高中数学第3章指数函数对数函数和幂函数3.1.2.1指数函数的概念图象及性质苏教版

合集下载

高一数学课本目录

高一数学课本目录

高一数学课本目录第一章集合与函数概念1.1 集合的概念与运算集合的定义及表示方法集合的基本性质集合的基本运算:并集、交集、补集1.2 函数的概念及其表示函数的概念与定义域、值域函数的表示方法:解析式、列表、图像函数的简单性质:单调性、奇偶性1.3 函数的基本性质函数的单调性及其应用函数的奇偶性及其应用函数的最大值与最小值第二章指数与对数函数2.1 指数的概念与运算指数的定义及性质指数幂的运算规则2.2 指数函数及其性质指数函数的定义与图像指数函数的性质2.3 对数的概念与运算对数的定义及性质对数的运算规则2.4 对数函数及其性质对数函数的定义与图像对数函数的性质第三章幂函数与基本初等函数3.1 幂函数的概念与性质幂函数的定义与图像幂函数的性质3.2 基本初等函数的综合应用指数函数、对数函数、幂函数的综合应用函数的图像变换与平移第四章函数的应用与模型4.1 函数在日常生活中的应用利率、折扣、增长率的计算函数在物理、化学中的应用4.2 函数模型及其应用函数模型的构建与求解函数模型在解决实际问题中的应用第五章空间几何体的结构5.1 几何体的基本概念点、线、面的定义及性质空间几何体的分类5.2 几何体的基本结构多面体的结构特点旋转体的结构特点第六章三视图与直观图6.1 三视图的概念与绘制三视图的基本规则三视图的绘制方法6.2 直观图的概念与绘制直观图的定义及特点直观图的绘制步骤与技巧第七章表面积与体积计算7.1 几何体的表面积计算多面体表面积的计算方法旋转体表面积的计算方法7.2 几何体的体积计算多面体体积的计算方法旋转体体积的计算方法第八章复习与巩固提高8.1 集合与函数的综合复习集合与函数的基本概念与性质的回顾集合与函数的综合应用题目的训练8.2 空间几何体的综合复习空间几何体的基本概念与结构的回顾三视图与直观图的绘制与识别能力的训练8.3 解题方法与技巧的总结与提高函数与几何问题的解题策略与方法的总结综合应用题的解题思路与技巧的训练本目录涵盖了高一数学的主要知识点,从集合与函数的基本概念开始,逐步引入指数与对数函数、幂函数等基本初等函数,再进一步探讨函数的应用与模型。

(完整版)北师大版高中数学课本目录

(完整版)北师大版高中数学课本目录

必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3.2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1 函数概念2.2 函数的表示法2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像4.2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算4.2 换底公式§5 对数函数5.1 对数函数的概念5.2 y=log2x的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1.1 利用函数性质判定方程解的存在1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识4.2 空间图形的公理§5 平行关系5.1 平型关系的判定5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程1.1 直线的倾斜角和斜率1.2 直线的方程1.3 两条直线的位置关系1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式必修3第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差§5 用样本估计总体5.1 估计总体的分布5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想 1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率 1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3 模拟方法—概率的应用必修4第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与诱导公式§5 正弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3正弦函数的性质§6 余弦函数的性质与图像6.1正弦函数的图像6.2 正弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像与性质7.2 正切函数的诱导公式§8 函数y=Asin 的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度、和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标 4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表示4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数2.3 两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列1.1 数列的概念1.2 数列的函数特征§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理 1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大(小)值§4 简单线性规划4.1 二元一次不等式(组)与平面区域4.2 简单线性规划4.3 简单线性规划的应用选修1-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全。

高中数学苏教版教材目录

高中数学苏教版教材目录

高中数学苏教版教材目录(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除苏教版-----------------------------------必修-----------------------第1章集合集合的含义及其表示子集、全集、补集交集、并集第2章函数函数的概念函数的概念和图象函数的表示方法函数的简单性质函数的单调性函数的奇偶性映射的概念第3章指数函数、对数函数和幂函数指数函数分数指数幂指数函数对数函数对数对数函数幂函数函数的应用函数与方程函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系 1.平行直线2.异面直线直线与平面的位置关系1.直线与平面平行2.直线与平面垂直平面与平面的位置关系1.两平面平行2.平面垂直空间几何体的表面积和体积空间几何体的表面积空间几何体的体积第2章平面解析几何初步直线与方程直线的斜率直线的方程1.点斜式2.两点式3.一般式两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系空间直角坐标系空间直角坐标系空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步算法的意义流程图顺序结构选择结构循环结构基本算法语句赋值语句输入、输出语句条件语句循环语句算法案例第2章统计抽样方法简单随机抽样1.抽签法2.随机数表法系统抽样分层抽样总体分布的估计频率分布表频率分布直方图与折线图茎叶图总体特征数的估计平均数及其估计方差与标准差线性回归方程第3章概率随机事件及其概率随机现象随机事件的概率古典概型几何概型互斥事件-----------------------------------必修4-----------------------------------第1章三角函数任意角、弧度任意角弧度制任意角的三角函数任意角的三角函数同角三角函数关系三角函数的诱导公式三角函数的图象和性质三角函数的周期性三角函数的图象与性质函数y=Asin(ωx+ψ)的图象三角函数的应用第2章平面向量向量的概念及表示向量的线性运算向量的加法向量的减法向量的数乘向量的坐标表示平面向量基本定理平面向量的坐标运算向量的数量积向量的应用第3章三角恒等变换两角和与差的三角函数两角和与差的余弦两角和与差的正弦两角和与差的正切二倍角的三角函数几个三角恒等式-----------------------------------必修5-----------------------------------第1章解三角形1.1正弦定理1.2余弦定理451.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列等差数列的概念等差数列的通项公式等差数列的前n 项和2.3等比数列等比数列的概念等比数列的通项公式等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题二元一次不等式表示的平面区域二元一次不等式组表示的平面区域 简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 基本不等式的证明基本不等式的应用-----------------------------------选修-------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念平均变化率瞬时变化率——导数3.2导数的运算常见函数的导数函数的和、差、积、商的导数 3.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修-------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏 2.2直接证明与间接证明直接证明间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程曲线与方程求曲线的方程曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算空间向量及其线性运算共面向量定理空间向量基本定理空间向量的坐标表示空间向量的数量积 3.2空间向量的应用直线的方向向量与平面的法向量空间线面关系的判定空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念平均变化率瞬时变化率——导数1.2导数的运算常见函数的导数函数的和、差、积、商的导数简单复合函数的导数1.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值1.4导数在实际生活中的应用1.5定积分曲边梯形的面积定积分微积分基本定理第二章推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏2.2直接证明与间接证明直接证明间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理二项式定理二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性条件概率事件的独立性2.4二项分布2.5随机变量的均值与方差离散型随机变量的均值离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4------------------------相似三角形的进一步认识平行线分线段成比例定理相似三角形圆的进一步认识圆周角定理圆的切线圆中比例线段圆内接四边形圆锥截线球的性质圆柱的截线圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------二阶矩阵与平面向量矩阵的概念二阶矩阵与平面列向量的乘法几种常见的平面变换恒等变换伸压变换反射变换旋转变换投影变换切变变换变换的复合与矩阵的乘法矩阵乘法的概念矩阵乘法的简单性质逆变换与逆矩阵逆矩阵的概念二阶矩阵与二元一次方程组特征值与特征向量矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------直角坐标系直角坐标系极坐标系球坐标系与柱坐标系曲线的极坐标方程曲线的极坐标方程的意义常见曲线的极坐标方程平面坐标系中几种常见变换平面直角坐标系中的平移变换平面直角坐标系中的伸缩变换参数方程参数方程的意义参数方程与普通方程的互化6参数方程的应用平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------不等式的基本性质含有绝对值的不等式含有绝对值的不等式的解法含有绝对值的不等式的证明不等式的证明比较法综合法和分析法反证法放缩法几个著名的不等式柯西不等式排序不等式算术-几何平均值不等式运用不等式求最大(小)值运用算术-几何平均值不等式求最大(小)值运用柯西不等式求最大(小)值运用数学归纳法证明不等式学习总结报告7。

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题二元一次不等式(组)与平面区域简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数word格式-可编辑-感谢下载支持 2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案第一章:幂函数1.1 幂函数的定义与性质学习幂函数的定义,了解幂函数的基本形式f(x) = x^a。

探讨幂函数的性质,包括奇偶性、单调性、周期性等。

1.2 幂函数的图像与性质绘制常见幂函数的图像,观察图像的特点。

分析幂函数的单调区间、极值等性质。

第二章:指数函数2.1 指数函数的定义与性质学习指数函数的定义,了解指数函数的基本形式f(x) = a^x。

探讨指数函数的性质,包括单调性、稳定性、特殊点等。

2.2 指数函数的图像与性质绘制常见指数函数的图像,观察图像的特点。

分析指数函数的单调性、渐近线等性质。

第三章:对数函数3.1 对数函数的定义与性质学习对数函数的定义,了解对数函数的基本形式f(x) = log_a(x)。

探讨对数函数的性质,包括单调性、反函数关系、对数规则等。

3.2 对数函数的图像与性质绘制常见对数函数的图像,观察图像的特点。

分析对数函数的单调性、渐近线等性质。

第四章:对数运算法则4.1 对数的基本运算法则学习对数的加法、减法、乘法、除法等基本运算法则。

探讨对数运算的性质,如对数的中项定律、对数的换底公式等。

4.2 对数的复合运算法则学习对数的复合运算,如对数的乘方、对数的开方等。

探讨复合运算的性质,如对数的乘方公式、对数的开方公式等。

第五章:对数函数的应用5.1 对数函数在求解方程中的应用学习使用对数函数求解指数方程、对数方程等。

探讨对数函数在求解方程时的性质,如对数函数的单调性、对数函数的零点等。

5.2 对数函数在解决实际问题中的应用学习使用对数函数解决实际问题,如人口增长、放射性衰变等。

探讨对数函数在解决实际问题时的应用方法和对数函数的近似计算等。

第六章:幂函数的应用6.1 幂函数在几何中的应用学习幂函数在几何中的作用,如计算体积、面积等。

探讨幂函数在几何问题中的解题方法。

6.2 幂函数在物理中的应用学习幂函数在物理中的作用,如温度、速度等。

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案教学目标:1. 理解幂函数、指数函数和对数函数的定义及性质。

2. 掌握对数的定义及其运算法则。

3. 能够运用幂函数、指数函数和对数函数解决实际问题。

教学内容:第一章:幂函数1.1 幂函数的定义与性质1.2 幂函数图像的特点1.3 幂函数的应用第二章:指数函数2.1 指数函数的定义与性质2.2 指数函数图像的特点2.3 指数函数的应用第三章:对数函数3.1 对数的定义与性质3.2 对数函数图像的特点3.3 对数函数的应用第四章:对数及其运算法则4.1 对数的换底公式4.2 对数的运算法则4.3 对数函数的图像与性质第五章:实际问题中的应用5.1 利用幂函数、指数函数和对数函数解决实际问题5.2 练习题及解答教学方法:1. 采用讲授法,讲解幂函数、指数函数和对数函数的定义、性质及应用。

2. 利用数形结合法,引导学生观察函数图像,加深对函数性质的理解。

3. 通过例题和实际问题,培养学生的应用能力。

教学评估:1. 课堂提问,检查学生对幂函数、指数函数和对数函数的理解程度。

2. 布置课后作业,巩固所学知识。

3. 进行单元测试,评估学生的掌握情况。

教学资源:1. 教学PPT,展示幂函数、指数函数和对数函数的图像及性质。

2. 教材和辅导书,提供相关知识点的详细讲解和例题。

3. 网络资源,查阅实际问题中的应用案例。

教学时间安排:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:1课时幂函数、指数函数和对数函数·对数及其运算法则·教案(续)教学内容:第六章:指数与对数的互化6.1 指数与对数的关系6.2 指数与对数的互化方法6.3 指数与对数互化在实际问题中的应用第七章:对数函数的图像与性质7.1 对数函数的图像特点7.2 对数函数的性质7.3 对数函数图像与性质的应用第八章:对数函数在实际问题中的应用8.1 对数函数解决生长、衰减问题8.2 对数函数在几何问题中的应用8.3 对数函数在其他领域的应用第九章:对数方程与对数不等式9.1 对数方程的解法9.2 对数不等式的解法9.3 对数方程与对数不等式的应用第十章:总结与拓展10.1 幂函数、指数函数和对数函数的总结10.2 数学思想与方法的拓展10.3 课后习题与思考题教学方法:1. 采用讲授法,讲解指数与对数的关系、互化方法及其应用。

高中数学人教B版教材目录

高中数学人教B版教材目录

高中数学人教B版目录(2019版高中数学B版新教材一共有7本,分别是必修4本,选择性必修3本。

)人教B版(2019)必修一第一章集合与常用逻辑用语1.1 集合1.2 常用逻辑用语第二章等式与不等式2.1等式2.2 不等式第三章函数3.1 函数的概念与性质3.2 函数与方程、不等式之间的关系3.3 函数的应用(一)人教B版(2019)必修二第四章指数函数、对数函数与幂函数4.1 指数与指数函数4.2 对数与对数函数4.3 指数函数与对数函数的关系4.4 幂函数4.5 增长速度的比较4.6 函数的应用(二)第五章统计与概率5.1 统计5.2 数学探究活动:由编号样本估计总数及其模拟5.3 概率5.4 统计与概率的应用第六章平面向量初步6.1 平面向量及其线性运算6.2 向量基本定理与向量的坐标6.3 平面向量线性运算的应用人教B版(2019)必修三第七章三角函数7.1 任意角的概念与弧度制7.2 任意角的三角函数7.3 三角函数的性质与图像7.4 数学建模活动:周期现象的描述第八章向量的数量积与三角恒等变换8.1 向量的数量积8.2 三角恒等变换人教B版(2019)必修四第九章解三角形9.1 正弦定理与余弦定理9.2 正弦定理与余弦定理的应用9.3 数学探究活动:得到不可达两点第十章复数10.1 复数及其几何意义10.2 复数的运算10.3 复数的三角形式及其运算第十一章立体几何初步11.1 空间几何体11.2 平面的基本事实与推论11.3 空间中的平行关系11.4 空间中的垂直关系选择性必修第一册第一章空间向量与立体几何第二章平面解析几何选择性必修第二册第三章排列、组合与二项式定理第四章概率与统计选择性必修第三册第五章数列第六章导数及其应用。

高中数学教材新课标人教B版目录完整版

高中数学教材新课标人教B版目录完整版

高中数学(B 版)必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)高中数学(B 版)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系高中数学(B 版)必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用高中数学(B 版)必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积高中数学(B 版)必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题高中数学(B 版)选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用高中数学(B 版)选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图高中数学(B 版)选修 2-1第一章常用逻辑用语1.1命题与量词 1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1曲线与方程 2.2 椭圆 2.3 双曲线2.4抛物线 2.5 直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算 3.2 空间向量在立体几何中的应用高中数学(B 版)选修 2-2第一章导数及其应用1.1导数 1.2 导数的运算1.4导数的应用 1.4 定积分与微积分基本定理第二章推理与证明2.2合情推理与演绎推理 2.2 直接证明与间接证明2.5数学归纳法第三章数系的扩充与复数3.2数系的扩充与复数的概念 3.2 复数的运算高中数学(B 版)选修 2-3第一章计数原理1.1基本计数原理 1.2 排列与组合1.3二项式定理第二章概率2.1离散型随机变量及其分布列 2.2 条件概率与事件的独立性2.3随机变量的数字特征 2.4 正态分布第三章统计案例3.1独立性检验 3.2 回归分析高中数学(B 版)选修 4-4第一章坐标系1.1直角坐标系平面上的压缩变换 2 极坐标系1.5曲线的极坐标方程 1.4 圆的极坐标方程2.3柱坐标系和球坐标系第二章参数方程2.6曲线的参数方程 2.2 直线和圆的参数方程3.3圆锥曲线的参数方程高中数学(B 版)选修 4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式 (选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式1.2数学归纳法原理 3.2 用数学归纳法证明不等式,贝努利不等式。

教材目录

教材目录

必修1第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3.2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1 函数概念2.2 函数的表示法2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像4.2 二次函数的性质§5 简单的幂函数第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3.3 指数函数的图像和性质§4 对数 4.1 对数及其运算4.2 换底公式§5 对数函数5.1 对数函数的概念5.2 y=log2x的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1.1 利用函数性质判定方程解的存在1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识4.2 空间图形的公理§5 平行关系5.1 平型关系的判定5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积第二章解析几何初步§1 直线与直线的方程 1.1 直线的倾斜角和斜率 1.2 直线的方程 1.3 两条直线的位置关系1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式必修3第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差§5 用样本估计总体5.1 估计总体的分布5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想 1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率 1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3 模拟方法—概率的应用必修4第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与诱导公式§5 正弦函数的性质与图像 5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3正弦函数的性质§6 余弦函数的性质与图像6.1正弦函数的图像6.2 正弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像与性质7.2 正切函数的诱导公式§8 函数y=Asin 的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度、和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标 4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表示 4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例 7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数2.3 两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列1.1 数列的概念1.2 数列的函数特征§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理 1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大(小)值§4 简单线性规划4.1 二元一次不等式(组)与平面区域4.2 简单线性规划4.3 简单线性规划的应选修1-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”或“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1双曲线及其标准方程3.2双曲线的简单性质第三章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则第四章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.2 函数的极值§2 导数在实际问题中的应用2.1 实际问题中的导数的意义2.2 最大值、最小值问题选修1-2第一章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 条件概率与独立事件2.2 独立性检验2.3 独立性检验的基本思想2.4 独立性检验的应用第二章框图§1 流程图§2 结构图第三章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 数学证明§3 综合法与分析法3.1 综合法3.2 分析法§4 反证法第四章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法选修2-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件 2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非” 4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1 空间向量的标准正交分解与坐标表示3.2 空间向量基本定理3.3 空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1 直线间的夹角5.2 平面间的夹角5.3 直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆 1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1双曲线及其标准方程3.2双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同性质4.3 直线与圆锥曲线的交点选修2-2第一章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2综合法与分析法2.1 综合法2.2 分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.2 函数的极值§2 导数在实际问题中的应用2.1 实际问题中的导数的意义2.2 最大值、最小值问题第四章定积分§1 定积分的概念1.1 定积分的背景—面积和路程问题1.2 定积分§2 微积分基本定理§3 定积分的简单应用3.1 平面图形的面积3.2 简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法选修2-3第一章计数原理§1 分类加法计数原理与分步乘法计数原理1.1 分类加法计数原理1.2 分步乘法计数原理§2 排列§3 组合§4 简单计数问题§5 二项式定理5.1 二项式定理5.2 二项式系数的性质第二章概率§1 离散型随机变量及其分布列§2 超几何分布§3 条件概率与独立事件§4 二项分布§5 离散型随机变量的均值与方差§6 正态分布6.1 连续型随机变量6.2 正态分布第三章统计案例§1 回归分析 1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1独立性检验2.2独立性检验的基本思想2.3独立性检验的应用。

高中数学 第3章 指数函数、对数函数和幂函数 3.2 对数函数 3.2.2 对数函数 第1课时 对数

高中数学 第3章 指数函数、对数函数和幂函数 3.2 对数函数 3.2.2 对数函数 第1课时 对数

第1课时对数函数的概念、图象及性质1.了解对数函数的概念.2.会画对数函数的图象,记住对数函数的性质.3.掌握对数函数图象和性质的应用.[学生用书P52]1.对数函数的概念一般地,函数y=log a x(a>0,a≠1)叫做对数函数,对数函数的定义域是(0,+∞),值域为(-∞,+∞).2.对数函数的图象与性质定义y=log a x(a>0且a≠1)底数a>10<a<1图象定义域{x|x>0}值域R单调性增函数减函数共点性图象过点(1,0),即log a1=0函数值x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0]对称性函数y=log a x与y=log1ax的图象关于x轴对称趋势a值越大图象越靠近x,y轴a值越小图象越靠近x,y轴x趋于零,y趋于-∞;x趋于+∞,y趋于+∞x趋于零,y趋于+∞;x趋于+∞,y趋于-∞3.y=a x称为y=log a x的反函数,反之,y=log a x也称为y=a x的反函数,一般地,如果函数y =f(x)存在反函数,那么它的反函数记作y=f-1(x).1.判断(正确的打“√”,错误的打“×”)(1)y=log2x2与y=log x3都不是对数函数.( )(2)对数函数的图象一定在y轴右侧.( )(3)当0<a <1时,若x >1,则y =log a x 的函数值都大于零.( ) (4)函数y =log 2x 与y =x 2互为反函数.( ) 答案:(1)√ (2)√ (3)× (4)× 2.函数y =log 4.3x 的值域是________. 答案:R3.函数y =(a 2-4a +4)log a x 是对数函数,则a =________. 答案:34.函数f (x )=log 5(1-x )的定义域是________. 答案:{x |x <1}与对数函数有关的定义域问题[学生用书P52]求下列函数的定义域: (1)y =lg(x +1)+3x21-x; (2)y =log (2x -1)3x -2. 【解】 (1)要使函数有意义, 需⎩⎪⎨⎪⎧x +1>0,1-x >0,即⎩⎪⎨⎪⎧x >-1,x <1.所以-1<x <1.所以函数的定义域为(-1,1). (2)由⎩⎪⎨⎪⎧2x -1>0,2x -1≠1,3x -2>0,解得x >23,且x ≠1,所以函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞).若将例题(2)函数改为“y =log3x -2(2x -1)”,则其定义域应为________.解析:由⎩⎪⎨⎪⎧2x -1>0,3x -2>0,3x -2≠1,解得x >23,且x ≠1,所以函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞).答案:⎝ ⎛⎭⎪⎫23,1∪(1,+∞)(1)求与对数函数有关的函数定义域时应遵循的原则①分母不能为0;②根指数为偶数时,被开方数非负; ③对数的真数大于0,底数大于0且不为1. (2)求函数定义域的步骤①列出使函数有意义的不等式(组); ②化简并解出自变量的取值范围; ③确定函数的定义域.1.求下列函数的定义域:(1)y =1lg (x +1)-3;(2)y =log a (4x -3)(a >0,且a ≠1).解:(1)由⎩⎪⎨⎪⎧lg (x +1)-3≠0,x +1>0得⎩⎪⎨⎪⎧x +1≠103,x >-1, 所以x >-1,且x ≠999,所以函数的定义域为{x |x >-1,且x ≠999}. (2)log a (4x -3)≥0⇒log a (4x -3)≥log a 1. 当a >1时, 有4x -3≥1,x ≥1 . 当0<a <1时,有0<4x -3≤1,解得34<x ≤1.综上所述,当a >1时,函数的定义域为[1,+∞),当0<a <1时,函数的定义域为⎝ ⎛⎦⎥⎤34,1. 对数函数的图象和性质[学生用书P53](1)如图所示的曲线是对数函数y =log a x 的图象,已知a 的取值可为35,110,3,43,则相应曲线C 1,C 2,C 3,C 4的底数a 的值依次为________.(2)若函数y =log a (x +b )+c (a >0,a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为________,________.【解析】 (1)由底数对对数函数图象的影响,可知C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应的曲线C 1,C 2,C 3,C 4的底数依次是3,43,35,110.(2)因为函数的图象恒过定点(3,2), 所以将(3,2)代入y =log a (x +b )+c , 得2=log a (3+b )+c .又当a >0,a ≠1时,log a 1=0恒成立, 所以log a (3+b )=0,所以b =-2,c =2. 【答案】 (1)3,43,35,110(2)-2 2(1)对数函数的性质可以结合图象去理解记忆.(2)对数函数图象的画法有两种:一是描点法;二是通过图象变换画出.2.已知a >0,且a ≠1,则函数y =a x与y =log a (-x )的图象可能是( )解析:选B.法一:若0<a <1,则函数y =a x的图象下降且过点(0,1),而函数y =log a (-x )的图象上升且过点(-1,0),以上图象均不符合.若a >1,则函数y =a x的图象上升且过点(0,1),而函数y =log a (-x )的图象下降且过点(-1,0),只有B 中图象符合.法二:首先指数函数y =a x的图象只可能在x 轴上方,函数y =log a (-x )的图象只可能在y 轴左方,从而排除A ,C ;再看单调性,y =a x与y =log a (-x )的单调性正好相反,排除D.只有B 中图象符合.法三:如果注意到y =log a (-x )的图象关于y 轴的对称图象为y =log a x ,又y =log a x 与y =a x互为反函数(图象关于直线y =x 对称),则可直接确定选B.利用对数函数的单调性比较大小[学生用书P53]比较下面各组数中两个值的大小. (1)log 33.4,log 38.5; (2)log 0.21.8,log 0.22.7;(3)log a 5.1,log a 5.9(a >0且a ≠1). 【解】 (1)考察对数函数y =log 3x ,因为它的底数3>1,所以它在(0,+∞)上是增函数, 于是log 33.4<log 38.5.(2)考察对数函数y =log 0.2x ,因为它的底数0.2<1,所以它在(0,+∞)上是减函数,于是log 0.21.8>log 0.22.7.(3)对数函数的增减性决定于对数的底数是大于1还是小于1,而已知条件并未明确指出底数a 与1哪个大,因此要对底数a 进行讨论:当a >1时,函数y =log a x 在(0,+∞)上是增函数, 于是log a 5.1<log a 5.9;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数, 于是log a 5.1>log a 5.9.(1)如果同底,可直接利用单调性求解.如果底数为字母,则要分类讨论. (2)如果不同底,一种方法是化为同底对数,另一种方法是寻找中间变量.(3)如果不同底同真数,可利用图象的高低与底数的大小的关系解决或利用换底公式化为同底,再进行比较.(4)若底数、真数都不相同,则常借助中间量1,0,-1等进行比较.3.比较下列各组数的大小:(1)log 0.20.4,log 0.20.3,log 0.23; (2)log 123,log 133,log 143;(3)log 23,log 45,log 76.解:(1)因为函数y =log 0.2x 是区间(0,+∞)上的单调减函数,且0.3<0.4<3, 所以log 0.20.3>log 0.20.4>log 0.23.(2)因为函数f (x )=log 3x 在(0,+∞)上是增函数, 又0<14<13<12<1,所以log 314<log 313<log 312<0,即1log 143<1log 133<1log 123<0, 所以log 123<log 133<log 143. (3)log 23=log 49>log 45>1, 而log 76<log 77=1, 故log 76<log 45<log 23.1.关于对数函数概念的两点说明(1)对数函数的概念与指数函数类似,都是形式化定义,如y =2log 2x ,y =log 2x3都不是对数函数,可称其为对数型函数.(2)由指数式与对数式的关系知:对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞).2.a 对对数函数的图象的影响(1)底数a 与1的大小关系决定了对数函数图象的“升降”:当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.(2)底数的大小决定了图象对应位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.函数f (x )=1log 2x -1的定义域为________.[解析] 要使函数有意义,则⎩⎪⎨⎪⎧x >0,log 2x -1>0,解得x >2.[答案] (2,+∞)(1)解答本题只注意被开方数大于零,而忽视真数大于零.(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.1.下列函数表达式中,是对数函数的有( ) ①y =log x 2;②y =log a x (a ∈R );③y =log 8x ; ④y =ln x ;⑤y =log x (x +2). A .1个 B .2个 C .3个D .4个解析:选B.形如y =log a x (a >0且a ≠1)的函数即为对数函数,符合此形式的函数表达式有③、④,其他的均不符合.2.函数y =lg (x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)解析:选C.要使函数式有意义,需⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1,且x ≠1,故函数的定义域为(-1,1)∪(1,+∞),故选C.3.函数y =2x的反函数为________.解析:由对数函数y =log a x (a >0,a ≠1)和y =a x (a >0,a ≠1)互为反函数知y =2x的反函数为y =log 2x .答案:y =log 2x4.若函数y =log a (x +a )(a >0且a ≠1)的图象过点(-1,0). (1)求a 的值; (2)求函数的定义域.解:(1)将(-1,0)代入y =log a (x +a )(a >0且a ≠1)中,有0=log a (-1+a ), 则-1+a =1,所以a =2.(2)由(1)知y =log 2(x +2),x +2>0,解得x >-2, 所以函数的定义域为{x |x >-2}.[学生用书P112(单独成册)])[A 基础达标]1.若f (x )=log a x +(a 2-4a -5)是对数函数,则a =( ) A .-1 B .5 C .-1或5D .1解析:选B.由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.2.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析:选B.a =log 0.60.5>log 0.60.6=1,b =ln 0.5<0,0<c =0.60.5<0.60=1,故a >c >b .3.函数y =lg(x -1)+lg(x -2)的定义域为M ,函数y =lg(x 2-3x +2)的定义域为N ,则( ) A .MN B .N MC .M =ND .M ∩N =∅解析:选A.y =lg(x 2-3x +2) =lg[(x -1)(x -2)], 所以⎩⎪⎨⎪⎧x -1>0x -2>0或⎩⎪⎨⎪⎧x -1<0x -2<0,即x >2或x <1.所以N ={x |x >2或x <1}. 又M ={x |x >2}. 所以MN .4.已知函数f (x )=log a (x -m )的图象过点(4,0)和(7,1),则f (x )在定义域上是( ) A .增函数 B .减函数 C .奇函数D .偶函数解析:选A.将点(4,0)和(7,1)代入函数解析式,有⎩⎪⎨⎪⎧0=log a (4-m ),1=log a (7-m ).解得a =4和m =3,则有f (x )=log 4(x -3).由于定义域是{x |x >3},则函数不具有奇偶性.很明显函数f (x )在定义域上是增函数.5.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B .12x C .log 12xD .2x -2解析:选A.函数y =a x(a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .6.下列四个数:0.2-0.1,log 1.20.3,log 0.20.3,log 0.20.5,由小到大的顺序为________.解析:因为0.2-0.1>1,log 1.20.3<0,0<log 0.20.5<log 0.20.3<log 0.20.2=1, 所以log 1.20.3<log 0.20.5<log 0.20.3<0.2-0.1. 答案:log 1.20.3<log 0.20.5<log 0.20.3<0.2-0.17.已知函数y =log a (x +3)-89(a >0,a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x+b的图象上,则b =________.解析:当x +3=1,即x =-2时, 对任意的a >0,且a ≠1都有y =log a 1-89=0-89=-89,所以函数y =log a (x +3)-89的图象恒过定点A ⎝ ⎛⎭⎪⎫-2,-89,若点A 也在函数f (x )=3x+b 的图象上, 则-89=3-2+b ,所以b =-1.答案:-18.已知log a 3>log b 3>0,则a ,b 的大小关系是________. 解析:因为log a 3>log b 3>0,所以a >1,b >1. 由换底公式有1log 3a >1log 3b >0,所以log 3b >log 3a >0. 所以b >a . 答案:b >a9.求下列函数的定义域:①y =log 3(3x );②y =log 34x -5; ③y =1log 12x ;④y = log 2(2x +6).解:①由3x >0,得x >0,所以函数y =log 3(3x )的定义域为(0,+∞). ②由4x -5>0,得x >54,所以函数y =log 34x -5的定义域为⎝ ⎛⎭⎪⎫54,+∞. ③由x >0及log 12x ≠0得x >0且x ≠1,所以函数y =1log 12x的定义域为(0,1)∪(1,+∞).④log 2(2x +6)≥0,得2x +6≥1,即x ≥-52,所以函数y =log 2(2x +6)的定义域为⎣⎢⎡⎭⎪⎫-52,+∞.10.解不等式:log a (2x -5)>log a (x -1). 解:当a >1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5>x -1.解得x >4.所以原不等式的解集为{x |x >4}. 当0<a <1时,原不等式等价于 ⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4. 综上,当a >1时,不等式的解集为{x |x >4};当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪52<x <4.[B 能力提升]1.已知函数f (x )=lg|x |,设a =f (-3),b =f (2),则a 与b 的大小关系是________. 解析:f (x )=lg|x |定义域为(-∞,0)∪(0,+∞),是偶函数,且f (x )在(0,+∞)上为增函数.a =f (-3)=f (3),b =f (2),因为f (3)>f (2),所以a >b .答案:a >b2.已知f (x )=|lg x |,若1c>a >b >1,则f (a ),f (b ),f (c )的大小关系是________.解析:先作出函数y =lg x 的图象,再将图象在x 轴下方的部分沿x 轴翻折到上方,这样,我们便得到了y =|lg x |的图象,如图.由图可知,f (x )=|lg x |在(0,1)上单调递减,在(1,+∞)上单调递增,于是f ⎝ ⎛⎭⎪⎫1c>f (a )>f (b ),而f ⎝ ⎛⎭⎪⎫1c =⎪⎪⎪⎪⎪⎪lg 1c =|-lg c |=|lg c |=f (c ).所以f (c )>f (a )>f (b ).答案:f (c )>f (a )>f (b )3.已知函数f (x )=log (2a -1)(2x +1)在区间⎝ ⎛⎭⎪⎫32,+∞上满足f (x )>0,试求实数a 的取值范围. 解:当x ∈⎝ ⎛⎭⎪⎫32,+∞时,2x +1>4>1.因为log(2a -1)(2x +1)>0=log (2a -1)1,所以2a -1>1,即2a >2,解得a >1.即实数a 的取值范围是(1,+∞).4.(选做题)已知函数f (x )=log 21+x 1-x. (1)求证:f (x 1)+f (x 2)=f ⎝⎛⎭⎪⎫x 1+x 21+x 1x 2; (2)若f ⎝ ⎛⎭⎪⎫a +b 1+ab =1,f (-b )=12,求f (a )的值. 解:(1)证明:左边=log 21+x 11-x 1+log 21+x 21-x 2=log 2⎝ ⎛⎭⎪⎫1+x 11-x 1·1+x 21-x 2 =log 21+x 1+x 2+x 1x 21-x 1-x 2+x 1x 2. 右边=log 21+x 1+x 21+x 1x 21-x 1+x 21+x 1x 2=log 21+x 1+x 2+x 1x 21+x 1x 2-x 1-x 2. 所以左边=右边.(2)因为f (-b )=log 21-b 1+b =-log 21+b 1-b =12, 所以f (b )=log 21+b 1-b =-12, 利用(1)可知:f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+ab , 所以f (a )-12=1, 解得f (a )=32.。

高中数学新教材必修第一册、必修第二册、选择性必修教材目录精选全文

高中数学新教材必修第一册、必修第二册、选择性必修教材目录精选全文

可编辑修改精选全文完整版高中数学新教材必修第一册、必修第二册、选修目录数学必修第一册第一章集合与常用逻辑用语1.1集合的概念1.2集合间的基本关系1.3集合的基本运算1.4充分条件与必要条件1.5全称量词与存在量词第二章一元二次函数、方程和不等式2.1等式性质与不等式性质2.2基本不等式2.3二次函数与一元二次方程、不等式第三章函数概念与性质3.1函数的概念及其表示3.2函数的基本性质3.3幂函数3.4函数的应用(一)第四章指数函数与对数函数4.1指数4.2指数函数4.3对数4.4对数函数4.5函数的应用(二)第五章三角函数5.1任意角和弧度制5.2三角函数的概念5.3诱导公式5.4三角函数的图像与性质5.5三角恒等变换5.6函数y=Asin(wx+∅)的图像与性质5.7三角函数的应用必修第二册第六章平面向量及其应用6.1平面向量的概念6.2平面向量的运算6.3平面向量基本定理及坐标表示6.4平面向量的应用第七章、复数7.1复数的概念7.2复数的四则运算7.3复数的三角表示第八章立体几何初步8.1简单的立体图形8.2立体图形的直观图8.3简单几何体的表面积与体积8.4空间点、直线、平面之间的位置关系8.5空间直线、平面的平行8.6空间直线、平面的垂直第九章统计9.1随机抽样9.2用样本估计总体9.3统计分析案例公司员工的肥胖情况调查分析选择性必修第一册第一章空间向量与立体几何1.1空间向量及其运算1.2空间向量基本定理1.3空间向量及其运算的坐标表示1.4空间向量的应用第二章直线和圆的方程2.1直线的倾斜角与斜率2.2直线的方程2.3直线的交点坐标与距离公式2.4圆的方程2.5直线与圆、圆与圆的位置关系第三章圆锥直线的方程3.1椭圆3.2抛物线3.3双曲线选择性必修第二册第四章数列4.1数列的概念4.2等差数列4.3等比数列4.4数学归纳法第五章一元函数的导数及其应用5.1导数的概念及其意义5.2导数的运算5.3导数在研究函数中的应用选择性必修第三册第六章计数原理6.1分类加法计数原理与分步乘法计数原理6.2排列与组合6.3二项式定理数学探究杨辉三角的性质与应用第七章随机变量及其分布7.1条件概率与全概率公式7.2离散型随机变量及其分布列7.3离散型随机变量的数字特征7.4二项分布与超几何分布7.5正态分布第八章成对数据的统计分析8.1成对数据的相关关系8.2一元线性回归模型及其应用8.3分类变量与列联表数学建模建立统计模型进行预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档