simulink-matlab仿真教程
MATLABSimulink模型建立与仿真指南
MATLABSimulink模型建立与仿真指南第一章:MATLAB与Simulink简介MATLAB是一种高级的数值计算和科学分析的编程语言,由MathWorks开发。
它提供了强大的数学函数库和绘图工具,使得用户可以进行复杂的数值计算和数据可视化。
Simulink是MATLAB的扩展,是一种用于建立和仿真动态系统的图形化环境。
在MATLAB中,用户可以通过命令行或脚本文件进行计算。
而在Simulink中,用户可以利用图形化界面来搭建系统模型,并进行仿真。
Simulink提供了丰富的预置模块库,用户只需将这些模块连接起来,即可构建复杂的系统模型。
第二章:Simulink模型的基本组成Simulink模型由多个部分组成,包括输入信号、输出信号和系统组件。
输入信号可以是手动输入的常数,也可以是来自其他模型的信号。
输出信号是用户对系统模型感兴趣的结果。
系统组件即模型中的各个模块,这些模块可以完成各种功能,如乘法、滤波、逻辑运算等。
第三章:模型建立与仿真流程1. 确定系统模型的目标和需求:在建立模型之前,需要明确系统模型的目标和需求。
这些可能包括系统的输入输出关系、稳定性要求、性能要求等。
2. 模型建立:根据系统的目标和需求,选择合适的系统组件,并将其连接起来,构建系统模型。
可根据需要进行参数设置,以适应不同的场景。
3. 仿真设置:在进行仿真之前,需要设置仿真参数。
这些包括仿真时间、仿真步长等。
仿真时间指定了仿真的时间范围,仿真步长指定了仿真的时间间隔。
4. 仿真运行:设置好仿真参数后,可以运行仿真。
Simulink将逐步模拟系统的行为,并输出仿真结果。
第四章:Simulink模型调试与优化在进行仿真时,可能会发现模型存在问题,如输出不符合预期、系统不稳定等。
这时需要对模型进行调试和优化。
1. 系统调试:可以通过数据观察、信号域分析等方法,定位系统问题。
更换输入信号、输出信号,或调整模型参数,可以帮助发现问题。
matlabsimulink教程
matlabsimulink教程Matlab Simulink是一种基于Matlab的高级系统建模和仿真工具。
它允许用户通过图形化界面来构建和模拟复杂的多域系统。
首先,我们来介绍如何启动Simulink。
在Matlab主界面的命令窗口中输入simulink即可打开Simulink图形界面。
Simulink界面主要由工具栏、模型窗口和浏览器窗口组成。
工具栏上的各种按钮可以帮助用户进行模型的构建和仿真。
模型窗口用于进行模型的可视化编辑,用户可以从浏览器中选择模型中的各个组件进行添加和连接。
在开始使用Simulink之前,我们建议用户先了解一些基本概念和术语。
Simulink中的基本组成单位是模块,模块可以是输入、输出、运算器、信号转换器等。
这些模块可以通过连线连接起来,形成一个完整的系统模型。
模块间的信号传递可以是连续的、离散的或者混合的。
在Simulink中,用户可以通过选择不同的模块和参数来构建自己需要的系统模型。
Simulink有很多强大的功能,其中之一是仿真功能。
用户可以设置各种参数来对系统模型进行仿真,比如时间步长、仿真时长等。
Simulink会根据用户设定的参数对系统模型进行仿真,并产生仿真结果。
用户可以通过可视化界面查看仿真结果,也可以将仿真结果保存为数据文件和图形文件。
另外,Simulink还提供了各种调试工具和分析工具,帮助用户对系统模型进行诊断和优化。
除了系统建模和仿真功能,Simulink还可以与其他Matlab工具和工具箱进行集成。
用户可以在Simulink中调用Matlab函数和脚本,也可以使用不同的工具箱来扩展Simulink的功能。
Simulink还支持与外部硬件的连接和通信,比如数据采集卡、控制器等。
总之,Matlab Simulink是一个功能强大、易于使用的系统建模和仿真工具。
通过Simulink,用户可以通过图形化界面来构建和仿真复杂的系统模型,同时还可以进行调试和优化。
matlab电路仿真教程
在MATLAB窗口的工具栏中单击
图标
在命令窗口中输入命令: >>simulink
2. Simulink浏览器
标题栏 菜单栏 工具栏 模块说明框
基本模块库
已安装专用 模块库
模块查找框 模块显示框
Simulink基本模块库包括8类子库 : Continuous(连续模块) Discrete(离散模块) Function&Tables(函数和平台模块) Math(数学模块) Nonlinear(非线性模块) Signals&Systems(信号和系统模块) Sinks(接收器模块) Sources(输入源模块)
基于MATLAB/Simulink的直流电路仿真分析
电路如图所示,参数如下:R1=2,R2=4,R3=12,R4=4,R5=12,R6=4, R7=2,Us=10V。求i3,U4,U7;
仿真结果
(2)启动仿真
启动方式: (1) Simulink模块编辑窗口菜单栏“ Simulation /Start” (2)单击工具栏上的 图标
举例说明 Sim6_1.mdl
三、Simulink常用模块介绍
在模块浏览器中的Simulink节点下包含了搭建一个Simulink模块所 需要的基本模块。本节主要对其中的Sources模块库、Sinks 模块库、 Simpower systeems模块库中的常用模块进行介绍。
输入已有的函数作为仿真的激励信号。首先要在MATLAB环境下建立一
个时间向量和相应的函数值向量,然后将时间向量和函数值向量的名称
[T, U]填入该图标的对话框中。
Sinks模块
Sinks模块库中的模块主要功能是接受信号,并且将接受的信号显示出来。
Matlab系列之Simulink仿真教程
交互式仿真
Simulink支持交互式 仿真,用户可以在仿 真运行过程中进行实 时的分析和调试。
可扩展性
Simulink具有开放式 架构,可以与其他 MATLAB工具箱无缝 集成,从而扩展其功 能。
Simulink的应用领域
指数运算模块
用于实现信号的指数运算。
减法器
用于实现两个信号的减法 运算。
除法器
用于实现两个信号的除法 运算。
对数运算模块
用于实现信号的对数运算。
输出模块
模拟输出模块
用于将模拟信号输出 到外部设备或传感器。
数字输出模块
用于将数字信号输出 到外部设备或传感器。
频谱分析仪
用于分析信号的频谱 特性。
波形显示器
控制工程
Simulink在控制工程领域 中应用广泛,可用于设计 和分析各种控制系统。
信号处理
Simulink中的信号处理模 块可用于实现各种信号处 理算法,如滤波器设计、 频谱分析等。
通信系统
Simulink可以用于设计和 仿真通信系统,如调制解 调、信道编码等。
图像处理
Simulink中的图像处理模 块可用于实现各种图像处 理算法,如图像滤波、边 缘检测等。
用于将时域信号转换为频域信号,如傅里叶变换、 拉普拉斯变换等。
03 时域变换模块
用于将频域信号转换为时域信号,如逆傅里叶变 换、逆拉普拉斯变换等。
04
仿真过程设置
仿真时间的设置
仿真起始时间
设置仿真的起始时间,通 常为0秒。
步长模式
选择固定步长或变步长模 式,以满足不同的仿真需 求。
学习使用MATLABSimulink进行系统仿真
学习使用MATLABSimulink进行系统仿真【第一章:引言】在如今数字化时代,仿真已成为系统设计与优化的重要工具。
系统仿真能够帮助工程师在产品开发的早期阶段快速验证设计,预测产品性能,并提供有关系统行为的深入洞察。
由于其易用性和广泛应用领域,MATLABSimulink成为了工程界最受欢迎的仿真工具之一。
本文将介绍如何学习使用MATLABSimulink进行系统仿真,并强调其专业性。
【第二章:MATLABSimulink概览】MATLABSimulink是一个具有图形化界面的仿真环境,可用于建模、仿真和分析各种复杂动态系统。
它使用块状图形表示系统的组成部分,并通过连接输入和输出端口模拟系统的行为。
用户可以通过简单拖拽和连接块状元件来构建仿真模型,并通过调整参数和设置仿真参数来进行模拟分析。
【第三章:基本建模技巧】在使用MATLABSimulink进行系统仿真之前,掌握基本的建模技巧至关重要。
首先,需要熟悉各种块状元件的功能和用途,例如传感器、执行器、逻辑运算器等。
其次,理解信号流和数据流的概念,以及如何在模型中正确地引导信号传递和数据流动。
最后,学习使用条件语句、循环语句等控制结构来实现特定的仿真逻辑。
【第四章:系统模型的构建】在使用MATLABSimulink进行系统仿真时,首先需要根据实际系统的需求和特点进行系统模型的构建。
这包括确定系统的输入和输出,以及分析系统的功能和性能要求。
然后,使用块状元件将系统的各个组成部分建模,并建立各个组件之间的联系和依赖关系。
在构建模型的过程中,要注意选择恰当的块状元件和参数设置,以确保模型的合理性和可靠性。
【第五章:仿真参数设置与分析】为了获得准确且可靠的仿真结果,需要合理设置仿真参数。
常见的仿真参数包括仿真时间、步长和求解器类型等。
仿真时间应根据系统的实际运行时间确定,步长要足够小以保证仿真的精度,而求解器类型则根据系统的特点选择。
完成仿真后,还需要对仿真结果进行分析,以评估系统的性能和进行优化调整。
Matlab教程-simulink仿真
1990年MathWorks公司为MATLAB增加了用于建立系统框图和 仿真的环境 1992年公司将该软件改名为SIMULINK
Simulink可以搭建:
(1)通信系统物理层和数据链路层; (2)动力学系统; (3)控制系统; (4)数字信号处理系统; (5)电力系统; (6)生物系统; (7)金融系统等.
主要用来设置Simulink与 MATLAB工作空间交换 数值的有关选项.
Load from workspace (从工作空间载入数据) Save to workspace(将输 出保存到工作空间) Save options(保存选 项).
17
3.诊断选项(Diagnostics)
用于设置系统对仿真过 程中,可能会出现一些非正 常事件做出何种反应,有以 下几种:
第六讲 Simulink仿真
1
本章目标
了解Simulink基本模块的性质 掌握系统仿真的方法
2
主要内容
6.1 Simulink与系统仿真 6.2 Simulink的使用 6.3 Simulink的基本模块 6.4 功能模块的处理 6.5 设置仿真参数 6.6 观察Simulink的仿真结果
3
6.1 Simulink与系统仿真
19
扩展阅读
6.7自定义功能模块
根据用户自己的需要加工所需的功能模块
20
例6-2 演示
21
应用举例
例6-3 仿真计算y(t)=sin(t)-sin(2t). 解题步骤:
(1)运行Simulink并新建一个模型窗口 (2)将所需模块添加到模型中 (3)编辑模块组成模型 (4)进行系统仿真参数设置 (5)进行系统仿真 (6)观察系统仿真结果
simulink_matlab仿真教程
simulink matlab仿真环境教程Simulink是面向框图的仿真软件。
演示一个Simulink的简单程序【例1.1】创建一个正弦信号的仿真模型。
步骤如下:(1) 在MATLAB的命令窗口运行simulink 命令,或单击工具栏中的图标,就可以打开Simulink模块库浏览器(Simulink Library Browser) 窗口,如图1.1所示。
图7.1 Simulink界面(2) 单击工具栏上的图标或选择菜单“File”——“New”——“Model”,新建一个名为“untitled”的空白模型窗口。
(3) 在上图的右侧子模块窗口中,单击“Source”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink下的Source子模块库,便可看到各种输入源模块。
(4) 用鼠标单击所需要的输入信号源模块“Sine Wave”(正弦信号),将其拖放到的空白模型窗口“untitled”,则“Sine Wave”模块就被添加到untitled窗口;也可以用鼠标选中“Sine Wave”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave”模块添加到untitled窗口,如图1.2所示。
(5)用同样的方法打开接收模块库“Sinks”,选择其中的“Scope”模块(示波器)拖放到“untitled”窗口中。
(6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。
如图1.3所示。
(7) 开始仿真,单击“untitled”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。
双击“Scope”模块出现示波器显示屏,可以看到黄色的正弦波形。
MATLAB使用Simulink 进行建模与仿真方法
方法/步骤
第一步:我们打开MATLAB软件,然后 在命令窗口中输入simulink或点击左 上角的【新建】,然后选择 【simulink Model】,如下图所示。
方法/步骤
第二步:此时将进入如下图所示的 Simulink界面,我们点击工具栏中的 【Library Browser】,如下图所示。
方法/步骤
第五步:基本的仿真模型需要信号发 生装置,我们可以选择如下图所示的 各种信号发生器,如正弦波信号发生 器,我们将其拖动到仿真模型框图。
方法/步骤
第六步:有了信号发生装置,作为一 个合理的仿真模型则必有信号接收与 显示装置,如下图所示,我们可以选 择Scope进行波形显示。
方法/步骤
第七步:我们选择好基本的输入输出 装置后,如下图所示,我们在仿真模 型框图中布局好装置位置并进行连线。
方法/步骤
第八步:仿真模型连线完毕后,检查 无误后我们就可以按下【Run】按钮, 运行我们的仿真程序了,如下图所示, 我们可以在显示器件中观察仿真结果, 并进行模型调整与修改。
注意事项
Simulink是 MATLAB很强大的系统建模、仿真和分析功能组件,上述方法、步骤只介绍了使用 Simulink搭建最基础的输入输出模型。
参考资料:Matlab/Simulink通信系统建模与仿真实例分析
《Matlab/Simulink通信系统建模与仿真实例分析》是2008年清华大学出版的一本图书,作者是 邵玉斌。
参考资料:基于matlab/simulink的通信系统建模与仿真(十三五)
《基于matlab/simulink的通信系统建模与仿真(十三五)》是2017年10月北京航空航天大学出 版社出版的图书,作者张瑾,周原,姚巧鸽,赵静。本书以MATLAB R2016a为平台,通过大量的 MATLAB、Simulink仿真实例,加深读者对通信系统原理的理解。
如何使用MATLABSimulink进行动态系统建模与仿真
如何使用MATLABSimulink进行动态系统建模与仿真如何使用MATLAB Simulink进行动态系统建模与仿真一、引言MATLAB Simulink是一款强大的动态系统建模和仿真工具,广泛应用于各个领域的工程设计和研究中。
本文将介绍如何使用MATLAB Simulink进行动态系统建模与仿真的方法和步骤。
二、系统建模1. 模型构建在MATLAB Simulink中,可以通过拖拽模块的方式来构建系统模型。
首先,将系统的元件和子系统模块从库中拖拽到模型窗口中,然后连接这些模块,形成一个完整的系统模型。
2. 参数设置对于系统模型的各个组件,可以设置对应的参数和初始条件。
通过双击模块可以打开参数设置对话框,可以设置参数的数值、初始条件以及其他相关属性。
3. 信号连接在模型中,各个模块之间可以通过信号连接来传递信息。
在拖拽模块连接的同时,可以进行信号的名称设置,以便于后续仿真结果的分析和显示。
三、系统仿真1. 仿真参数设置在进行系统仿真之前,需要设置仿真的起止时间、步长等参数。
通过点击仿真器界面上的参数设置按钮,可以进行相关参数的设置。
2. 仿真运行在设置好仿真参数后,可以点击仿真器界面上的运行按钮来开始仿真过程。
仿真器将根据设置的参数对系统模型进行仿真计算,并输出仿真结果。
3. 仿真结果分析仿真结束后,可以通过查看仿真器界面上的仿真结果来分析系统的动态特性。
Simulink提供了丰富的结果显示和分析工具,可以对仿真结果进行绘图、数据处理等操作,以便于对系统模型的性能进行评估。
四、参数优化与系统设计1. 参数优化方法MATLAB Simulink还提供了多种参数优化算法,可以通过这些算法对系统模型进行优化。
可以通过设置优化目标和参数范围,以及定义参数约束条件等,来进行参数优化计算。
2. 系统设计方法Simulink还支持用于控制系统、信号处理系统和通信系统等领域的特定设计工具。
通过这些工具,可以对系统模型进行控制器设计、滤波器设计等操作,以满足系统性能要求。
MATLAB教程_第7章__Simulink仿真
三、模块间的连线
1.连接两个模块 从一个模块的输出端连到另一个模块的输入端是Simulink仿真最 基本的操作。方法是先移动鼠标指向模块的输出端,鼠标的箭头 会变成十字形光标,这时按住鼠标左键,拖动鼠标到另一个模块 的输入端,当十字形光标出现“重影”时,释放鼠标即完成了连 接。
2.模块间连线的调整 用鼠标单击连线,可以选中该连线。这时会看到线上的一些黑色小 方块,这些是连线的关键点。用鼠标按住关键点,拖动即可以改 变连线的方向。
带限白噪声
2.输出模块(Sinks)
模块 Scope Floating Scope XY Graph Outl Display
功能 示波器 可选示波器 XY关系图 创建输出端 实时数值显示
模块 To File To Workspace Terminator Stop Simulation
功能 输出到文件 输出到工作空间 通用终端 输出不为0时停止仿真
一、Solver选项卡
(1)Simulink time 设置仿真起始时间和停止时间。
(2)Solver options 仿真解题器的操作。根据类型(Type)的变化 分为:Variable-step(变步长算法)和Fixedstep(固定步长算法)。
二、Data Import/Export选项卡
7.3 仿真模型的参数设置
选择模型窗口Simulation→Configuration Parameters…选项,将出现仿真参数配置窗口。
仿真参数配置窗口主要分为7个选项卡:Solver(解题 器)、Data Import/Export(数据输入/输出), Optimization(优化)、Diagnostics(诊断)、 Hardware Implementation(硬件工具)、Model Referencing(模型引用)和Real-Time Workshop(实 时工作空间),其中Solver、Data Import/Export和 Diagnostics三项经常用到。
MATLABSimulink联合仿真指南
MATLABSimulink联合仿真指南MATLAB Simulink联合仿真指南第一章:MATLAB和Simulink概述1.1 MATLAB的介绍1.1.1 MATLAB的起源和发展1.1.2 MATLAB的基本特点和优势1.1.3 MATLAB的应用领域1.2 Simulink的介绍1.2.1 Simulink的基本概念和原理1.2.2 Simulink在系统建模和仿真中的应用1.2.3 Simulink与其他仿真软件的比较1.3 MATLAB和Simulink的关系1.3.1 MATLAB和Simulink的协同工作原理1.3.2 MATLAB和Simulink的应用场景第二章:MATLAB基础2.1 MATLAB语言基础2.1.1 MATLAB的数据类型和变量2.1.2 MATLAB的基本运算和函数2.1.3 MATLAB的控制结构2.2 MATLAB图形界面2.2.1 MATLAB的命令窗口和编辑器 2.2.2 MATLAB的图形窗口和绘图工具2.3 MATLAB的数据处理与分析2.3.1 数据导入和导出2.3.2 数据操作和处理2.3.3 数据可视化第三章:Simulink基础3.1 Simulink的基本组成3.1.1 模型、系统和信号的概念3.1.2 Simulink模型的创建和编辑3.1.3 Simulink模型的参数设置3.2 Simulink的基本元素3.2.1 Simulink的信号类型和传输线3.2.2 Simulink的模块和子系统3.2.3 Simulink的运算器和逻辑门3.3 Simulink的仿真过程3.3.1 仿真参数的设置3.3.2 仿真的执行和结果分析3.3.3 仿真模型的调试和优化第四章:MATLAB和Simulink的联合应用4.1 MATLAB与Simulink的数据交互4.1.1 数据导入和导出的方法4.1.2 数据传输和共享的技巧4.1.3 数据处理和分析的整合4.2 MATLAB和Simulink的调用和扩展4.2.1 MATLAB函数在Simulink中的应用4.2.2 Simulink模型的MATLAB脚本控制4.2.3 Simulink模型的自定义函数和库4.3 MATLAB和Simulink的联合仿真案例分析 4.3.1 电路系统仿真4.3.2 控制系统仿真4.3.3 信号处理系统仿真第五章:MATLAB和Simulink的高级应用5.1 MATLAB在系统设计和优化中的应用5.1.1 优化算法和工具的使用5.1.2 系统性能评估和参数调整5.1.3 系统设计的可视化和交互5.2 Simulink在实时仿真和硬件连接中的应用5.2.1 实时仿真的基本概念和要素5.2.2 Simulink和硬件连接的方法和工具5.2.3 实时仿真案例分析5.3 MATLAB和Simulink在自动化测试和验证中的应用 5.3.1 自动化测试的需求和挑战5.3.2 MATLAB和Simulink在测试自动化中的应用5.3.3 测试验证的案例和结果结语:MATLAB Simulink联合仿真的前景和发展6.1 MATLAB Simulink在工程教学和研究中的意义6.2 MATLAB Simulink的应用前景和发展趋势参考文献注:以上章节的标题仅为示例,具体内容和顺序可根据实际情况进行调整。
MATLABSimulink仿真(最精简)
Format--Foreground Color改模块前景 颜色;
Format--Background Color改模块背景 颜色;
Format-- Screen Color改模型窗口的颜 色。
19
8.3.3 simulink功能模块的处理
8.参数设定:双击模块, 从而对模块进行参 数设定。 9.属性设定:选中模块,Edit--Block Properties
1.将仿真结果信号输入到输出模块
(1)“Scope”示波器
(2)“XY Graph”二维X-Y图形显示器
(3)“Display”数字显示器中,直接查看。
34
6.5 观察Simulink的仿真结果
2.将仿真结果信号输入到“To Workspace”模
块中,再用绘图命令在MATLAB命令窗口里
绘制出图形。
8
8.3.1 SIMULINK的模块库
1. 常用元件模块
9
8.3.1 SIMULINK的模块库
2. 连续模块
10
8.3.1 SIMULINK的模块库
3. 离散模块
11
8.3.1 SIMULINK的模块库
4. 数学模块
12
8.3.1 SIMULINK的模块库
5.输入源模块
13
8.3.2 simulink模型的建立
本章目标
了解Simulink基本模块的性质
掌握系统仿真的方法
1
主要内容
8.1 Simulink与系统仿真
8.2 Simulink的使用 8.3 Simulink的基本模块 8.4 功能模块的处理 8.5 设置仿真参数
8.6 观察Simulink的仿真结果
matlab的simulink仿真建模举例
matlab的simulink仿真建模举例Matlab的Simulink仿真建模举例Simulink是Matlab的一个工具包,用于建模、仿真和分析动态系统。
它提供了一个可视化的环境,允许用户通过拖放模块来构建系统模型,并通过连接和配置这些模块来定义模型的行为。
Simulink是一种功能强大的仿真平台,可以用于解决各种不同类型的问题,从控制系统设计到数字信号处理,甚至是嵌入式系统开发。
在本文中,我们将通过一个简单的例子来介绍Simulink的基本概念和工作流程。
我们将使用Simulink来建立一个简单的电机速度控制系统,并进行仿真和分析。
第一步:打开Simulink首先,我们需要打开Matlab并进入Simulink工作环境。
在Matlab命令窗口中输入"simulink",将会打开Simulink的拓扑编辑器界面。
第二步:创建模型在拓扑编辑器界面的左侧,你可以看到各种不同类型的模块。
我们将使用这些模块来构建我们的电机速度控制系统。
首先,我们添加一个连续模块,代表电机本身。
在模块库中选择Continuous中的Transfer Fcn,拖动到编辑器界面中。
接下来,我们添加一个用于控制电机速度的控制器模块。
在模块库中选择Discrete中的Transfer Fcn,拖动到编辑器界面中。
然后,我们需要添加一个用于输入参考速度的信号源模块。
在模块库中选择Sources中的Step,拖动到编辑器界面中。
最后,我们添加一个用于显示模拟结果的作用模块。
在模块库中选择Sinks 中的To Workspace,拖动到编辑器界面中。
第三步:连接模块现在,我们需要将这些模块连接起来以定义模型的行为。
首先,将Step模块的输出端口与Transfer Fcn模块的输入端口相连。
然后,将Transfer Fcn模块的输出端口与Transfer Fcn模块的输入端口相连。
接下来,将Transfer Fcn模块的输出端口与To Workspace模块的输入端口相连。
Matlab实验4 Simulink系统仿真
模块形状
表 7.2 常用的输入信号源模块表 功能说明 恒值常数,可设置数值 阶跃信号 线性增加或减小的信号 正弦波输出 信号发生器,可以产生正弦、方波、锯齿波和随 机波信号 从文件获取数据 从当前工作空间定义的矩阵读数据
仿真时钟,输出每个仿真步点的时间 输入模块
2. 接收模块库(Sinks) 接收模块是用来接收模块信号的,常用的接收模块如表 7.3 所示。
Matlab实验讲义
实验四 Simulink系统仿真
要求: 1、掌握Simulink常用输入、输出、运算模块。 2、掌握Simulink模型的建立及系统仿真方法。 实验类型:综合性 学时分配:3学时 Simulink 是面向框图的仿真软件。 7.1 演示一个 Simulink 的简单程序 【例 7.1】创建一个正弦信号的仿真模型。 步骤如下: (1) 在 MATLAB 的命令窗口运行 simulink 命令,或单击工具栏中的 图标,就可以打 开 Simulink 模块库浏览器(Simulink Library Browser) 窗口,如图 7.1 所示。
7.2.2 Simulink 的模型窗口
模型窗口由菜单、工具栏、模型浏览器窗口、模型框图窗口以及状态栏组成。
菜单 工具栏
模型浏览器
模型框图
状态栏
图7.5 双窗口模型窗口
1. 状态栏
3
Matlab实验讲义
2. 工具栏 模型窗口工具栏如图 7.6 所示。
创建并编译生成exe文件
展示父系统 打开调试器
开始仿真 结束仿真
4. 模块的删除 要删除模块,应选定待删除模块,按 Delete 键;或者用菜单“Edit”Æ“Clear”或“Cut”; 或者用工具栏的“Cut”按钮。
第4讲-MATLAB仿真-SIMULINK
第7讲 SIMULINK
图2-17 示波器显示窗口的参数设置
第7讲 SIMULINK 将建模存盘为lizi1.mdl,然后在MATLAB下运行如 下命令(参见图2-18) >>clear;% >>open lizi1.mdl;% 这时将看到建模模型文件被打
>>sim(′lizi1.mdl′);% 启动模型仿真,显示出仿真波
可以单击工具栏上的小三角按钮或使用快捷键Ctrl+T启
动仿真。仿真结果如图 2-15 所示。读者可以将结果与 图2-3所示的结果进行比较。
第7讲 SIMULINK
图2-15 仿真结果
第7讲 SIMULINK • 更换信号源为Sources子模块库中的SignalGenerator,并设置 信号源为0.2Hz的方波,幅度为1,如图2-16左边对话框所示。 • 设置示波器显示窗口的属性(Parameters),使之成为双踪 显示,然后将示波器第二输入节点与信号源输出相连,这 样我们就可以同时观察系统的输入输出波形了。系统建模
数据能够送回 MATLAB 工作空间。在示波器波形显示 窗口单击“参数Parameters”工具图标,打开显示参数 设 置 对 话 框 。 选 中 Data history 标 签 下 的 Savedatatoworkspace ,并设传递变量名称,例如设为 ScopeData,格式选择为Structurewithtime(带时间的结 构型变量)。参数设置的情况如图2-17所示。
图2-21 FromWorkspace模块的参数设置
Uc( s) 1 H ( s) F ( s) LC 2 s RCs 1
其中,R=3Ω, L=1H, C=0.1F。H(s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
simulink matlab 仿真环境教程Simulink 是面向框图的仿真软件。
演示一个Simulink 的简单程序【例1.1】创建一个正弦信号的仿真模型。
步骤如下:(1) 在MATLAB 的命令窗口运行simulink 命令,或单击工具栏中的图标,就可以打开Simulink 模块库浏览器(Simulink Library Browser) 窗口,如图1.1所示。
(2) 单击工具栏上的图标或选择菜单“File ”——“New ”——“Model ”,新建一个名为“untitled ”的空白模型窗口。
(3) 在上图的右侧子模块窗口中,单击“Source ”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink 下的Source 子模块库,便可看到各种输入源模块。
(4) 用鼠标单击所需要的输入信号源模块“Sine Wave ”(正弦信号),将其拖放到的空白模型窗口“untitled ”,则“Sine Wave ”模块就被添加到untitled 窗口;也可以用鼠标选中“Sine Wave ”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave ”模块添加到untitled 窗口,如图1.2所示。
图7.1 Simulink 界面(5)用同样的方法打开接收模块库“Sinks”,选择其中的“Scope”模块(示波器)拖放到“untitled”窗口中。
(6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。
如图1.3所示。
(7) 开始仿真,单击“untitled”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。
双击“Scope”模块出现示波器显示屏,可以看到黄色的正弦波形。
如图1.4所示。
(8) 保存模型,单击工具栏的图标,将该模型保存为“Ex0701.mdl”文件。
1.2 Simulink的文件操作和模型窗口1.2.1 Simulink的文件操作1. 新建文件新建仿真模型文件有几种操作:▪在MATLAB的命令窗口选择菜单“File”“New”“Model”。
图7.2 Simulink界面图7.3 Simulink模型窗口图7.4 示波器窗口▪在图1.1的Simulink模块库浏览器窗口选择菜单“File”“New”“Model”,或者单击工具栏的图标。
▪ 在图1.3的Simulink 模型窗口选择菜单“File ”“New ”“Model ”,或者单击工具栏的图标。
2. 打开文件打开仿真模型文件有几种操作:▪ 在MATLAB 的命令窗口输入不加扩展名的文件名,该文件必须在当前搜索路径中,例如输入“Ex0701”。
▪ 在MATLAB 的命令窗口选择菜单“File ”Open…”或者单击工具栏的图标打开文件。
▪在图1.1的Simulink 模块库浏览器窗口选择菜单“File ”“Open…”或者单击工具栏的图标打开“.mdl ”文件。
▪在图1.3的Simulink 模型窗口中选择菜单“File ”“Open…”或者单击工具栏的图标打开文件。
1.2.2 Simulink 的模型窗口模型窗口由菜单、工具栏、模型浏览器窗口、模型框图窗口以及状态栏组成。
1. 状态栏2. 工具栏模型窗口工具栏如图1.6所示。
3. 菜单Simulink 的模型窗口的常用菜单如表1.1所示。
表1.1模型窗口常用菜单表状态栏菜单模型框图模型浏览器图7.5 双窗口模型窗口工具栏开始仿真 打开库浏览器结束仿真打开调试器展示父系统单双窗口切换 图7.6 工具栏仿真模型 更新模块框图创建并编译生成exe 文件1.3 模型的创建1.3.1模块的操作1. 对象的选定▪选定单个对象选定对象只要在对象上单击鼠标,被选定的对象的四角处会出现小黑块编辑框。
▪选定多个对象如果选定多个对象,可以按下Shift键,然后再单击所需选定的模块;或者用鼠标拉出矩形虚线框,将所有待选模块框在其中,则矩形框中所有的对象均被选中,如图1.7所示。
图7.7 选定多个对象▪选定所有对象如果要选定所有对象,可以选择菜单“Edit ”“Select all”。
2. 模块的复制(1) 不同模型窗口(包括模型库窗口)之间的模块复制▪选定模块,用鼠标将其拖到另一模型窗口。
▪选定模块,使用菜单的“Copy”和“Paste”命令。
▪选定模块,使用工具栏的“Copy”和“Paste”按钮。
(2) 在同一模型窗口内的复制模块(如图1.8所示)▪选定模块,按下鼠标右键,拖动模块到合适的地方,释放鼠标。
▪选定模块,按住Ctrl键,再用鼠标拖动对象到合适的地方,释放鼠标。
▪使用菜单和工具栏中的“Copy”和“Paste”按钮。
图7.8 在同一模型窗口复制对象3. 模块的移动▪在同一模型窗口移动模块选定需要移动模块,用鼠标将模块拖到合适的地方。
▪在不同模型窗之间移动模块在不同模型窗之间移动模块,在用鼠标移动的同时按下Shift键。
当模块移动时,与之相连的连线也随之移动。
4. 模块的删除要删除模块,应选定待删除模块,按Delete键;或者用菜单“Edit ”“Clear”或“Cut”;或者用工具栏的“Cut”按钮。
5. 改变模块大小选定需要改变大小的模块,出现小黑块编辑框后,用鼠标拖动编辑框,可以实现放大或缩小。
6. 模块的翻转▪模块翻转180度选定模块,选择菜单“Format ”“Flip Block”可以将模块旋转180度,如同1.9中间为翻转180度示波器模块。
▪模块翻转90度选定模块,选择菜单“Format ”“Rotate Block”可以将模块旋转90度,如图1.9右边示波器所示。
如果一次翻转不能达到要求,可以多次翻转来实现。
图7.9 翻转模块7. 模块名的编辑▪修改模块名单击模块下面或旁边的模块名,出现虚线编辑框就可对模块名进行修改。
▪模块名字体设置选定模块,选择菜单“Format ”“Font”,打开字体对话框设置字体。
▪模块名的显示和隐藏选定模块,选择菜单“Format ”“Hide /Show name”,可以隐藏或显示模块名。
▪模块名的翻转选定模块,选择菜单“Format ”“Flip name”,可以翻转模块名。
1.3.2信号线的操作1. 模块间连线先将光标指向一个模块的输出端,待光标变为十字符后,按下鼠标键并拖动,直到另一模块的输入端。
2. 信号线的分支和折曲(1) 分支的产生将光标指向信号线的分支点上,按鼠标右键,光标变为十字符,拖动鼠标直到分支线的终点,释放鼠标;或者按住Ctrl键,同时按下鼠标左键拖动鼠标到分支线的终点,如图1.10所示。
图7.10 信号线的分支(2) 信号线的折线选中已存在的信号线,将光标指向折点处,按住Shift键,同时按下鼠标左键,当光标变成小圆圈时,用鼠标拖动小圆圈将折点拉至合适处,释放鼠标,如图1.11所示。
图7.11 信号线的折线3. 信号线文本注释(label)▪添加文本注释双击需要添加文本注释的信号线,则出现一个空的文字填写框,在其中输入文本。
▪修改文本注释单击需要修改的文本注释,出现虚线编辑框即可修改文本。
▪移动文本注释单击标识,出现编辑框后,就可以移动编辑框。
▪复制文本注释单击需要复制的文本注释,按下Ctrl键同时移动文本注释,或者用菜单和工具栏的复制操作。
4. 在信号线中插入模块如果模块只有一个输入端口和一个输出端口,则该模块可以直接被插入到一条信号线中。
1.3.3给模型添加文本注释(1) 添加模型的文本注释在需要当作注释区的中心位置,双击鼠标左键,就会出现编辑框,在编辑框中就可以输入文字注释。
(2) 注释的移动在注释文字处单击鼠标左键,当出现文本编辑框后,用鼠标就可以拖动该文本编辑框。
1.4 Simulink的基本模块1.4.1基本模块Simulink的基本模块包括9个子模块库。
1.输入信号源模块库(Sources)输入信号源模块是用来向模型提供输入信号。
常用的输入信号源模块源如表1.2所示。
表1.2 常用的输入信号源模块表名称模块形状功能说明Constant恒值常数,可设置数值Step阶跃信号Ramp线性增加或减小的信号Sine Wave正弦波输出Signal信号发生器,可以产生正弦、方波、锯齿波和随机波信号GeneratorFrom File从文件获取数据From Workspace从当前工作空间定义的矩阵读数据Clock仿真时钟,输出每个仿真步点的时间In输入模块2. 接收模块库(Sinks)接收模块是用来接收模块信号的,常用的接收模块如表1.3所示。
表1.3 常用的接收模块表名称模块形状功能说明Scope示波器,显示实时信号Display实时数值显示XY Graph显示X-Y两个信号的关系图To File 把数据保存为文件To Workspace 把数据写成矩阵输出到工作空间输入不为零时终止仿真,常与关系模块配合使用StopSimulationOut输出模块3. 连续系统模块库(Continuous)连续系统模块是构成连续系统的环节,常用的连续系统模块如表1.4所示。
表1.4 常用的连续系统模块表名称模块形状功能说明Integrator积分环节Derivative微分环节State-Space 状态方程模型Transfer Fcn传递函数模型Zero-Pole零—极点增益模型Transport Delay把输入信号按给定的时间做延时4. 离散系统模块库(Discrete)离散系统模块是用来构成离散系统的环节,常用的离散系统模块如表1.5所示。
表1.5 常用的离散系统模块表名称模块形状功能说明离散传递函数模型Discrete TransferFcnDiscrete Zero-Pole离散零极点增益模型离散状态方程模型DiscreteState-SpaceDiscrete Filter离散滤波器Zero-Order Hold零阶保持器First-Order Hold 一阶保持器Unit Delay采样保持,延迟一个周期1.4.2常用模块的参数和属性设置1. 模块参数设置(1) 正弦信号源(Sine Wave)双击正弦信号源模块,会出现如图1.13所示的参数设置对话框。
图 1.13的上部分为参数说明,仔细阅读可以帮助用户设置参数。
Sine type 为正弦类型,包括Time-based 和Sample-based ;Amplitude 为正弦幅值;Bias 为幅值偏移值;Frequency 为正弦频率;Phrase 为初始相角;Sample time 为采样时间。