单片机矩阵键盘毕业设计

合集下载

课程设计-制作单片机的4X4矩阵键盘

课程设计-制作单片机的4X4矩阵键盘
第二节4*4矩阵式键盘
1.2.1矩阵式键盘介绍
矩阵式键盘(或者叫行列式键盘)常应用在按键数量比较多的系统之中。这种键盘由行线和列线组成,按键设置在行、列结构的交叉点上,行、列线分别接在按键开关的两端。行列式键盘可分为非编码键盘和编码键盘两大类。编码键盘内部设有键盘编码器,被按下键的键号由键盘编码器直接给出,同时具有防抖和解决重键的功能。非编码键盘通常采用软件的方法,逐行逐列检查键盘状态,当有键按下时,通过计算或查表的方法获取该键的键值,通常,计算机通过程序控制对键盘扫描,从而获取键值,根据计算机扫描的方法可以分为定时扫描法和中断扫描法两种。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
振荡器特性:
XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。
P3.1 TXD(串行输出口)
P3.2 /INT0(外部中断0)
P3.3 /INT1(外部中断1)
P3.4 T0(记时器0外部输入)
P3.5 T1(记时器1外部输入)
P3.6 /WR(外部数据存储器写选通)
P3.7 /RD(外部数据存储器读选通)
P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
课程设计-制作单片机的4X4矩阵键盘
第一章硬件部分
第一节AT89C51
AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。引脚如图所示

单片机课程设计---4×4矩阵式键盘识别显示电路的设计

单片机课程设计---4×4矩阵式键盘识别显示电路的设计

《单片机原理及应用》课程设计题目:4×4矩阵式键盘与单片机连接与编程专业:测控技术与仪器班级:机电082-1 姓名:学号:指导老师:组员:( 2011.7 .13)目录第1节引言 (2)1.1 4*4矩阵式键盘系统概述 (2)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (4)2.1 单片机控制系统原理 (4)2.2 单片机主机系统电路 (5)2.2.1 时钟电路 (8)2.2.2 复位电路 (8)2.2.3 矩阵式键盘电路 (8)2.3 译码显示电路 (9)第3节系统软件设计 (13)3.1 软件流程图 (13)3.2 系统程序设计 (14)第4节结束语 (17)参考文献 (18)第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。

单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。

1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。

显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。

并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。

矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。

在行线和列线的每个交叉点上设置一个按键。

这样键盘上按键的个数就为N*N个。

这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。

矩阵键盘设计毕业设计论文[管理资料]

矩阵键盘设计毕业设计论文[管理资料]
P1口:P1口是内部含有上拉电阻,一个8位双向的I/O口,P1口缓冲器可以接收,输出4TTL门电流。P1口管脚被输入高电平后,其内部将被上拉为高,可以用来作输入,如果想输出电流,可以将P1口下拉为低电平,这些是因为内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口是内部含有上拉电阻,一个8位双向的I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口管脚被输入高电平后,其管脚内部将被上拉为高,以用来作为输入。P2口的管脚被外部拉低,将输出电流[5]。当P2口对外部程序存储器或16位地址外部数据存储器进行存取时,将地址的高8位通过P2口输出。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
Key words:AT89C51; LED; C language; Matrix keyboard
4*4矩阵键盘应用1
3 系统硬件构成9
74LS245驱动8段数码管的电路10
4 系统软件设计15
AT89C51单片机的选择17
1 绪 论
键盘以按键的形式来设置控制功能或数据,其是人机交互的最基本的途径。在键盘中,按键的输入状态本质上是一个开关量。通过键盘为按键编码,从而实现命令或数据的输入,以达到控制的目的。在单片机应用系统中,有两种常用的键盘结构:独立式按键和矩阵式按键。其中,独立式按键比较简单,适合于较少开关量的输入场合,而矩阵式键盘则适合于输入命令或者数据较多、功能复杂的系统。其矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,显示在LED数码管上。而其中的4*4矩阵式键盘采用AT89C51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用C语言编程[1]。其基本工作原理是单片机将检测到的按键信号转换成数字量,显示于LED显示器上。该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告课程名称:单片机c语言设计实验类型:设计型实验实验项目名称:矩阵式键盘实验一、实验目的和要求1.掌握矩阵式键盘结构2.掌握矩阵式键盘工作原理3.掌握矩阵式键盘的两种常用编程方法,即扫描法和反转法二、实验内容和原理实验1.矩阵式键盘实验功能:用数码管显示4*4矩阵式键盘的按键值,当K1按下后,数码管显示数字0,当K2按下后,显示为1,以此类推,当按下K16,显示F。

(1)硬件设计电路原理图如下仿真所需元器件(2)proteus仿真通过Keil编译后,利用protues软件进行仿真。

在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

操作方完成矩阵式键盘实验。

具体包括绘制仿真电路图、编写c源程序(反转法和扫描法)、进行仿真并观察仿真结果,需要保存原理图截图,保存c源程序,总结观察的仿真结果。

完成思考题。

三、实验方法与实验步骤1.按照硬件设计在protues上按照所给硬件设计绘制电路图。

2.在keil上进行编译后生成“xxx.hex”文件。

3.编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

四、实验结果与分析void Scan_line()//扫描行{Delay(10);//消抖switch ( P1 ){case 0x0e: i=1;break;case 0x0d: i=2;break;case 0x0b: i=3;break;case 0x07: i=4;break;default: i=0;//未按下break;}}void Scan_list()//扫描列{Delay(10);//消抖switch ( P1 ){case 0x70: j=1;break;case 0xb0: j=2;break;case 0xd0: j=3;break;case 0xe0: j=4;break;default: j=0;//未按下break;}}void Show_Key(){if( i != 0 && j != 0 ) P0=table[ ( i - 1 ) * 4 + j - 1 ];else P0=0xff;}五、讨论和心得。

单片机4×4矩阵键盘设计方案

单片机4×4矩阵键盘设计方案

1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。

(2)键盘中对应按键的序号排列如图14.1所示。

2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。

(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。

4、程序设计内容(1)4×4矩阵键盘识别处理。

(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。

键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。

键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。

两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。

5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;;CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;;PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHJZ SW1LCALL DELAY10MS JZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0 LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4 LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8 LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1 LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5 LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9 LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2 LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6 LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KE MOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KF MOV COUNT,#11 LJMP DKKF: CJNE A,#07H,KG MOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下//i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。

机电单片机课程设计--4乘4矩阵键盘-汇编语言

机电单片机课程设计--4乘4矩阵键盘-汇编语言

目录1 引言 (2)2 4×4矩阵键盘控制LED工作原理及软硬件设计、仿真调试 (2)2.1 4×4矩阵式键盘识别显示系统概述 (2)2.2 4×4矩阵式键盘原理 (3)2.3 4×4矩阵式键盘控制LED显示方法 (3)2.4 电路设计及电路图 (3)2.5 4×4矩阵式键盘软件编程 (6)2.6 4×4矩阵式键盘软件仿真调试分析 (9)3 结论 (10)4参考文献 (10)1 引言随着现代科技日新月异的发展,作为新兴产业,单片机的应用越来越广。

单片机以其体积小、重量轻、功能强大、功耗低等特点而备受青睐。

键盘作为一种最为普遍的输入工具在单片机项目应用上显得尤为重要。

用MCS51系列的单片机并行口P1接4×4矩阵键盘,以P1.0-P1.3 作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的0-F序号。

2 4×4矩阵键盘控制LED工作原理及软硬件设计、仿真调试2.1 4×4矩阵式键盘识别显示系统概述矩阵式键盘模式以4个端口连接控制4*4个按键,实时在LED数码管上显示按键信息。

显示按键信息,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。

矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。

在行线和列线的每个交叉点上设置一个按键。

这样键盘上按键的个数就为4*4个。

这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。

最常见的键盘布局如图1所示。

一般由16个按键组成,在单片机中正好可以用一个P 口实现16个按键功能,这也是在单片机系统中最常用的形式,本设计就采用这个键盘模式。

2.2 4×4矩阵式键盘原理在占用相同的I/O端口的情况下,行列式键盘的接法会比独立式接法允许的按键数量多。

单片机4×4矩阵键盘方案设计

单片机4×4矩阵键盘方案设计

1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。

(2)键盘中对应按键的序号排列如图14.1所示。

2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。

(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。

4、程序设计内容(1)4×4矩阵键盘识别处理。

(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。

键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。

键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。

两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。

5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW1LCALL DELAY10MSJZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW2LCALL DELAY10MSJZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW3LCALL DELAY10MSJZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KD MOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KE MOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KFLJMP DKKF: CJNE A,#07H,KGMOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUANDK: RET;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;; DELAY10MS: MOV R6,#20DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39, 0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;{ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下// i=P3;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。

51单片机矩阵键盘设计

51单片机矩阵键盘设计

51单片机矩阵键盘设计
一、引言
AT89C51单片机矩阵键盘设计是嵌入式系统中一个重要的技术,它的
作用是以矩阵形式把外部按键与MCU相连,使得系统可以对外部的按键进
行检测和响应。

矩阵键盘设计在可编程嵌入式系统的设计中占有重要的地位,如智能交通系统、智能家居系统、航空电子系统等。

本文主要介绍了矩阵键盘设计中硬件电路的设计,包括按键、拉电阻、和矩阵编码等,同时给出系统的控制算法,使得系统可以实现有效的按键
检测和响应。

二、矩阵键盘概述
矩阵键盘是将多个按键排布成列行形式进行连接,一般来说,矩阵键
盘是由按键、拉电阻、矩阵编码器和控制器组成,按键是系统中重要的部件,其作用是将外部输入信号传递给控制器。

拉电阻起到的作用是防止按
键耦合,一般可以使用4.7KΩ拉电阻来防止按键耦合。

矩阵编码器用来
识别按键的状态,通常通过硬件把按键信号编码为数字信号,输入到处理
器或控制器。

控制器用来实现按键信号的检测,通过定义硬件定时器和软
件定时器,实现按键检测和处理。

1、硬件电路设计
应用AT89C51单片机矩阵键盘。

单片机实验4 矩阵键盘实验

单片机实验4  矩阵键盘实验

华南农业大学实验报告专业班次08电信1 组别200831120102 题目实验四矩阵键盘实验姓名陈建泽日期2010.11.03一、实验目的1. 学习非编码键盘的工作原理和键盘的扫描方式。

2. 学习键盘的去抖方法和键盘应用程序的设计。

二、实验设备:STC89C52单片机实验板、串口下载线、USB连接线、电脑三、实验原理键盘是单片机应用系统接受用户命令的重要方式。

单片机应用系统一般采用非编码键盘,需要由软件根据键扫描得到的信息产生键值编码,以识别不同的键。

本板采用4*4矩阵键盘,行信号分别为P1.0-P1.3,列信号分别为P1.4-P1.7。

具体电路连接见下图矩阵键盘电路原理图对于键的识别一般采用逐行(列)扫描查询法,判断键盘有无键按下,由单片机I/O口向键盘送全扫描字,然后读入列线状态来判断。

成绩:教师:日期:四、实验步骤1. 分析实验所用到的电路原理图,根据需要连接跳线帽(由于P1.3和P1.4管脚和实时时钟芯片DS1302复用,所有在做矩阵键盘实验的时候务必拔去板上的DS1302芯片,以免产生干扰)。

2.按不同的键,用数码管的最后一位显示按键的键值。

3. 画出流程图。

4.根据流程图编写实验程序,并完成调试。

五、实验流程图矩阵键盘实验流程图六、实验程序/******************实验四 矩阵键盘实验****************/;实验名称:矩阵键盘实验;功 能:4*4矩阵键盘,按不同的键,用数码管的最后一位显示按键的键值。

1.置所有行值为低电平2.读取列的状态,给 A 开始A !=0? 延时10ms ,去抖动 置行计数器R0=00H 列列计数器R1=00H 置行输出扫描初始值为0FEH 输出行扫描字,置某一行为低 有列被按下? 行计数器增1 行扫描字左移一位 最后一行? 判断具体是哪一列按下 存列号到R1 计算键值并显示;编写人:陈建泽;编写时间:2010年11月2日/**********************程序代码************************/ORG 0000H ;上电或复位后初始化引导程序地址AJMP MAIN ;跳转到主程序ORG 0000HAJMP MAINORG 0030HMAIN: MOV P2,#0F7H ;选通数码管最后一位MOV P1,#0F0H ;令所有行为低电平MOV R7,#100 ;让P1输出稳定DJNZ R7,$MOV A,P1 ;先确定是否有键按下ANL A,#0F0HXRL A,#0F0H ;与上一句作用,判断是否有按键按下JZ MAIN ;无则重新扫描LCALL D10MS ;延时10ms,去除抖;判断是否确实有按键按下MOV A,#00HMOV R0,A ;R0做行计数器,初始值为0MOV R1,A ;R1做列计数器,初始值为0MOV R2,#0FEH ;R2低4位为行扫描子,初始值为1111 1110B SKEY0:MOV A,R2MOV P1,A ;输出行扫描字,先扫第一行MOV R7,#10 ;让P1输出稳定DJNZ R7,$MOV A,P1 ;读列值ANL A,#0F0HXRL A,#0F0H ;取列值JNZ LKEY ;A不为零,则确实有按键按下了;然后转去判断具体是哪一列INC R0 ;增1,记录准备扫描的下一行MOV A,R2RL A ;不带进位位,左移一位,准备扫描下一行MOV R2,AMOV A,R0 ;判断是否已经四行都扫描完了CJNE A,#04H,SKEY0AJMP MAIN ;都扫描完则循环开始;判断具体列值LKEY: JNB ACC.4,NEXT1 ;若ACC.4为1,则是第一列有按键按下了MOV A,#00H ;存0列号到R1MOV R1,AAJMP DKEY ;去计算键值并显示NEXT1:JNB ACC.5,NEXT2MOV A,#01H ;存1列号到R1MOV R1,AAJMP DKEYNEXT2:JNB ACC.6,NEXT3MOV A,#02H ;存2列号到R1MOV R1,AAJMP DKEYNEXT3:JNB ACC.7,MAIN ;到第四列都检测不到,则从新开始MOV A,#03H ;存3列号到R1MOV R1,AAJMP DKEY;计算键值并显示键值DKEY: MOV A,R0 ;取行号给AMOV B,#04HMUL ABADD A,R1 ;根据键值=行号*4+列号计算出具体键值AJMP SQR ;根据键值查询字型码/*********************查表子程序***************************/SQR: MOV DPTR,#TAB ;表首地址给DPTRMOVC A,@A+DPTR ;查第一个字型的字型码MOV P0,A ;送段码,数码管显示具体值AJMP MAIN ;返回开始TAB: DB 0C0H,0F9H,0A4H,0B0H,99H, 92H, 82H, 0F8H ;共阳极字型码表0——7 DB 80H, 90H, 88H, 83H, 0C6H,0A1H,86H, 8EH ;共阳极字型码表8——F/*********************10ms延时子程序**********************/D10MS:MOV R6,#10L1:MOV R5,#248DJNZ R5,$DJNZ R6,L1RETEND/*********************程序编写结束*************************/根据实验流程图,编写出一下实验程序。

51单片机矩阵键盘设计

51单片机矩阵键盘设计

工业大学课程设计资料袋电气与信息工程学院(系、部)2009--2010 学年第 1 学期课程名称单片机应用系统指导教师贺正芸学生专业班级电子信息科学与技术学号题目4*4矩阵键盘成绩起止日期2009 年11 月23 日~2009 年12 月04 日目录清单工业大学课程设计任务书2009 —2010 学年第 1 学期电气与信息工程学院(系、部)电子信息科学与技术专业班级课程名称:单片机应用系统设计题目:4*4矩阵键盘完成期限:自2009 年11 月9 日至2009 年11 月20 日共 2 周指导教师(签字):年月日系(教研室)主任(签字):年月日单片机应用系统4*4矩阵键盘设计说明书学生 班级 电科072学号成绩指导教师(签字)起止日期:2009 年 11 月 23 日 至 2009 年 12 月4 日电气与信息工程学院(部)年月日单片机设计题目:矩阵式键盘数显设计一、设计要求及任务1、设计要求(1)由P1.0—P1.3(列)和P1.4—P1.7(行)组成4*4矩阵键盘,P0口接LED 静态显示电路。

由于P0口部无上拉电阻,因此必须外部接上上拉电阻,其阻值的选择可以根据LED数码管发光电流及其亮度来决定,参考值为560欧姆。

编写4*4键盘的驱动程序。

(2)编写主程序,当按键按下时,能够在数码管显示器与按键的键值对应的数字2、设计任务(1)以AT89S51为核心,设计系统硬件电路,并根据所设计的电路制作实物。

(2)分析任务要求,绘制程序流程图,编写相应的软件程序。

(3)编写设计说明书,容包括:电路原理图;程序流程图,源程序清单;电路实测波形、电路原理分析、硬件调试分析;软件调试分析;结论和体会。

根据任务要求知此课程设计是做一个4*4的矩阵键盘P1口接键盘,P0口接数码管。

19脚和18脚接晶振电路,9脚接复位电路,P1.5—P1.7要接下载接口。

应先画出电路原理图,根据原理图列出报目表,编写程序,进行软件仿真,软件仿真成功后开始做硬件。

单片机4x4矩阵式键盘的设计与仿真

单片机4x4矩阵式键盘的设计与仿真

课程设计报告(单片机原理和应用)题目名称4x4矩阵式键盘专业班级学生姓名学号指导教师4x4矩阵式键盘的设计与仿真1、设计原理:1.1 矩阵式键盘工作原理矩阵式键盘使用于按键数量较多的场合,它由行线与列线组成,按键位于行、列的交叉点上,行、列线分别列接到按键开关的两端。

行线通过上拉电阻接到+5V上。

无键按下时,行线处于低电平状态,而当有按键按下时,行线电平状态将由与此行线相连的列线电平一样为高电平。

这是识别矩阵键盘按键是否被按下的关键所在。

一个4x4的行列可以构成一个16按键的键盘。

本次以扫描法来识别按键。

在扫描法中分两步处理按键,首先是判断有无键按下,让所有的列线置高电平,检查各行线电平是否有变化,如行线有一个为高,则有键按下。

当判断有键按下时,使列线依次变低,其余各列为高电平,读行线,进而判断出具体哪个键被按下。

下表为7段共阴极段码表:显示字符共阴极段码显示字符共阴极段码“0”3FH“8”7FH“1”06H“9”6FH“2”5BH“A”77H“3”4FH“b”7CH“4”66H“C”39H“5”6DH“d”5EH“6”7DH“E”79H“7”07H“F”71H“灭“00H 1.2 实验环境Keil uVision3proteus 71.3 功能设计描述由4x4组成16个按钮矩阵式键盘按键成功会在7段LED显示该按键的键号1.4 主要知识点Keil uVision3的使用及调试proteus 7的使用及调试键盘接口、LED 显示接口、模拟电路的相关知识2、实现及编程2.12.2电路原理图2.3程序内容4x4行列式键盘识别7段数码管输出2.4 汇编源程序LINE EQU 30HROW EQU 31HVAL EQU 32HORG 00HSTART: MOV DPTR,#TABLE ;段码表首地址MOV P2,#00H ;数码管显示初始化LSCAN: MOV P3,#0F0H ;电平,行线置低电平L1: JNB P3.0,L2 ;逐行扫描LCALL DELAY50ms ;调用延时,消除抖动JNB P3.0,L2MOV LINE,#00H ;存行号LJMP RSCANL2: JNB P3.1,L3LCALL DELAY50msJNB P3.1,L3MOV LINE,#01HLJMP RSCANL3: JNB P3.2,L4LCALL DELAY50msJNB P3.2,L4MOV LINE,#02HLJMP RSCANL4: JNB P3.3,L1LCALL DELAY50msJNB P3.3,L1MOV LINE,#03HRSCAN: MOV P3,#0FH ; 列线置低电平,行线置高电平C1: JNB P3.4,C2 ;逐列扫描MOV ROW,#00H ;存列号LJMP CALCUC2: JNB P3.5,C3MOV ROW,#01HLJMP CALCUC3: JNB P3.6,C4MOV ROW,#02HLJMP CALCUC4: JNB P3.7,C1MOV ROW,#03HCALCU: MOV A,LINE ;根据行号和列号计算键值MOV B,#04HMUL AB ;A与B相乘后,高位赋给B,低位赋给AADD A,ROWMOV VAL,A ;存键值MOVC A,@A+DPTR ;要据键值查段码MOV P2,A ;输出段码显示LJMP LSCANDELAY50ms: MOV R6,#3DH ;延时50ms子程序Lop: MOV R7,#0FFHDJNZ R7,$DJNZ R6,LopRETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H ; 共阴极LED段码表DB 7FH,6FH,77H,7CH,39H,5EH,79H,71HEND3、调试及测试3.1调试通过按下4x4行列式键盘的按键,并在7段led显示所按下的键值,如按下F后显示如下图:3.2出现的问题及解决当在选7段显示数码管时,由于不知道哪个类型是共阴极的,所以就随便选了一个,以至于在运行的时候数码管没有显示,后给换了另一个类型的,即可。

单片机矩阵键盘设计方案

单片机矩阵键盘设计方案

单片机矩阵键盘设计方案一、设计目标设计一个8行8列的矩阵键盘,每个按键都有一个唯一的键码,能够正常读取用户的按键输入,并将按键对应的键码显示在LCD屏幕上。

二、硬件设计硬件设计包括键盘电路和显示电路两部分。

1.键盘电路设计矩阵键盘的硬件设计主要包括键盘矩阵、行扫描电路和列读取电路。

键盘矩阵由8行8列的按键构成,每个按键都连接到一个由二极管组成的矩阵。

行扫描电路使用8位输出的GPIO口,根据行的值来选通对应的行组。

列读取电路使用8位输入的GPIO口,根据列的值来读取对应的列组。

2.显示电路设计三、软件设计软件设计主要包括初始化设置、按键检测、键码解析和显示处理四个部分。

1.初始化设置首先需要对GPIO口进行初始化设置,将扫描行的GPIO口设置为输出模式,将读取列的GPIO口设置为输入模式。

同时需要对LCD屏幕进行初始化设置,设置显示模式、光标位置等参数。

2.按键检测循环扫描每一行,当其中一行被选通时,读取每一列的值。

如果其中一列的值为低电平,则表示对应的按键被按下。

将按下的按键的行和列的值保存下来,用于后续的键码解析。

3.键码解析根据行和列的值,通过查表的方式找到对应的键码。

将键码保存下来,用于后续的显示处理。

4.显示处理将键码传送给LCD屏幕,通过LCD屏幕的驱动芯片进行解析和显示。

根据LCD屏幕的显示方式,可以选择逐行显示或者按需显示的方式。

四、优化设计在以上基本设计方案的基础上,可以进行一些优化设计,以提高系统的性能和可靠性。

1.消除按键抖动按键在实际使用中会存在抖动现象,需要通过软件滤波来消除。

可设置一个适当的延时,当检测到按键按下后,延时一段时间再进行键码解析,只有在延时之后仍然检测到按键按下,才认为是一个有效的按键。

2.防止冲突按键由于矩阵键盘的性质,可能存在一些按键组合会产生冲突的情况。

可以通过硬件设计和软件处理来解决。

在硬件上,可以增加二极管来隔离不同的按键。

在软件上,可以通过扫描算法和按键排除的方式来避免冲突。

课程设计制作单片机的4X4矩阵键盘

课程设计制作单片机的4X4矩阵键盘

目录摘要 (2)第一章硬件部分 (3)第一节AT89C51 (3)第二节4*4矩阵式键盘 (6)第三节LED数码管 (8)第四节硬件电路连接 (10)第二章软件部分 (12)第一节所用软件简介 (12)第二节程序流程图 (14)第三节程序 (17)第三章仿真结果 (19)心得体会 (21)参考文献 (22)摘要电子信息行业将是人类社会的高科技行业之一,是设施现代化的基础,也是人类通往科技巅峰的直通车。

电子行业的发展很重要,而计算机技术是现代科技发展的重要组成部分。

矩阵式键盘控制系统可以提高效率,是进行按键操作管理的有效方法,它可以提高系统准确性,有利于资源的节约,降低对操作者本身的要求。

并能正确、实时、高效地显示按键信息,以提高工作效率和资源利用率。

矩阵式键盘是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,并通过单片机,显示在LED数码管上。

单片机控制键盘显示系统,可以对不同的按键进行实时显示,其核心是单片机、键盘矩阵电路和数码管显示电路。

4*4矩阵式键盘以AT89C51单片机为核心,主要由矩阵式键盘电路、显示电路等组成,软件选用C语言编程。

单片机将检测到的按键信号转换成数字量,显示于LED显示器上。

该系统灵活性强,易于操作,可靠性高,广泛应用于各种场合。

第一章硬件部分第一节AT89C51AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。

AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

引脚如图所示AT89C51图1 AT89C51管脚图AT89C51其具有以下特性:与MCS-51 兼容4K字节可编程FLASH存储器寿命:1000写/擦循环数据保留时间:10年全静态工作:0Hz-24MHz三级程序存储器锁定128×8位内部RAM32可编程I/O线两个16位定时器/计数器5个中断源可编程串行通道低功耗的闲置和掉电模式片内振荡器和时钟电路特性概述:AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 接口,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。

精品基于单片机控制的矩阵键盘显示系统设计论文

精品基于单片机控制的矩阵键盘显示系统设计论文

精品基于单片机控制的矩阵键盘显示系统设计论文摘要:本文以单片机为控制核心,设计了一种基于矩阵键盘的显示系统。

论文首先介绍了矩阵键盘和单片机的原理,然后详细阐述了系统的硬件设计和软件设计,最后进行了系统性能测试和结果分析。

实验结果表明,该系统稳定可靠,具有较高的实用性,可以满足用户的需求。

关键词:单片机;矩阵键盘;显示系统;硬件设计;软件设计;性能测试1.引言随着科技的不断发展,单片机已经广泛应用于各个领域,如家电、汽车、医疗等。

矩阵键盘是一种常见的输入设备,其通过以行列方式排列的按键矩阵来实现输入。

本文旨在设计一种基于单片机控制的矩阵键盘显示系统,以便实现按键输入的显示功能。

2.系统原理矩阵键盘是由多个按键组成的,其中每个按键都分别连接到行线和列线上。

当按下一些按键时,行线和列线会产生一个接通信号,通过单片机的输入和输出口可以检测到这个信号。

通过扫描行线和列线的状态,就可以确定用户所按下的按键。

单片机则负责接收按键信号并通过显示屏输出。

3.硬件设计系统的硬件设计主要由单片机、矩阵键盘和显示屏组成。

在硬件设计中,需要选择适当的单片机并连接相应的引脚。

同时,还需根据矩阵键盘和显示屏的特性进行接线连接。

此外,还需进行电源设计,以保证系统的正常运行。

4.软件设计系统的软件设计主要包括单片机的程序设计和相关算法实现。

首先需要编写程序来扫描矩阵键盘的行和列状态,以判断用户是否按下按键。

然后需要编写相应的逻辑代码来处理按键输入,并将按键信息通过显示屏进行显示。

最后还需添加一些功能,如错误提示和清除功能等,以提升系统的易用性。

5.性能测试为验证系统的性能,本文进行了一系列的实验测试。

首先测试了系统的响应速度,使用不同的按键输入进行测试,并记录系统的响应时间。

然后测试了系统的稳定性,通过长时间运行以及大量按键输入的方式进行测试。

最后还测试了系统的兼容性,使用不同的显示屏进行测试,并验证系统的兼容性。

6.结果分析根据实验结果可以看出,该系统在性能上表现出色。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

单片机矩阵键盘实验实验报告
实验名称:单片机矩阵键盘实验
实验目的:掌握单片机矩阵键盘的原理和应用,能够使用单片机按键输入
实验内容:利用Keil C51软件,采用AT89C51单片机实现一个4x4的矩阵键盘,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。

实验步骤:
1、搭建实验电路,将矩阵键盘与单片机相连,连接好电源正负极,然后将电路焊接成一个完整的矩阵键盘输入电路。

2、打开Keil C51软件,新建一个单片机应用工程,然后编写代码。

3、通过代码实现对矩阵键盘输入的扫描功能,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。

4、编译代码,生成HEX文件,下载HEX文件到单片机中,将单片机与电源相连,然后就可以测试了。

5、测试完成后,根据测试结果修改代码,重新编译生成HEX 文件,然后下载到单片机中进行验证。

实验结果:
经过测试,实验结果良好,能够准确地输入按键的值,显示在液晶屏上。

实验感想:
通过这次实验,我深深地认识到了矩阵键盘技术的重要性以及应用价值,同时也更加深入了解单片机的工作原理和应用技术,这对我的学习和工作都有很好的帮助。

单片机课程设计4X4矩阵键盘显示

单片机课程设计4X4矩阵键盘显示

长沙学院?《单片机原理及应用》课程设计说明书题目】液晶显示4*4矩阵键盘按键号程序设计系(部)电子与通信工程系专业(班级)电气1班姓名龙程学号【09指导教师刘辉、谢明华、王新辉、马凌云起止日期—长沙学院课程设计鉴定表《单片机技术及应用》课程设计任务书系(部):电子与电气工程系专业:11级电子一班指导教师:谢明华、刘辉—目录'前言 (5)一、课程设计目的 (6)二、设计内容及原理 (6)单片机控制系统原理 (6)阵键盘识别显示系统概述 (6)键盘电路 (7)12864显示器 (8)整体电路图 (9)!仿真结果 (9)三、实验心得与体会 (10)四、实验程序 (10)参考文献 (18)…。

,】前言单片机,全称单片微型计算机(英语:Single-Chip Microcomputer),又称微控制器(Microcontroller),是把中央处理器、存储器、定时/计数器(Timer/Counter)、各种输入输出接口等都集成在一块集成电路芯片上的微型计算机。

与应用在个人电脑中的通用型微处理器相比,它更强调自供应(不用外接硬件)和节约成本。

它的最大优点是体积小,可放在仪表内部,但存储量小,输入输出接口简单,功能较低。

由于其发展非常迅速,旧的单片机的定义已不能满足,所以在很多应用场合被称为范围更广的微控制器;从上世纪80年代,由当时的4位、8位单片机,发展到现在的32位300M的高速单片机。

现代人类生活中所用的几乎每件有电子器件的产品中都会集成有单片机。

手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电子产品中都含有单片机。

汽车上一般配备40多片单片机,复杂的工业控制系统上甚至可能有数百片单片机在同时工作!单片机的数量不仅远超过PC机和其他计算机的总和,甚至比人类的数量还要多。

液晶显示器(英语:Liquid Crystal Display,缩写:LCD)为平面薄型的显示设备。

它的主要原理是以电流刺激液晶分子产生点、线、面配合背部灯管构成画面。

单片机课程设计4x8矩阵键盘.

单片机课程设计4x8矩阵键盘.

单片机原理与应用课程设计矩阵式键盘与显示班级:机102-1 姓名:许传栋学号:201056502133组号:六组组员:孔令伟、张叶荣、尚桂香、许传栋、刘金林目录:、设计要求(3二、硬件设计(3三、键盘的运行(6四、数码管的显示(6五、键盘键值的确定(6六、按键顺序码的显示(7七、74LS48的应用(8八、数码管接口引脚(9九、程序设计(10附录(18、设计要求1、完成单片机与32键矩阵式键盘的连接方法。

2、识别是否有键按下,并将键值用两位数码管显示出来。

3、用软件延时取出按键抖动。

、硬件设计1、总体构思本次设计为32键矩阵式键盘,因此采用4x8式按键分布。

分为4行8列的布 局。

如图T2_1图T2 1当行线和列线分别置一和置零时,按键两端的电压将发生改变。

将键盘的所有 引线连出,行线联接到P2口的低四位,列线联接到P1 口,从而构成了单片机对键盘按 钮动作的读取电路。

将键值用两位数码管显示,因此要利用两片数码管。

由于单片机通过 P0口进行 输出,因此将P0口的高四位和低四位分别输出数码管的十位和个位 ,并在单片机与数码管之间接入74LS48。

74LS48的作用是将P0的四位输出转化为八位,并且作为晶体管的驱动,74LS48的输出 电流为6mA,刚好满足数码管的电流。

连接电路如图 T2_2L«口n ―0 0~Iq*T W单片机将数据从P0 口输出后经过74LS48的转换与驱动带动,数码管进行数码 的显示,通过数码管的显示判断出按钮的位置。

将上述键盘和显示电路联接到单片机上:键盘的行线联接到单片机的 P2.0~ P2.3 上,列线联接到单片机的P1 口,P0.0~P0.3,P0.4-P0.7分别连接到两片74LS48的输入 端口。

再接入单片机的晶振电路和复位电路,构成单片机的总体电路设计。

如图T2 3A*01tacIQD t\»9UEF9I0F LT06U3 AOA 1 QI C K b at IIFlI QE u25 I如 图 T2_2图 T2_3根据总体电路图的联接,设计出实际的物品。

单片机课程设计——数码管显示4×4矩阵键盘

单片机课程设计——数码管显示4×4矩阵键盘

《单片机原理及应用课程设计》报告——数码管显示4*4矩阵键盘的键盘号设计专业:班级:姓名:学号:2013年1月1.课程设计目的1.1巩固和加深对单片机原理和接口技术知识的理解;1.2培养根据课题需要选学参考书籍、查阅手册和文献资料的能力;1.3学会方案论证的比较方法,拓宽知识,初步掌握工程设计的基本方法;1.4掌握常用仪器、仪表的正确使用方法,学会软、硬件的设计和调试方法;1.5能按课程设计的要求编写课程设计报告,能正确反映设计和实验成果,能用计算机绘制电路图和流程图。

2.课程设计要求单片机的P1口的P1.0~P1.7连接4×4矩阵键盘,P0口控制一只数码管,当4×4矩阵键盘中的某一按键按下时,数码管上显示对应的键号。

例如,1号键按下时,数码管显示“1”, 14号键按下时,数码管显示“E”等等。

3.硬件设计3.1 设计思想分析本任务的要求,使设计能够完成当4*4矩阵键盘中的某一按键按下时,数码管上显示对应的键盘号。

则本系统主要由以下几大模块构成:显示模块,共阴极LED数码管;输入模块,4*4矩阵键盘;3.2主要元器件介绍矩阵键盘又称为行列式键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。

在行线和列线的每一个交叉点上,设置一个按键。

这样键盘中按键的个数是4×4个。

这种行列式键盘结构能够有效地提高单片机系统中I/O 口的利用率。

数码管不同位显示的时间间隔可以通过调整延时程序的延时长短来完成。

数码管显示的时间间隔也能够确定数码管显示时的亮度,若显示的时间间隔长,显示时数码管的亮度将亮些,若显示的时间间隔短,显示时数码管的亮度将暗些。

若显示的时间间隔过长的话,数码管显示时将产生闪烁现象。

所以,在调整显示的时间间隔时,即要考虑到显示时数码管的亮度,又要数码管显示时不产生闪烁现象。

4.1 设计思想按键采用线反转法先把列线置成低电平,行线置成输入状态,读行线;再把行线置成低电平,列线输入状态,读列线。

基于单片机控制的矩阵键盘显示系统设计

基于单片机控制的矩阵键盘显示系统设计

基于单片机控制的矩阵键盘显示系统设计矩阵键盘是一种常见的输入设备,用于将用户的按键操作转换成数字信号,以便与其他电子设备进行交互。

基于单片机的矩阵键盘显示系统设计实现了对键盘输入的读取,并通过显示器将按键信息进行显示。

下面将对该系统的设计进行详细介绍。

1.系统概述本系统主要由矩阵键盘、单片机、显示器组成。

矩阵键盘采用常见的4行4列的布局,每个按键都与单片机的输入引脚相连接。

单片机负责读取输入引脚的状态,并根据不同的按键进行不同的处理。

而显示器则用于显示按键输入的结果。

2.硬件设计2.1矩阵键盘矩阵键盘采用4行4列的布局,每个按键都与单片机的输入引脚相连接。

为了实现多按键同时按下的检测,采用按键矩阵的方式进行连接。

在按键矩阵中,每个按键与四个不同的引脚相连接,分别代表行和列。

单片机通过轮询的方式读取每个行和列的引脚状态,从而实现对按键状态的检测。

2.2单片机单片机作为系统的核心控制器,负责读取矩阵键盘的输入信号,并对按键进行处理。

单片机需要配置相应的IO引脚作为输入引脚,并进行轮询式的读取。

当按键按下时,单片机会通过扫描算法检测到按键的位置,并将按键的信息存储到相应的缓存区。

2.3显示器显示器用于显示按键输入的结果。

可以采用常见的数码管、LCD屏幕或者LED矩阵作为显示设备。

单片机通过输出引脚将按键信息传递给显示器,显示器根据这些信息进行相应的显示操作。

3.软件设计3.1初始化在系统启动时,单片机需要进行相应的初始化工作。

主要包括配置口线方向、扫描算法的设置、中断使能等。

3.2扫描算法为了检测按键的位置,需要采用合适的扫描算法。

常用的有逐行扫描、逐列扫描和矩阵扫描等。

逐行扫描的方法是先给每一行输出低电平,然后通过检测每一列的引脚状态来确定按键位置。

逐列扫描的方法与之类似,只是输出低电平的对象从行变为列。

矩阵扫描方法是同时扫描行和列,通过检测相交的引脚状态来确定按键位置。

在实际应用中,可以根据具体需求选择合适的扫描算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机矩阵键盘毕业设计摘要矩阵式键盘乃是目前使用较为广泛的一种键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。

单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。

4*4矩阵式键盘采用89C51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用C语言编程,单片机将检测到的按键信号转换成数字量,显示于数码管显示器,系统灵活性强,易于操作,可靠性能好。

单片机简介及主系统电路单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换444器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域的广泛应用。

从上世纪80年代,由当时的4位、8位单片机,发展到现在的32位300M的高速单片机。

单片机在工业控制领域广泛应用,它由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中,本次课程设计我们采用的是AT89C51型号的单片机。

AT89C51单片机是51系列单片机的一个成员,是8051单片机的简化版。

内部自带2K字节可编程FLASH存储器的低电压、高性能COMS八位微处理器,与Intel MCS-51系列单片机的指令和输出管脚相兼容。

由于将多功能八位CPU和闪速存储器结合在单个芯片中,因此,AT89C2051构成的单片机系统是具有结构最简单、造价最低廉、效率最高的微控制系统,省去了外部的RAM、ROM和接口器件,减少了硬件开销,提高了系统的性价比。

其最小系统电路图如下:单片机最小系统电路图三、矩阵键盘的电路介绍AT89C51单片机的并行口P3接4×4矩阵键盘,以P3.0-P3.3作行输入线,以P3.4-P3.7作列输出线;P3口输出按键信息,在数码管上显示每个按键的“0-F”序号。

实际电路图连接如下图所示。

矩阵式键盘电路四、数码管显示原理及译码电路本系统输出结果选用8个LED数码管显示。

数码管有共阴共阳之分,本系统采用8段共阴型LED,其原理图如下图所示:符号和引脚共阳极共阴极LED数码管结构数码管内部有8个发光二极管,公共端由8个发光二极管的阴极并接而成,正常显示时公共端接低电平(GND),各发光二极管是否点亮取决于a-dp各引脚上是否是高电平。

LED数码管的外部有10个引脚,其中3, 8脚为公共端也称位选端,其余8个引脚称为段选端,当要使某一位数码管显示某一数字((0-9中的一个)必须在这个数码管的段选端加上与数字显示数字对应的8位段选码(也称字形码),在位选端加上低电平即可。

由于系统要显示的内容比较简单,显示量不多,所以选用数码管既方便又经济。

LED有共阴极和共阳极两种,二极管的阴极连接在一起,通常此公共阴极接地,而共阳极则将发光二极管的阳极连接在一起,接入+5V的电压。

一位显示器由8个发光二极管组成,其中7个发光二极管构成字型“8”的各个笔划(段)a~g,另一个小数点为dp发光二极管。

当在某段发光二极管施加一定的正向电压时,该段笔划即亮;不加电压则暗。

五、时钟电路与复位电路时钟信号用来提供单片机片内各种微操作的时间基准,时钟信号通常用两种电路形式得到:内部振荡和外部振荡。

MCS-51单片机内部有一个用于构成振荡器的高增益反向放大器,引脚XTALl和XTAL2分别是此放大电器的输入端和输出端,由于采用内部方式时,电路简单,所得的时钟信号比较稳定,实际使用中常采用这种方式,如图2-2所示在其外接晶体振荡器(简称晶振)或陶瓷谐振器就构成了内部振荡方式,片内高增益反向放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起可构成一个自激振荡器并产生振荡时钟脉冲。

电路图中外接晶体以及电容C2和C3构成并联谐振电路,它们起稳定振荡频率、快速起振的作用,其值为30pF左右,晶振频率选11.0592MHz 。

为了初始化单片机内部的某些特殊功能寄存器,必须利用复位电路,复位后可使CPU及系统各部件处于确定的初始状态,并从初始状态开始正常工作。

单片机的复位是靠外电路来实现的,在正常运行情况下,只要RST引脚上出现两个机器周期时间以上的高电平,即可引起系统复位,但如果RST引脚上持续为高电平,单片机就处于循环复位状态。

复位后系统将输入/输出(1/0)端口寄存器置为FFH,堆栈指针SP置为07H, SBUF内置为不定值,其余的寄存器全部清0,内部RAM的状态不受复位的影响,在系统上电时RAM的内容是不定的。

复位操作有两种情况,即上电复位和手动(开关)复位。

本系统采用上电复位方式。

电路图中R1和Cl组成上电复位电路,其值R取为1KΩ, C取为10pF。

六、软件系统设计1、程序流程图:入口扫描一行扫描一列该行该列是否有键按下?延时10ms 去抖动再次扫描原列与原值扫描值相符?按键释放根据行号和列号查键码表求键值返回4列全部扫描完?扫描下一行4行全部扫描完?返回0xFF 表示无键按下根据键值查数码显示编码表扫描下一行扫描下一行NNNYYNYY扫描下一行2、按键检测与数码管显示P3口的低4位控制行输入,高4位控制列输入当没有按键按下时,P3.0—P3.3与P3.4—P3.7之间开路。

当有键闭合时,与闭合键相连的两条I/O口线之间短路。

判断有无按键按下的方法是:第一步,置行线P3.0—P3.3为输入状态,从列线P3.4—P3.7输出低电平,读入行线数据,若某一行线为低电平,则该行线上有键闭合。

第二步,列线轮流输出低电平,从行线P3.0—P3.3读入数据,若有某一行为低电平,则对应的列线上有键按下。

综合一二两步的结果,可确定按键编号。

但是按键闭合一次只能进行一次键功能操作,因此须等到按键释放后,再进行键功能操作,否则按一次键,有可能会连续多次进行同样的按键操作。

当确定了是哪一个按键按下后,通过软件程序的设计,返回键盘扫描的键值,转化成十六进制的数据后由PO口输出给数码管显示。

3、LED显示段码表七、PROTEUS 仿真图八、系统的程序:#include<reg52.h>#define uint unsigned int #define uchar unsigned char uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0}; uchar code we[]={7,6,5,4,3,2,1,0};uint i;sbit dula=P2^6;sbit wela=P2^7;uchar num,num1,temp;void delay(uint z){uchar x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}uchar keyscan();void main(){num=17;//打开时数码管什么也不显示dula=1;//关闭数码管P0=0;dula=0;// P2=2;while(1){num1=keyscan();for(i=0;i<8;i++){P0=table[num1-1];P2=we[i];delay(1);}}}uchar keyscan() //带有返回值的函数{P3=0xfe;//检测第一行temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);//延时去抖temp=P3;temp=temp&0xf0;while(temp!=0xf0)//不等于0xf0说明确实是有建按下{temp=P3;//再读回P3口的值switch(temp){case 0xee: num=1;break;case 0xde: num=2;break;case 0xbe: num=3;break;case 0x7e: num=4;break;}while(temp!=0xf0)//检测是否松手,不佳松手检测退不出第二个while循环{temp=P3;temp=temp&0xf0;}}}P3=0xfd;//检测第二行temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);//延时去抖temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;//读回P3口的值switch(temp){case 0xed: num=5;break;case 0xdd: num=6;break;case 0xbd: num=7;break;case 0x7d: num=8;break;}while(temp!=0xf0)//检测是否松手{temp=P3;temp=temp&0xf0;}}}P3=0xfb;//检测第三行temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);//延时去抖temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;//读回P3口的值switch(temp){case 0xeb: num=9;break;case 0xdb: num=10;break;case 0xbb: num=11;case 0x7b: num=12;break;}while(temp!=0xf0)//检测是否松手{temp=P3;temp=temp&0xf0;}}}P3=0xf7;//检测第四行temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);//延时去抖temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;//读回P3口的值switch(temp){case 0xe7: num=13;break;case 0xd7: num=14;break;case 0xb7: num=15;case 0x77: num=16;break;}while(temp!=0xf0)//检测是否松手{temp=P3;temp=temp&0xf0;}}}return num;}实验总结与讨论通过这次单片机课程设计,我不仅加深了对单片机理论的理解,将理论很好地应用到实际当中去,而且我还学会了如何去培养我们的创新精神,从而不断地战胜自己,超越自己。

相关文档
最新文档