九年级数学 相似多边形的性质
初中数学中考复习考点知识与题型专题讲解33 相似形(解析版)
初中数学中考复习考点知识与题型专题讲解专题33相似形【知识要点】考点知识一相似图形及比例线段相似图形:在数学上,我们把形状相同的图形称为相似图形.相似多边形:若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
特征:对应角相等,对应边成比例。
比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段。
考点知识二相似三角形相似图形的概念:形状相同的图形叫做相似图形。
相似图形的概念:对应角相等、对应边成比例的两个三角形叫做相似三角形。
相似用符号“∽”,读作“相似于”。
相似比的概念:相似三角形对应边的比叫做相似比相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.判定方法(五):斜边和任意一条直角边成比例的两个直角三角形相似。
相似三角形的性质:1.相似三角形的对应角相等,对应边的比相等;2.相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.3.相似三角形的面积比等于相似比的平方.相似三角形与实际应用:关键:巧妙利用相似三角形性质,构建相似三角形求解。
考点知识三位似位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:1.位似图形是相似图形的一种特殊形式。
2.位似图形的对应顶点的连线所在直线相交与一点,位似图形的对应边互相平行或者共线。
位似中心的位置:形内、形外、形上。
北师大版九年级数学上册《相似多边形》评课稿
北师大版九年级数学上册《相似多边形》评课稿1. 引言《相似多边形》是北师大版九年级数学上册的一章,主要介绍相似多边形的概念、性质和相关定理。
本评课稿旨在对该章节进行评价和总结,以便教师们能够更好地教授这一内容。
2. 内容概述2.1 相似多边形的基本概念在本章节开始,学生将首先了解到相似多边形的基本概念。
通过比较边长和角度等特征,学生能够理解相似多边形的定义以及相似比的概念。
2.2 相似多边形的性质在了解了相似多边形的基本概念后,本章节接着介绍了相似多边形的性质。
学生将学习到相似多边形的尺形性质、角度性质等。
2.3 相似多边形的判定通过本章节的学习,学生能够掌握相似多边形的判定方法。
学生将会学习到判定相似多边形的几何性质和镜像法、旋转法等判定方法。
2.4 相似多边形的应用本章节最后将给学生提供相似多边形的应用的案例。
通过这些应用案例的探究,学生能够将相似多边形的知识应用到实际问题中。
3. 学习评价3.1 教学目标通过本章节的学习,学生应能够: - 理解相似多边形的定义 - 掌握相似比的计算方法 - 了解相似多边形的性质和判定方法 - 掌握相似多边形在实际问题中的应用3.2 教学重点本章节的教学重点主要集中在: - 相似多边形的定义和概念 - 相似多边形的性质及其判定方法 - 相似多边形的应用3.3 教学难点相似多边形的判定方法是本章节的教学难点,需要学生综合运用相似多边形的性质,进行判定。
4. 教学过程4.1 设计教学活动本章节的教学活动设计如下: 1. 导入:利用生活中相似图形的例子引入相似多边形的概念,并与学生讨论相似的条件。
2. 概念讲解:通过教师的讲解,介绍相似多边形的定义和基本概念。
3. 实例呈现:通过展示一些简单的相似多边形实例,让学生观察并找出相似的特征。
4. 性质总结:学生学习相似多边形的性质,教师总结并与学生一起进行概括。
5. 判定方法讲解:教师讲解相似多边形的判定方法,并通过实例进行演示。
九年级数学相似多边形的性质
利用相似多边形证明角度相等关系
若两个多边形相似,则它们的对应角相等。因此,可以通过 证明两个多边形相似来证明两个角度相等。
例如,若要证明两个角∠A和∠B相等,可以构造两个相似多边形, 使得它们的一组对应角分别为∠A和∠B,然后通过计算对应角的 度数来得到它们相等的结论。
已知一个五边形与一个边长为 5cm的正五边形相似,且相似 比为2:1,求这个五边形的周长。
若两个相似三角形的面积分别 为16cm²和36cm²,求它们的 相似比。
03 相似多边形在几何证明中 应用
利用相似多边形证明线段比例关系
若两个多边形相似,则它们的对应边成比例。因此,可以通过证明两个多边形相 似来证明两条线段的比例关系。
THANKS FOR WATCHING
感谢您的观看
对应角相等定理
如果两个多边形相似,那么它们 的对应角必定相等。
应用
这个定理在解决相似多边形的问 题时非常重要,因为它允许我们 通过比较对应角来验证或确定多 边形的相似性。
02 相似多边形面积与周长关 系
面积比与相似比平方关系
01
若两个多边形相似,且相似比为 $k$,则它们的面积之比为$k^2$。
04 相似多边形在生活实际问 题中应用
建筑设计中缩放模型原理
建筑设计中,常常需要制作建筑物的缩 放模型来研究和展示设计方案。相似多 边形的性质使得缩放模型能够保持与原 建筑物相同的形状,但尺寸按比例缩小
或放大。
利用相似多边形的性质,建筑师可以计 算缩放模型各部分的尺寸,以确保模型
九年级数学相似的知识点
九年级数学相似的知识点1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的性质包括对应角相等、对应边成比例等。
通过相似三角形,可以解决一些几何问题,如计算不可测量的长度或距离。
2. 比例与相似:比例是指两个量之间的相对关系。
在相似三角形中,对应边的长度之比等于对应角的边之比。
比例与相似问题常用于解决物体的放大缩小、图形的变换等。
3. 相似多边形:相似多边形是指具有相同形状但大小不同的多边形。
相似多边形的性质包括对应角相等、对应边成比例等。
通过相似多边形,可以解决一些面积和体积比较的问题。
4. 黄金分割:黄金分割是指一条线段分割成两部分,较长部分与整体的比例等于整体与较短部分的比例。
黄金分割在艺术、建筑、设计等领域中广泛应用。
5. 图形的相似性变换:图形的相似性变换是指通过平移、旋转、镜像和缩放等变换操作使两个图形成为相似图形。
相似性变换常用于解决图形的构造、定位和证明问题。
6. 相似三角形的勾股定理:相似三角形的勾股定理是指在两个相似三角形中,两个直角边的平方的比等于两个斜边的平方的比。
7. 外接圆和内切圆:在相似三角形和相似多边形中,外接圆和内切圆分别是能够通过所有顶点(或顶点所在的边)的圆和能够被所有边(或边上的顶点)所切的圆。
外接圆和内切圆之间存在着一定的关系,如半径比例等。
8. 相似三角形的角平分线定理和中线定理:相似三角形的角平分线定理是指两个相似三角形中,两个对应角的角平分线也相似;相似三角形的中线定理是指两个相似三角形中,两个对应中位线也相似。
这些是九年级数学中与相似有关的知识点,希望对你有帮助!。
九年级相似知识点归纳
九年级相似知识点归纳一、数学方面的相似知识点归纳1. 相似三角形相似三角形是指具有相同形状但不同大小的三角形。
相似三角形的性质包括:对应角相等,对应边成比例。
利用这些性质,我们可以求解各种与相似三角形相关的问题。
2. 相似比与比例相似比是指相似图形(包括三角形和多边形)的对应边的比值。
比例是指两个数之间的相对关系。
在解题中,我们需要用到相似比和比例来确定图形的相似性质以及求解未知数。
3. 相似多边形相似多边形是指具有相同形状但不同大小的多边形。
相似多边形的性质与相似三角形类似,对应角相等,对应边成比例。
我们可以利用相似多边形的性质来求解各类相关问题。
二、科学方面的相似知识点归纳1. 生物相似性在生物学中,相似性是指不同物种之间在形态特征、生理功能等方面存在相似之处。
相似性可以用来推断物种之间的亲缘关系,进行分类和进化研究。
2. 物理相似性在物理学中,相似性是指两个事物在某些性质上的相似程度。
物理相似性的研究可以帮助我们更好地理解和预测不同物体或系统的行为,比如利用相似性原理可以在实验室中进行模型实验,进而推广到真实情况。
3. 化学相似性在化学领域,相似性是指化合物或元素之间具有相似的化学性质或结构特征。
化学相似性可以用来预测物质的性质、反应行为,以及设计新的化合物或材料。
三、语文方面的相似知识点归纳1. 同义词与近义词同义词是指意思相同或相近的词语,而近义词指意思相近但不完全相同的词语。
在写作中,我们可以利用同义词和近义词来丰富文章的表达方式,避免重复使用相同的词汇。
2. 反义词与对义词反义词是指意思相反的词语,而对义词指相对应关系的词语。
在阅读理解和写作中,我们需要对反义词和对义词进行准确理解,以便正确地领会作者的意图和准确表达自己的思想。
3. 成语与俗语成语是特定社会和历史背景下形成的固定词组,具有特定的意义。
俗语是反映民间传统和智慧的短小词句。
在语文学习中,我们需要理解和运用成语和俗语,以提升语言表达的准确性和韵律感。
北师大九年级上第四章图形的相似4.3相似多边形(教案)
对于教学难点,我觉得可以采取分步骤讲解的方式,将复杂的性质分解成简单的部分,让学生一步一步地掌握。同时,我计划在下一节课中增加一些针对性的练习题,特别是那些能够帮助学生巩固相似多边形判定和性质应用的题目。
c.实际应用:设计一些综合应用题,如求相似多边形中未知边长或面积,指导学生如何识别问题中的相似关系,并运用性质进行计算。
d.证明过程:引导学生通过几何画板或实际操作,体验相似多边形证明的过程,理解证明的每一步逻辑,从而能够独立完成相似多边形的证明。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似多边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似的图形?”比如,两张不同大小的照片,它们的长宽比是一样的。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似多边形的奥秘。
二、核心素养目标
1.培养学生的几何直观:通过观察、操作、推理等过程,让学生掌握相似多边形的判定方法,提高学生对几何图形的认识和理解能力。
2.提升学生的逻辑推理能力:引导学生运用已知条件,通过严密的逻辑推理证明相似多边形的性质,培养学生分析问题和解决问题的能力。
3.增强学生的空间观念:通过研究相似多边形的性质,让学生体会几何图形在空间中的相互关系,培养学生的空间想象力和创造力。
4.培养学生的数学应用意识:将相似多边形的知识应用于解决实际问题,使学生认识到数学与现实生活的紧密联系,提高学生的数学应用能力。
北师大版九年级数学上册说课稿:4.3 相似多边形
北师大版九年级数学上册说课稿:4.3 相似多边形一. 教材分析北师大版九年级数学上册第4.3节“相似多边形”是学生在学习了相似三角形的性质和判定后,对相似形的进一步研究。
教材从生活实例出发,引出相似多边形的概念,并通过实例让学生体会生活中许多图形都是相似的。
教材还通过探究活动,让学生掌握相似多边形的性质和判定,为后续学习函数、解析几何等知识打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质和判定,具备一定的观察、操作、推理能力。
但九年级学生对抽象几何图形的认识还不够深入,对相似多边形的应用和实际意义可能理解不透。
因此,在教学过程中,我将以学生为主体,引导他们通过观察、操作、猜想、推理等方法,理解和掌握相似多边形的性质和判定。
三. 说教学目标1.知识与技能:理解相似多边形的概念,掌握相似多边形的性质和判定方法。
2.过程与方法:通过观察、操作、猜想、推理等方法,培养学生的空间想象能力和推理能力。
3.情感态度与价值观:体会数学与生活的联系,提高学生学习数学的兴趣。
四. 说教学重难点1.重点:相似多边形的概念、性质和判定方法。
2.难点:相似多边形的性质和判定在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、小组合作、探究式学习等方法。
2.教学手段:多媒体课件、几何画板、实物模型等。
六. 说教学过程1.导入:通过展示生活中的相似多边形实例,如教室窗户、电视屏幕等,引导学生观察和讨论,引出相似多边形的概念。
2.探究相似多边形的性质:让学生通过观察、操作、猜想、推理等方法,探究相似多边形的性质,如对应边成比例、对应角相等等。
3.探究相似多边形的判定:引导学生通过实例,探讨相似多边形的判定方法,如两组对应边成比例且对应角相等、两组对应角相等且对应边成比例等。
4.应用与拓展:让学生运用相似多边形的性质和判定解决实际问题,如计算图形面积、解决实际尺寸等。
5.总结与反思:对本节内容进行总结,让学生谈谈自己的收获和体会,引导学生关注数学与生活的联系。
4.3相似多边形(教案)
一、教学内容
本节课选自中学数学教材九年级下册第四单元“几何图形的相似”中的4.3节“相似多边形”。教学内容主要包括以下几部分:
1.相似多边形的定义及性质:理解并掌握相似多边形的含义,了解相似多边形对应角相等、对应边成比例的特点。
2.相似多边形的判定方法:学习并掌握如何判断两个多边形是否相似,包括AA(角-角-角)相似定理、SAS(边-角-边)相似定理和SSS(边-边-边)相似定理。
实践活动和小组讨论环节,学生们表现出了很高的热情。他们通过分组讨论和实验操作,不仅加深了对相似多边形性质的理解,还学会了如何将理论知识应用到实际中去。不过,我也观察到,在一些小组中,讨论不够深入,部分学生未能充分参与到讨论中来。为了改善这一点,我考虑在下一节课中引入更多的互动环节,鼓励每个学生都发表自己的见解。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的几何直观与空间观念:通过相似多边形的认识,使学生能运用几何直观感知图形的相似性质,发展空间观念,提高解决几何问题的能力。
2.提升学生的逻辑推理与数学论证能力:在教学过程中,引导学生运用逻辑推理方法证明相似多边形的性质和判定方法,培养严谨的数学论证能力。
3.相似多边形的性质应用:运用相似多边形的性质解决实际问题,如求线段长度、角度大小等。
4.相似多边形与位似图形的关系:探讨相似多边形与位似图形之间的联系,理解位似变换对图形相似性质的影响。
5.实践与拓展:通过实际操作,培养学生的观察能力、推理能力和空间想象能力,提高解决实际问题的能力。同时,引入一些拓展知识,如相似图形的周长比和面积比等。
-通过设计不同难度层次的练习题,从简单到复杂,逐步增加学生的解题难度,帮助他们克服在相似多边形性质应用上的难点。
人教版九年级数学下册第二十七章27.1 图形的相似
解:∠A=65° , ∠B=65° , ∠D=∠C=180° -65° =115° , 15 15 A′D′= 4 cm,B′C′=A′D′= 4 cm.
15. 在△ ABC 中,AB=12,点 E 在 AC 上,点 D AD AE 在 AB 上,若 AE=6,EC=4,且DB=EC. (1)求 AD 的长; DB EC (2)试问 AB =AC能成立吗?请说明理由.
13. 一个四边形的边长分别是 3,4,5,6,另一 个和它相似的四边形的最小边长为 6,那么另一个四 边形的周长为 36 .
14. 如 图所 示 , 等腰 梯 形 ABCD 与等 腰 梯 形 A′B′C′D′相似,∠A′=65° ,A′B′=6 cm,AB=8 cm, AD=5 cm,试求梯形 ABCD 各角的度数与 A′D′,B′C′ 的长.
(2)请归纳出相似体的 3 条主要性质: ①相似体的一切对应线段(或弧)长的比等 于
相似比
; ; .
②相似体表面积的比等于 相似比的平方 ③相似体体积的比等于 相似比的立方
17. (1)已知图①中的两个矩形相似,求它们的对 应边的比;
(2)如图②,两个六边形的边长分别都为 a 和 b, 且每一个六边形的内角均是 120° ,它们相似吗?为什 么?
S甲 6 a2 a2 则 =6b2 =b ,又设 V 甲、V 乙分别表示这两个正 S乙 V甲 a3 a3 方体的体积,则 =b3=b . V乙
(1)下列几何体中,一定属于相似体的是( A ) A.两个球体 C.两个圆柱体 B.两个圆锥体 D.两个长方体
8. 在比例尺为 1∶n 的某市地图上,A,B 两地相 距 5 cm,则 A,B 之间的实际距离为( C ) 1 A.5n cm C.5n cm 1 2 B.25n cm D是相似形的是 ( B )
初中数学相似图形多边形概念性质定理及练习题知识点总结归纳
相似图形知识点总结:
五. 相似三角形
1. 在相似多边形中,最为简单的就是相似三角形.
2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.
3. 全等三角形是相似三角形的特例,这时相似比等于 1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.
4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.
5. 相似三角形周长的比等于相似比.
6. 相似三角形面积的比等于相似比的平方.
六.探索三角形相似的条件
3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
八. 相似的多边形的性质
相似多边形的周长等于相似比;面积比等于相似比的平方.
九. 图形的放大与缩小
如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.
2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.
3. 位似变换: ①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心. ②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形. ③利用位似的方法,可以把一个图形放大或缩小.
巩固练习:。
九年级《图形的相似》知识点归纳
苏科版九下《图形的相似》知识点归纳知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义: 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC == 简记为:512长短==全长 注:①黄金三角形:顶角是360的等腰三角形 ②黄金矩形:宽与长的比等于黄金数的矩形(3)合、分比性质:a c a b c db d b d±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b n mf e d c b a , 那么ban f d b m e c a =++++++++ . 知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(上图)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.4、判定定理3:简述为:三边对应成比例,两三角形相似.5、判定定理4:直角三角形中,“斜边和一直角边对应成比例” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“斜边和一直角边对应成比例”(3如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则 ∽ ==> AD 2=BD ·DC ,∽ ==> AB 2=BD ·BC ,∽ ==> AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)FE D CB A E BD E D(3)B C AE DBC(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。
北师大版数学九年级上册第四章图形的相似知识点归纳及例题
北师大版九年级上册第四章图形的相似知识点归纳及例题【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方;3、探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;4、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标变化;5、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【知识点网络】【知识点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures). 知识点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等; 2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多形. 知识点诠释:(1)相似多边形的定义既是判定方法,又是它的性质. (2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段. 知识点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项) (2)若a :b=b :c ,则 =ac (b 称为a 、c 的比例中项). 4.平行线分线段成比例:基本事实:两条直线被一组平行线所截,所得的对应线段成比例. 推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例. 知识点二、相似三角形 1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):两角分别相等的两个三角形相似. 知识点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似. 判定方法(三):两边成比例且夹角相等的两个三角形相似.2b知识点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.知识点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。
九年级上册数学相似知识点大归纳
九年级上册数学相似知识点大归纳在九年级上册的数学学习中,相似是一个重要的概念。
相似性质帮助我们研究物体的形状、大小和比例关系。
在本文中,我将对九年级上册数学中的相似知识点进行大归纳,帮助大家更好地理解和应用这些知识。
一、相似三角形相似三角形是九年级上册数学中比较基础和常见的相似概念。
相似三角形具有相等的角度,同时对应边的比例也相等。
在判断相似三角形时,我们可以利用“三对应角相等”和“两边成比例”的条件进行判断。
而当我们知道两个三角形是相似的时候,我们可以利用相似比例求解未知边长或者比例。
二、相似比例相似比例是相似三角形中一个非常重要的概念。
两个相似三角形的每一对对应边长的比值都是相等的。
我们可以用相似比例来求解未知边长,或者根据已知信息推导出相似比例关系。
三、面积的相似性质在九年级数学中,相似三角形和相似多边形之间也存在着面积的相似性质。
两个相似的三角形的面积比等于对应边长比的平方。
同样地,两个相似的多边形的面积比也等于对应边长比的平方。
利用这个性质,我们可以更加方便地计算相似图形的面积。
四、正方体和相似关系在九年级上册的数学中,我们学习了正方体的性质和构造。
除了正方体本身,我们还可以通过对正方体进行缩放和旋转等操作,得到一系列相似的多面体。
这些相似的多面体具有相同的形状,但大小不同。
我们可以通过相似比例计算这些多面体之间的边长比例、面积比例和体积比例。
五、相似多面体和尺规作图在九年级上册的数学中,我们进一步学习了相似多面体之间的关系,并且将其应用到尺规作图中。
通过相似多面体的一些性质,我们可以确定一些尺规作图中的线段比例关系。
这些性质包括平行四边形的性质、三角形的性质和面积的性质等。
通过这些性质,我们可以在尺规作图中使用尺规和指南针构造相似多面体的比例关系。
通过对九年级上册数学中的相似知识点的大归纳,我们可以看到相似性质在几何学中的重要性。
通过相似性质,我们可以推导出许多有用的结论,解决许多实际问题。
初中数学《相似多边形及其性质》教案答题技巧
初中数学《相似多边形及其性质》教案答题技巧29.6相似多边形及其性质教学目标1.知识与技能① 相似三角形对应高的比,对应角的比,对应叫平分线的比和对应中线的比和相似比的关系。
② 利用相似三角形的性质解决一些实际问题。
2.情感与态度①相似三角形中对应线段的比和相似比的关系,培养学生的探索精神和合作意识。
② 通过运用相似三角形的性质,增强学生的应用意识重点与难点重点:相似三角形中对应线段比值的推倒,运用相似三角形的性质解决实际问题。
难点:相似三角形的性质的运用。
教学思考通过例题的分析讲解,让学生感受相似三角形的性质在实际生活中的应用。
解决问题在理解并掌握相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比的过程中,培养学生利用相似三角形的性质解决现实问题的意识和应用能力教学方法引导启发式课前准备幻灯片教学设计□教师活动□学生活动一、创设问题情境,引入新课带领学生复习相似多边形的性质及相似三角形的性质,并提出疑问“在两个相似三角形中,是否只有对应角相等,对应边成比例这个性质?”从而引导学生探究相似三角形的其他性质。
认真听课、思考、回答老师提出的问题。
二、新课讲解1、做一做以实际问题做引例,初步让学生感知相似三角形对应高的比和相似比的关系。
钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,图纸上的△ABC表示该零件的横断面△ABC,CD和CD分别是它们的高.(1) , , 各等于多少?(2)△ABC与△ABC相似吗?如果相似,请说明理由,并指出它们的相似比. (3)请你在图4-38中再找出一对相似三角形.(4)等于多少?你是怎么做的?与同伴交流.阅读课本材料,弄清题意,根据已有的经验积极思考,动手操作画图,在练习本上作答。
依次回答课本提出的4个问题并加以思考2、议一议根据上面的引例让学生猜测,证明相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比。
已知△ABC∽△ABC,△ABC与△ABC的相似比为k.(1)如果CD和CD是它们的对应高,那么等于多少?(2)如果CD和CD是它们的对应角平分线,那么等于多少?如果CD和CD是它们的对应中线呢?学生经历观察,推证、讨论,交流后,独立回答。
初中相似多边形的性质教案
初中相似多边形的性质教案教学目标:1. 知识与技能:使学生掌握相似多边形的定义和性质,能够运用相似多边形的性质解决一些实际问题。
2. 情感与态度:培养学生的探索精神和合作意识,通过运用相似多边形的性质,增强学生的应用意识。
教学重难点:1. 重点:相似多边形的性质及其应用。
2. 难点:相似多边形的性质的灵活运用。
教学准备:1. 教学工具:黑板、粉笔、多媒体教学设备。
2. 教学素材:相关例题和练习题。
教学过程:一、创设情境,引入新课1. 复习已学知识:回顾多边形的定义和性质,复习三角形的相关知识。
2. 提出问题:在两个相似多边形中,它们的对应边和对应角有什么关系?二、自主探究,揭示相似多边形的性质1. 引导学生通过观察、分析、归纳相似多边形的性质。
2. 学生汇报探究结果,教师进行总结,得出相似多边形的性质:a. 相似多边形的对应边成比例。
b. 相似多边形的对应角相等。
c. 相似多边形的面积比等于相似比的平方。
三、巩固新知,运用性质解决实际问题1. 通过幻灯片展示一些实际问题,引导学生运用相似多边形的性质进行解决。
2. 学生独立解答问题,教师进行讲解和指导。
四、课堂练习,巩固提高1. 布置一些相关的练习题,让学生独立完成。
2. 教师对学生的解答进行点评和指导。
五、总结反思,拓展延伸1. 让学生回顾本节课所学的内容,总结相似多边形的性质及其应用。
2. 提出一些拓展性问题,激发学生的学习兴趣。
教学反思:本节课通过创设问题情境,引导学生自主探究相似多边形的性质,并通过实际问题让学生运用性质进行解决。
在教学过程中,注意引导学生积极参与,培养学生的探索精神和合作意识。
通过课堂练习和总结反思,巩固提高学生对相似多边形性质的理解和应用。
总体来说,本节课达到了预期的教学目标。
九年级数学上册 :24.4相似多边形的性质教案 沪科版
边形的性质教学目标(一)知识与技能相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.(二)过程与方法1.经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似多边形的性质.质解决一些实际问题.(三)情感与价值观过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识.过运用相似三角形的性质,增强学生的应用意识.教学重点对应线段比值的推导.2.运用相似三角形的性质解决实际问题.教学难点相似三角形的性质的运用.教学方法引导启发式教具准备投影片教学过程Ⅰ.创设问题情境,引入新课[师]在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.Ⅱ.新课讲解 投影片钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,如图4-38,图纸上的△ABC 表示该零件的横断面△A ′B ′C ′,CD 和C ′D ′分别是它们的高.(1)B A AB '',C B BC '',C A AC''各等于多少? (2)△ABC 与△A ′B ′C ′相似吗?如果相似,请说明理由,并指出它们的相似比. (3)请你在图1中再找出一对相似三角形. (4)D C CD''等于多少?你是怎么做的?与同伴交流.图1[生]解:(1)B A AB ''=C B BC ''=C A AC ''=43(2)△ABC ∽△A ′B ′C ′ ∵B A AB ''=C B BC ''=CA AC'' ∴△ABC ∽△A ′B ′C ′,且相似比为3∶4. (3)△BCD ∽△B ′C ′D ′.(△ADC ∽△A ′D ′C ′) ∵由△ABC ∽△A ′B ′C ′得 ∠B =∠B ′∵∠BCD =∠B ′C ′D ′∴△BCD ∽△B ′C ′D ′(同理△ADC ∽△A ′D ′C ′) (4)D C CD ''=43∵△BDC ∽△B ′D ′C ′ ∴D C CD ''=C B BC ''=432.议一议已知△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比为k .(1)如果CD 和C ′D ′是它们的对应高,那么D C CD''等于多少? (2)如果CD 和C ′D ′是它们的对应角平分线,那么DC CD''等于多少?如果CD 和C ′D ′是它们的对应中线呢?[师]请大家互相交流后写出过程.[生甲]从刚才的做一做中可知,若△ABC ∽△A ′B ′C ′,CD 、C ′D ′是它们的对应高,那么D C CD ''=CB BC''=k . [生乙]如2图,△ABC ∽△A ′B ′C ′,CD 、C ′D ′分别是它们的对应角平分线,那么D C CD ''=C A AC ''=k .图2∵△ABC ∽△A ′B ′C ′∴∠A =∠A ′,∠ACB =∠A ′C ′B ′∵CD 、C ′D ′分别是∠ACB 、∠A ′C ′B ′的角平分线. ∴∠ACD =∠A ′C ′D ′ ∴△ACD ∽△A ′C ′D ′ ∴D C CD ''=C A AC''=k . [生丙]如图3中,CD 、C ′D ′分别是它们的对应中线,则D C CD ''=C A AC''=k .图3∵△ABC ∽△A ′B ′C ′ ∴∠A =∠A ′,C A AC ''=B A AB''=k . ∵CD 、C ′D ′分别是中线∴D A AD ''=B A AB''2121=B A AB ''=k .∴△ACD ∽△A ′C ′D ′ ∴D C CD ''=C A AC''=k . 由此可知相似三角形还有以下性质.相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比. 题讲解 投影片图4如图4所示,在等腰三角形ABC 中,底边BC =60 cm,高AD =40 cm ,四边形PQRS 是正方形.(1)△ASR 与△ABC 相似吗?为什么? (2)求正方形PQRS 的边长.解:(1)△ASR ∽△ABC ,理由是: 四边形PQRS 是正方形SR ∥BC(2)由(1)可知△ASR ∽△AB C.根据相似三角形对应高的比等于相似比,可得BCSRAD AE =设正方形PQRS 的边长为x cm ,则AE =(40-x )cm , 所以604040xx =- 解得:x =24所以,正方形PQRS 的边长为24 cm. Ⅲ.课堂练习如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢?(都是4∶5). Ⅳ.课时小结本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比.Ⅴ.课后作业 Ⅵ.活动与探索图5如图5,AD ,A ′D ′分别是△ABC 和△A ′B ′C ′的角平分线,且B A AB ''=D B BD ''=D A AD'' 你认为△ABC ∽△A ′B ′C ′吗? 解:△ABC ∽△A ′B ′C ′成立. ∵B A AB ''=D B BD ''=D A AD'' ∴△ABD ∽△A ′B ′D ′∴∠B =∠B ′,∠BAD =∠B ′A ′D ′ ∵∠BAC =2∠BAD , ∠B ′A ′C ′=2∠B ′A ′D ′ ∴∠BAC =∠B ′A ′C ′ ∴△ABC ∽△A ′B ′C ′ 板书设计边形的性质2.议一议 题讲解 二、课堂练习 三、课时小节 四、课后作业。
华师版数学九年级上册 相似图形
练一练
在图所示的相似四边形中,求未知边 x 的长度 和角度 α 的大小.
α = 83° x = 9 思考:
两个三角形一定是相似形吗?图两24.个2.5等腰三角形呢? 两个等边三角形呢?
A1
60°
C1 对应角
相等
对应边 成比例
两三 角形 相似
A1
A
F 正六边形
120°
120°
B
E 放大 B1
F1 E1
C
D
C1 ∠A =∠A1,∠B =∠B1,∠C =∠C1, ∠D =∠D1,∠E =∠E1,∠F =∠F1
D1 对应角相等
A
F
正六边形
A1
B
E
放大
B1
C
D
AB = BC = CD = DE = EF = FA
第23章 图形的相似
23.2 相似图形
观察与思考
请观察下面几组图片,是我们前面学过的相似图形吗?
相似多边形的性质 下图中两个四边形是相似形,仔细观察这两个图形,它们的对应边之间有什么关Fra bibliotek呢?对应角之间又有
什么关系?
再看看下图中两个相似的五边形,是否与你 观察前面的图所得到的结果一样?
由此可以得到两个相似多边形的性质: 对应边成比例,对应角相等.
比例,各角对应相等,就称这两个多边形相似.
1.根据下图所示,这两个多边形相似吗?说说你 的理由.
不相似,因为这两个多边形对应角相等,但对应边 不成比例.
2.如图,正方形的边长 a =10,菱形的边长 b=5, 它们相似吗?请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似多边形的性质
•相似多边形:
如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。
(或相似系数)
判定:
如果对应角相等,对应边成比例的多边形是相似多边形.
如果所有对应边成比例,那么这两个多边形相似
•相似多边形的性质:
相似多边形的性质定理1:相似多边形周长比等于相似比。
相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。
相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。
相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。
相似多边形的性质定理5:若相似比为1,则全等。
相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。
相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。
相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。
第1页共1页。