小学生数学直觉思维的培养

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学生数学直觉思维的培养

数学直觉思维是人脑对数学对象、结构以及关系的敏锐的想象和判断。它是直觉想象和直觉判断的统一,是数学的洞察力,具有较大的创造性。成功的数学教学应该为发展学生的直觉思维提供有效的途径,启发学生积极思考、猜测与质疑,建立起一个活跃的智力活动的过程的环境,给学生留下直觉思维的时间和空间,从而做出直觉的想象和判断,最终导致思维的创新这一理想境界。

一、小学生直觉思维训练是必要的

直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点,从培养直觉思维的必要性来看,主要有以下三个:

1、简约性。直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象做出的敏锐而迅速的假设,猜想或判断,它省去了一步一步分析推理的中间环节,而采取了“跳跃式”的形式。它是一瞬间的思维火花,是长期积累上的一种升华,是思维者的灵感和顿悟,是思维过程的高度简化,但是它却清晰的触及到事物的“本质”。

2、创造性。现代社会需要创造性的人才,我国的教材由于长期以来借鉴国外的经验,过多的注重培养逻辑思维,培养的人才大多数习惯于按部就班、墨守成规,缺乏创

造能力和开拓精神。直觉思维是基于研究对象整体上的把握,不专意于细节的推敲,是思维的大手笔。正是由于思维的无意识性,它的想象才是丰富的,发散的,使人的认知结构向外无限扩展,因而具有反常规律的独创性。

3、自信力。学生对数学产生兴趣的原因有两种,一种是教师的人格魅力,其二是来自数学本身的魅力。不可否认情感的重要作用,但笔者的观点是,兴趣更多来自数学本身。成功可以培养一个人的自信,直觉发现伴随着很强的“自信心”。相比其它的物资奖励和情感激励,这种自信更稳定、更持久。当一个问题不用通过逻辑证明的形式而是通过自己的直觉获得,那么成功带给他的震撼是巨大的,内心将会产生一种强大的学习钻研动力,从而更加相信自己的能力。高斯在小学时就能解决问题“1+2+ …… +99+100=?”,这是基于他对数的敏感性的超常把握,这对他一生的成功产生了不可磨灭的影响。而现在的学生极少具有直觉意识,对有限的直觉也半信半疑,不能从整体上驾驭问题,也就无法形成自信。

二、培养学生的直觉思维能力,促进逻辑思维能力发展,提高解题能力

直觉思维是一种以高度省略、简化、浓缩的方式探究问题实质的思维。教学中我们都有这样的体会:数学成绩好的学生,在解决数学问题时,常能产生思维的活跃,灵感的

突发,并能有效地进行猜测、想象和快速判断。这便是数学直觉思维能力的体现。一个人的数学思维,判断能力的高低主要取决于直觉思维能力的高低。数学直觉是可以后天培养的,实际上每个人的数学直觉也是不断提高的。在小学数学教学中,对学生进行直觉思维训练不但有助于学生寻找解题的途径、选择解题方法,而且有助于学生智能的开发。但是实践证明,学生的直觉思维能力不是一蹴而就的,它是在数学学习过程中逐步形成和发展起来的。因此,可以结合直觉思维特点,在教学中采取下列措施来加强学生的直觉思维的培养:

1、扎实基础是产生直觉思维的源泉。

直觉不是靠“机遇”。直觉的获得虽然具有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的知识为基础的。若没有深厚的功底,是不会迸发出思维的火花的。知识是直觉思维能力形成的基础和来源。因此,教学中应十分重视数学概念、性质、法则、公式等规律性知识的教学,使学生努力达到“真懂”和“彻悟”的境界。

2、教学中要注意渗透数学哲学观点及审美观念。

直觉的产生也是基于对研究对象整体的把握上,而哲学观点有利于高屋建邻地把握事物的本质。这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。美感和美的意识是数学直觉的本质,提高审美能力有

利于培养数学事物间所有存在着的和谐关系及秩序的直觉意识,审美能力越强,则直觉能力也越强。

3、重视学生观察技巧的培养。

学生无论是直接知识还是间接知识的学习都离不开观察,而直觉是思维在观察上表现出的快速和灵活。这就需要我们在教学中重视培养学生对教材敏锐的观察力,让学生掌握正确的观察方法,并经常训练,形成技能。

(1)观察要有目的性。如教学循环小数时,一开始,设计这样的一组情景题,①春夏秋冬春夏秋冬……②一、二、三、四、五、六、日、一、二、三、四、五、六、日……③红、绿、黄、红、绿、黄……,然后提问:“哪一个同学能找出这组题的共同特征?”不仅一下子调动了学生观察的兴趣,而且明确了观察的目的,让学生很快的通过观察发现“依次不断重复出现”这样一个规律,为掌握循环小数这一概念打下了良好的基础,同时突出了课的重点难点。

(2)观察要有选择性。如学习方程概念时,可出示以下练习:判断下列各式哪些是方程:①1+3=4、②3=2x、③7>x、④3x+5x、⑤6+x>x-5,让学生运用方程概念,有选择地观察、判断,从而做出正确的选择。

(3)观察要有顺序性。杂乱无章的观察难以收到良好的效果。观察要有一定顺序,有条理,有步骤进行,或从整体到部分,或从小到大,或从大到小……,要注意前后连

贯,层次分明。

4、重视解题类型多样化训练。

教学中选择适当的题目类型,有利于培养、考察学生的直觉思维。如选择题,由于只要求从几个选择项中挑选出来,省略解题过程,容许合理的猜想,有利于直觉思维的发展。实施开放性问题教学,也是培养直觉思维的有效方法。开放性问题的条件或结论不够明确,可以从多个角度由果寻因,由因索果,提出猜想,由于答案的发散性,有利于直觉思维能力的培养。

5、设置直觉思维的意境和动机诱导。

教师要转变观念,把学习的主动权还给学生。在教学过程中引导学生运用试探性的思考方法,从整体思考,把握问题实质,迅速合理地猜测出答案。培养学生解决问题的创造性、新颖性和灵活性,促使学生思维向逻辑思维能力方面过渡。对于学生的大胆设想给予充分肯定,对其合理成分及时给予鼓励,爱护、扶植学生的自发性直觉思维,以免挫伤学生直觉思维的积极性和学生直觉思维的悟性。教师应及时因势利导,解除学生心中的疑惑,使学生对自己的直觉产生成功的喜悦感。

“跟着感觉走”是人们常讲的一句话,其实这句话里已蕴涵着直觉思维的萌芽,只不过没有把它上升为一种思维观念。教师应该把直觉思维冠冕堂皇的在课堂教学中明确的

相关文档
最新文档