2003年高考数学(理科)真题及答案[全国卷I]
2003年高考全国卷文科数学真题及答案
2003年高考全国卷文科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1.(5分)直线y=2x关于x轴对称的直线方程为( )A.B.C.y=﹣2x D.y=2x2.(5分)已知x∈(,0),cos x,则tan2x等于( )A.B.C.D.3.(5分)抛物线y=ax2的准线方程是y=2,则a的值为( )A.B.C.8 D.﹣84.(5分)等差数列{a n}中,已知a1,a2+a5=4,a n=33,则n为( )A.48 B.49 C.50 D.515.(5分)双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为( )A.B.C.D.6.(5分)设函数若f(x0)>1,则x0的取值范围是( )A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣2)∪(0,+∞)D.(﹣∞,﹣1)∪(1,+∞)7.(5分)已知f(x5)=lgx,则f(2)=( )A.lg2 B.lg32 C.D.8.(5分)函数y=sin(x+φ)(0≤φ≤π)是R上的偶函数,则φ=( )A.0 B.C.D.π9.(5分)已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=( )A.B.C.D.10.(5分)已知圆锥的底面半径为R,高为3R,它的内接圆柱的底面半径为,该圆柱的全面积为( )A.2πR2B.C.D.11.(5分)已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB 上的点P2、P3和P4(入射角等于反射角)若P4与P0重合,则tgθ=( )A.B.C.D.112.(5分)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为( )A.3πB.4πC.3D.6π二、填空题(共4小题,每小题4分,满分16分)13.(4分)不等式的解集是 .14.(4分)在的展开式中,x3的系数是 (用数字作答)15.(4分)在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则 .”16.(4分)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)三、解答题(共6小题,满分74分)17.(12分)已知正四棱柱ABCD﹣A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.(1)证明EF为BD1与CC1的公垂线;(2)求点D1到面BDE的距离.18.(12分)已知复数z的辐角为60°,且|z﹣1|是|z|和|z﹣2|的等比中项.求|z|.19.(12分)已知数列{a n}满足a1=1,a n=3n﹣1+a n﹣1(n≥2).(Ⅰ)求a2,a3;(Ⅱ)证明.20.(12分)已知函数f(x)=2sin x(sin x+cos x).(1)求函数f(x)的最小正周期和最大值;(2)在给出的直角坐标系中,画出函数y=f(x)在区间上的图象.21.(12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?22.(14分)已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.2003年全国统一高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)直线y=2x关于x轴对称的直线方程为( )A.B.C.y=﹣2x D.y=2x 【解答】解:∵直线y=f(x)关于x对称的直线方程为y=﹣f(x),∴直线y=2x关于x对称的直线方程为:y=﹣2x.故选:C.2.(5分)已知x∈(,0),cos x,则tan2x等于( )A.B.C.D.【解答】解:∵cos x,x∈(,0),∴sin x.∴tan x.∴tan2x.故选:D.3.(5分)抛物线y=ax2的准线方程是y=2,则a的值为( )A.B.C.8 D.﹣8 【解答】解:抛物线y=ax2的标准方程是x2y,则其准线方程为y2,所以a.故选:B.4.(5分)等差数列{a n}中,已知a1,a2+a5=4,a n=33,则n为( )A.48 B.49 C.50 D.51【解答】解:设{a n}的公差为d,∵,a2+a5=4,∴d4d=4,即5d=4,解得d.∴an(n﹣1),令a n=33,即33,解得n=50.故选:C.5.(5分)双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为( )A.B.C.D.【解答】解:根据双曲线对称性可知∠OMF2=60°,∴tan∠OMF2,即c b,∴a b,∴e.故选:B.6.(5分)设函数若f(x0)>1,则x0的取值范围是( )A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣2)∪(0,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:当x0≤0时,,则x0<﹣1,当x0>0时,则x0>1,故x0的取值范围是(﹣∞,﹣1)∪(1,+∞),故选:D.7.(5分)已知f(x5)=lgx,则f(2)=( )A.lg2 B.lg32 C.D.【解答】解:令x5=2,∴得x,∵f(x5)=lgx,∴f(2)=lg lg2.故选:D.8.(5分)函数y=sin(x+φ)(0≤φ≤π)是R上的偶函数,则φ=( )A.0 B.C.D.π【解答】解:当φ=0时,y=sin(x+φ)=sin x为奇函数不满足题意,排除A;当φ时,y=sin(x+φ)=sin(x)为非奇非偶函数,排除B;当φ时,y=sin(x+φ)=cos x,为偶函数,满足条件.当φ=π时,y=sin(x+φ)=﹣sin x,为奇函数,故选:C.9.(5分)已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=( )A.B.C.D.【解答】解:由点到直线的距离公式得:,∵a>0,∴a.故选:C.10.(5分)已知圆锥的底面半径为R,高为3R,它的内接圆柱的底面半径为,该圆柱的全面积为( )A.2πR2B.C.D.【解答】解:设圆锥内接圆柱的高为h,则,解得,所以圆柱的全面积为:s=2.故选:B.11.(5分)已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB 上的点P2、P3和P4(入射角等于反射角)若P4与P0重合,则tgθ=( )A.B.C.D.1【解答】解:由于若P4与P0重合,故P2、P3也都是所在边的中点,因为ABCD是长方形,根据对称性可知P0P1的斜率是,则tgθ.故选:C.12.(5分)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为( )A.3πB.4πC.3D.6π【解答】解:借助立体几何的两个熟知的结论:(1)一个正方体可以内接一个正四面体;(2)若正方体的顶点都在一个球面上,则正方体的体对角线就是球的直径.则球的半径R,∴球的表面积为3π,故选:A.二、填空题(共4小题,每小题4分,满分16分)13.(4分)不等式的解集是 (2,4] .【解答】解:∵x0,∴x>0,∵不等式,两边平方得,4x﹣x2<x2,∴2x2﹣4x>0,解得,x>2,x<0(舍去),∵4x﹣x2≥0,∴0≤x≤4,∴综上得:不等式的解集为:(2,4],故答案为(2,4].14.(4分)在的展开式中,x3的系数是 (用数字作答)【解答】解:根据题意,对于,有T r+1=C99﹣r•x9﹣r•()r=()r•C99﹣r•x9﹣2r,令9﹣2r=3,可得r=3,当r=3时,有T4x3,故答案.15.(4分)在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则 S△ABC2+S△ACD2+S△ADB2=S△BCD2 .”【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:S△ABC2+S△ACD2+S△ADB2=S△BCD2.故答案为:S△ABC2+S△ACD2+S△ADB2=S△BCD2.16.(4分)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有 72 种.(以数字作答)【解答】解:由题意,选用3种颜色时:涂色方法C43•A33=24种4色全用时涂色方法:C21•A44=48种所以不同的着色方法共有72种.故答案为:72三、解答题(共6小题,满分74分)17.(12分)已知正四棱柱ABCD﹣A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.(1)证明EF为BD1与CC1的公垂线;(2)求点D1到面BDE的距离.【解答】解:(1)取BD中点M.连接MC,FM.∵F为BD1中点,∴FM∥D1D且FM D1D.又EC CC1且EC⊥MC,∴四边形EFMC是矩形∴EF⊥CC1.又FM⊥面DBD1.∴EF⊥面DBD1.∵BD1⊂面DBD1.∴EF⊥BD1.故EF为BD1与CC1的公垂线.(Ⅱ)解:连接ED1,有V E﹣DBD1=V D1﹣DBE.由(Ⅰ)知EF⊥面DBD1,设点D1到面BDE的距离为d.则.∵AA1=2,AB=1.∴,,∴.∴故点D1到平面DBE的距离为.18.(12分)已知复数z的辐角为60°,且|z﹣1|是|z|和|z﹣2|的等比中项.求|z|.【解答】解:设z=(r cos60°+r sin60°i),则复数z的实部为.由题设|z﹣1|2=|z|•|z﹣2|,即:(z﹣1)(1)=|z|∴r2﹣r+1=r,整理得r2+2r﹣1=0.解得r1,r1(舍去).即|z|1.19.(12分)已知数列{a n}满足a1=1,a n=3n﹣1+a n﹣1(n≥2).(Ⅰ)求a2,a3;(Ⅱ)证明.【解答】解:(Ⅰ)∵a1=1,∴a2=3+1=4,∴a3=32+4=13;(Ⅱ)证明:由已知a n﹣a n﹣1=3n﹣1,n≥2故a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1.n≥2当n=1时,也满足上式.所以.20.(12分)已知函数f(x)=2sin x(sin x+cos x).(1)求函数f(x)的最小正周期和最大值;(2)在给出的直角坐标系中,画出函数y=f(x)在区间上的图象.【解答】解:(1)f(x)=2sin2x+2sin x cos x=1﹣cos2x+sin2x所以函数的最小正周期为π,最大值为;(2)由(1)列表得:xy 11111故函数y=f(x)在区间上的图象是:21.(12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?【解答】解:如图建立坐标系:以O为原点,正东方向为x轴正向.在时刻:t(h)台风中心P(x,y)的坐标为令(x′,y′)是台风边缘线上一点,则此时台风侵袭的区域是(x′﹣x)2+(y′﹣y)2≤[r(t)]2,其中r(t)=10t+60,若在t时,该城市受到台风的侵袭,则有(0﹣x)2+(0﹣y)2≤(10t+60)2,即,即t2﹣36t+288≤0,解得12≤t≤24.答:12小时后该城市开始受到台风侵袭.22.(14分)已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.【解答】解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到定点距离的和为定值.按题意有A(﹣2,0),B(2,0),C(2,4a),D(﹣2,4a)设k(0≤k≤1),由此有E(2,4ak),F(2﹣4k,4a),G(﹣2,4a﹣4ak).直线OF的方程为:2ax+(2k﹣1)y=0,①直线GE的方程为:﹣a(2k﹣1)x+y﹣2a=0.②从①,②消去参数k,得点P(x,y)坐标满足方程2a2x2+y2﹣2ay=0,整理得.当时,点P的轨迹为圆弧,所以不存在符合题意的两点;当时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长;当时,点P到椭圆两个焦点的距离之和为定值;当时,点P到椭圆两个焦点的距离之和为定值2a.。
2003年高考数学试题(全国文)及答案
2003年普通高等学校招生全国统一考试(全国卷)数学(文史类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) (A )12y x =- (B )12y x = (C )2y x =- (D )2y x =2.已知,02x π⎛⎫∈- ⎪⎝⎭,54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-3.抛物线2y ax =的准线方程是2,y a =则的值为 ( )(A )18 (B )18- (C )8 (D )8- 4.等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为( )(A )48 (B )49 (C )50 (D )515.双曲线虚轴的一个端点为M ,两个焦点为1212,,120F F F MF ∠=︒,则双曲线的离心率为( )(A (B (C (D6.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 7.已知5()lg ,(2)f x x f ==则( )(A )lg 2 (B )lg32 (C )1lg32(D )1lg 258.函数sin()(0)y x R ϕϕπϕ=+≤≤=是上的偶函数,则( ) (A )0 (B )4π (C )2π(D )π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( )(A (B )2 (C 1 (D 1 10.已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为( ) (A )22R π (B )249R π (C )238R π (D )252R π11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合,则tg θ= ( ) (A )31 (B )52 (C )21(D )1 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试数 学(文史类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13x <的解集是____________________.14.92)21(xx -的展开式中9x 系数是 ________ .15.在平面几何里,有勾股定理:“设222,,ABC AB AC AB AC BC +=的两边互相垂直则”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A BCD-的三个侧面A B C A C 、、两两互相垂直,则______________________________________________.” 16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种_______________________(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知正四棱柱111111112ABCD A B C D AB AA E CC F BD -==,,,点为中点,点为点中点 (Ⅰ)证明11EF BD CC 为与的公垂线 (Ⅱ)求点1D BDE 到面的距离 18.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z . 19.(本小题满分12分)已知数列{}n a 满足1111,3(2).n n n a a a n --==+≥ (Ⅰ)求23,a a ;(Ⅱ)证明312n n a -=20.(本小题满分12分)已知函数()2sin (sin cos )f x x x x =+ (Ⅰ)求函数()f x 的最小正周期和最大值;()y f x =在(Ⅱ)在给出的直角坐标系中,画出函数区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象 21.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中(cos 10θθ=方心位于城市O (如图)的东偏南EDBACBD CAFMx向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 22.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DA DC CD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由2003年普通高等学校招生全国统一考试数学试题(文)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.C 2.D 3.B 4.C 5.B 6.D 7.D 8.C 9.C 10.B 11.C 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.]4,2( 14.221-15.2222BCD ADB ACD ABC S S S S ∆∆∆∆=++ 16.72 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(I )证明:取BD 中点M ,连结MC ,FM ,∵F 为BD 1中点, ∴FM ∥D 1D 且FM=21D 1D 又EC=21CC 1,且EC ⊥MC , ∴四边形EFMC 是矩形 ∴EF ⊥CC 1 又CM ⊥面DBD 1 ∴EF ⊥面DBD 1 ∵BD 1⊂面DBD 1,∴EF ⊥BD 1 故EF 为BD 1与CC 1的公垂线 (II )解:连结ED 1,有V由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d ,则S △DBC ·d=S △DCD 1·EF. ∵AA 1=2·AB=1.22,2====∴EF ED BE BD 23)2(2321,2222121=⋅⋅==⋅⋅=∴∆∆DBC DBD S S 故点D 1到平面BDE 的距离为332. 18.解:设z=2),60sin 60(cos r z i r 的实邻为则复数+ 2,r z z r z z ==+∴由题设|2||||1|2-⋅=-z z z即||)1)(1(=--z z 42122+-=+-r r r r r12120122--=-==-+r r r r 解得(舍去) 即|z|=12-19.(I )解∵1343,413,12321=+==+=∴=a a a(II )证明:由已知故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.213133321-=++++--n n n所以213-=n n a20.解(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+= )42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.故函数)(x f y =在区 间]2,2[ππ-上的图象是21.解:如图建立坐标系:以O 为原点,正东方向为x 轴正向. 在时刻:t (h )台风中心),(y x P 的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是222)]([)()(t r y y x x ≤-+-,其中10)(=t r t+60,若在t 时,该城市O 受到台风的侵袭,则有,)6010()0()0(222+≤-+-t y x即,)6010()22201027300()2220102300(222+≤⨯+⨯-+⨯-⨯t t t 即0288362≤+-t t , 解得2412≤≤t .答:12小时后该城市开始受到台风气侵袭22.解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到定点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤===k k DADCCD CF BC BE , 由此有E (2,4ak ),F (2-4k ,4a ),G (-2,4a -4ak ).直线OF 的方程为:0)12(2=-+y k ax , ① 直线GE 的方程为:02)12(=-+--a y x k a . ②从①,②消去参数k ,得点P (x ,y )坐标满足方程022222=-+ay y x a , 整理得1)(21222=-+a a y x .当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长.当212<a 时,点P 到椭圆两个焦点),21(),,21(22a a a a ---的距离之和为定值2.当212>a 时,点P 到椭圆两个焦点)21021,0(22-+--a a a a ,),(的距离之和为定值a 2.。
2023年全国统一高考数学试卷(理科)(乙卷)(解析版)
2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。
2004年高考数学(理科)真题及答案[全国卷I]
2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
2003年上海高考数学真题试卷及答案解析(理科)
绝密★启用前 2003年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.第Ⅰ卷 (共110分)一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分1.函数)4sin(cos )4cos(sin ππ+++=x x x x y 的最小正周期T= . 2.若=∈=+=απααπ则其中的解是方程),2,0(,1)cos(23x x .3.在等差数列}{n a 中,a 5=3, a 6=-2,则a 4+a 5+…+a 10= 4.在极坐标系中,定点A ),2,1(π点B 在直线0sin cos =+θρθρ上运动,当线段AB 最短时,点B 的极坐标是5.在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线PA 与BC所成角的大小等于 .(结果用反三角函数值表示) 6.设集合A={x ||x |<4},B={x |x 2-4x +3>0}, 则集合{x |x ∈A 且}B A x ∉= . 7.在△ABC 中,sinA;sinB:sinC=2:3:4,则∠ABC= .(结果用反三角函数值表示) 8.若首项为a 1,公比为q 的等比数列}{n a 的前n 项和总小于这个数列的各项和,则首项a 1,公比q 的一组取值可以是(a 1,q )= .9.某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示)10.方程x 3+lg x =18的根x ≈ .(结果精确到0.1) 11.已知点),0,24(),2,0(),2,0(nC n B n A +-其中n 的为正整数.设S n 表示△ABC 外接圆的面积,则n n S ∞→lim = .12.给出问题:F 1、F 2是双曲线201622y x -=1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由 ||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面空格内,若不正确,将正确的结果填在下面空格内.二、选择题(本大题满分16分)本大题共4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分. 13.下列函数中,既为偶函数又在(0,π)上单调递增的是 ( ) A .y=tg|x |. B .y=cos(-x ).C .).2sin(π-=x y D .|2|xctgy =. 14.在下列条件中,可判断平面α与β平行的是( )A .α、β都垂直于平面r .B .α内存在不共线的三点到β的距离相等.C .l ,m 是α内两条直线,且l ∥β,m ∥β.D .l ,m 是两条异面直线,且l ∥α,m ∥α, l ∥β,m ∥β.15.a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的 ( )A .充分非必要条件.B .必要非充分条件.C .充要条件D .既非充分又非必要条件.16.f (x )是定义在区间[-c,c]上的奇函数,其图象如图所示:令g (x )=af (x )+b ,则下列关于函数g (x )的叙述正确的是( )A .若a <0,则函数g (x )的图象关于原点对称.B .若a =-1,-2<b<0,则方程g (x )=0有大于2的实根.C .若a ≠0,b=2,则方程g (x )=0有两个实根.D .若a ≥1,b<2,则方程g (x )=0有三个实根.三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤. 17.(本题满分12分)已知复数z1=cosθ-i,z2=sinθ+i,求| z1·z2|的最大值和最小值.18.(本题满分12分)已知平行六面体ABCD—A1B1C1D1中,A1A⊥平面ABCD,AB=4,AD=2.若B1D⊥BC,直线B1D 与平面ABCD所成的角等于30°,求平行六面体ABCD—A1B1C1D1的体积.19.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分. 已知数列}{n a (n 为正整数)是首项是a 1,公比为q 的等比数列.(1)求和:;,334233132031223122021C a C a C a C a C a C a C a -+-+-(2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状. (1)若最大拱高h 为6米,则隧道设计的拱 宽l 是多少?(2)若最大拱高h 不小于6米,则应如何设 计拱高h 和拱宽l ,才能使半个椭圆形隧 道的土方工程量最最小? (半个椭圆的面积公式为lh S 4π=,柱体体积为:底面积乘以高.本题结果精确到0.1米)21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB|=2|OA|,且点B 的纵坐标大于零.(1)求向量AB 的坐标;(2)求圆02622=++-y y x x 关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线12-=ax y 上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值范围.22.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分.已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立.(1)函数f(x)= x是否属于集合M?说明理由;(2)设函数f(x)=a x(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=a x∈M;(3)若函数f(x)=sin kx∈M ,求实数k的取值范围.2003年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)答案一、(第1题至第12题)1.π. 2.π34. 3.-49 . 4.)43,22(π. 5.arctg2. 6.[1,3]. 7..611arccos8.10,0)(21,1(1<<>q a 的一组数). 9.19011910.2.6 . 11.4π 12.|PF 2|=17.二、(第13题至第16题)题 号 13 14 15 16 代 号CDDB三、(第17题至第22题) 17.[解].2sin 412cos sin 2)sin (cos )cos sin 1(|)sin (cos cos sin 1|||2222221θθθθθθθθθθθ+=+=-++=-++=⋅i z z故||21z z ⋅的最大值为,23最小值为2.18.[解]连结BD ,因为B 1B ⊥平面ABCD ,B 1D ⊥BC ,所以BC ⊥BD.在△BCD 中,BC=2,CD=4,所以BD=32.又因为直线B 1D 与平面ABCD 所成的角等于30°,所以 ∠B 1DB=30°,于是BB 1=31BD=2.故平行六面体ABCD —A 1B 1C 1D 1的体积为S ABCD ·BB 1=38. 19.[解](1).)1(33,)1(231312111334233132031212111223122021q a q a q a q a a C a C a C a C a q a q a q a a C a C a C a -=-+-=-+--=+-=+-(2)归纳概括的结论为:若数列}{n a 是首项为a 1,公比为q 的等比数列,则nnn n n n n n n n nnn nnnn n nn n n n n n n n n n n n n n n q a C q C q C q qC C a C q a C q a C q a qC a C a C a C a C a C a C a n q a C a C a C a C a C a )1(])1([)1()1(:.,)1()1(133********122111011342312011134231201-=-++-+-=-++-+-=-++-+--=-++-+-++ 证明为正整数20.[解](1)如图建立直角坐标系,则点P (11,4.5), 椭圆方程为12222=+by a x .将b=h =6与点P 坐标代入椭圆方程,得3.3377882,7744≈===a l a 此时.因此隧道的拱宽约为33.3米.(2)[解一]由椭圆方程12222=+by a x ,得.15.4112222=+b a4.6,1.312222229,211,215.411,.29924,,2,995.41125.41122222222≈=≈======≥====≥⨯⨯≥+b h a l b a b a S ab lh S b h a l ab ab b a 此时得有取最小值时当所以且即因为πππ故当拱高约为6.4米、拱宽约为31.1米时,土方工程量最小.[解二]由椭圆方程12222=+b y a x ,得.15.4112222=+b a 于是,121481222-⋅=a a b ,121121121,,99,12181)2421212(481)242121121121(481222222222-=-≥⨯=+≥+-+-=a a S ab a a b a 有取最小值时当即得.229,211==b a 以下同解一.21.[解](1)设⎩⎨⎧=-=+⎪⎩⎪⎨⎧=⋅==,034100,0||||||2||},,{22v u v u v u AB 即则由得},3,4{.86,86-+=+=⎩⎨⎧-=-=⎩⎨⎧==v u v u v u 因为或所以v -3>0,得v =8,故={6,8}.(2)由OB ={10,5},得B (10,5),于是直线OB 方程:.21x y =由条件可知圆的标准方程为:(x -3)2+y(y+1)2=10, 得圆心(3,-1),半径为10.设圆心(3,-1)关于直线OB 的对称点为(x ,y )则,31,231021223⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-+=-⋅-+y x x y y x 得故所求圆的方程为(x -1)2+(y -3)2=10. (3)设P (x 1,y 1), Q (x 2,y 2) 为抛物线上关于直线OB 对称两点,则.23,022544,02252,,2252,202222222212212121212121>>-⋅-=∆=-++⎪⎪⎩⎪⎪⎨⎧-=-=+⎪⎪⎩⎪⎪⎨⎧-=--=+-+a a a a aa x a x x x a a x x a x x x x y y y y x x 得于是由的两个相异实根为方程即得 故当23>a 时,抛物线y=ax 2-1上总有关于直线OB 对称的两点. 22.[解](1)对于非零常数T ,f (x +T)=x +T, T f (x )=T x . 因为对任意x ∈R ,x +T= T x 不能恒成立,所以f (x )=.M x ∉(2)因为函数f (x )=a x (a >0且a ≠1)的图象与函数y=x 的图象有公共点,所以方程组:⎩⎨⎧==xy a y x有解,消去y 得a x =x ,显然x =0不是方程a x =x 的解,所以存在非零常数T ,使a T =T.于是对于f (x )=a x 有)()(x Tf a T a a a T x f x x T T x =⋅=⋅==++ 故f (x )=a x ∈M.(3)当k=0时,f (x )=0,显然f (x )=0∈M.当k ≠0时,因为f (x )=sin kx ∈M ,所以存在非零常数T ,对任意x ∈R ,有f (x +T)=T f (x )成立,即sin(kx +k T)=Tsin kx .因为k ≠0,且x ∈R ,所以kx ∈R ,kx +k T ∈R ,于是sin kx ∈[-1,1],sin(kx +k T) ∈[-1,1],故要使sin(kx +k T)=Tsin kx .成立,只有T=1±,当T=1时,sin(kx +k )=sin kx 成立,则k =2m π, m ∈Z .当T=-1时,sin(kx-k)=-sin kx成立,即sin(kx-k+π)= sin kx成立,则-k+π=2mπ, m∈Z ,即k=-2(m-1)π, m∈Z . 综合得,实数k的取值范围是{k|k= mπ, m∈Z}。
2004年高考数学(理科)真题及答案[全国卷I]
2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
2004年高考试题——数学(全国1)及答案
2004年高考试题全国卷Ⅰ理参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60 1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于 ( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线;②两条互相垂直的直线;③同一条直线; ④一条直线及其外一点;在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212s i n 41)c o s s i n1(21)c o s s i n 1(2c o s s i n 122+=+=--=x x x x x x x 所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2003年高考数学试题(全国文)及答案
2003年普通高等学校招生全国统一测试(全国卷)数学(文史类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、测试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 测试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页,第Ⅱ卷3至10页测试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) (A )12y x =- (B )12y x = (C )2y x =- (D )2y x =2.已知,02x π⎛⎫∈- ⎪⎝⎭,54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-3.抛物线2y ax =的准线方程是2,y a =则的值为 ( )(A )18 (B )18- (C )8 (D )8- 4.等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为( )(A )48 (B )49 (C )50 (D )515.双曲线虚轴的一个端点为M ,两个焦点为1212,,120F F F MF ∠=︒,则双曲线的离心率为( ) (A 3 (B 6 (C 6 (D 36.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 7.已知5()lg ,(2)f x x f ==则( )(A )lg 2 (B )lg32 (C )1lg32 (D )1lg 258.函数sin()(0)y x R ϕϕπϕ=+≤≤=是上的偶函数,则( ) (A )0 (B )4π (C )2π(D )π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) (A 2 (B )22 (C 21 (D 21 10.已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为( ) (A )22R π (B )249R π (C )238R π (D )252R π11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿和AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合,则tg θ= ( ) (A )31 (B )52 (C )21(D )1 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一测试数 学(文史类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上 1324x x x -<的解集是____________________.14.92)21(xx -的展开式中9x 系数是 ________ .15.在平面几何里,有勾股定理:“设222,,ABC AB AC AB AC BC +=的两边互相垂直则”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积和底面面积间的关系,可以得出的正确结论是:“设三棱锥A BCD -的三个侧面ABC ACD ADB 、、两两互相垂直,则______________________________________________.” 16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种_______________________(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知正四棱柱111111112ABCD A B C D AB AA E CC F BD -==,,,点为中点,点为点中点 (Ⅰ)证明11EF BD CC 为与的公垂线 (Ⅱ)求点1D BDE 到面的距离 18.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z .19.(本小题满分12分) 已知数列{}n a 满足1111,3(2).n n n a a a n --==+≥(Ⅰ)求23,a a ;(Ⅱ)证明312n n a -=20.(本小题满分12分)已知函数()2sin (sin cos )f x x x x =+ (Ⅰ)求函数()f x 的最小正周期和最大值; ()y f x =在(Ⅱ)在给出的直角坐标系中,画出函数区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象21.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风2(cos θθ=中心位于城市O (如图)的东偏南度向西偏北︒45方向300km 的海面P 处,并以20km/h 的速方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 22.(本小题满分14分)215 34 θO北东Oy线岸O xPr(t)P45︒ 海 E DBACBD CAFMyO 2π2π-x已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DA DC CD CF BC BE ==,P 为GE 和OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由2003年普通高等学校招生全国统一测试数学试题(文)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法和本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.C 2.D 3.B 4.C 5.B 6.D 7.D 8.C 9.C 10.B 11.C 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.]4,2( 14.221-15.2222BCD ADB ACD ABC S S S S ∆∆∆∆=++ 16.72 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(I )证明:取BD 中点M ,连结MC ,FM ,∵F 为BD 1中点, ∴FM ∥D 1D 且FM=21D 1D 又EC=21CC 1,且EC ⊥MC , ∴四边形EFMC 是矩形 ∴EF ⊥CC 1 又CM ⊥面DBD 1 ∴EF ⊥面DBD 1 ∵BD 1⊂面DBD 1,∴EF ⊥BD 1 故EF 为BD 1和CC 1的公垂线 (II )解:连结ED 1,有V由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d ,则S △DBC ·d=S △DCD 1·EF. ∵AA 1=2·AB=1.22,2====∴EF ED BE BD 23)2(2321,2222121=⋅⋅==⋅⋅=∴∆∆DBC DBD S S OPAG D FEC By故点D 1到平面BDE 的距离为332. 18.解:设z=2),60sin 60(cos r z i r 的实邻为则复数+ 2,r z z r z z ==+∴由题设|2||||1|2-⋅=-z z z即)2)(2(||)1)(1(--=--z z z z z 42122+-=+-r r r r r12120122--=-==-+r r r r 解得(舍去) 即|z|=12-19.(I )解∵1343,413,12321=+==+=∴=a a a(II )证明:由已知故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.213133321-=++++--n n n所以213-=n n a20.解(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+= )42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区 间]2,2[ππ-上的图象是 21.解:如图建立坐标系:以O 为原点,正东方向为x 轴正向.心),(y x P 的坐标为在时刻:t (h )台风中⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是222)]([)()(t r y y x x ≤-+-,其中10)(=t r t+60,若在t 时,该城市O 受到台风的侵袭,则有,)6010()0()0(222+≤-+-t y x即,)6010()22201027300()2220102300(222+≤⨯+⨯-+⨯-⨯t t t 即0288362≤+-t t , 解得2412≤≤t .答:12小时后该城市开始受到台风气侵袭22.解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到定点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤===k k DADCCD CF BC BE , 由此有E (2,4ak ),F (2-4k ,4a ),G (-2,4a -4ak ). 直线OF 的方程为:0)12(2=-+y k ax , ① 直线GE 的方程为:02)12(=-+--a y x k a . ②从①,②消去参数k ,得点P (x ,y )坐标满足方程022222=-+ay y x a ,整理得1)(21222=-+a a y x . 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长.当212<a 时,点P 到椭圆两个焦点),21(),,21(22a a a a ---的距离之和为定值2.当212>a 时,点P 到椭圆两个焦点)21021,0(22-+--a a a a ,),(的距离之和为定值a 2.。
2003年高考数学(理科)真题及答案[全国卷I]16460
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ΛΛ ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π6二.填空题:本大题共4小题,每小题4分,共16分。
2023年全国乙卷理科数学高考真题(含参考答案)
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学(含参考答案)一、选择题1.设252i1i i z +=++,则z =()A.12i- B.12i+ C.2i- D.2i+2.设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A.∁∪B.∪∁C.∁∩D.∪∁3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.304.已知e ()e 1xax x f x =-是偶函数,则=a ()A.2- B.1- C.1 D.25.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18 B.16C.14D.126.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A. B.12-C.12D.27.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种8.已知圆锥PO的底面半径为O 为底面圆心,PA ,PB 为圆锥的母线,120AOB ∠=︒,若PAB的面积等于4,则该圆锥的体积为()A.πB.C.3πD.9.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.2510.已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A.-1B.12-C.0D.1211.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1B.()1,2- C.()1,3 D.()1,4--12.已知O 的半径为1,直线P A 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若PO =,则PA PD ⋅的最大值为()A.12B.12+C.1+D.2二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.15.已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.16.设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率ix 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)18.在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.20.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.21.已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x ⎛⎫=⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,∞+存在极值,求a 的取值范围.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ≤⎧⎨+-≤⎩所确定的平面区域的面积.参考答案(2023·全国乙卷·理·1·★)设252i1i i z +=++,则z =()(A )12i -(B )12i+(C )2i -(D )2i+答案:B解析:由题意,2252222i 2i 2i (2i)i i 2i 12i 1i i 11(i )i i iz ++++=====--=-++-+,所以12i z =+.(2023·全国乙卷·理·2·★)设全集U =R ,集合{|1}M x x =<,{|12}N x x =-<<,则{|2}x x ≥=()(A )∁∪(B )∪∁(C )∁∩(D )∪∁答案:A解析:正面求解不易,直接验证选项,A 项,由题意,{|2}M N x x =< ,所以(){|2}U M N x x =≥ ð,故选A.(2023·全国乙卷·理·3·★)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()(A )24(B )26(C )28(D )30答案:D解析:如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.(2023·全国乙卷·理·4·★★)已知e ()e 1xax x f x =-是偶函数,则a =()(A )2-(B )1-(C )1(D )2答案:D解法1:要求a ,可结合偶函数的性质取特值建立方程,由()f x 为偶函数得(1)(1)f f -=,故1e ee 1e 1a a ---=--①,又111e e e e 11e e 1a a a a ------==---,代入①得1e ee 1e 1a a a -=--,所以1e e a -=,从而11a -=,故2a =,经检验,满足()f x 为偶函数.解法2:也可直接用偶函数的定义来分析,因为()f x 为偶函数,所以()()f x f x -=恒成立,从而e e e 1e 1x x ax ax x x ---=--,故e e e 1e 1x x ax ax ---=--,所以e e e 1e e 1x ax x axax --⋅=--,从而e e e 1e 1ax x xax ax -=--,故e e ax x x -=,所以ax x x -=,故(2)0a x -=,此式要对定义域内任意的x 都成立,只能20a -=,所以2a =.(2023·全国乙卷·理·5·★)设O 为平面坐标系的原点,在区域22{(,)|14}x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于4的概率为()()(A )18(B )16(C )14(D )12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·理·6·★★)已知函数()sin()f x x ωϕ=+在区间2(,)63ππ单调递增,直线6x π=和23x π=为函数()y f x =的图象的两条对称轴,则5()12f π-=()(A )(B )12-(C )12(D 答案:D解析:条件中有两条对称轴,以及它们之间的单调性,据此可画出草图来分析,如图,2362T T πππ-=⇒=,所以22Tπω==,故2ω=±,不妨取2ω=,则()sin(2)f x x ϕ=+,再求ϕ,代一个最值点即可,由图可知,()sin(2)sin()1663f πππϕϕ=⨯+=+=-,所以232k ππϕπ+=-,从而52()6k k πϕπ=-∈Z ,故55()sin(22)sin(2)66f x x k x πππ=+-=-,所以5555(sin[2()]sin()sin 12126332f πππππ-=⨯--=-==.(2023·全国乙卷·理·7·★★)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()(A )30种(B )60种(C )120种(D )240种答案:C解析:恰有1种课外读物相同,可先把相同的课外读物选出来,再选不同的,由题意,先从6种课外读物中选1种,作为甲乙两人相同的课外读物,有16C 种选法,再从余下5种课外读物中选2种,分别安排给甲乙两人,有25A 种选法,由分步乘法计数原理,满足题意的选法共1265C A 120=种.(2023·全国乙卷·理·8·★★★)已知圆锥PO ,O 为底面圆心,P A ,PB 为圆锥的母线,o 120AOB ∠=,若PAB ∆的面积等于,则该圆锥的体积为()(A )π(B (C )3π(D )答案:B解析:求圆锥的体积只差高,我们先翻译条件中的PAB S ∆,由于P A ,PB 和APB ∠都未知,所以不易通过1sin 2PAB S PA PB APB ∆=⋅⋅∠求P A ,再求PO ,故选择AB 为底边来算PAB S ∆,需作高PQ ,而AB 可在AOB ∆中求得,在AOB ∆中,由余弦定理,222AB OA OB =+-2cos 9OA OB AOB ⋅⋅∠=,所以3AB =,取AB 中点Q ,连接PQ ,OQ ,则OQ AB ⊥,PQ AB ⊥,所以1133222PAB S AB PQ PQ PQ ∆=⋅=⨯⨯=,又4PAB S ∆=,所以324PQ =,故2PQ =,在AOQ ∆中,o 1602AOQ AOB ∠=∠=,所以cos OQ OA AOQ =⋅∠=OP =所以圆柱PO 的体积213V π=⨯=.(2023·全国乙卷·理·9·★★★)已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角C ABD --为o 150,则直线CD 与平面ABC 所成角的正切值为()(A )15(B )25(C (D )25答案:C解析:两个等腰三角形有公共的底边,这种情况常取底边中点构造线面垂直,如图,取AB 中点E ,连接DE ,CE ,由题意,DA DB =,AC BC =,所以AB DE ⊥,AB CE ⊥,故DEC ∠即为二面角C AB D --的平面角,且AB ⊥平面CDE ,所以o 150DEC ∠=,作DO CE ⊥的延长线于O ,则DO ⊂平面CDE ,所以DO AB ⊥,故DO ⊥平面ABC ,所以DCO ∠即为直线CD 与平面ABC 所成的角,不妨设2AB =,则1CE =,DE =,因为o 150DEC ∠=,所以o 30DEO ∠=,故3cos 2OE DE DEO =⋅∠=,sin OD DE DEO =⋅∠=52OC OE CE =+=,所以tan OD DCO OC ∠==.【反思】两个等腰三角形有公共底边这类图形,常取底边中点,构造两个线线垂直,进而得出线面垂直.(2023·全国乙卷·理·10·★★★★)已知等差数列{}n a 的公差为23π,集合*{cos |}n S a n =∈N ,若{,}S a b =,则ab =()(A )1-(B )12-(C )0(D )12答案:B解析:由题意,S 中的元素为1cos a ,2cos a ,3cos a ,…,由于cos y x =周期为2π,恰为公差的3倍,所以cos n a 必以3为周期重复出现,故只需考虑前三个值.但题干却说{,}S a b =,只有两个元素,为什么呢?这说明前三个值中恰有两个相等,若讨论是哪两个相等来求1a ,则较繁琐,我们直接画单位圆,用余弦函数的定义来看,如图,由三角函数定义可知,在终边不重合的前提下,余弦值相等的两个角终边关于x 轴对称,所以要使1cos a ,2cos a ,3cos a 中有两个相等,则1a ,2a ,3a 的终边只能是如图所示的两种情况,至于三个终边哪个是1a ,不影响答案,只要它们逆时针排列即可,若为图1,则131cos cos 2a a ==,2cos 1a =-,所以S 中的元素是12和1-,故12ab =-;若为图2,则1cos 1a =,231cos cos 2a a ==-,所以S 中的元素是1和12-,故12ab =-.(2023·全国乙卷·理·11·★★★)设A ,B 为双曲线2219y x -=上两点,下列四个点中,可能为线段AB 中点的是()(A )(1,1)(B )(1,2)-(C )(1,3)(D )(1,4)--答案:D解析:涉及弦中点,考虑中点弦斜率积结论,A 项,记(1,1)M ,由中点弦斜率积结论,9AB OM k k ⋅=,因为1OM k =,所以9AB k =,又直线AB 过点M ,所以AB 的方程为19(1)y x -=-,即98y x =-①,只要该直线与双曲线有2个交点,那么A 项就正确,可将直线的方程代入双曲线方程,算判别式,将①代入2219y x -=整理得:272144730x x -+=,21(144)47273144(144273)2880∆=--⨯⨯=⨯-⨯=-<,所以该直线与双曲线没有两个交点,故A 项错误,同理可判断B 、C 也错误,此处不再赘述;D 项,记(1,4)N --,则4ON k =,由中点弦斜率积结论,9AB OM k k ⋅=,所以94AB k =,又直线AB 过点N ,所以AB 的方程为91(1)4y x -=-,整理得:9544y x =-②,将②代入2219y x -=整理得:263901690x x +-=,判别式2290463(169)0∆=-⨯⨯->,所以该直线与双曲线有两个交点,故D 项正确.(2023·全国乙卷·理·12·★★★★)已知⊙O 半径为1,直线P A 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =,则PA PD ⋅的最大值为()(A )122(B )1222+(C )1+(D )2+答案:A解析:1OA =,1PO PA =⇒==,所以cos cos PA PD PA PD APD PD APD ⋅=⋅∠=∠ ①,且PAO ∆是等腰直角三角形,所以4APO π∠=,因为D 是BC 的中点,所以OD BC ⊥,求PA PD ⋅要用APD ∠,故可设角为变量,引入CPO ∠为变量,可与直角PDO ∆联系起来,更便于分析,设CPO θ∠=,则04πθ≤<,有图1和图2两种情况,要讨论吗?观察发现图2的每一种PD ,在图1中都有一个对称的位置,二者PD相同,但图2的夹角APD ∠更大,所以cos APD ∠更小,数量积也就更小,从而PA PD ⋅的最大值不会在图2取得,故可只考虑图1,如图1,4APD APO CPO πθ∠=∠-∠=-,代入①得cos()4PA PD PD πθ⋅=- ①,注意到PD与θ有关,故将它也用θ表示,统一变量,由图可知,cos PD PO DPC θ=∠=,代入①得:cos()4PA PD πθθ⋅=-222sin)cos sin cos22θθθθθθ=+=+1)1cos214sin2222πθθθ+++=+=,故当8πθ=时,sin(214πθ+=,PA PD⋅取得最大值12+.(2023·全国乙卷·理·13·★)已知点A在抛物线2:2C y px=上,则点A到C的准线的距离为_____.答案:94解析:点A在抛物线上25212p p⇒=⋅⇒=,所以抛物线的准线为54x=-,故A到该准线的距离591()44d=--=.(2023·全国乙卷·理·14·★)若x,y满足约束条件312937x yx yx y-≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y=-的最大值为______.答案:8解析:作出可行域如下图所示:=2−,移项得=2−,联立有3129x yx y-=-⎧⎨+=⎩,解得52xy=⎧⎨=⎩,设()5,2A,显然平移直线2y x=使其经过点A,此时截距−最小,则最大,代入得=8(2023·全国乙卷·理·15·★★)已知{}na为等比数列,24536a a a a a=,9108a a=-,则7a=_____.答案:2-解析:已知和要求的都容易用通项公式翻译,故直接翻译它们,34252453611111a a a a a a qa q a q a q a q=⇒=,化简得:11a q=①,8921791011188a a a q a q a q=-⇒==-②,由①可得11aq=,代入②得:158q=-,所以52q=-③,结合①③可得6557112a a q a q q q==⋅==-.(2023·全国乙卷·理·16·★★★★)设(0,1)a ∈若函数()(1)x x f x a a =++在(0,)+∞上单调递增,则a 的取值范围是_____.答案:51[,1)2解析:直接分析()f x 的单调性不易,可求导来看,由题意,()ln (1)ln(1)x x f x a a a a '=+++,因为()f x 在(0,)+∞上,所以()0f x '≥在(0,)+∞上恒成立,即ln (1)ln(1)0x x a a a a +++≥,参数a 较多,没法集中,但x 只有两处,且观察发现可同除以x a 把含x 的部分集中起来,所以(1)ln ln(1)0x xa a a a +++≥,故1ln (1)ln(1)0x a a a+++≥①,想让式①恒成立,只需左侧最小值0≥,故分析其单调性,因为111a+>,11a +>,所以ln(1)0a +>,从而1ln (1)ln(1)x y a a a =+++在(0,)+∞上,故011ln (1ln(1)ln (1ln(1)ln ln(1)x a a a a a a a a+++>+++=++,所以①恒成立ln ln(1)0a a ⇔++≥,从而ln[(1)]0a a +≥,故(1)1a a +≥,结合01a <<解得:112a ≤<.(2023·全国乙卷·理·17·★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验,选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,(1,2,,10)i y i =⋅⋅⋅,试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记(1,2,,10)i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ,(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)解:(1)由题意,i z 的数据依次为9,6,8,8-,15,11,19,18,20,12,所以10111()(9688151119182012)111010i i i z x y ==-=++-++++++=∑,10222222222111()[(911)(611)(811)(811)(1511)(1111)(1911)1010i i s z z ==-=-+-+-+--+-+-+-+∑222(1811)(2011)(1211)]61-+-+-=.(2)由(1)可得z =,所以甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·理·18·★★★)在ABC ∆中,已知o 120BAC ∠=,2AB =,1AC =.(1)求sinABC ∠;(2)若D 为BC 上一点,且o 90BAD ∠=,求ADC ∆的面积.解:(1)(已知两边及夹角,可先用余弦定理求第三边,再用正弦定理求角)由余弦定理,22222o 2cos 21221cos1207BC AB AC AB AC BAC =+-⋅⋅∠=+-⨯⨯⨯==,由正弦定理,sin sin AC BC ABC BAC =∠∠,所以o sin sin 14AC BAC ABC BC ⋅∠∠===.(2)如图,因为o 120BAC ∠=,o 90BAD ∠=,所以o 30CAD ∠=,(求ADC S ∆还差AD ,只要求出ABC ∠,就能在ABD ∆中求AD ,ABC ∠可放到ABC ∆中来求)由余弦定理推论,222cos2AB BC AC ABC AB BC +-∠===⋅,所以cos AB BD ABC ==∠,AD ==故o 11sin 1sin 3022ADCS AC AD CAD ∆=⋅⋅∠=⨯⨯=.(2023·全国乙卷·理·19·★★★★)在三棱锥P ABC -中,AB BC ⊥,2AB =,BC =PB PC ==,BP ,AP ,BC 的中点分别为D ,E ,O ,AD ,点F 在AC 上,BF AO ⊥.(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的大小.解:(1)证法1:(由图可猜想DEFO 是平行四边形,故尝试证DE 平行且等于OF .注意到D ,E ,O 都是所在棱的中点,故若能证出F 是中点,则DE ,OF 都平行且等于AB 的一半,问题就解决了.那F 的位置由哪个条件决定呢?显然是BF AO ⊥,我们可以设AF AC λ=,利用向量来翻译BF AO ⊥,求出λ)设AF AC λ= ,则()(1)BF BA AF BA AC BA BC BA BA BC λλλλ=+=+=+-=-+ ,12AO AB BO BA BC =+=-+ ,因为BF AO ⊥,所以1((1))()2BF AO BA BC BA BC λλ⋅=-+⋅-+ 22(1)4(1)402BA BC λλλλ=-+=-+= ,解得:12λ=,所以F 是AC 的中点,又D ,E ,O 分别是BP ,AP ,BC 的中点,所以DE 和OF 都平行且等于AB 的一半,故DE 平行且等于OF ,所以四边形DOFE 是平行四边形,故EF ∥OD ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO .证法2:(分析方法同解法1,证明F 为AC 中点的过程,也可用平面几何的方法)如图1,在ABC ∆中,因为BF AO ⊥,所以o 21AOB AOB ∠+∠=∠+∠=12∠=∠又2AB =,BC =O 为BC 中点,所以BO =tan 1BO AB ∠==tan 3AB BC ∠==,所以tan 1tan 3∠=∠,故13∠=∠,结合①可得23∠=∠,所以BF CF =,连接OF ,因为O 是BC 中点,所以OF BC ⊥,又AB BC ⊥,所以OF ∥AB ,结合O 为BC 中点可得F 为AC 的中点,接下来同证法1.(2)(要证面面垂直,先找线面垂直,条件中有AO BF ⊥,于是不外乎考虑证AO ⊥面BEF 或证BF ⊥面AOD ,怎样选择呢?此时我们再看其他条件,还没用过的条件就是一些长度,长度类条件用于证垂直,想到勾股定理,我们先分析有关线段的长度)由题意,1622DO PC ==,302AD ==,AO ==所以222152AO DO AD +==,故AO OD ⊥,(此时结合OD ∥EF 我们发现可以证明AO ⊥面BEF )由(1)可得EF ∥OD ,所以AO EF ⊥,又AO BF ⊥,且BF ,EF 是平面BEF 内的相交直线,所以AO ⊥平面BEF ,因为AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(3)解法1:(此图让我们感觉面PBC ⊥面ABC ,若这一感觉正确,那建系处理就很方便.我们先分析看是不是这样的.假设面PBC ⊥面ABC ,由于AB BC ⊥,于是AB ⊥面PBC ,故AB BD ⊥,但我们只要稍加计算,就会发现222AB BD AD +≠,矛盾,所以我们的感觉是不对的,也就不方便建系.怎么办呢?那就在两个半平面内找与棱垂直的射线,它们的夹角等于二面角的大小.事实上,这样的射线已经有了)由题意,AO BF ⊥,由前面的过程可知AO OD ⊥,所以射线OD 与BF 的夹角与所求二面角相等,(OD 与BF 异面,直接求射线OD 和BF 的夹角不易,故考虑通过平移使其共面,到三角形中分析)因为OD ∥EF ,所以EFB ∠的补角等于射线OD 和BF 的夹角,由题意,AC ==,12BF AC =,12EF PC ==(只要求出BE ,问题就解决了,BE 是ABP ∆的中线,可用向量来算,先到ABD ∆中求cos ABP ∠)在ABD ∆中,2226cos 26AB BD AD ABP AB BD +-∠==-⋅,因为1()2BE BA BP =+ ,所以2221163(2)[4622()]4462BE BA BP BA BP =++⋅=⨯++⨯⨯-= ,故62BE =,在BEF ∆中,2222cos 22BF EF BE BFE BF EF +-∠==⋅,所以o 45BFE ∠=,故二面角D AO C --的大小为o 135.解法2:(得出所求二面角等于射线OD 与BF 夹角的过程同解法1.要计算此夹角,也可用向量法.观察图形可发现OA ,OB ,OD 的长度都已知或易求,两两夹角也好求,故选它们为基底,用基底法算OD 和BF的夹角)1113122()2()22222BF BCCF OB CA OB CBBA OB OB OA OB OB OA =+=-+=-++=-++-=-+,所以31313()cos 22222OD BF OD OD OB OD OA DOB BOD ⋅=⋅-+=-⋅+⋅=-⨯∠=-∠,又222cos 2OB OD BD BOD OB OD +-∠==⋅,所以32OD BF ⋅=- ,从而32cos ,ODBF OD BF OD BF-⋅<>==-⋅,故o ,135OD BF <>=,所以二面角D AO C --为o 135.解法3:(本题之所以不便建系,是因为点P 在面ABC的射影不好找,不易写坐标.那有没有办法突破这一难点呢?有的,我们可以设P 的坐标,用已知条件来建立方程组,直接求解P 的坐标)以B 为原点建立如图2所示的空间直角坐标系,则(0,0,0)B ,(2,0,0)A ,C ,O ,设(,,)(0)P x y z z >,则(,,222x y z D,由PB PC ⎧=⎪⎨=⎪⎩可得2222226(6x y z x y z ⎧++=⎪⎨+-+=⎪⎩,解得:y =,代回两方程中的任意一个可得224x z +=②,(此时发现还有AD =这个条件没用,故翻译它)又AD =,所以222222(2)5[(]244424x y z x y z -++=+-+,将y =代入整理得:22220x z x ++-=③,联立②③结合0z >解得:1x =-,z =,(到此本题的主要难点就攻克了,接下来是流程化的计算)所以123()222D -,故123()222DO =-,(AO =- ,设平面AOD 的法向量为(,,)xy z =m,则10220DO x y AO x ⎧⋅=+-=⎪⎨⎪⋅=-=⎩m m ,令1x =,则y z ⎧=⎪⎨=⎪⎩,所以=m 是平面AOD 的一个法向量,由图可知(0,0,1)=n 是平面AOC 的一个法向量,所以2cos ,2⋅<>==⋅m n m n m n ,由图可知二面角D AO C --为钝角,故其大小为o 135.【反思】当建系后有点的坐标不好找时,直接设其坐标,结合已知条件建立方程组,求解坐标,这也是一种好的处理思路.(2023·全国乙卷·理·20·★★★)已知椭圆2222:1(0)C b b x a a y +>>=的离心率是53,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x +=(2)证明见详解解析:(1)由题意可得222253b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得325a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫ ⎪+⎝⎭,同理可得2220,2y N x ⎛⎫⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段PQ 的中点是定点()0,3.(2023·全国乙卷·理·21·★★★★)已知函数1()()ln(1)f x a x x=++.(1)当1a =-时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)是否存在a ,b ,使得曲线1(y f x=关于直线x b =对称?若存在,求a ,b 的值;弱不存在,说明理由;(3)若()f x 在(0,)+∞上存在极值,求a 的取值范围.解:(1)当1a =-时,1()(1)ln(1)f x x x =-+,2111()ln(1)(1)1f x x x x x'=-++-⋅+,所以(1)0f =,(1)ln 2f '=-,故所求切线方程为0ln 2(1)y x -=--,整理得:(ln 2)ln 20x y +-=.(2)由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++⎪ ⎪⎝⎭⎝⎭,函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,-∞-⋃+∞,定义域关于直线12x =-对称,由题意可得12b =-,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫-+=--> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =-,即()()11ln 22ln 2a a +=-,则12a a +=-,解得12a =,经检验11,22a b ==-满足题意,故11,22a b ==-.即存在11,22a b ==-满足题意.(3)由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=-+'++ ⎪ ⎪+⎝⎭⎝⎭,由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点;令()2111ln 101x a x x x ⎛⎫⎛⎫-+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax -++++=,令()()()2=1ln 1g x ax x x x +-++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=-+-+当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意;当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增,所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,所以()g x 在区间()0,∞+上无零点,不符合题意;当102a <<时,由()''1201g x a x =-=+可得1=12x a -,当10,12x a ⎛⎫∈- ⎪⎝⎭时,()0g x ''<,()g x '单调递减,当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫-=-+⎪⎝⎭',令()()1ln 01m x x x x =-+<<,则()10x m x x-+'=>,函数()m x 在定义域内单调递增,()()10m x m <=,据此可得1ln 0x x -+<恒成立,则1112ln 202g a a a ⎛⎫-=-+<⎪'⎝⎭,令()()2ln 0h x x x x x =-+>,则()221x x h x x-++'=,当()0,1x ∈时,()()0,h x h x '>单调递增,当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤-(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=-+>-+-+=-+⎣⎦',()()()()22122121210g a a a a a ⎡⎤->---+-=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x .当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增,所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=-- ⎪⎝⎭,则()()22211111022x n x x x x--⎛⎫=-+=≤ ⎪⎝⎭',则()n x 单调递减,注意到()10n =,故当()1,x ∈+∞时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<- ⎪⎝⎭,所以()()()2=1ln 1g x ax x x x +-++()()211>1121ax x x x x ⎡⎤+-+⨯+-⎢⎥+⎣⎦21122a x ⎛⎫=-+ ⎪⎝⎭,令211022a x ⎛⎫-+= ⎪⎝⎭得2x =0g >,所以函数()g x 在区间()0,∞+上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.答案:(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======-ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=-∈θθ,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <,即实数m 的取值范围()(),0-∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+-(1)求不等式()6x f x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ⎧≤⎨+-≤⎩所确定的平面区域的面积.答案:(1)[2,2]-;(2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-(2)作出不等式组()60f x yx y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--=.。
2023年高考全国乙卷数学(理科数学)真题_解析版
2023年普通高等学校招生全国统一考试理科数学一、选择题1.设252i1i i z +=++,则z =()A.12i -B.12i+ C.2i- D.2i+【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+.故选:B.2.设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A.()U M N ðB.U N M ðC.()U M N ðD.U M N⋃ð【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确;{}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.故选:D.4.已知e ()e 1xaxx f x =-是偶函数,则=a ()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为()e e 1xaxx f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x xx x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【答案】C 【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率π2142π4P ⨯==.故选:C.6.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A. B.12-C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D.7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.8.已知圆锥PO 的底面半径为,O 为底面圆心,PA ,PB 为圆锥的母线,120AOB ∠=︒,若PAB 的面积等于4,则该圆锥的体积为()A.πB.C.3πD.【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在AOB 中,120AOB ∠=o ,而OA OB ==AC 中点C ,连接,OC PC ,有,OC AB PC AB ⊥⊥,如图,30ABO = ∠,3,232OC AB BC ===,由PAB 的面积为得193324PC ⨯⨯=,解得332PC =,于是PO ==,所以圆锥的体积2211ππ33V OA PO =⨯⨯=⨯=.故选:B9.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.5C.5D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接,CE DE ,因为ABC 是等腰直角三角形,且AB 为斜边,则有CE AB ⊥,又ABD △是等边三角形,则DE AB ⊥,从而CED ∠为二面角C AB D --的平面角,即150CED ∠= ,显然,,CE DE E CE DE ⋂=⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ⋂平面ABC CE =,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2AB =,则1,CE DE ==,在CDE 中,由余弦定理得:CD =由正弦定理得sin sin DE CD DCE CED =∠∠,即sin DCE ∠==显然DCE ∠是锐角,cosDCE ∠=所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A.-1B.12-C.0D.12【答案】B 【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{}n a 中,112π2π2π(1)(333n a a n n a =+-⋅=+-,显然函数12π2πcos[(33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=,于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈,所以Z k ∈,2ππ4πππ1cos(π)cos[(πcos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B11.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【答案】D 【解析】【分析】根据点差法分析可得9AB k k ⋅=,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1,9AB k k ==,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得92,2AB k k =-=-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()224544561445160∆=⨯-⨯⨯=-⨯⨯<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3,3AB k k ==,则:3AB y x=由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :94,4AB k k ==,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;故选:D.12.已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC的中点,若PO =,则PA PD ⋅的最大值为()A.122 B.1222+C.1D.2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA PD ⋅1sin 2224πα⎛⎫=-- ⎪⎝⎭,或PA PD ⋅12224πα⎛⎫=++ ⎪⎝⎭然后结合三角函数的性质即可确定PA PD ⋅的最大值.【详解】如图所示,1,OA OP ==,则由题意可知:45APO ∠= ,由勾股定理可得221PA OP OA =-=当点,A D 位于直线PO 异侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭12cos 4παα⎛⎫=+ ⎪⎝⎭222cos sin 22ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-12sin 2224πα⎛⎫=-- ⎪⎝⎭04πα≤≤,则2444πππα-≤-≤∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭1cos 4παα⎛⎫=- ⎪⎝⎭2222ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+1sin 2224πα⎛⎫=++ ⎪⎝⎭04πα≤≤,则2442πππα≤+≤∴当242ππα+=时,PA PD ⋅ 有最大值122+.综上可得,PA PD ⋅的最大值为122.故选:A.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.14.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.【详解】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,代入得8z =,故答案为:8.15.已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.【答案】2-【解析】【分析】根据等比数列公式对24536a a a a a =化简得11a q =,联立9108a a =-求出32q =-,最后得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则3252456a q a a q a a a a ==⋅,显然0n a ≠,则24a q =,即321a q q =,则11a q =,因为9108a a =-,则89118a q a q ⋅=-,则()()3315582q q ==-=-,则32q =-,则55712a a q q q =⋅==-,故答案为:2-.16.设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.【答案】51,12⎫-⎪⎪⎣⎭【解析】【分析】原问题等价于()()()ln 1ln 10xx f x a a a a '=+++≥恒成立,据此将所得的不等式进行恒等变形,可得()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得()()()ln 1ln 10xx f x a a a a '=+++≥在区间()0,∞+上恒成立,则()()1ln 1ln xx a a a a ++≥-,即()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭在区间()0,∞+上恒成立,故()01ln 1ln 1a a a a +⎛⎫=≥- ⎪+⎝⎭,而()11,2a +∈,故()ln 10a +>,故()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩,故5112a -≤<,结合题意可得实数a 的取值范围是51,12⎫-⎪⎪⎣⎭.故答案为:51,12⎫-⎪⎪⎣⎭.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,i y (1,2,10i =⋅⋅⋅),试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记(1,2,,10)i i i z x y i =-= ,记1z ,2z ,…,10z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出,x y ,再得到所有的i z 值,最后计算出方差即可;(2)根据公式计算出的值,和z 比较大小即可.【小问1详解】545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =-=-=,i i i z x y =-的值分别为:9,6,8,8,15,11,19,18,20,12-,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s -+-+-+--+-++-+-+-+-==【小问2详解】由(1)知:11z =,==,故有z ≥所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【答案】(1)2114;(2)10.【解析】【分析】(1)首先由余弦定理求得边长BC 的值为BC =,然后由余弦定理可得57cos 14B =,最后由同角三角函数基本关系可得21sin 14B =;(2)由题意可得4ABD ACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积.【小问1详解】由余弦定理可得:22222cos BC a b c bc A==+-41221cos1207=+-⨯⨯⨯= ,则BC =,222cos 214a c b B ac +-===,21sin 14B ==.【小问2详解】由三角形面积公式可得1sin 90241sin 302ABDACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭ △△.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O,AD =,点F 在AC 上,BFAO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)2.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行的判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=-+ ,12AO BA BC =-+,BF AO ⊥,则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=-+⋅-+=-+=-+= ,解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,, //EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .【小问2详解】由(1)可知//EF OD ,则2AO DO ==,得2AD ==,因此222152OD AO AD +==,则OD AO ⊥,有EF AO ⊥,又,AO BF BF EF F ⊥= ,,BF EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面B EF .【小问3详解】过点O 作//OH BF 交AC 于点H ,设AD BE G = ,由AO BF ⊥,得HO AO ⊥,且1 3FH AH =,又由(2)知,OD AO ⊥,则DOH ∠为二面角D AO C --的平面角,因为,D E 分别为,PB PA 的中点,因此G 为PAB 的重心,即有11,33DG AD GE BE ==,又1 3FH AH =,即有32DH GF =,2315422cos ABD +-∠==PA =,同理得62BE =,于是2223BE EF BF +==,即有BE EF ⊥,则22216653223GF ⎛⎛=⨯+= ⎝⎭⎝⎭,从而153GF =,31515232DH =⨯=,在DOH △中,1,2222OH BF OD DH ====,于是6315444cos 26322DOH +-∠=-,2sin 2DOH ∠==,所以二面角D AO C --的正弦值为2.20.已知椭圆C :()222210y x a b a b +=>>的离心率为53,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可.【小问1详解】由题意可得222253b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段PQ 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x ⎛⎫= ⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,∞+存在极值,求a 的取值范围.【答案】(1)()ln 2ln 20x y +-=;(2)存在11,22a b ==-满足题意,理由见解析.(3)10,2⎛⎫ ⎪⎝⎭.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b 的值,进一步结合函数的对称性利用特殊值法可得关于实数a 的方程,解方程可得实数a 的值,最后检验所得的,a b 是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数()()()2=1ln 1g x ax x x x +-++,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论0a ≤,12a ≥和102a <<三中情况即可求得实数a 的取值范围.【小问1详解】当1a =-时,()()11ln 1f x x x ⎛⎫=-+ ⎪⎝⎭,则()()2111ln 111x f x x x x ⎛'=-⨯++-⨯ ⎪+⎝⎭,据此可得()()10,1ln 2f f '==-,函数在()()1,1f 处的切线方程为()0ln 21y x -=--,即()ln 2ln 20x y +-=.【小问2详解】由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,-∞-⋃+∞,定义域关于直线12x =-对称,由题意可得12b =-,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫-+=--> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =-,即()()11ln 22ln 2a a +=-,则12a a +=-,解得12a =,经检验11,22ab ==-满足题意,故11,22a b ==-.即存在11,22a b ==-满足题意.【小问3详解】由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=-+'++ ⎪ ⎪+⎝⎭⎝⎭,由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点;令()2111ln 101x a x x x ⎛⎫⎛⎫-+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax-++++=,令()()()2=1ln 1g x ax x x x +-++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,1g x ax x g x x '=''=-+-+当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意;当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增,所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,所以()g x 在区间()0,∞+上无零点,不符合题意;当102a <<时,由()''1201g x a x =-=+可得1=12x a -,当10,12x a ⎛⎫∈- ⎪⎝⎭时,()0g x ''<,()g x '单调递减,当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫-=-+ ⎪⎝⎭',令()()1ln 01m x x x x =-+<<,则()10x m x x -+'=>,函数()m x 在定义域内单调递增,()()10m x m <=,据此可得1ln 0x x -+<恒成立,则1112ln 202g a a a ⎛⎫-=-+< ⎪'⎝⎭,令()()2ln 0h x x x x x =-+>,则()221x x h x x-++'=,当()0,1x ∈时,()()0,h x h x '>单调递增,当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤-(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=-+>-+-+=-+⎣⎦',()()()()22122121210g a a a a a ⎡⎤->---+-=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '()0,∞+上存在唯一零点0x .当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增,所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=-- ⎪⎝⎭,则()()22211111022x n x x x x--⎛⎫=-+=≤ ⎪⎝⎭',则()n x 单调递减,注意到()10n =,故当()1,x ∈+∞时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<- ⎪⎝⎭,所以()()()2=1ln 1g x ax x x x +-++()()211>1121ax x x x x ⎡⎤+-+⨯+-⎢⎥+⎣⎦21122a x ⎛⎫=-+ ⎪⎝⎭,令211022a x ⎛⎫-+= ⎪⎝⎭得2x =,所以0g >,所以函数()g x 在区间()0,∞+上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意,x y 的取值范围;(2)根据曲线12,C C 的方程,结合图形通过平移直线y x m =+分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======-ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=-∈θθ,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.【小问2详解】因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <,即实数m 的取值范围()(),0-∞+∞.【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+-≤⎩所确定的平面区域的面积.【答案】(1)[2,2]-;(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-【小问2详解】作出不等式组()60f x y x y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--= .。
2003年高考数学(理科)真题及答案[全国卷I]
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54c o s =x ,则2tg x = ( )(A )247 (B )247- (C )24 (D )24-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )cos θρ2- 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若( ) (A )(1-,1) (C )(∞-,2-)⋃(0,∞+∞+) 4.函数)cos (sin sin 2x x x y += ( ) (A )21+ (B )12-5(0>a )及直线l :03=+-y x ,当直线l 被C 截得 ( ) (C )12- (D )12+63R ,在它的所有内接圆柱中,全面积的最大值是( )(C )238R π (D )223R π70)=n 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是( ) (A )(31,1) (B )(31,3211.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C)(A )3 (B )3112.一个四面体的所有棱长都为2 ) (A )π3(B )π4 (C )二.小题,每小题4分,共16分。
全国统一高考数学练习卷及含答案 (1)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、已知,2||,1||==b a 且)(b a -与a 垂直,则a 与b 的夹角是()A60B30C135D452、若直线l 上的一个点在平面α内,另一个点在平面α外,则直线l 与平面α的位置关系()A.l ⊂αB.l ⊄αC.l ∥αD.以上都不正确3、两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对4、等差数列}{n a 的前n 项和n n S n +=22,那么它的通项公式是()A、12-=n a n B、12+=n a n C、14-=n a n D、14+=n a n 5、曲线||x y =与1+=kx y 的交点情况是()A、最多有两个交点B、有两个交点C、仅有一个交点D、没有交点6、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ()A、}2223|{<<-<<-x x x 或B、RC、}23|{-<-x x D、}22|{<<x x 7、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为()(A)60%(B)30%(C)10%(D)50%8.如图,在正方形ABCD 中,E、F、G、H 是各边中点,O 是正方形中心,在A、E、B、F、C、G、D、H、O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个9.如图,正四面体ABCD 中,E 为AB 中点,F 为CD 的中点,则异面直线EF 与SA 所成的角为()A.90°B.60°C.45°D.30°10.如图,正三棱柱111C B A ABC -中,AB=1AA ,则1AC 与平面C C BB 11所成的角的正弦值为()A.22B.515C.46D.3611.抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为()A.0B.23C.2D.312.已知椭圆22221a y x =+(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是()A.2230<<a B.2230<<a 或282>aC.223<a 或282>a D.282223<<a 二、填空题(共4小题,每小题5分;共计20分)1.方程log2|x|=x2-2的实根的个数为______.2.1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有______个,形状为六边形的面有______个.3.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.4.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0),其中正确判断的序号为______(写出所有正确判断的序号).三、大题:(满分70分)1.如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.2.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.3.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.4.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.5、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC=∠PBC=90º(Ⅰ)证明:AB⊥PC(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积。
(完整版)湖南省_2003年_高考数学真题(理科数学)(附答案)_历年历届试题
2003年普通高等学校招生全国统一考试数学(理工农医类)-同湖南一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(==-∈x tg x x 2,54cos ),0,2(则π)A .B .C .D .247247-724724-2.圆锥曲线( 的准线方程是θθρ2cos sin 8=)A .B .C .D .2cos -=θρ2cos =θρ2sin -=θρ2sin =θρ3.设函数( 的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=-)A .(-1,1)B .(-1,+)∞C .D .),0()2,(+∞⋃--∞),1()1,(+∞⋃--∞4.函数的最大值为()cos (sin sin 2x x x y +=)A .B .C .D .221+12-25.已知圆的截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-弦长为时,则a =32A .B .C .D .222-12-12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是()A .B .C .D .22Rπ249R π238R π223r π7.已知方程的四个根组成的一个首项为的等差数列,0)2)(2(22=+-+-n x x m x x 41则()=-||n mA .1B .C .D .4321838.已知双曲线中心在原点且一个焦点为M 、N 两点,与其相交于直线1),0,7(-=x y F MN 中点的横坐标为则此双曲线的方程是( ,32-)A .B .C .14322=-y x 13422=-y x 12522=-yx D .15222=-y x 9.函数( =∈=-)(23,2[,sin )(1x f x x x f 的反函数ππ)A .B .]1,1[,arcsin -∈-x x ]1,1[,arcsin -∈--x x πC .D .]1,1[,arcsin -∈+-x x π]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB的中点P 0沿与AB 夹角为的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB θ上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(的取值范围是θtg ,2x 1),0,44则若<<x ()A .B .C .D .)1,31(32,31(21,52()32,52(11.(=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C )A .3B .C .D .6316112.一个四面体的所有棱长都为,四个项点在同一球面上,则此球的表面积为(2)A .3B .4C .3D .6πππ3π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.展开式中的系数是 .92)21(xx -9x 14.使成立的的取值范围是.1)(log 2+<-x x x15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中l 点,能得出⊥面MNP 的图形的序号是 .(写出所有符合要求的图形序l 号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤.17.(本小题满分12分)已知复数z 的辐角为60°,且是和的等比中项. 求.|1|-z ||z |2|-z ||z 18.(本小题满分12分)如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G.(Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A 1到平面AED 的距离.19.(本小题满分12分)已知 设.0>c P :函数在R 上单调递减.xc y =Q :不等式的解集为R ,如果P 和Q 有且仅有一个正确,求的取值1|2|>-+c x x c 范围.20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 102arccos(=θθ台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭?s21.(本小题满分14分)已知常数在矩形ABCD 中,AB=4,BC=4,O 为AB 的中点,点E 、F 、G 分,0>a a 别在BC 、CD 、DA 上移动,且,P 为GE 与OF 的交点(如图),问是DADGCD CF BC BE ==否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.22.(本小题满分12分,附加题4分)(Ⅰ)设中所有的数从小到大排列成的数Z}t s,,0|2{2}{t∈<≤+且是集合t s a sn 列,即.,12,10,9,6,5,3654321 ======a a a a a a将数列各项按照上小下大,左小右大的原则写成如下的三角形数表:}{n a35 69 1012— — — —— — — ——(i )写出这个三角形数表的第四行、第五行各数; (i i )求.100a (Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设中所有的数都是从小到大排Z}t s,r,,0|22{2}{r∈<<≤++且是集合t s r b stn 列成的数列,已知k.,1160求=k b 2003年普通高等学校招生全国统一考试数学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A二、填空题13. 14.(-1,0)15.7216.①④⑤221-三、解答题:17. 解:设,则复数由题设)60sin 60cos r r z+=.2r z 的实部为2,r z z r z z ==-.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角.设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1,(4)3sinD E CC A B DC ABC CDEFDE G ADB G DF EFDEF FG FD FD EF FDED EG FC CD AB A B EBEGEBG AB ABDEB⊥∴∆∴∈=⋅==∴=======∴∠==∴分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,FABEFEFEDABED=⋂⊥⊥又.36236232222,.,.,.,.,111111111111111的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AEDAABBAAAKAABAAEDAKAAEDKAKAEKAAEABAAEDABAAEDAEDEDABAED∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数在R上单调递减xcy=.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为RcxxyRcxx-+=⇔>-+).,1[21,0(.1,,.21,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数ccQPcQPccRcxxcRcxxycxccxcxcxx20.解:如图建立坐标系以O为原点,正东方向为x轴正向.在时刻:(1)台风中心P()的坐标为yx,⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300tytx此时台风侵袭的区域是其中若在t时刻城市O受到,)]([)()(22t ryyxx≤-+-,6010)(+=tt r台风的侵袭,则有即.)6010()0()0(222+≤-+-tyx22)22201027300()2220102300(tt⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤tttt解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在的两定点,使得点P到两点距离的和为定值.按题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)设)10(≤≤==kDADCCDCFBCBE由此有E(2,4a k),F(2-4k,4a),G(-2,4a-4ak)直线OF的方程为:①)12(2=-+ykax直线GE 的方程为:②02)12(=-+--a y x k a 从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a 整理得 当时,点P 的轨迹为圆弧,所以不存在符合题意的两点.1)(21222=-+a a y x 212=a当时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。
2003年高考数学试题(全国文)及答案
2003年普通高等学校招生全国统一考试(全国卷)数学(文史类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) (A )12y x =- (B )12y x = (C )2y x =- (D )2y x =2.已知,02x π⎛⎫∈-⎪⎝⎭,54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-3.抛物线2y ax =的准线方程是2,y a =则的值为 ( )(A )18 (B )18- (C )8 (D )8- 4.等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为( )(A )48 (B )49 (C )50 (D )515.双曲线虚轴的一个端点为M ,两个焦点为1212,,120F F F MF ∠=︒,则双曲线的离心率为( )(A (B (C (D6.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 7.已知5()lg ,(2)f x x f ==则( )(A )lg 2 (B )lg32 (C )1lg32 (D )1lg 258.函数sin()(0)y x R ϕϕπϕ=+≤≤=是上的偶函数,则( ) (A )0 (B )4π (C )2π(D )π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( )(A (B )2 (C 1 (D 1 10.已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为( ) (A )22R π (B )249R π (C )238R π (D )252R π11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合,则tg θ= ( ) (A )31 (B )52 (C )21(D )1 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试数 学(文史类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13x <的解集是____________________.14.92)21(xx -的展开式中9x 系数是 ________ .15.在平面几何里,有勾股定理:“设222,,ABC AB AC AB AC BC +=V 的两边互相垂直则”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A BCD-的三个侧面ABC ACD ADB 、、两两互相垂直,则______________________________________________.” 16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种_______________________(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知正四棱柱111111112ABCD A B C D AB AA E CC F BD -==,,,点为中点,点为点中点 (Ⅰ)证明11EF BD CC 为与的公垂线 (Ⅱ)求点1D BDE 到面的距离 18.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z . 19.(本小题满分12分)已知数列{}n a 满足1111,3(2).n n n a a a n --==+≥ (Ⅰ)求23,a a ;(Ⅱ)证明312n n a -=20.(本小题满分12分)已知函数()2sin (sin cos )f x x x x =+ (Ⅰ)求函数()f x 的最小正周期和最大值;()y f x =在(Ⅱ)在给出的直角坐标系中,画出函数区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象 21.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中(cos θθ方心位于城市O (如图)的东偏南EDBACBD CAFMx向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 22.(本小题满分14分) 已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DA DC CD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由2003年普通高等学校招生全国统一考试数学试题(文)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.C 2.D 3.B 4.C 5.B 6.D 7.D 8.C 9.C 10.B 11.C 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.]4,2( 14.221-15.2222BCD ADB ACD ABC S S S S ∆∆∆∆=++ 16.72 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(I )证明:取BD 中点M ,连结MC ,FM ,∵F 为BD 1中点, ∴FM ∥D 1D 且FM=21D 1D 又EC=21CC 1,且EC ⊥MC , ∴四边形EFMC 是矩形 ∴EF ⊥CC 1 又CM ⊥面DBD 1 ∴EF ⊥面DBD 1 ∵BD 1⊂面DBD 1,∴EF ⊥BD 1 故EF 为BD 1与CC 1的公垂线 (II )解:连结ED 1,有V由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d ,则S △DBC ·d=S △DCD 1·EF. ∵AA 1=2·AB=1.22,2====∴EF ED BE BD 23)2(2321,2222121=⋅⋅==⋅⋅=∴∆∆DBC DBD S S 故点D 1到平面BDE 的距离为332. 18.解:设z=2),60sin 60(cos r z i r 的实邻为则复数οο+ 2,r z z r z z ==+∴由题设|2||||1|2-⋅=-z z z即||)1)(1(=--z z 42122+-=+-r r r r r12120122--=-==-+r r r r 解得(舍去) 即|z|=12-19.(I )解∵1343,413,12321=+==+=∴=a a a(II )证明:由已知故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---Λ =.213133321-=++++--n n n Λ所以213-=n n a20.解(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+= )42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区 间]2,2[ππ-上的图象是21.解:如图建立坐标系:以O 为原点,正东方向为x 轴正向. 在时刻:t (h )台风中心),(y x P 的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是222)]([)()(t r y y x x ≤-+-,其中10)(=t r t+60,若在t 时,该城市O 受到台风的侵袭,则有,)6010()0()0(222+≤-+-t y x即,)6010()22201027300()2220102300(222+≤⨯+⨯-+⨯-⨯t t t 即0288362≤+-t t , 解得2412≤≤t .答:12小时后该城市开始受到台风气侵袭22.解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到定点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤===k k DADCCD CF BC BE , 由此有E (2,4ak ),F (2-4k ,4a ),G (-2,4a -4ak ).直线OF 的方程为:0)12(2=-+y k ax , ① 直线GE 的方程为:02)12(=-+--a y x k a . ②从①,②消去参数k ,得点P (x ,y )坐标满足方程022222=-+ay y x a , 整理得1)(21222=-+a a y x .当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长.当212<a 时,点P 到椭圆两个焦点),21(),,21(22a a a a ---的距离之和为定值2.当212>a 时,点P 到椭圆两个焦点)21021,0(22-+--a a a a ,),(的距离之和为定值a 2.。
2003年高考数学试题(全国文)及答案
2003年普通高等学校招生全国统一考试(全国卷)数学(文史类)注意事项:1. . 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. . 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.答案,不能答在试题卷上.3. . 考试结束,监考人将本试卷和答题卡一并收回.考试结束,监考人将本试卷和答题卡一并收回.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:参考公式:三角函数的积化和差公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式正棱台、圆台的侧面积公式正棱台、圆台的侧面积公式)]sin()[sin(21cos sin b a b a b a -++=× l c c S )(21+¢=台侧 其中其中c ¢、c 分别表示分别表示)]sin()[sin(21sin cos b a b a b a --+=× 上、下底面周长,上、下底面周长,l 表示斜高或母线长表示斜高或母线长. .)]cos()[cos(21cos cos b a b a b a -++=× 球体的体积公式:球体的体积公式:334R V p =球 ,其中R)]cos()[cos(21sin sin b a b a b a --+-=× 表示球的半径表示球的半径表示球的半径. . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的1.直线2y x x =关于对称的直线方程为对称的直线方程为 ( )(A )12y x =- (B )12y x =(C )2y x =- (D )2y x =2.已知,02x p æöÎ-ç÷èø,54cos =x ,则2tg x = ( )(A )247 (B )247- (C )724 (D )724- 3.抛物线2y a x =的准线方程是2,y a =则的值为的值为 ( ) (A )18(B )18-(C )8 (D )8-4.等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为(为( )(A )48 (B )49 (C )50 (D )51 5.双曲线虚轴的一个端点为M ,两个焦点为1212,,120F F F M F Ð=°,则双曲线的离心率为(,则双曲线的离心率为( ) (A )3 (B )62(C )63(D )336.设函数ïîïíì-=--2112)(xx f x00>£x x ,若1)(0>x f ,则0x 的取值范围是的取值范围是 ( ) (A )(1-,1) (B )(1-,¥+)(C )(¥-,2-)È(0,¥+) (D )(¥-,1-)È(1,¥+) 7.已知5()lg ,(2)f x x f ==则( ) (A )lg 2 (B )lg 32 (C )1lg32(D )1lg 258.函数sin()(0)y x R j j p j =+££=是上的偶函数,则( ) (A )0 (B )4p(C )2p(D )p9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) (A )2(B )22- (C )21- (D )21+10.已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为(,该圆柱的全面积为( )(A )22R p (B )249R p (C )238R p (D )252R p11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB夹角为q 的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合,则tg q = ( ) (A )31 (B )52 (C )21(D )1 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为(,四个顶点在同一球面上,则此球的表面积为( ) (A )p 3 (B )p 4 (C )p 33 (D )p 62003年普通高等学校招生全国统一考试数 学(文史类)第Ⅱ卷(非选择题共90分)分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上 13.不等式24x x x -<的解集是____________________. 14.92)21(xx -的展开式中9x 系数是系数是 ________ . 15.在平面几何里,有勾股定理:“设222,,A B C A B A C A B A C B C+= 的两边互相垂直则”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A B C D-的三个侧面A B C A C 、、两两互相垂直,则______________________________________________.” 16.如图,一个地区分为5个行政区域,个行政区域,现给地图现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种_______________________(以数字作答)(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)分)已知正四棱柱111111112A B C D A B C D A B A A E C C F B D -==,,,点为中点,点为点中点 (Ⅰ)证明11E F B D C C 为与的公垂线的公垂线(Ⅱ)求点1D D B DEE 到面的距离18.(本小题满分12分)分)已知复数z 的辐角为°60,且|1|-z 是||z 和|2|-z 的等比中项,求||z . 1919..(本小题满分12分)分)已知数列{}n a 满足1111,3(2).n n n n a a a n --==+³(Ⅰ)求23,a a ;(Ⅱ)证明312nn a -=20.(本小题满分12分)分)已知函数()2sin (sin cos )f x x x x =+ (Ⅰ)求函数()f x 的最小正周期和最大值;的最小正周期和最大值;()y f x =在(Ⅱ)在(Ⅱ)在给出给出的直角坐标系中,画出函数区间,22p p éù-êúëû上的图象21.(本小题满分12分)分)2 1 5 3 4 EDBACB D CAFMy O 2p2p-x 在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南2(cos )10q q =方向西偏北°45方向300km 的海面P 处,并以20km/h 的速度向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?的侵袭?22.(本小题满分14分)分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADC CDCF BCBE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由2003年普通高等学校招生全国统一考试数学试题(文)参考解答及评分标准说明:一. . 本解答指出了每题要考查的主要知识和能力,本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. . 对计算题,对计算题,对计算题,当考生的解答在某一步出现错误时,当考生的解答在某一步出现错误时,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,如果后继部分的解答未改变该题的内容和难度,如果后继部分的解答未改变该题的内容和难度,可视可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,O P A G D F E C B x y q O 北东y 线岸 O x Pr(t) P 45°海三. . 解答右端所注分数,表示考生正确做到这一步应得的累加分数.解答右端所注分数,表示考生正确做到这一步应得的累加分数.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. . 只给整数分数.选择题和填空题不给中间分.只给整数分数.选择题和填空题不给中间分.只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.C 2.D 3.B 4.C 5.B 6.D 7.D 8.C 9.C 10.B 11.C 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.]4,2( 14.221- 15.2222BCD ADB ACD ABC S S S S D D D D =++ 16.72 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(I )证明:取BD 中点M ,连结MC ,FM ,∵F 为BD 1中点,中点, ∴FM ∥D 1D 且FM=21D 1D 又EC=21CC 1,且EC ⊥MC ,∴四边形EFMC 是矩形是矩形 ∴EF ⊥CC 1又CM ⊥面DBD 1 ∴EF ⊥面DBD 1 ∵BD 1Ì面DBD 1,∴EF ⊥BD 1 故EF 为BD 1与CC 1的公垂线的公垂线 (II )解:连结ED 1,有V 由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d ,则S △DBC ·d=S △DCD 1·EF . ∵AA 1=2·AB=1. 22,2====\EF ED BE BD 23)2(2321,2222121=××==××=\D D DBC DBD S S 故点D 1到平面BDE 的距离为332. 18.解:设z=2),60sin 60(cos r z i r 的实邻为则复数+2,r z z r z z ==+\由题设|2||||1|2-×=-z z z即)2)(2(||)1)(1(--=--z z z z z 42122+-=+-r rrr r12120122--=-==-+r r r r 解得(舍去)(舍去) 即|z|=12-19.(I )解∵1343,413,12321=+==+=\=a a a(II )证明:由已知故,311--=-n n n a a112211)()()(a a a aaaa a n n n nn+-++-+-=---.2)n s(22(Ⅱ)由(Ⅰ)知(Ⅱ)由(Ⅰ)知x83p -8p-8p83p85py1 21-1 21+1 ]p p )台风中心),(y x P ïíì´+´=´-´=22102722102t y t x ))y x -))--y x 22102722102´+´´-´t t的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(££===k k DADC CDCF BCBE ,由此有E (2,4ak ),F (2-4k ,4a ),G (-2,4a -4ak ). 直线OF 的方程为:0)12(2=-+y k ax , ① 直线GE 的方程为:02)12(=-+--a y x k a . ②从①,②消去参数k ,得点P (x ,y )坐标满足方程022222=-+ay y x a ,整理得1)(21222=-+aa y x . 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212¹a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长. 当212<a 时,点P 到椭圆两个焦点),21(),,21(22a a a a ---的距离之和为定值2. 当212>a 时,点P 到椭圆两个焦点)21021,0(22-+--a a a a ,),(的距离之和为定值a 2. 。
2002年高考数学(理科)真题及答案[全国卷I]
2002年普通高等学校招生全国统一考试数学(理工农医类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分. 1. 圆1)1(22=+-y x 的圆心到直线x y 33=的距离是A .21 B .23 C .1 D .32.复数3)2321(i +的值是 A .-i B .i C .-1D .13.不等式0|)|1)(1(>-+x xA .}10|{<≤x xC .{11|<<-x x }4.在(π2,0)内,使x x cos sin > A .)45,()2,4(ππππ)5ππD .)2,4(),4(π5},214|{},Z k k x x N ∈+==,则C .N M ⊃D .=N M ø6t ∈R )上的点的最短距离为C .2D .2 7.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是A .43 B .54 C .53 D .53-8.正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是A .90°B .60°C .45°D .30°9.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是A .b ≥0B .b ≤0C .b>0D .b<010.函数111--=x y 的图象是 ABC D11.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有A .8种B .12种C .16种D .20种 12.据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%.”如果“十·五”期间(2001年—2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为A .115 000亿元B .120 000亿元C .127 000亿元D .135 000亿元第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.函数a y =在[0,1]的最大值与最小值的和为3,则a= .14.椭圆5522=+ky x 的一个焦点是(0,2),那么k = . 15.723项的系数是 .16函数221)(xxx f +=那么=++)41()4()1(f f f .分.解答应写出文字说明,证明过程或演算步骤. 17.απααsin ).2,0(,12求∈=、αtg 的值.18.(本小题满分12分) 如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直. 点M 在AC 上移动,点N 在BF 上移动,若CM=BN=)20(<<a a .(Ⅰ)求MN 的长;(Ⅱ)当a 为何值时,MN 的长最小;(Ⅲ)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.19.(本小题满分12分) 设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2.求m 的取值范围.20.(本小题满分12分) 某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?21.(本小题满分12分) 设a 为实数,函数.,1||)(2R x a x x x f ∈+-+= (Ⅰ)讨论)(x f 的奇偶性; (Ⅱ)求)(x f 的最小值.22.(本小题满分14分) 设数列{a n }满足,,3,2,1,121 =+-=+n na a a n n n4,并由此猜想出n a 的一个通项公式; 1≥n ,有.2111≤++na数学试题(理工农医类)参考解答及评分标准一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分.1.A 2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.A 10.B 11.B 12.C二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.2 14.1 15.1 008 16.27三、解答题 17.本小题主要考查同角三角函数的基本关系式、二倍角公式以及三角函数式的恒等变形等基础知识和基本运算技能.满分12分.解:由倍角公式,1cos 22cos ,cos sin 22sin 2-==ααααα (2)分 由原式得0cos 2cos sin 2cos sin 42222=-+ααααα 0)1s i n s i n 2(c o s 222=-+⇔αααs i n 2(c o s 22⇔αα (8)分)2,0(πα∈ ,s i n ,01s i n 2,0c o s ,01s i n 2==-∴≠≠+∴αααα即 ,6πα=∴=∴αtg 12分18.本小题主要考查线面关系、P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得,MN=PQ. ……………3分,CB=AB=BE=1,22222)2()21()1(a a BQCP PQ MN +-=+-==∴)20(21)22(2<<+-=a a . (6)分(Ⅱ)由(Ⅰ),,21)22(2+-=a MN 所以,当.22,22==MN a 时即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为.22 (9)分(Ⅲ)取MN 的中点G ,连结AG 、BG ,∵ AM=AN ,BM=BN ,G 为MN 的中点 ∴ AG ⊥MN ,BG ⊥MN ,∠AGB 即为二面角α的平面角, 又AG=BG=46,所以,由余弦定理有.31464621)46()46(c o s 22-=⋅⋅-+=α故所求二面角)1arccos(-=α.……………12分19.满分12分.解法一:设点P 的坐标为(x ,y ) 即.0,2≠±=x x y2分因此,点P (x ,y )、M (-1,0) ||||||||=<-MN pN PM ||2||||||>=-m PN PM2|m|的双曲线上,故②…………6分……………8分,0512>-m解得55||0<<m .即m 的取值范围为).55,0()0,55( -……………12分解法二:设点P 的坐标为(x ,y ),依题设得2||||=x y ,即0,2≠±=x x y . ①…………2分由|PM|-|PN|=2m ,得,2)1()1(2222m yx yx =+--++ ②…………4分由②式可得,2)1()1(42222m yx yx x =+-+++所以,0||,21||2||2||≠=<m y x m 且.……………6分由②式移项,两边平方整理得.)1(222m x y x m -=+- 将①式代入,整理得)1()51(2222m m x m -=-.③…………8分且,02>x综上,得m 满足.55||0<<m即m 的取值范围为0()0,55( -20.本小题主要考查为数列、决实际问题的能力.满分12分.解:设2001年末汽车保有量为b 辆,…,每年新增汽车x .94.0,30121x b b b +⨯==2分 对于n >1,有94.01x b b n n +⨯=+ x b nn n06.094.0)94.094.11+⨯=++-.94.0n⨯ (6).3011=≤≤≤+b b b n n (8),06.0]94.0)06.030(06.0[lim 1x x x b n n n =⨯-+=-∞→∞n 06.0x . ……………10分因此,如果要求汽车保有量不超过60万辆,即),3,2,1(60 =≤n b n .则6.3,6006.0≤≤x x 即(万辆).综上,每年新增汽车不应超过3.6万辆.………12分21.本小题主要考查函数的概念、函数的奇偶性和最小值等基础知识,考查分类讨论的思想和逻辑思维能力.满分12分.解:(Ⅰ)当)(),(1||)()(,02x f x f x x x f a 此时函数时=+-+-=-=为偶函数. (2)分当,1||2)(,1)(,022++=-+=≠a a a f a a f a 时)()(),()(a f a f a f a f -≠-≠-.此时函数)(x f 既不是奇函数,也不是偶函数. (4)分(Ⅱ)(i )当.43)21(1)(,22++-=++-=≤a x a x x x f a x 函数时若],()(,21a x f a -∞≤在则函数上单调递减,从而,函数],()(a x f -∞在上的最小值为.1)(2+=a a f若21>a ,则函数],()(a x f -∞在).a ………7分(ii )当a x ≥时,函数)(2=x x f 若).(),[)(,21a f a x f a +∞-≤在则函数若.1)(),[)(,212+=+∞->aa a x f a 在则函数10分综上,当)(,21x f a-≤函数时 .12+a 的最小值是.43+……………12分22.考查猜想、归纳、推理以及分析问题和解决问题,412,3,31222321=+-===+-a a a a a 得由na 的一个通项公式:)1(1≥+=x n a n………4分(Ⅱ)(i )用数学归纳法证明: ①当213,11+=≥=a n ,不等式成立. (6)分②假设当k n =时不等式成立,即2+≥k a k ,那么,31)2)(2(1)(1+≥+-++≥+-=+k k k k k a a a k k k也就是说,当.2)1(11++≥+=+k a k n k 时根据①和②,对于所有.2,1+≥≥n a n n 有……………10分(ii )由及1)(1+-=+n a a a n n n (i ),对1)1(,211++-=≥--k a a a k k k k 有,121)121(11+=++-+-≥--k k a k k a .1)1(2122211211-+=++++≥∴---a a a k k k k……………12分于是.2,21111111≥⋅+≤+-k a a k k∑∑∑===--=+≤+≤+=+++≤+nk nk nk k k ka a a a a12111111131212211121111111。
对2003年高考数学(全国理科)第22题通项公式的探索
对2003年高考数学(全国理科)第22题通项公式的探索徐明满
【期刊名称】《数学教学通讯:中教版》
【年(卷),期】2004(000)01S
【总页数】1页(P36)
【作者】徐明满
【作者单位】江苏省阜宁中学224400
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.三次函数的图像与性质——由2007年高考数学全国Ⅱ(理科)22题引发的研究与思考 [J], 李旭
2.2003年全国高考数学(理科)选择题速解一点通 [J], 蒋亚杰;王永怀;高新怀
3.2003年全国高考数学理科第17题别解 [J], 王民;苗建成
4.对2003年高考数学(全国理科)第22题通项公式的探索 [J], 徐明满
5.2017年高考全国卷Ⅰ理科数学第20题结论的推广及其简证——该题的结论是《高考数学真题解密》定理6-22的特例 [J], 甘志国
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )24 (D )24-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )cos θρ2- 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若( ) (A )(1-,1) (C )(∞-,2-)⋃(0,∞+∞+) 4.函数)cos (sin sin 2x x x y += ( ) (A )21+ (B )12-5(0>a )及直线l :03=+-y x ,当直线l 被C 截得 ( ) (C )12- (D )12+63R ,在它的所有内接圆柱中,全面积的最大值是( )(C )238R π (D )223R π70)=n 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是( ) (A )(31,1) (B )(31,3211.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C)(A )3 (B )3112.一个四面体的所有棱长都为2 ) (A )π3(B )π4 (C )二.小题,每小题4分,共16分。
把答案填在题中横线上。
13.系数是14的取值范围是15.现给地图现有 16角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (II )求点1A 到平面AED 的距离 19.(本小题满分12分) 已知0>c ,设P :函数x c y =在R 上单调递减 Q :不等式1|2|>-+c x x如果c 的取值范围 20. O (如图)的东偏南(θθP 处,并以21.(本小题满分14分)东O已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DA DC CD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由。
22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts+ t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:17. 解:设)60sin 60cos r r z+=,则复数.2rz 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin .323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED=⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19. 解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭. 21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y整理得1)(21222=-+a a y x 当212=a . 当212≠a时,点P 当212<a时,点P 到椭圆两个焦点(2。
当12>a时,点P 到椭圆两个焦点(2a .22. 第五行 33 34 36 40 48 .,00t s},0|2{20t t t s s <<≤+.1002)1(00<-t t 满足等式的最大整数0t 为14,所以取.140=t.1664022,8s 8141000014=+=∴=a(Ⅱ)解:,22211603710++==k b 令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s 某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C。