数字通信原理与技术报告(4ASK和4PSK)

合集下载

实验4 PSK(DPSK)调制解调实验.概要

实验4 PSK(DPSK)调制解调实验.概要

班级通信1403 学号201409732 姓名裴振启指导教师邵军花日期实验4 PSK(DPSK)调制解调实验一、实验目的1. 掌握PSK 调制解调的工作原理及性能要求;2. 进行PSK 调制、解调实验,掌握电路调整测试方法;3. 掌握二相绝对码与相对码的码变换方法。

二、实验仪器1.PSK QPSK调制模块,位号A2.PSK QPSK解调模块,位号C3.时钟与基带数据发生模块,位号:G4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M双踪示波器1台7.小平口螺丝刀1只8.频率计1台(选用)9.信号连接线4根三、实验原理PSK QPSK调制/解调模块,除能完成上述PSK(DPSK)调制/解调全部实验外还能进行QPSK、ASK调制/解调等实验。

不同调制方式的转換是通过开关4SW02及插塞37K01、37K02、四、PSK(DPSK)调制/解调实验进行PSK(DPSK)调制时,工作状态预置开关4SW02置于00001, 37K01、37K02①和②位挿入挿塞,38K01、38K02均处于1,2位相连(挿塞挿左边)。

相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。

在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。

本实验箱采用相位选择法实现二进制相位调制,绝对移相键控(CPSK或简称PSK)是用输入的基带信号(绝对码)直接控制选择开关通断,从而选择不同相位的载波来实现。

相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。

1.PSK调制电路工作原理二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s伪随机码、及其相对码、32KHz 方波、外加数字信号等。

相位键控调制电原理框图,如图6-1所示。

图6-1 相位键控调制电原理框图1)滤波器、同相放大器和反相放大器从图6-1看出,1024KHZ的方波经37R29加到由运放37UO4A及周边元件组成的低通滤波器,其输出变为l024KHZ正弦波,它通过37U05A同相放大和37U05B反相放大,从而得到l024KHZ的同相和反相正弦载波,电位器37W01可调节反相放大器的增益,从而使同相载波与反相载波的幅度相等,然后同相和反相正弦载波被送到模拟开关乘法器。

ASK、FSK、PSK、QAM数字调制技术

ASK、FSK、PSK、QAM数字调制技术

ASK、FSK、PSK、QAM数字调制技术1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以来的事情。

随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。

现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。

而这些系统都使用到了数字调制技术,本文就数字信号的调制方法作一些详细的介绍。

一数字调制数字信号的载波调制是信道编码的一部分,我们之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。

由于传输信道的频带资源总是有限的,因此提高传输效率是通信系统所追求的最重要的指标之一。

模拟通信很难控制传输效率,我们最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。

由于数字信号只有"0"和"1"两种状态,所以数字调制完全可以理解为像报务员用开关电键控制载波的过程,因此数字信号的调制方式就显得较为单纯。

在对传输信道的各个元素进行最充分的利用时可以组合成各种不同的调制方式,并且可以清晰的描述与表达其数学模型。

所以常用的数字调制技术有2ASK、4ASK、8ASK、BPSK、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。

更有将幅度与相位联合调制的QAM技术,目前数字微波中广泛使用的256QAM的频带利用率可达8bit/s/Hz,八倍于2ASK或BPSK。

此外,还有可减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。

近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。

总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。

通原实验4-数字调制PSK实验

通原实验4-数字调制PSK实验

常认为增加一倍;所以DPSK解调大多采用差厚分德相博干学接收追。求卓越
1.8 2DPSK信号解调
B.相干解调-码变换法电路工作原理
以数字序列 =[101001]为例
发送数据 0 1 0 1 0 0 1
2DPSK

0

载波
这就避免了2PSK中的倒π现象发生,为此得到了广泛的工程应用。 相乘输出
低通输出 由以上分析可知,2DPSK与2PSK的波形不同,他们的同一相位
厚德博学 追求卓越
三、实验应知知识
1.数字移相键控PSK调制的基本原理
数字相位调制又称移相键控,简记PSK,二 进制移相键控记作2PSK。它是利用载波相位 的变化来传送数字信息的。
通常有两种类型:
(1)绝对相移(2PSK或BPSK)
(2)相对相移(差分相移/2DPSK 或DBPSK)
厚德博学 追求卓越
1、2DPSK与2PSK信号有相同的功率谱
2、2DPSK与2PSK信号带宽相同,是基带信号带宽Bs的两倍, 即
3、2DPSK与2PSK信号频带利用率也相同,为
B 2DP SB K 2PS K 厚2德fs博学 追求卓越
1.8 2DPSK信号解调
差分相干解调和相干解调-码变换法,后者又称为极性比较-码 变换法。
Ø切忌无目的地拨弄仪器面板上的开关和按钮。
Ø仪器设备出现问题,请向老师寻求帮助,请勿随便调换配件。 Ø注意仪表允许安全电压(或电流),切勿超过!
当被测量的大小无法估计时,应从仪表的最大量程开始测试,然后逐 渐减小量程。
厚德博学 追求卓越
四、实验内容与步骤
实验用数字调制与解调电路模块的基本组成:
PSK调制解调单元模块电路
通信原理实验

通信原理课程设计报告-实现4psk的调制解调

通信原理课程设计报告-实现4psk的调制解调

1.课程设计目的本课程设计是实现4psk的调制解调。

在此次课程设计中,我将通过多方搜集资料与分析,来理解4psk调制解调的具体过程和它在MATLAB中的实现方法。

预期通过这个阶段的研习,更清晰地认识4psk的调制解调原理,同时加深对MATLAB这款通信仿真软件操作的熟练度,并在使用中去感受MATLAB的应用方式与特色。

利用自主的设计过程来锻炼自己独立思考,分析和解决问题的能力,为我今后的自主学习研究提供具有实用性的经验。

2.课程设计要求1)4PSK信号波形的载频和相位参数应随机置或者可有几组参数组合供选择2)系统中要求加入高斯白噪声3)4PSK解调方框图采用相干接收形式4)分析误码率5)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。

3.相关知识4PSK信号的产生与解调在进制数字相位调制中,四进制绝对移相键控(4PSK,又称QPSK)和四进制差分相位键控(4DPSK,又称QDPSK)用的最为广泛。

下面着重介绍多进制数字相位调制的这两种形式。

4PSK利用载波的四种不同相位来表征数字信息。

由于每一种载波相位代表两个比特信息,故每个四进制码元又被称为双比特码元,习惯上把双比特的前一位用代表,后一位用代表。

4.课程设计分析4.1 2PSK 数字调制原理:2PSK 信号用载波相位的变化来表征被传输信息的状态,通常规定0相位载波和π相位载波分别表示传“1”和传“0”。

2PSK 码元序列的波形与载频和码元持续时间之间的关系有关。

当一个码元中包含有整数个载波周期时,在相邻码元的边界处波形是不连续的,或者说相位是不连续的。

当一个码元中包含的载波周期数比整数个周期多半个周期时,则相位连续。

当载波的初始相位差90度时,即余弦波改为正弦波时,结果类似。

以上说明,相邻码元的相位是否连续与相邻码元的初始相位是否相同不可混为一谈。

只有当一个码元中包含有整数个载波周期时,相邻码元边界处的相位跳变才是由调制引起的相位变化。

4ask调制与解调

4ask调制与解调

4ask调制与解调一、4ASK调制技术4ASK调制技术是一种数字通信中常用的调制方式,它将数字信号转换为模拟信号进行传输。

在4ASK调制中,输入的二进制数据被编码成四个离散的振幅水平,每个水平代表两个二进制位。

这种调制方式常用于无线电通信、光纤通信和数字电视等领域。

1.1 4ASK调制原理在4ASK调制中,输入的二进制数据被编码成四个离散的振幅水平:+3V、+V、-V和-3V。

每个水平代表两个二进制位,因此可以通过改变不同的振幅水平来传输不同的数字信息。

1.2 4ASK调制特点(1)带宽利用率高:相比其他数字调制技术,4ASK调制具有更高的带宽利用率。

(2)抗噪声能力弱:由于使用了较少的振幅水平,因此4ASK调制对噪声非常敏感。

(3)传输距离短:由于抗噪声能力差,因此4ASK调制适合短距离传输。

二、4ASK解调技术4ASK解调技术是将模拟信号转换为数字信号的一种技术。

在4ASK解调中,接收到的模拟信号被转换为离散的振幅水平,然后通过解码器将其转换为二进制数据。

2.1 4ASK解调原理在4ASK解调中,接收到的模拟信号经过放大和滤波处理后,被转换为离散的振幅水平。

根据不同的振幅水平,可以将其转换为对应的二进制数据。

2.2 4ASK解调特点(1)简单可靠:相比其他数字解调技术,4ASK解调具有更简单、更可靠的特点。

(2)传输距离短:由于抗噪声能力差,因此4ASK解调适合短距离传输。

三、4ASK调制与解调应用3.1 无线电通信在无线电通信中,4ASK调制和解调技术常用于数字广播、数字电视和卫星通信等领域。

由于其带宽利用率高、传输速度快等优点,在数字通信领域得到广泛应用。

3.2 光纤通信在光纤通信中,4ASK调制和解调技术可以实现高速光纤通信。

由于光纤传输的信号是模拟信号,因此需要将其转换为数字信号进行传输。

3.3 数字电视在数字电视领域,4ASK调制和解调技术常用于数字电视信号的传输和接收。

由于其带宽利用率高、传输速度快等优点,可以实现高质量的数字电视信号传输。

通信原理大作业-4ASK数字通信系统性能仿真

通信原理大作业-4ASK数字通信系统性能仿真

通信原理大作业题 目 4ASK 数字通信系统性能仿真姓 名专业班级指导教师学 院 完成日期宁波理工学院实验目的1、理解并掌握相干解调的原理及方法。

2、采用Matlab 编程完成对4ASK 的通信过程进行仿真。

一、 实验内容双极性4ASK 数字通信系统相干解调性能仿真研究。

要求至少仿真5个不同的信噪比情况下的误码率,并画出误码率-信噪比曲线。

二、 实验原理多进制数字幅度调制(MASK )又称为多电平调制,它是二进制数字幅度调制方式的推广。

M 进制幅度调制信号的载波振幅有M 种取值,在一个码元期间b T 内,发送其中的一种幅度的载波信号。

MASK 已调信号的表达式为()()cos MSK c t S t ts ω=这里,是S(t)为M 进制数字基带信号:()()b n n S t g t nT a ∞=-∞=-∑本实验我们做的是双极性4ASK 数字通信系统相干解调性能仿真研究。

相干解调是指利用乘法器,输入一路与载频相干(同频同相)的参考信号和载频相乘。

4ASK 信号产生及其相干解调原理框图如图(1):图(1)4A S K信号产生极其相干解调原理框图三、实验步骤1)产生原始信号2)产生4ASK信号3)由于在信道的传输过程中,都会有噪声的的加入,因此添加高斯白噪声进行噪声模拟。

4)原始信号 A 与载频 cos(ωt + θ) 调制后得到信号 Acos(ωt +θ),解调时引入相干(同频同相)的参考信号 cos(ωt + θ),则得到:Acos(ωt+θ)cos(ωt+θ),再利用积化和差公式可以得到A*1/2*[cos(ωt+θ+ωt+θ)+cos(ωt+θ-ωt-θ)]=A*1/2*[cos(2ωt+2θ)+cos(0)]=A/2*[cos(2ωt+2θ)+1]=A/2+A/2cos(2ωt+2θ)最后利用低通滤波器将高频信号cos(2ωt+2θ)滤除,即得原始信号幅度A。

因此相干解调需要接收机和载波同步,而后通过乘法器的实现载波相乘后的波形。

4PSK、4ASK以及4FSK的MATLAB仿真

4PSK、4ASK以及4FSK的MATLAB仿真

4PSK、4ASK以及4FSK的MATLAB仿真一、实验目的:学会利用MATLAB软件进行4PSK、4ASK和4FSK调制的仿真。

通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。

二、实验内容:利用MATLAB软件编写程序,画出4PSK 、4ASK和4FSK图形,进一步了解4PSK、4ASK和4FSK调制的原理。

(1)设二进制数字序列为1 1 0 0 1 1 0 0 1 0 0 1 1 1,编程产生4PSK调制信号波形。

(2)设二进制数字序列为1 1 0 0 1 1 0 0 1 0 0 1 1 1,编程产生4ASK调制信号波形。

(3)设二进制数字序列为1 1 0 0 1 1 0 0 1 0 0 1 1 1,编程产生4FSK调制信号波形。

三、程序和实验结果:f=100;t=0:2*pi/99:2*pi;s=[1 1 0 0 1 1 0 0 1 0 0 1 1 1];m1=[];c1=[];b1=[];for i=1;2;length(s)/2if (s(i)==0&&s(i+1)==0)ak(i)=0;bk(i)=0;elseif (s(i)==0&&s(i+1)==1)ak(i)=0 ;bk(i)=1;elseif(s(i)==1&&s(i+1)==0)ak(i)=1;bk(i)=0;elseak(i)=1;bk(i)=1;endendfor i=1:length(s)/2if((ak(i)==0)&&(bk(i)==0))m=ones(1,100);c=sin(f*t);b=zeros(1,100);elseif((ak(i)==0)&&(bk(i)==1))m=ones(1,100);c=sin(f*t+pi/2);b=ones(1,100);elseif((ak(i)==1)&&(bk(i)==0))m=ones(1,100);c=sin(f*t+pi);b=2*ones(1,100);elsem=ones(1,100);c=sin(f*t+3/2*pi);b=3*ones(1,100);endm1=[m1 m];c1=[c1 c];b1=[b1 b];endpsk=c1.*m1;subplot(2,1,1);plot(b1)title('原始信号')axis([0 50*length(s) -0.5 4]); subplot(2,1,2);plot(psk)title('4PSK信号')axis([0 50*length(s) -2 2]); xlabel('周万成')(2)4ASK程序f=100;t=0:2*pi/99:2*pi;s=[1 1 0 0 1 1 0 0 1 0 0 1 1 1]; m1=[];c1=[];for i=1;2;length(s)/2if (s(i)==0&&s(i+1)==0)ak(i)=0;bk(i)=0;elseif (s(i)==0&&s(i+1)==1) ak(i)=0 ;bk(i)=1;elseif(s(i)==1&&s(i+1)==0) ak(i)=1;bk(i)=0;elseak(i)=1;bk(i)=1;endendfor i=1:length(s)/2if((ak(i)==0)&&(bk(i)==0))m=zeros(1,100);elseif((ak(i)==0)&&(bk(i)==1)) m=ones(1,100);elseif((ak(i)==1)&&(bk(i)==0)) m=2*ones(1,100);elsem=3*ones(1,100);endc=sin(f*t);m1=[m1 m];c1=[c1 c];endask=c1.*m1;subplot(2,1,1);plot(m1)title('原始信号')axis([0 50*length(s) -0.5 4]); subplot(2,1,2);plot(ask)title('4ASK信号')axis([0 50*length(s) -4 4]); xlabel('周万成')(3)4FSK程序f1=1;f2=2;f3=3;f4=4;t=0:2*pi/99:2*pi;s=[1 1 0 0 1 1 0 0 1 0 0 1 1 1]; m1=[];c1=[];b1=[];for i=1;2;length(s)/2if (s(i)==0&&s(i+1)==0)ak(i)=0;bk(i)=0;elseif (s(i)==0&&s(i+1)==1)ak(i)=0 ;bk(i)=1;elseif(s(i)==1&&s(i+1)==0)ak(i)=1;bk(i)=0;elseak(i)=1;bk(i)=1;endfor i=1:length(s)/2if((ak(i)==0)&&(bk(i)==0))m=ones(1,100);c=sin(f1*t);b=zeros(1,100);elseif((ak(i)==0)&&(bk(i)==1)) m=ones(1,100);c=sin(f2*t);b=ones(1,100);elseif((ak(i)==1)&&(bk(i)==0)) m=ones(1,100);c=sin(f3*t);b=2*ones(1,100);elsem=ones(1,100);c=sin(f4*t);b=3*ones(1,100);endm1=[m1 m];c1=[c1 c];b1=[b1 b];endfsk=c1.*m1;subplot(2,1,1);plot(b1)title('原始信号')axis([0 50*length(s) -0.5 4]); subplot(2,1,2);plot(fsk)title('4FSK信号')axis([0 50*length(s) -2 2]); xlabel('周万成')四、实验结果以及分析:(1)结果图1图2图3(2)分析在C语言编程中对一个数组可以采用循环的方式对其赋值,所以此处利用循环对ak[]数组,bk[]数组进行赋值。

数字通信原理与技术报告(4ASK和4PSK)

数字通信原理与技术报告(4ASK和4PSK)

4PSK和4ASK的MATLAB仿真一、实验目的:学会利用MATLAB软件进行4PSK和4ASK调制的仿真。

通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。

二、实验内容:利用MATLAB软件编写程序,画出4PSK和4ASK图形,进一步了解4PSK和4ASK调制的原理。

(1)设二进制数字序列为0 1 0 1 1 0 0 0 1 1 0 1 0 0,编程产生4PSK调制信号波形。

(2)设二进制数字序列为1 1 0 0 1 1 0 0 1 0 0 1 1 1,编程产生4ASK调制信号波形。

三、程序和实验结果:(1)4PSK程序clfclcclearT=1;M=4;fc=1/T;N=500;delta_T=T/(N-1);input=[0 1 0 1 1 0 0 0 1 1 0 1 0 0]input1=reshape(input,2,7)t=0:delta_T:Tfor i=1:7hold onif input1([1 2],i)==[0;0]u=cos(2*pi*fc*t);plot(t,u)elseif input1([1 2],i)==[1;0]u=cos(2*pi*fc*t+2*pi/M);plot(t,u)elseif input1([1 2],i)==[1;1]u=cos(2*pi*fc*t+4*pi/M);plot(t,u)elseif input1([1 2],i)==[0;1]u=cos(2*pi*fc*t+6*pi/M);plot(t,u)endt=t+Tendgridhold off实验结果:(2)4ASK程序clfclcclearT=1;M=4;fc=1/T;N=500;delta_T=T/(N-1);input=[1 1 0 0 1 1 0 0 1 0 0 1 1 1] input1=reshape(input,2,7)t=0:delta_T:Tfor i=1:7hold onif input1([1 2],i)==[0;0]u=0;plot(t,u)elseif input1([1 2],i)==[1;0]u=2*sin(2*pi*fc*t);plot(t,u)elseif input1([1 2],i)==[1;1]u=3*sin(2*pi*fc*t);plot(t,u)elseif input1([1 2],i)==[0;1]u=sin(2*pi*fc*t);plot(t,u)endt=t+Tgrid;end四、实验结果分析:由4PSK和4ASK的图形我们可以发现,他们的共同点是:(1)每个码元含有2b的信息。

ask、psk、fsk的调制与解调原理

ask、psk、fsk的调制与解调原理

调制和解调是现代通信系统中至关重要的过程,它们可以实现信息的传输和接收。

在数字通信中,有三种常见的调制和解调技术,分别是ask、psk和fsk。

本文将详细讨论这三种调制和解调技术的原理和应用。

一、ASK调制与解调原理1. ASK调制ASK(Amplitude Shift Keying)调制是一种将数字信号转换为模拟信号的调制技术。

在ASK调制中,数字信号被用来控制载波的振幅,当输入信号为1时,振幅为A;当输入信号为0时,振幅为0。

ASK 调制一般用于光纤通信和无线电通信系统。

2. ASK解调ASK解调是将接收到的模拟信号转换为数字信号的过程。

它通常是通过比较接收到的信号的振幅与阈值来实现的。

当信号的振幅高于阈值时,输出为1;当信号的振幅低于阈值时,输出为0。

ASK解调在数字通信系统中有着广泛的应用。

二、PSK调制与解调原理1. PSK调制PSK(Phase Shift Keying)调制是一种将数字信号转换为模拟信号的调制技术。

在PSK调制中,不同的数字信号会使载波的相位发生变化。

常见的PSK调制方式有BPSK(Binary Phase Shift Keying)和QPSK(Quadrature Phase Shift Keying)。

PSK调制在数字通信系统中具有较高的频谱效率和抗噪声性能。

2. PSK解调PSK解调是将接收到的模拟信号转换为数字信号的过程。

它通常是通过比较接收到的信号的相位与已知的相位来实现的。

PSK解调需要根据已知的相位来判断传输的是哪个数字信号。

PSK调制技术在数字通信系统中被广泛应用,特别是在高速数据传输中。

三、FSK调制与解调原理1. FSK调制FSK(Frequency Shift Keying)调制是一种将数字信号转换为模拟信号的调制技术。

在FSK调制中,不同的数字信号对应着不同的载波频率。

当输入信号为1时,载波频率为f1;当输入信号为0时,载波频率为f2。

FSK调制常用于调制通联方式线路和调制调制解调器。

通信原理实验振幅键控(ASK)调制与解调实验

通信原理实验振幅键控(ASK)调制与解调实验

《通信原理》实验报告实验七: 振幅键控(ASK)调制与解调实验实验九:移相键控(PSK/DPSK)调制与解调实验系别:信息科学与技术系专业班级:电信0902学生姓名:同组学生:成绩:指导教师:惠龙飞(实验时间:2011年12月1日——2011年12月1日)华中科技大学武昌分校ﻬ实验七振幅键控(ASK)调制与解调实验一、实验目的1、掌握用键控法产生ASK信号的方法。

2、掌握ASK非相干解调的原理。

一、实验器材1、 信号源模块一块 2、 ③号模块一块 3、 ④号模块一块 4、 ⑦号模块一块 5、 20M双踪示波器一台 6、 连接线若干二、基本原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。

由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2AS K)、二进制移频键控(2FSK)、二进制移相键控(2PS K)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。

1、 2ASK 调制原理。

在振幅键控中载波幅度是随着基带信号的变化而变化的。

使载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2AS K信号,这种二进制振幅键控方式称为通—断键控(O OK )。

2ASK 信号典型的时域波形如图9-1所示,其时域数学表达式为:2()cos ASK n c S t a A t ω=⋅(9-1)式中,A 为未调载波幅度,c ω为载波角频率,n a 为符合下列关系的二进制序列的第n 个码元:⎩⎨⎧=PP a n -出现概率为出现概率为110 ﻩﻩ (9-2)综合式9-1和式9-2,令A =1,则2ASK 信号的一般时域表达式为:t nT t g a t S c n s n ASK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑t t S c ωcos )(= ﻩ(9-3)式中,T s 为码元间隔,()g t 为持续时间 [-T s /2,T s /2] 内任意波形形状的脉冲(分析时一般设为归一化矩形脉冲),而()S t 就是代表二进制信息的随机单极性脉冲序列。

数字载波调制实验报告(3篇)

数字载波调制实验报告(3篇)

第1篇一、实验目的1. 理解数字载波调制的基本原理和过程。

2. 掌握常见的数字调制方式,如振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。

3. 学习数字调制信号的生成和解调方法。

4. 通过实验,加深对数字调制技术在实际通信系统中的应用理解。

二、实验原理数字载波调制是数字通信中一种常见的信号处理技术,它通过改变载波的某些参数(如幅度、频率或相位)来携带数字信息。

常见的数字调制方式包括:1. 振幅键控(ASK):通过改变载波的幅度来表示数字信息,通常用高电平表示“1”,低电平表示“0”。

2. 频移键控(FSK):通过改变载波的频率来表示数字信息,通常用不同的频率分别表示“1”和“0”。

3. 相移键控(PSK):通过改变载波的相位来表示数字信息,通常用不同的相位来表示不同的数字符号。

数字调制信号可以通过以下步骤生成:1. 基带信号生成:将数字信息转换成基带信号,通常为二进制序列。

2. 调制:将基带信号与载波信号相乘,得到已调信号。

3. 滤波:对已调信号进行滤波,去除不必要的频率分量。

数字调制信号的解调过程如下:1. 载波恢复:从已调信号中恢复出载波信号。

2. 解调:将恢复的载波信号与已调信号相乘,得到基带信号。

3. 判决:根据基带信号的幅度或频率,判断原始数字信息。

三、实验器材1. 数字信号发生器2. 数字示波器3. 数字信号分析仪4. 信号源5. 连接线四、实验步骤1. 实验一:ASK调制和解调- 使用数字信号发生器生成二进制序列。

- 将基带信号与载波信号相乘,得到ASK调制信号。

- 使用数字示波器观察ASK调制信号的波形。

- 将ASK调制信号与恢复的载波信号相乘,得到解调信号。

- 使用数字示波器观察解调信号的波形。

2. 实验二:FSK调制和解调- 使用数字信号发生器生成二进制序列。

- 将基带信号与两个不同频率的载波信号相乘,得到FSK调制信号。

- 使用数字示波器观察FSK调制信号的波形。

通信原理第二次ASK,PSK试验报告

通信原理第二次ASK,PSK试验报告

基本数字调制技术姓名:王少阳班级:2013级电子一班学号:201300800134一、ASK调制与解调实验1、ASK调制(1)分别观测调制输入与调制输出信号:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH4,验证ASK调制原理。

通过图片可以清楚地看到ASK调制的过程,有的地方有,有的地方没有。

(2)将PN序列输出频率改为64KHZ,观察载波个数是否发生变化;可以清楚地看到载波数量变少了,之前两个码元间隔里,载波个数为13个,当为64K是,则为7个,基本是原来的二分之一。

2、ASK解调(1)、对比观测调制信号输入与解调输出:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH6,调节W1直至二者波形相同;从图中,清晰地看出来是有延时的,大约延时0.5个码元再观测TP4(整流输出)TP5(LPF-ASK)两个中间过程测试点,验证ASK解调原理。

(2)、以信号源的CLK为触发,测9号模块LPF-ASK,观测眼图。

眼图识别方法:(1)、张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)、眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

从这张图片上来看,眼睛张开的比较圆,比较大,且清晰,故而系统传输特性较好,从斜率上来看,比较大,故而对定时敏感。

一、FSK调制与解调实验1、FSK调制(1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。

由于比较小看的不也是很清楚,但放大后看,可以清晰地发现,有的地方稀疏,有的地方密集,完全符合PSK调制原理。

(2)将PN序列输出频率改为64KHZ,观察载波个数是否发生变化;如果放大可以看出来,载波的数目变少了,和前面一样,也是存在2倍关系2、ASK解调(1)、对比观测调制信号输入与解调输出:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TP6(单稳相加输出),TP7(LPF-FSK)、TH8(FSK解调输出),从这里可以看出来,存在延时,大约是0.5个码元验证FSK解调原理。

通信原理实验 ASK、FSK、PSK调制与解调

通信原理实验 ASK、FSK、PSK调制与解调

通信原理实验报告学院:电子信息学院班级08041102班实验日期:2014年 05月 27日(3)2ASK信号解调----2ASK属于100%的AM调制①包络检波法②相干检测法:2、FSK的调制与解调(1)定义:频移键控(FSK)属于数字频率调制,是用载波的频率不同来传送数字消息,即用所传送的数字消息控制载波的频率。

(2) 2FSK信号的产生方法(调制方法)--模拟法;键控法。

2FSK信号的实现方法核心思想:一路2FSK视为两路2ASK信号的合成(3)数字调频信号的解调方法很多,如:相干检测法、包络检波法、鉴频法、过零检测法、差分检测法①包络检波法②相干解调法③鉴频法思路:与FM的鉴频解调方法类似。

原理:鉴频器输出电压与输入信号瞬时频偏成正比。

3、PSK的调制与解调(1)定义:相移键控属于数字相位调制,是利用高频载波相位的变化来传送数字信息的。

二进制相移键控记作2PSK。

(2)2PSK信号的调制方框图(3)2PSK信号的解调----DSB信号,只可相干解调,不可包检。

五波形与数据……………………………………………………………第 4 页此次实验所用学号为“2011302009”,转换为二进制为“1010 1100 0111 0100 0111 1001”1、数字解调模块的ASK-IN和频谱2、信号源模块的FS、数字解调模块的ASK-OUT3、数字解调模块的FSK-IN和频谱4、数字解调模块的FSK-OUT5、数字调制模块的“PSK 调制输出”和频谱六 结论……………………………………………………………………第 6 页讨论ASK 、FSK 、PSK 的时域特性和频谱特性。

① 时域:2ASK 信号时域表达式:2()()cos ASK c S t s t w t =,s(t)为单极性NRZ 矩形脉冲序列2ASK 信号时域表达式:212()()cos()()cos()FSK n n S t s t w t s t w t ϕϕ=+++,s(t)为单极性NRZ 矩形脉冲序列2ASK 信号时域表达式:2()()cos PSK c S t s t w t = s(t)为单极性NRZ 矩形脉冲序列ASK 信号用载波的幅值来携带调制信号,FSK 信号用载波的不同频率来携带调制信号,PSK 信号用载波的不同相位来携带调制信号。

《通信原理实验》ASK、PSK、BFSK等实验报告

《通信原理实验》ASK、PSK、BFSK等实验报告

《通信原理实验》ASK、PSK、BFSK等实验报告《通信原理》实验报告⼀、实验⽬的1、掌握⽤键控法产⽣ASK、FSK信号的⽅法。

2、掌握ASK、FSK⾮相⼲解调的原理。

3、掌握BFSK调制和解调的基本原理。

4、掌握BFSK数据传输过程,熟悉典型电路。

5、了解数字基带波形时域形成的原理和⽅法,掌握滚降系数的概念。

6、熟悉BPSK调制载波包络的变化。

7、掌握BFSK载波恢复特点与位定时恢复的基本⽅法。

⼆、实验器材1、主控&信号源模块,9号、13号模块各⼀块2、双踪⽰波器⼀台3、连接线若⼲三、实验原理1、ASK调制及解调实验原理框图2、FSK调制及解调实验原理框图3、BPSK调制及解调实验原理框图四、实验步骤实验项⽬⼀ASK调制1、分别观测调制输⼊和调制输出信号:以9号模块TH1为触发,⽤⽰波器同时观测9号模块TH1和模块TH4,验证ASK调制原理。

调制输⼊信号和调制输出信号:由图可知,当输⼊为“1”时,输出为正弦信号;输⼊为“0”时,输出信号为0。

注:CH1(上⾯的波形)为调制输⼊信号,CH2(下⾯的波形)为调制输出信号。

调制输⼊信号频谱:调制输出信号频谱:2、将PN序列输出频率改为64KHz,观察载波个数是否发⽣变化。

调制输⼊信号和调制输出信号:将图与题1中的图作⽐较,可以发现,PN序列的输出频率改为64KHz时,载波的个数没有发⽣变化。

可以得出,ASK调制时,PN序列输出频率的改变,不会对载波产⽣影响。

注:CH1(上⾯的波形)为调制输⼊信号,CH2(下⾯的波形)为调制输出信号。

调制输⼊信号频谱:调制输出信号频谱:实验项⽬⼆ASK解调1、对⽐观测调制信号输⼊以及解调输出:以9号模块TH1为触发,⽤⽰波器同时观测9号模块TH1和TH6,调节W1直⾄⼆者波形相同;再观测TP4(整流输出)、TP5(LPF-ASK)两个中间过程测试点,验证ASK解调原理。

解调信号输⼊和解调输出:整流输出和LPF-ASK:注:CH1(上⾯的波形)为调制输⼊信号,CH2(下⾯的波形)为调制输出信号;CH1(上⾯的波形)为整流输出,CH2(下⾯的波形)为LPF-ASK从调制输⼊信号和输出信号的波形对⽐来看,两个的波形⼀致,但是存在这相位差。

数字通信原理与技术

数字通信原理与技术

数字通信原理与技术数字通信是一种利用数字信号传输信息的通信方式,它在现代通信领域中起着至关重要的作用。

数字通信技术的发展不仅推动了通信行业的进步,也深刻影响着人们的生活。

本文将从数字通信的基本原理、技术特点和应用领域等方面进行介绍,希望能够为读者提供一些有益的信息和知识。

首先,我们来谈谈数字通信的基本原理。

数字通信是利用数字信号来传输信息的通信方式,它通过将模拟信号转换成数字信号,再进行传输和接收。

数字信号是一种离散的信号,它具有抗干扰能力强、传输质量稳定等优点。

而数字通信的基本原理就是通过编码、调制、传输和解调等步骤来实现信息的传输和接收。

其次,我们来探讨一下数字通信技术的特点。

数字通信技术具有高效、可靠、灵活等特点。

首先,它能够通过数字信号处理技术实现信息的压缩和加密,从而提高了信号的传输效率和安全性。

其次,数字通信技术还可以利用现代通信网络,实现多媒体信息的传输和互联互通。

此外,数字通信技术还可以通过软件定义网络(SDN)和网络功能虚拟化(NFV)等技术,实现通信网络的灵活配置和管理。

最后,我们来看一下数字通信技术在实际应用中的情况。

数字通信技术已经广泛应用于移动通信、互联网、卫星通信、数字电视等领域。

在移动通信领域,数字通信技术不仅实现了语音通信,还能够实现数据传输和多媒体通信。

在互联网领域,数字通信技术为互联网的发展提供了技术支持,实现了全球范围内的信息交流和资源共享。

在数字电视领域,数字通信技术实现了高清晰度、多频道、互动式等特点,为用户提供了更加丰富和便利的观看体验。

综上所述,数字通信作为一种重要的通信方式,其原理和技术特点决定了其在现代通信领域中的重要地位。

随着信息技术的不断发展,数字通信技术也将不断得到完善和应用,为人们的生活和工作带来更多便利和可能。

希望本文能够为读者提供一些有益的信息和启发,让大家对数字通信有更深入的了解和认识。

数字调制技术ASK FSK PSK实验报告

数字调制技术ASK FSK PSK实验报告

MATLAB专用周实践报告数字调制技术ASK、FSK、PSK专业:通信工程班级:1020272学号:0 6姓名:周*一、二进制数字调制技术原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。

为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。

这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。

通常使用键控法来实现数字调制,比如对载波的振幅、频率和相位进行键控。

(1)2ASK2ASK信号的产生方法通常有两种:模拟调制和键控法。

解调有相干解调和非相干解调。

P=1时f(t)=Acoswt;p=0时f(t)=0;其功率谱密度是基带信号功率谱的线性搬移(2)2FSK一个FSK信号可以看成是两个不同载波的2ASK信号的叠加。

其解调和解调方法和ASK差不多。

2FSK信号的频谱可以看成是f1和f2的两个2ASK频谱的组合。

(3)2PSK2PSK以载波的相位变化作为参考基准的,当基带信号为0时相位相对于初始相位为0,当基带信号为1时相对于初始相位为180°。

二、数字调制技术的仿真实现MATLAB是一种功能强大的科学计算和工程仿真软件,它的交互式集成界面能够帮助用户快速的完成数值分析、数字信号处理、仿真建模、和优化等功能。

本课程设计需要运用MATLAB编程实现2ASK,2FSK,2PSK,2DPSK调制解调过程,并且输出其调制后的波形,画出频谱、功率谱密度图,并比较各种调制的误码率情况,讨论其调制效果。

(一)ASK(1) ASK的程序:close allclear alln=16;fc=1000000;%fc>=bitRate fc/bitRate为每个二进制包含sin周期个数bitRate=1000000;N=50;%noise=ti;noise=10;signal=source(n,N);transmittedSignal=askModu(signal,bitRate,fc,N);signal1=gussian(transmittedSignal,noise);configueSignal=demoASK(signal1,bitRate,fc,n,N); (2) ASK参数:(3) ASK仿真图形:(二)PSK(1) PSK的程序:close allclear alln=16;fc=1000000;bitRate=1000000;N=50; noise=10;signal=source(n,N);transmittedSignal=bpskModu(signal,bitRate,fc,N);signal1=gussian(transmittedSignal,noise);configueSignal=demoBPSK(signal1,bitRate,fc,n,N);(2)PSK参数:(3)PSK仿真图形:(三)FSK(1) FSK的程序:close allclear allti=0;fpefsk=[];startn=-6;endn=18;for ti=startn:endnn=1000;f1=18000000;f2=6000000;bitRate=1000000;N=50;noise=ti;signal=source(n,N);transmittedSignal=fskModu(signal,bitRate,f1,f2,N);signal1=gussian(transmittedSignal,noise);configueSignal=demoFSK(signal1,bitRate,f1,f2,N);configueSignal;P=CheckRatePe(signal,configueSignal,n)fpefsk=[fpefsk,P];Endfigure(8);semilogy(startn:length(fpefsk)+startn-1,fpefsk);grid on;title('Bit Error Rate Of FSK');xlabel('r/dB');ylabel('PeFSK');load PeRatesave PeRate.mat fpefsk fpeask(2)FSK参数:(3)FSK仿真图形:总结:我们所做的是FSK PSK ASK数字调制系统的设计。

通原实验4-数字调制ASK实验

通原实验4-数字调制ASK实验

c t A cos t c c
数字调制的原理或过程就是用数字基带信号 m(t) 去 改变载波 c(t) 的瞬时幅度、频率或相位。相应的已调信 号可表示为: S t A t c o t s t
m

c
已调波的瞬时幅度
已调波的瞬时频率
1.4
2ASK的功率谱特性
为了更深入掌握2ASK信号的性质,除时域分析外,还应进 行频域分析。由于二进制序列一般为随机序列,其频域分析的对 象应为信号功率谱密度。 经分析可知,2ASK信号的双边功率谱密度表达式为: 1 2 2 P ( f ) f P ( 1 P ) G ( f f ) G ( f f ) 2 A SK s c c 4
已调波的瞬时相位
(1)
数字振幅键控ASK 调制与解调实验
基带信号是各类数字通信系统传输的对象
载波信号是各种调制所必须的传送载体
一、实验目的
数字振幅调制是数据通信中一种古老的通信方式, 使用较多的方面是早期的莫尔斯电报系统。现代数字 通信设备中,几乎不用,但它是各种数字调制的基础 ,通过此实验: 1、进一步加深对数字调制技术中的振幅键控ASK 调制与解调器工作原理及电路组成的理解与掌握。 2、掌握并学会对ASK调制/解调信号的测试技能。
开关电路中的电子开关的通/断受数字基带信号的控制。
载波信号直接加到模拟开关的输入端 u 载波发生器 t
K IN
数字基带直接加到模拟开关的控制端
OUT
u t
u
u 数字基带信号
t
t
由于数字基带信号的“0/1” 当数字基带为“1”时,K接通,信号有输出。 变化,使得载波的输出发生有无 变化,即实现了载波的振幅控制 当数字基带为“0”时,K断开,信号无输出。 ,这就是2ASK。

4psk调制解调原理

4psk调制解调原理

4psk调制解调原理4PSK调制解调原理一、引言4PSK调制解调是一种常用的数字通信调制解调技术,它在数字通信系统中具有重要作用。

本文将介绍4PSK调制解调的原理、特点及应用。

二、4PSK调制原理4PSK调制是指将输入的数字信号转换为相位调制信号的一种调制方式。

它是基于相位调制的一种变种,通过对数字信号的不同取值进行相位调制,将数字信号转换为相位连续的模拟信号。

具体来说,4PSK调制将每个输入符号映射到一个特定的相位值。

在4PSK调制中,共有4个相位点,分别对应4个可能的输入符号。

这4个相位点在复平面上形成一个正方形,每个相位点相隔90度。

在4PSK调制中,每个输入符号用两个比特表示,共有4种可能的符号组合。

将这些符号组合映射到不同的相位点上,即可实现4PSK 调制。

调制后的信号可以传输至接收端进行解调。

三、4PSK解调原理4PSK解调是指将接收到的相位调制信号转换为数字信号的一种解调方式。

解调的目标是将相位调制信号恢复为原始的数字信号。

在4PSK解调中,首先需要将接收到的信号进行相位检测。

相位检测是通过测量接收信号的相位,判断其所处的相位点。

在4PSK解调中,常用的相位检测方法有两种:差分相位检测和最小距离相位检测。

差分相位检测是通过比较相邻两个信号样本的相位差来判断所处的相位点。

最小距离相位检测是通过计算接收信号与每个相位点之间的距离,选取距离最小的相位点作为判决结果。

解调后,可以将恢复的数字信号进行后续处理,如解码、错误检测等。

四、4PSK调制解调的特点1. 高效性:4PSK调制解调是一种高效的数字通信技术,可以通过调整相位点的数量来实现不同的调制阶数。

2. 抗干扰性强:4PSK调制解调在传输过程中对噪声和干扰的抗性较强,能够有效地提高信号质量和传输距离。

3. 适应性强:4PSK调制解调可以适应不同信道条件和传输需求,具有较好的灵活性和适应性。

4. 简单性:4PSK调制解调的原理相对简单,实现成本较低,适用于各种数字通信系统。

数字通信作业(4psk,2PSK分析报告)有完整程序

数字通信作业(4psk,2PSK分析报告)有完整程序

Digital Communication Project————2PSK and 4PSKRequirements:Please use Matlab programming to implement some digital baseband communication systems and plot the BER(bit error2PSK and 4PSK目录:Digital Communication Project (1)————2PSK and 4PSK (1)一、基本理论 (2)1. 二进制移相键控(2PSK)的基本原理 (3)1.1 2PSK信号的产生 (3)1.2 2PSK的解调系统 (3)1.3 2PSK误码率分析 (4)2. 四进制移相键控(4PSK)的基本原理 (4)2.1 4PSK信号的产生 (5)2.2 4PSK的解调系统 (6)2.3 4PSK误码率分析 (7)二、源程序及仿真分析 (7)1. 2PSK源程序及仿真分析 (7)2. 4PSK源程序及仿真分析 (9)3. 2PSK和4PSK误码率分析 (10)一、基本理论1.二进制移相键控(2PSK)的基本原理2PSK信号的产生方法通常有两种:模拟调制法和键控法。

一般的模拟幅度调制的方法,用乘法器实现;数字键控法的开关电路受s(t)控制。

2PSK信号基本的解调方法是相干解调。

2PSK,二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改变的一种数字调制方式。

就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。

两个载波相位通常相差180度,此时称为反向键控(PSK),也称为绝对相移方式。

1.1 2PSK信号的产生2PSK的产生:模拟法和数字键控法。

就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB 调幅信号。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验目的,通过本次实验,掌握数字通信原理的基本知识,了解数字信号的调制与解调原理,掌握数字通信系统的基本结构和工作原理。

实验仪器,数字信号发生器、示波器、频谱分析仪、数字通信系统实验箱等。

实验原理,数字通信是利用数字信号进行信息传输的通信方式。

在数字通信中,数字信号经过调制器调制成模拟信号,通过信道传输到接收端,再经过解调器解调为数字信号,最终恢复原始信号。

本次实验主要涉及到的调制方式有ASK、FSK和PSK。

实验步骤:1. 连接实验仪器,首先将数字信号发生器连接到示波器和频谱分析仪上,然后将示波器连接到数字通信系统实验箱的发送端,频谱分析仪连接到接收端。

2. 设置数字信号发生器,根据实验要求,设置数字信号发生器的频率、幅度和波形。

3. 进行调制实验,依次进行ASK、FSK和PSK的调制实验,观察发送端的波形和频谱,并记录相关数据。

4. 进行解调实验,将接收端连接到示波器上,依次进行ASK、FSK和PSK的解调实验,观察接收端的波形和频谱,并记录相关数据。

5. 数据分析,根据实验数据,分析不同调制方式的特点和性能,比较它们的优缺点。

实验结果:经过实验,我们得到了不同调制方式的波形和频谱图,通过数据分析,我们得出了以下结论:1. ASK调制适用于带宽较窄的通信系统,但抗干扰能力较差。

2. FSK调制适用于抗干扰能力要求较高的通信系统,但带宽较宽。

3. PSK调制适用于对频谱利用率要求较高的通信系统。

结论,本次实验通过实际操作,加深了对数字通信原理的理解,掌握了数字信号的调制与解调原理,对数字通信系统的基本结构和工作原理有了更深入的认识。

实验总结,数字通信技术是现代通信领域的重要组成部分,通过本次实验,我们对数字通信原理有了更加深入的了解,这对我们今后的学习和工作都具有重要意义。

通过本次实验,我们不仅学到了理论知识,还掌握了实际操作的技能,这对我们今后的学习和工作都具有重要意义。

希望在今后的实验中,我们能够继续努力,不断提高自己的实验能力,为今后的科研工作打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4PSK和4ASK的MATLAB仿真
一、实验目的:
学会利用MATLAB软件进行4PSK和4ASK调制的仿真。

通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。

二、实验内容:利用MATLAB软件编写程序,画出4PSK和4ASK图形,进一步了解4PSK和4ASK调制的原理。

(1)设二进制数字序列为0 1 0 1 1 0 0 0 1 1 0 1 0 0,编程产生4PSK调制信号波形。

(2)设二进制数字序列为1 1 0 0 1 1 0 0 1 0 0 1 1 1,编程产生4ASK调制信号波形。

三、程序和实验结果:
(1)4PSK程序
clf
clc
clear
T=1;
M=4;
fc=1/T;
N=500;
delta_T=T/(N-1);
input=[0 1 0 1 1 0 0 0 1 1 0 1 0 0]
input1=reshape(input,2,7)
t=0:delta_T:T
for i=1:7
hold on
if input1([1 2],i)==[0;0]
u=cos(2*pi*fc*t);plot(t,u)
elseif input1([1 2],i)==[1;0]
u=cos(2*pi*fc*t+2*pi/M);plot(t,u)
elseif input1([1 2],i)==[1;1]
u=cos(2*pi*fc*t+4*pi/M);plot(t,u)
elseif input1([1 2],i)==[0;1]
u=cos(2*pi*fc*t+6*pi/M);plot(t,u)
end
t=t+T
end
grid
hold off
实验结果:
(2)4ASK程序
clf
clc
clear
T=1;
M=4;
fc=1/T;
N=500;
delta_T=T/(N-1);
input=[1 1 0 0 1 1 0 0 1 0 0 1 1 1] input1=reshape(input,2,7)
t=0:delta_T:T
for i=1:7
hold on
if input1([1 2],i)==[0;0]
u=0;plot(t,u)
elseif input1([1 2],i)==[1;0]
u=2*sin(2*pi*fc*t);plot(t,u)
elseif input1([1 2],i)==[1;1]
u=3*sin(2*pi*fc*t);plot(t,u)
elseif input1([1 2],i)==[0;1]
u=sin(2*pi*fc*t);plot(t,u)
end
t=t+T
grid;
end
四、实验结果分析:
由4PSK和4ASK的图形我们可以发现,他们的共同点是:
(1)每个码元含有2b的信息。

(2)发送码元序列在进行编码时需要先将每两个比特分成一个双比特组。

不同点是:4PSK是用00,01,10,11代表不同的相位而4ASK则是用
00,01,10,11代表不同的幅度。

相关文档
最新文档