、等比数列求和等比数列是一种常见的数列形式,它的特点是相邻两项之间的比值是一个固定的常数。
为了求解等比数列的和,我们可以使用以下公式:S = a(q^n-1)/ (q - 1)其中,S表示等比数列的前n项和,a表示第一项的值,q表示公比,n表示项数。
例如,求解2,6,18,54……的前5项和,我们可以进行如下步骤:1. 确定a=2,q=?,n=5;2. 通过计算,我们可以得到q = a2 / a1 = 6 / 2 = 3;3. 将a,q,n带入公式S = a(q^n-1)/ (q - 1),即可得到S = 2(3^5-1)/ (3 - 1) = 242。
三、奇数数列求和奇数数列是一种特殊的数列形式,它的特点是每一项都是连续的奇数。
为了求解奇数数列的和,我们可以使用以下公式:Sn = n^2其中,Sn表示奇数数列的前n项和,n表示项数。
数列的求和方法(专题)
例析数列求和的常用方法数列求和是数列教学内容的中心问题之一,也是近年高考命题的一个热点问题。
掌握一些求和的方法和技巧可以提高解决此问题的能力。
本文例析了一些求和的方法,仅供参考。
一、倒序相加法将一个数列倒过来排序(倒序),当它与原数列相加时,若有因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和。
如等差数列的求和公式2)(1n n a a n S +=的推导。
例1.已知)(x f 满足R x x ∈21,,当121=+x x 时,21)()(21=+x f x f ,若N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,求n S 解:∵N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,①. ∴+=)1(f S n N n f nf n f n n f ∈++++-),0()1()2()1( ,②,①+②整理后可得)1(41+=n S n 二、错位相减法(此法是学生错误率最高的,到高三还有近半数还计算错误,教学时要多用几课时练习巩固)这是推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ⋅的前n 项和,其中}{n a 、}{n b 分别是等差数列和等比数列。
例2.求数列}2{n n ⋅的前n 项和n S 。
解:∵ n n n n n S 22)1(2322211321⨯+⨯-++⨯+⨯+⨯=-①,所以①-①2⨯错位相消得1132122222+-⨯-++++=-n n n n S ,所以12)1(2+⨯-+=n n n S 。
三、分组求和法所谓分组求和法,即将一个数列中的项拆成几项,转化成特殊数列求和。
例3.已知数列}{n a 满足1)21(-+=n n n a ,求其前n 项和n S 。
解:∵1131211)21()21(3)21(2)21(1----++++++++=n n n S )321(n ++++= ])21()21()21[(11211---++++n 12122)1(--++=n n n 四、公式法(恒等式法)利用已知的求和公式来求和,如等差数列与等比数列求和公式,再如n ++++ 3212)1(+=n n 、)12)(1(613212222++=++++n n n n 等公式。
学会数列求和的几种常用方法
学会数列求和的几种常用方法数列求和是高中数学的一个重要知识点,是高考的热点。
数列求和方法有很多,但在高考中离不开以下三种常用方法。
1、分解为等差数列与等比数列的前n 项和【例1】求222222)2()12(4321n n S n --++-+-=【解】)12(22)21(]2)12(4321[]2)12)][(2()12[()43)(43()21)(21(+-=+-=+-+++++-=+---+++-++-=n n nn n n n n n n S n【例2】设数列}{n a 满足:当5≤n 时,12-=n n a ,当6≥n 时,12-=n a n ,求它的前n项和n S .【解】当5≤n 时,122121222112-=--=++++=-n n n n S ;当6≥n 时,由于前5项成等比数列,从第6项起成等差数列,故)12()172()162()12(5-++-⨯+-⨯+-=n S n62)5)(12162()12(25+=--+-⨯+-=n n n S n ,所以⎪⎩⎪⎨⎧≥+≤-=)6(6)5(122n n n S n n 【例3】求)1()1()1(1122-+++++++++++=n n a a a a a a S【解】当1≠a 时,aa a a a n a a a a a a a a S nn n -+++--=--++--+--+--=1111111111232 即21)1(1]1)1([111a a a a n a a a a a n S n n n ----=-----=+ 当1=a 时,2)1(321+=++++=n n n S n ,故⎪⎪⎩⎪⎪⎨⎧=+≠----=+)1(2)1()1()1(121a n n a a a a a n S n n2、裂项相消法【例4】求∑=-=nk n kS 12141【解】由于)121121(211412+--=-k k k ,所以 12)1211(21)]121121()5131()311[(2114112+=+-=+--++-+-=-=∑=n n n n n k S nk n 【例5】求∑=-+=nk n k k S 122391【解】由于)231131(3123912+--=-+k k k k ,所以 23)23121(31)]231131()7151()5121[(31239112+=+-=+--++-+-=-+=∑=n nn n n k k S nk n 一般地,数列}{n a 是公差d 不为零且各项不为零的等差数列,则∑=+=nk k k n a a S 111与∑=+=nk k k n a a S 121的求和问题都是用裂项求和法。
数列求和方法(带例题和练习题)
数列的求和数列求和主要思路:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 11123(1)2nn k S k n n n ===+++++=+∑… 4、2222211123(1)(21)6nn k S k n n n n ===++++=++∑5、 2333331(1)1232nn k n n S kn =+⎡⎤===++++=⎢⎥⎣⎦∑ 公式法求和注意事项(1)弄准求和项数n 的值;(2)等比数列公比q 未知时,运用前n 项和公式要分类。
例1.求和221-++++n xx x (0,2≠≥x n )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S例3.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的例4.求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.已知数列{}n a 的通项公式321n n a n =+-,求数列{}n a 的前n 项和n S 。
数列求和的8种常用方法(最全)(1)
求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111n n a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+L ;(2)21n k k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++L ;(3)31nk k ==∑33332(1)2123[]n n n +++++=L ;(4)1(21)n k k =-=∑2135(21)n n ++++-=L .例1 已知3log 1log 23-=x ,求23n x x x x ++++ 的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++L=x x x n--1)1(=211)211(21--n =1-n 21例2 设123n S n =++++ ,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
2023届高考一轮复习数列专题 数列求和常用方法(学生版)
数列专题 数列求和常用方法(学生版)一、公式法1.等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2. 推导方法:倒序相加法.2.等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1. 例1已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列.(1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 跟踪练习1、已知等差数列{a n }的前n 项和为S n ,a 2=0,a 4=1,则S 4=( )A .12B .1C .2D .32、等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前6项的和为( )A .-24B .-3C .3D .83、(2022·天津模拟)设1+2+22+23+…+2n -1>128(n ∈N *),则n 的最小值为( )A .6B .7C .8D .94、设数列{a n }(n ∈N *)的各项均为正数,前n 项和为S n ,log 2a n +1=1+log 2a n ,且a 3=4,则S 6=( )A .128B .65C .64D .635、已知数列{a n }的前n 项和S n =4n +b (b 是常数,n ∈N *),若这个数列是等比数列,则b =( )A .-1B .0C .1D .46、已知等比数列{a n },a 1=1,a 4=18,且a 1a 2+a 2a 3+…+a n a n +1<k ,则k 的取值范围是( ) A .⎣⎡⎦⎤12,23 B .⎣⎡⎭⎫12,+∞C .⎣⎡⎭⎫12,23D .⎣⎡⎭⎫23,+∞ 7、(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是( )A .a n =n (n +1)2B .数列⎩⎨⎧⎭⎬⎫1a n 的前2 020项的和为2 0202 021 C .数列⎩⎨⎧⎭⎬⎫1a n 的前2 020项的和为4 0402 021 D .数列{a n }的第50项为2 5508、(多选)设数列{a n }的前n 项和为S n ,若S 2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有( )A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n9、在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.10、数列{a n }满足:a 1=1,点(n ,a n +a n +1)在函数y =kx +1的图象上,其中k 为常数,且k ≠0.(1)若a 1,a 2,a 4成等比数列,求k 的值;(2)当k =3时,求数列{a n }的前2n 项的和S 2n .11、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;二、分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成的,则求和时可用分组转化法,分别求和后再相加减.例2(2022·北京模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧b n -n 2,n 为偶数,2a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .跟踪练习1、已知数列{a n }的通项公式为a n =2n +n ,若数列{a n }的前n 项和为S n ,则S 8=( )A .546B .582C .510D .5482、(2022·珠海模拟)已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项和为( )A .1 009B .1 010C .2 019D .2 0203、若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为__ _____.4、(2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .5、已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数. (1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.6、已知等比数列{a n }的前n 项和为S n ,且S n =2n +a .(1)求a n ;(2)定义[x ]为取整数x 的个位数,如[1]=1,[32]=2,[143]=3,求[a 1]+[a 2]+[a 3]+…+[a 100]的值.7、已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.8、(2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .9、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围.10、(2022·青岛模拟)从“①S n =n ⎝⎛⎭⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n .注:如果选择多个条件分别解答,按第一个解答计分.11、(2022·株洲质检)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.三、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(1)1n (n +1)=1n -1n +1; (2)1n (n +2)=12⎝⎛⎭⎫1n -1n +2; (3)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; (4)1n +n +1=n +1-n .例3(2022·南京质检)已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.跟踪练习1、(2022·北京模拟)数列{a n }的通项公式为a n =1n +n +1 ,若{a n }的前n 项和为9,则n的值为( )A .576B .99C .624D .625 2、(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n ,数列⎩⎨⎧⎭⎬⎫1a n +1的前n 项和为B n ,则下列结论正确的是( ) A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +143、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =____ ____. 4、已知数列⎩⎨⎧⎭⎬⎫1(2n -1)(2n +1)的前n 项和为T n ,若对任意的n ∈N *,不等式12T n <a 2-a 恒成立,则实数a 的取值范围是__ __.5、(2022·本溪模拟)已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .6、已知数列{a n }的前n 项和为S n ,且S n +1=4a n ,n ∈N *,a 1=1.(1)在下列三个结论中选择一个进行证明,并求{a n }的通项公式; ①数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列; ②数列{}a n +1-2a n 是等比数列;③数列{}S n +1-2S n 是等比数列.(2)记b n =S n +2S n S n +1,求数列{b n }的前n 项和T n . 注:如果选择多个结论分别解答,则按第一个解答计分.7、给出以下三个条件:①4a 3,3a 4,2a 5成等差数列;②∀n ∈N *,点(n ,S n )均在函数y =2x -a 的图象上,其中a 为常数;③S 3=7.请从这三个条件中任选一个将下面的题目补充完整,并求解.设{a n }是一个公比为q (q >0,且q ≠1)的等比数列,且它的首项a 1=1,________.(1)求数列{a n }的通项公式;(2)令b n =2log 2a n +1(n ∈N *),证明:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <12. 注:如果选择多个条件分别解答,则按第一个解答计分.8、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .9、设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34.10、已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n =n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)记b n =2n +1a 2n,求数列{b n }的前n 项和S n .11、(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .12、已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n +1-a n ,c n +1=b n b n +2c n,n ∈N *. (1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式;(2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1d,n ∈N *.13、已知数列{a n }满足a 1=12,1a n +1=1a n+2(n ∈N *). (1)求数列{a n }的通项公式;(2)求证:a 21+a 22+a 23+…+a 2n <12.14、若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,S 2=4. ①求数列{a n }的通项公式;②设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .四、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.例4(2022·江门模拟)已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ;(2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .跟踪练习1、(2022·广东模拟)在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1.(1)求{a n }的通项公式;(2)若b n =3na n,求数列{b n }的前n 项和S n .2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .3、(2022·湖南模拟)某同学在复习数列时,发现曾经做过的一道题目因纸张被破坏,导致一个条件看不清(即下题中“已知”后面的内容看不清),但在(1)的后面保留了一个“答案:S 1,S 3,S 2成等差数列”的记录,具体如下:记等比数列{a n }的前n 项和为S n ,已知_____________.①判断S 1,S 2,S 3的关系;(答案:S 1,S 3,S 2成等差数列)②若a 1-a 3=3,记b n =n 12|a n |,求证:b 1+b 2+…+b n <43. (1)请在本题条件的“已知”后面补充等比数列{a n }的首项a 1的值或公比q 的值(只补充其中一个值),并说明你的理由;(2)利用(1)补充的条件,完成②的证明过程.4设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.5、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.6、设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .7、(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n .8、(2022·重庆调研)在等差数列{a n}中,已知a6=12,a18=36.(1)求数列{a n}的通项公式a n;(2)若________,求数列{b n}的前n项和S n,在①b n=4a n a n+1,②b n =(-1)n·a n,③b n=2n ana 这三个条件中任选一个补充在第(2)问中,并对其求解.9、(2022·沈阳模拟)已知正项数列{a n}的前n项和为S n,且a2n+1=2S n+n+1,a2=2.(1)求数列{a n}的通项公式a n;(2)若b n=a n·2n,数列{b n}的前n项和为T n,求使T n>2 022的最小的正整数n的值.。
数列求和的基本方法与技巧(高一)
数列求和的基本方法与技巧(高一)数列是高中代数的重要内容,又是学习高等数学的基础。
在高考和各种数学竞赛中都占有重要的地位。
数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
下面,就几个方面来谈谈数列求和的基本方法和技巧。
一、公式求和法利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、 等差数列求和公式:d n n na a a n S n n2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn 3、11123 (1)2nn k S k n n n ===++++=+∑2222211123...(1)(21)6nn k S k n n n n ===++++=++∑333332211123...(123...)[(1)]2nn k S k n n n n ===++++=++++=+∑练习:①2122...2______________n++++=(注意:等比数列,共有n+1项)②123...2_______________n++++=(注意:等差数列,共有2n 项)③已知2122...2n na =++++,{}100n a 则数列的前项和为__________________④数列7,77,777,7777,…,的一个通项公式为____________________ 例1、 求和:n x x x x ++++32解:①当x=0时,,0=nS ②当x=1时,,n S n=③当x ≠0,且x ≠1时,()xx x x x x S n n n --=--=+1111.例2、 已知3log 1log 23-=x ,求∑=nk kx 1。
解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得∑==nk kn x S 1n n nx x x 211211)211(211)1(-=--=--=练习:设123...,nS n n N *=++++∈,求1()(32)nn S f n n S +=+的最大值.二、分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
高中数列求和方法大全(配练习及答案)
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+- 的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
数列求和方法总结_2
数列求和方法总结一、直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:=n S =(2)等比数列的求和公式⎪⎪⎪⎩⎪⎪⎪⎨⎧=n S (切记:公比含字母时一定要讨论) 例1.求和(1)1+2+3+…+n=(2)=++++n x x x x 32(3)()()121613212222++=++++n n n n 二、分组求和法例2.求和:()()()()n S n n -++-+-+-=2322212321 解:三、错位相减法例3. 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 解:由题可知,⎭⎬⎫⎩⎨⎧n n 22的通项是等差数列{2n}的通项与等比数列⎭⎬⎫⎩⎨⎧n 21的通项之积 n n n S 2226242232+⋅⋅⋅+++=…………………………………① (乘公比) 14322226242221++⋅⋅⋅+++=n n n S ……………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n n S (错位相减)1122212+---=n n n ∴ 1224-+-=n n n S练习:1、求数列()13231,,35,34,33,2-⨯+⨯⨯⨯n n 的前n S n 项和.n n n S 2)12(...252321232⨯-++⨯+⨯+⨯=、求和:四、裂项相消法把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:(1)111)1(1+-=+n n n n (2) 1111()(2)22n n n n =-++ (3) )121121(21)12)(12(1+--=+-n n n n (4)n n n n -+=++111例4. 已知数列{}()11+=n n a a n n 中,,求前n S n 项和.练习:1、在数列{}n a 中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{}nb 的前n S n 项和.2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.。
数列求和7种方法(方法全-例子多)
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数列求和的8种常用方法(最全)
求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111n n a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式: (1)1nk k ==∑12123(1)n n n ++++=+;(2)21n k k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31n k k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2135(21)n n ++++-=. 例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++=xx x n --1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
数列专题:数列求和的6种常用方法(原卷版)
数列专题:数列求和的6种常用方法一、几种数列求和的常用方法1、分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.2、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.3、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.4、倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、公式法求和常用公式公式法主要适用于等差数列与等比数列.1、等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d 2、等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q 3、一些常见的数列的前n 项和:①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n ②21(21)135(21)=-=++++-=∑n k k n n ;③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n 三、裂项相消法中常见的裂项技巧1、等差型裂项(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n (5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n (8)2222211111)(()+=-++n n n n n (9)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 2、根式型裂项=1=-k12=(1)1111(1)1++=+-++n n n n n n 3、指数型裂项(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n nn n n (3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n (5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦n n n n n n n n n n n n n n n n n n n n n n 1111(1)1111(1)(1)(1))22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n nn n n n n 4、对数型裂项11log log log ++=-n a n aa a n na a a 四、错位相减法求和步骤形如n n n A B C =⋅,其中{}n B 为等差数列,首项为1b ,公差为d ;{}n C 为等比数列,首项为1c ,公比为q .对数列{}n A 进行求和,首先列出n S ,记为①式;再把①式中所有项同乘等比数列{}n C 的公比q ,即得n q S ⋅,记为②式;然后①②两式错开一位作差,从而得到{}n A 的前n 项和。
数列求和的8种常用方法(最全)
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
学生版-数列求和的方法 (1)
专题:数列求和的方法班级:座号:姓名:2021年12月24日周五知识点一:基本公式法结合所求结论,寻找已知与未知的关系;根据已知条件列方程求出未知量;组合:即把拆分后每个数列的求和进行组合,可求得原数列的和例1、已知数列n =⋅-,求数列}{n 的前项和n .练习1:求数列14n n a n -=+的前n 项和n S ;知识点三:裂项相消法这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n ;(2))121121(21)12)(12(1+--=+-=n n n n a n (3)()1111n n k k n n k⎛⎫=- ⎪++⎝⎭,(41k =,特别地当1k ==定通项公式:即根据已知条件求出数列的通项公式;巧裂项:即根据通项公式特征准确裂项,将其表示为两项之差的形式;例1、在数列{a n }中,2a n =,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.练习:已知数列{}n a的通项公式n n a n ++=11,且它的前n项和1n S =,则n 的值为()A .98B .99C .100D .101知识点四:倒序相加法类似于等差数列的前n 项和的公式的推导方法。
如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。
这一种求和的方法称为倒序相加法.例1、已知函数.424)(x xx f +=用推导等差数列前n 项和的方法求=+++20092008()20092()20091(f f f .知识点五:错位相减法类似于等比数列的前n 项和的公式的推导方法。
若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法.例1、求数列⋅⋅⋅⋅⋅⋅,2,,2,2,232n 前n 项的和.练习:求和:2311357(21)n n S x x x n x -=++++⋅⋅⋅+-………………………①课后作业:1.有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为__________.2.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{nS n 的前n 项和,求n T .3.已知数列{}n a 的前n 项和为n S ,且216a =,134n n S a +=-.(1)求数列{}n a 的通项公式;(2)若2log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前2020项和2020T ..4.已知数列{}n a 满足11a =,122n n n a a a +=+.记2n n nC a =,则数列{}n C 的前n 项和12...n C C C +++=__________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的典型方法(学生版)
※ 典型例题
考点1.分组求和法求数列的前n 项和
一、分组求和
◎题型1:求数列{}n n a b ±的前n 项和n S
思路1:1122()()()n n n S a b a b a b =±+±++±…1212()()n n a a a b b b =++⋅⋅⋅+±++⋅⋅⋅+
◎题型2:求通项为()()n f n n a g n n ⎧=⎨⎩,是奇,是偶数数
或(1)()n n a f n =-的数列的前n 项和n S 思路2:相邻项组合
(1)当n 为偶数时,12341()()()n n n S a a a a a a -=+++++…;
(2)当n 为奇数时,123421()()()n n n n S a a a a a a a --=++++++….
思路3:奇偶项组合
(1)当n 为偶数时,n S =13124()()n n a a a a a a -++++++……;
(2)当n 为奇数时,n S 13241()()n n a a a a a a -=++++++…….
思路4
:公式优化
(1)当n 为偶数时,利用套路2、3其中之一;
(2)当n 为奇数时,S S a =-.
例3、数列{}n a 的通项公式为2cos 3
n a n =⋅,其前n 项和为n S . (Ⅰ)求32313n n n a a a --++及n S 3;
(Ⅱ)若312
n n n S b n -=
⋅,求数列{}n b 的前n 项和n T .
考点2.倒序相加法
【例2】设()442x
x f x =+,求122012201320132013f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
的值. 变式1.求222289sin 1sin 2sin 3....sin 89S =︒+︒+︒++︒
变式2.已知函数()f x 对任意的x R ∈,都有()+(1)=1f x f x -,
求1231(0)()()()....()(1)n n S f f f f f f n n n n
-=++++++.
考点4.裂项相消法求数列的前n 项和
变式2(Ⅰ)已知数列{}n a 满足:1(21)(21)
n a n n =-+,求数列{}n a 的n 项和n S . (Ⅱ)已知数列{}n a 满足:4(1)(21)(21)
n n n a n n =--+,求数列{}n a 的n 项和n S . .
考点5.数列的综合应用
【例5】各项均为正数的数列{}n a 的前n 项和为n S ,n S 满足()223n n S n n S -+--()
230n n +=,n N *∈. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对任意n N *∈,有1223111114
n n a a a a a a ++++<. 变式1.设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14
构成等比数列.。