静电场习题课(下)
静电场习题课
2.无限长均匀带电平面 已知 无限长均匀带电平面 已知: 求: 解: 沿
σ
Y
dq
b a
d
P
Q 两点的场强
与平面共面) 与平面共面 P 点(与平面共面
Y 方向放置的无限长直线
dy
a
d
X dE
dq dq = σdxdy 线密度: = σdx 线密度:
P
dq 在P点产生的
σdx σdx dE = = 2πε 0r 2πε 0 ( a + b x )
3.无限大平面挖一园孔 无限大平面挖一园孔 已知: 已知
σ
R
O
求:轴线上一点的场强 轴线上一点的场强 σ P点 E1 = + σ + 原电荷 2ε0 圆孔
E
P X
R
σ
P点
x σ E2 = ( 1 ) 2ε0 x2 + R2
σ x E = E1 E2 = 2ε x2 + R2
无限" 三."无限"带电体零电势点的选取 无限 1.求无限长均匀带电直线的电势分布 1.求无限长均匀带电直线的电势分布 场强分布 由定义
R
0
E1 = 0
Eo
r
0′
证明空腔内为均匀电场 0处
+ ρ + 原电荷 ρ 0 处
d
E2ds = E2 4πd 2 = ∫
s
∫ dq
s
ε0
4 3 ρ πr = 3
ε0
3
4 3 ρ πr ρr 3 E2 = 3 2 = 2 4πε 0d 3ε0d
ρr ∴Eo = E2 = 2 3ε0d
O′ 点场强的计算
A: EA > EB > EC ,A > B > C B : EA > EB > EC ,A < B < C C : EA < EB < EC ,A > B > C D : EA < EB < EC ,A < B < C
静电场习题课
2
(2)两离子初速度分别为 v、v/,则
L 2v L qE n m
L 2v l′ + qE = v m
L 2m Δt=t-t′ = (v v ) vv qE
L 2m 0 要使 Δt=0,则须 vv qE 2mvv 所以:E= qL
7.如图所示,同一竖直平面内固定着两水平绝缘细杆 AB、CD,长 均为 L,两杆间竖直距离为 h,BD 两端以光滑绝缘的半圆形细杆 相连,半圆形细杆与 AB、CD 在同一竖直面内,且 AB、CD 恰为半 圆形圆弧在 B、D 两处的切线,O 为 AD、BC 连线的交点,在 O 点 固定一电量为 Q 的正点电荷.质量为 m 的小球 P 带正电荷,电量 为 q,穿在细杆上,从 A 以一定初速度出发,沿杆滑动,最后可 到达 C 点.已知小球与两水平杆之间动摩擦因数为μ ,小球所受 库仑力始终小于小球重力.求: (1) P 在水平细杆上滑动时受摩擦力的极大值和极小值; (2) P 从 A 点出发时初速度的最小值.
1 2 -mgh-2mg·2L=0- 2 mv0 ,
得 v0= 2 gh(h 2L) .
8.一个质量为m,带有电荷-q的小物体,可在倾角 为θ 的绝缘斜面上运动,斜面底端有一与斜面垂 直的固定绝缘挡板,斜面顶端距底端的高度为h, 整个斜面置于匀强电场中,场强大小为E,方向水 平向右,如图所示.小物体与斜面的动摩擦因数 为μ ,且小物体与档板碰撞时不损失机械能。求: (1) 为使小物体能从静止开始沿斜面下滑,μ 、q、 E、θ 各量间必须满足的关系。 (2) 小物体自斜面顶端从静止开始沿斜面下滑到 停止运动所通过的总路程。
6.飞行时间质谱仪可通过测量离子飞行时间得到离子的荷质比 q/m,如 图 1。 带正电的离子经电压为 U 的电场加速后进入长度为 L 的真空管 AB, 可测得离子飞越 AB 所用时间 t1。改进以上方法,如图 2,让离子飞越 AB 后进入场强为 E(方向如图)的匀强电场区域 BC,在电场的作用下 离子返回 B 端,此时,测得离子从 A 出发后飞行的总时间 t2, (不计离 子重力) ⑴忽略离子源中离子的初速度, ①用 t1 计算荷质比; ②用 t2 计算荷质比。
静电场习题课讲稿PPT课件
L
第10页/共114页
例 求一均匀带电圆环轴线上任一点 x处的电场。
已知: q 、R 、 x。
dq
y
R
d Ey p
d Ex
x
d Ey
x
dE
第11页/共114页
课堂练习:
1.求均匀带电半圆环圆心处的 E,已知 R、
电荷元dq产生的场
dE
dq
4 0 R2
Y
根据对称性 dEy 0
dq
dEx
r dS E
第41页/共114页
dS
E
r
第42页/共114页
r>R
电通量
e E dS E4r 2
电量
qi q
r
高斯定理
E4r 2 q 0
场强
q
E 4 0r 2
第43页/共114页
E
R
高斯面
均匀带电球体电场强度分布曲线
E
E
R
qr E 40R3
q
ε 40r 2
O
r
O
R
第44页/共114页
E
E
均匀带电球面
E
E
E
dS
R
r
E
第36页/共114页
E
高斯面
E
E
E
E
E
dS
rE
E
高斯面
E
R
E
E
第37页/共114页
rR
e
qi
E2 q
dS E2 dS E2 4r 2
s2
E2 4r 2 q 0
+
+ +
+ R
大学物理(第四版)课后习题及答案 静电场
证2:如图所示,取无限长带电细线为微元,各微元在点P激发的电场强 度dE在Oxy平面内且对x轴对称,因此,电场在y轴和z轴方向上的分量之 和,即Ey、Ez均为零,则点P的电场强度应为
积分得 电场强度E的方向为带电平板外法线方向。 上述讨论表明,虽然微元割取的方法不同,但结果是相同的。
(2)由于正、负电荷分别对称分布在y轴两侧,我们设想在y轴上能 找到一对假想点,如果该带电环对外激发的电场可以被这一对假想点上 等量的点电荷所激发的电场代替,这对假想点就分别称作正、负等效电 荷中心。等效正负电荷中心一定在y轴上并对中心O对称。由电偶极矩p 可求得正、负等效电荷中心的间距,并由对称性求得正、负电荷中心。 解:(1)将圆环沿y轴方向分割为一组相互平行的元电偶极子,每一元 电偶极子带电
行,对电场强度通量贡献为零。整个高斯面的电场强度通量为 由于,圆柱体电荷均匀分布,电荷体密度,处于高斯面内的总电荷 由高斯定理可解得电场强度的分布, 解:取同轴柱面为高斯面,由上述分析得 题7.16:一个内外半径分别R1为R2和的均匀带电球壳,总电荷为Q1,球 壳外同心罩一个半径为 R3的均匀带电球面,球面带电荷为Q2。求电场 分布。电场强度是否是场点与球心的距离r的连续函数?试分析。
题7.16分析:以球心O为原点,球心至场点的距离r为半径,作同心球面 为高斯面。由于电荷呈球对称分布,电场强度也为球对称分布,高斯面 上电场强度沿径矢方向,且大小相等。因而,在确定高斯面内的电荷 后, 利用高斯定理 即可求的电场强度的分布 解:取半径为r的同心球面为高斯面,由上述分析 r < R1,该高斯面内无电荷,,故
E=0 在距离圆孔较远时x>>r,则 上述结果表明,在x>>r时。带电平板上小圆孔对电场分布的影响可以忽 略不计。 题7.15:一无限长、半径为R的圆柱体上电荷均匀分布。圆柱体单位长 度的电荷为,用高斯定理求圆柱体内距轴线距离为r处的电场强度。
矿大《大学物理》习题解答(下)
=
σ 2ε 0
1 −
a a2 +
R2
由题意,令 E=σ/(4ε0),得到
From: 理学院
~3~
2018
中国矿业大学(北京)《大学物理》习题
R= 3a
*4. 一半径为 R 的半球面,均匀地带有电荷,电荷面密度为 σ,求球心 O 处的电场强 度。
R dθ
θ
dE
O
x
解:选取坐标轴 Ox 沿半球面的对称轴,如图所示。把半球面分成许多微小宽度的环带, 每一环带之面积:
O 点处的总场强:
∫ σ
E= 2ε 0
π /2
sinθ
0
d(sinθ )
=
σ 2ε 0
sin 2 θ 2
|π0 / 2 =
σ 4ε 0
E = σ i 4ε 0
其中 i 为沿 x 轴正方向的单位矢量。
5. 半径为 R 的均匀带电球体内的电荷体密度为 ρ ,若在球内挖去一块半径为 r < R 的 小球体,如图所示.试求:两球心 O 与 O′ 点的场强,并证明小球空腔内的电场是均匀
E1
=
λ 4πε 0 R
(− i
−
j )
半无限长直线 B∞在 O 点产生的场强 E2 :
E2
=
λ 4πε 0 R
(− i
+
j学(北京)《大学物理》习题
半圆弧线段在 O 点产生的场强 E3 :
E3
=
λ 2πε 0 R
i
由场强叠加原理,O 点合场强为:
E = E1 + E2 + E3 = 0
From: 理学院
~4~
2018
的.
中国矿业大学(北京)《大学物理》习题
大学物理第6章真空中的静电场课后习题与答案
第6章真空中的静电场习题及答案1.电荷为q 和2q 的两个点电荷分别置于x1m 和x1m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 位于点电荷 0q 的右侧,它受到的合力才可能为0,所以2qqqq00224(x 1)4(x1) ππ 00故x3222.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放 一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都 为零)?(2)这种平衡与三角形的边长有无关系?解:(1)以A 处点电荷为研究对象,由力平衡知,q 为负电荷,所以2 4 1 π 0 q a 22 cos304 1 π 0 ( q 33qa 2 )3故qq3(2)与三角形边长无关。
3.如图所示,半径为R 、电荷线密度为1的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dqdl 1,dq 在带电圆环轴 线上x 处产生的场强大小为 dE 4 dq20(xRy2 )根据电荷分布的对称性知,yE0E zdEdEcos x41xdq 1R 3 22 2O(xR) 02xl式中:为dq 到场点的连线与x 轴负向的夹角。
E x4x 220(xR) 3 2dqzx21R R 1 x4x 2R2()3 2 2xR 2( 02 )3 2下面求直线段受到的电场力。
在直线段上取dqdx2,dq受到的电场力大小为Rx12dFxdxEdq32222(xR)0方向沿x轴正方向。
直线段受到的电场力大小为Rlx12FdxdF3202220xR)(11R1121/22R22lR方向沿x轴正方向。
4.一个半径为R的均匀带电半圆环,电荷线密度为。
求:(1)圆心处O点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O点场强。
14静电场习题课
X
由于左右半圆环电荷分布的对称性,合场强的y分量抵消 由于左右半圆环电荷分布的对称性,合场强的y
λ dl + )=- dEx=dEcos( π φ 2cos φ 4ππR 0 λR 0 2 =- d 2cosφ φ 4ππR 0
λ0 2π 2 Ex=- ∫ cos φd φ 4πε R 0 0 λ0 2π 1-cos 2φ =- dφ ∫ 0 4πε R 2 0 λ0 =- 4ε0 R
2
d
•
⇒ E = 0 试指出其错误。 试指出其错误。
答:所选球面上场强的大小不处处相等,不能用: 所选球面上场强的大小不处处相等,不能用:
E • dS = E • 4πr ∫∫
S
2
〔例5〕已知空间电场强度分布为 〕 求(1)通过图示立方体的电通量, )通过图示立方体的电通量, (2)该立方体内的总电荷是多少? )该立方体内的总电荷是多少? 解:(1) :( )
q ∴U 0= =U球 4πε r 0
〔例14〕正电荷均匀分布在半径为R的球形体积内,电荷体 〕正电荷均匀分布在半径为R的球形体积内, 密度为ρ,求球内a点与球外b点的电势差时, ρ,求球内 密度为ρ,求球内a点与球外b点的电势差时,得出结果
R O
σ
x
X
σ -σ x E= i + 〔1- i〕 2 2 2ε 2ε R +x 0 0 σ x = i 2 2 2ε R +x 0
U= E •d l ∫Ecos π = -E(-dx) = dl ∫ ∫
0 x 0 x 0 x
σ 0 x 注意符号变换! 注意符号变换! dx = ∫ 2 x 2 2ε R +x 0 -1 σ 01 2 2 = ∫(R +x ) 2d(R 2+x2) x 2ε 2 0 σ 1 (R +x )2 0 σ = 〔 • 〕 = 〔R- R 2+x2〕 x 1 2ε 2 2ε 0 0 2
静电场中的导体与电介质习题课.ppt
S2
代入上面式子,可求得:
E1
1
r1 0
E2 2 r20
1 S2 E1
- S1 2 E2
D2
D、E 方向均向右。
D1
A d1
d2
B
静电场中的导体和介质习题课
(2)正负两极板A、B的电势差为:
U A U B E1d1 E2d2
d1
1
d2
2
q S
d1
1
d2
2
按电容的定义式:C
q UA UB
d1
S
d2
1 2
上面结果可推广到多层介质的情况。
静电场中的导体和介质习题课
【例题】平行板电容器的极板是边长为 a的正方形,间
距为 d,两板带电±Q。如图所示,把厚度为d、相对介
电常量为εr的电介质板插入一半。试求电介质板所受
电场力的大小及方向。
解:选取坐标系
OX,如图所示。 当介质极插入x 距离时,电容器 的电容为
功等于电容器储能的增量,有
F
W (x) x
( r 20a[a
1)Q2d
(r 1)x]2
静电场中的导体和介质习题课
插入一半时,x=a/2 ,则
F( a ) 2( r 1)Q2d 2 0a3 ( r 1)2
F(a/2)的方向沿图中X轴的正方向。
注释:由结果可知,εr>1,电场力F是指向电容器内 部的,这是由于在电场中电介质被极化,其表面上产 生束缚电荷。在平行极电容器的边缘,由于边缘效应 ,电场是不均匀的,场强E 对电介质中正负电荷的作 用力都有一个沿板面向右的分量,因此电介质将受到 一个向右的合力,所以电介质板是被吸入的。
E E0
r
05静电场——习题课
1.14(1)点电荷 位于边长为 的正立方体的中心, ( )点电荷q位于边长为 的正立方体的中心, 位于边长为a 通过此立方体的每一面的电通量各是多少? 通过此立方体的每一面的电通量各是多少? (2)若电荷移至正方体的一个顶点上,那么通过每 )若电荷移至正方体的一个顶点上, 个面的电通量又各是多少? 个面的电通量又各是多少? q 解: 1)由于立方体的 6 个侧面对于其 ( ) ● 中心对称, 则由Gauss定理知,通过各 定理知, 中心对称, 则由 定理知 个面的电通量都相等。 个面的电通量都相等。且等于整个闭合 q ● 高斯面电能量的六分之一, 高斯面电能量的六分之一,所以每个面 通过的电通量应为 q / (6ε0)。 。 填空题1039 (本题 分)在边长为 的正 本题3分 在边长为a的正 填空题 a 方形平面的中垂线上,距中心o点 方形平面的中垂线上,距中心 点a/2 处 q 有一电量q的正电荷,则通过该平面的电 有一电量 的正电荷, 的正电荷 ● a a/2 场强度通量为 q / (6ε0) 。 为边长作一个正六面体。 解:以a 为边长作一个正六面体。
ε0
E = 0 (r < a ) r > a , q int = 2π al σ , E 在筒外, 在筒外, δa (r ≥ a ) E = ε 0r o E-r 曲线如图。 曲线如图。
E∝1 r
a
r
1.18 两个无限长同轴圆筒半径分别为R1和R2,单位长 两个无限长同轴圆筒半径分别为 度带电量分别为+λ和 。求内筒内、 度带电量分别为 和-λ。求内筒内、两筒间及外筒外的 电场分布。 电场分布。 根据电场分布的轴对称性, 解:根据电场分布的轴对称性,可以选与圆筒同轴的圆 柱面(上下封顶 作高斯面。再根据高斯定律即可得出: 上下封顶)作高斯面 柱面 上下封顶 作高斯面。再根据高斯定律即可得出: 在筒内, 在筒内,r < R1 : E = 0 在筒间, 在筒间, R1 < r < R2 :
静电习题课
xdq dE 2 2 3/ 2 4 0 ( r x )
哈尔滨工程大学理学院
静电场习题课
y
dl R r O x R x R x
y
r
O dE
r R sin ,
x R cos ,
dl Rd
E
/2
0
2R 3 sin cos d 3 4 0 40 R
哈尔滨工程大学理学院
静电场习题课 2. 一锥顶角为θ的圆台,上下底面半径分别为R1和R2 , 在它的侧面上均匀带电,电荷面密度σ,求:顶角O的 电势。(以无穷远处电势为零点)
R1
R2
哈尔滨工程大学理学院
静电场习题课 1、判断带电体类型(均匀的连续面分布) 2、选坐标 3、找微元
dq ds
4 r q U 4 r
i 1 0
i
连续分布的带电体 场无对称性
U
dq 4 r
0
场有对称性
哈尔滨工程大学理学院
U P E dl
P
静电场习题课
F
定理
D ds q
0
qq ˆ r 4 r 1
1 2 2
i
有源场
s
静 电 学
方向沿x正方向
电荷元在球面电荷电场中具有电势能: dW = (qdx) / (40 x) 整个线电荷在电场中具有电势能:
q W 4 0
哈尔滨工程大学理学院
r0 l r0
r0 l dx q ln x 4 0 r0
静电场习题课 8.一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半 径分别为R1 = 2 cm,R2 = 5 cm,其间充满相对介电常量 为r 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm处的A点 的电场强度和A点与外筒间的电势差.
第6章 静电场习题课
1 ∴ ρ = ε 0 (E 2 − E1 h
)
h
∆S
S
=4.43×10-13 C/m3
(1)
E2
(2) 设地面面电荷密度为σ.由于电荷只分布在地表面, 由于电荷只分布在地表面, 所以电力线终止于地面,取高斯面如图 所以电力线终止于地面,取高斯面如图(2) 1 v 1 v ∆ 由高斯定理 ∫∫ E · dS = ∑ qi -E∆S= ε σ ∆S ε0 0 =-8.9 ∴σ =-ε 0 E=- ×10-10 C/m3 =-
1-2 题图
以正电荷为中心作一边长为a/2的立方体形的高斯面 以正电荷为中心作一边长为 的立方体形的高斯面 由高斯定理, 由高斯定理,总通量为 φ =
q
ε0 q 则通过一面的电通量为 φ = 6ε 0
5. 一半径为 的带电球体,其电荷体密度分布为 一半径为R的带电球体 的带电球体, ρ = 0 (r>R) ρ = Ar (r≤R) , A为一常量.试求球体内外的场强分布. 为一常量.试求球体内外的场强分布. 为一常量
S2
ε0
2
⋅d
ρd ⇒ Ex = 2ε 0
φ
1. 带电细线弯成半径为 的半圆形 电荷线密度为 λ = λ0 sin φ 带电细线弯成半径为R的半圆形 的半圆形,电荷线密度为 式中λ 为一常数, 为半径R与 轴所成的夹角 如图所示. 轴所成的夹角, 式中 0为一常数,Φ为半径 与x轴所成的夹角,如图所示. 试求环心O处的电场强度 处的电场强度. 试求环心 处的电场强度. 处取电荷元, 解:在 φ 处取电荷元,其电荷为
v v v r1 − r2 = a
3ε 0
v ρ v ∴E = a 3ε 0
点在空腔中位置无关。 与P点在空腔中位置无关。 点在空腔中位置无关
基础物理学第五章(静电场)课后习题答案
因为并联后每个电容器两端的电势差相等,且不能超过每个电容器的耐压值,所以耐压值取较小值。
(2) 串联 因为串联后每个电容器所带的电量都等于等效电容器的电量,根据公式,则
分别计算两电容器可带电量的最大值,取其中较小值作为q。
5-18 C1、C2两个电容器,分别标明为"200pF 500V"和"300pF 900V",把它们串联起来后,等值电容多大?如果两端加上1000V的电压,是否会击穿?
(2)取坐标如图所示,设Q点到原点的距离为y,在距原点O为l处取长dl 的线元,则相应的电荷元为,以dq作为电荷元,则它在Q点的电势为:
能从电势致。
5-14 已知半径为R的均匀带电球体,带电q ,处于真空中。
(1)用高斯定理求空间电场强度的分布;
****(要用到的不定积分公式
)****************
若棒为无限长时,则上式变为:
结果与无限长带电直线的场强相同
5-3 一半径为R的半细圆环,均匀地分布+Q电荷。求环心的电场强度大小和方向。
解:在圆周上任取电荷元,它的场强大小为 由于电荷相对于y轴对称,知合场强应沿y方向,故
5-5 电场强度的环流表示什么物理意义?表示静电场具有怎样的性质?
答:电场强度的环流说明静电力是保守力,静电场是保守力场。表示静电场的电场线不能闭合。如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点 沿环路切向,得,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。
5-6 在高斯定理中,对高斯面的形状有无特殊要求? 在应用高斯定理求场强时,对高斯面的形状有无特殊要求?如何选取合适的高斯面?高斯定理表示静电场具有怎么的性质?
静电场习题课
Q2 Q2 C2 , W2 , W1:W2 2: 1 ; 串:W1 2C1 2C 2 C1
1 1 C1 2 2 1: 2; 并:W1 C1U , W2 C 2U , W1:W2 2 2 C2
12. 若把电子想象为一个相 对介电常数 r 1 的球体, 它的电荷 e 在球体内部均匀分布, 假设电子的静电能 量 m0 c 2 时,求电子的半径R。
②电势
UP
P(零点) 0
P
W PP0 E dl = q0
是从带电体在电场力作用下移动时,电场力对 它做功而引入的描述电场本身性质的又一物理量。
q 1 点电荷 U , 点电荷系 U= 4 0 r 4 0 1 dq 电荷连续分布 U 4 0 r 1 qi i ri
q q 定义:C , C , U U1 U 2 孤立导体球C 4 0 R, 平行板电容器 C
0S
d
,
4 0 R1 R2 2 0 L 球形电容器C , 圆柱形电容器 C R2 R1 ln R2 / R1
⑤电极化强度矢量
P
pe
V
⑥电位移矢量 D o E P, 对各向同性介质 D 0 r E E
q v0
x
O
2 rdr
4 0 r 2 x 2
b
R rdr 2 2 U ( x R x) 2 2 0 2 0 2 0 r x
R 当 x 0, U 0 。 当 x b, U b ( b 2 R 2 b) 2 0 2 0
静电场习题课
一、小结 1.基本概念:①电场强度矢量
F E q0
大学物理学(下册)袁艳红主编课后习题答案
大学物理学(下册)袁艳红主编课后习题答案第9章静电场习题一选择题9-1两个带有电量为2q等量异号电荷,形状相同的金属小球A和B 相互作用力为f,它们之间的距离R远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C去和小球A接触,再和B接触,然后移去,则球A和球B之间的作用力变为[](A)答案:B解析:经过碰撞后,球A、B带电量为B间的作用力变为40r2ff3f(B)(C)f(D)48816f。
89-2关于电场强度定义式EF/q0,下列说法中哪个是正确的?[](A)电场场强E的大小与试验电荷q0的大小成反比(B)对场中某点,试验电荷受力F与q0的比值不因q0而变(C)试验电荷受力F的方向就是电场强度E的方向(D)若场中某点不放试验电荷q0,则F0,从而E0答案:B解析:根据电场强度的定义,E的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。
因而正确答案(B)9-3如图9-3所示,任一闭合曲面S内有一点电荷q,O为S面上任一点,若将q由闭合曲面内的P点移到T点,且OP=OT,那么[](A)穿过S面的电场强度通量改变,O点的场强大小不变(B)穿过S面的电场强度通量改变,O点的场强大小改变OTqSP习题9-3图(C)穿过S面的电场强度通量不变,O点的场强大小改变(D)穿过S面的电场强度通量不变,O点的场强大小不变答案:D解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S内电荷量没变,因而电场强度通量不变。
O点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式Eq40r2,移动电荷后,由于OP=OT,即r没有变化,q没有变化,因而电场强度大小不变。
因而正确答案(D)9-4在边长为a的正立方体中心有一个电量为q的点电荷,则通过该立方体任一面的电场强度通量为[](A)q/0(B)q/20(C)q/40(D)q/60答案:D解析:根据电场的高斯定理,通过该立方体的电场强度通量为q/0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。
大学物理下 静电场中的导体和电介质习题解答
q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为
,
电势 (选U∞=0)为
。
D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02
习题课(静电场中的导体和电介质)
习题课(静电场中的导体和电介质)1、半径为R 1的导体球带正电Q 1其内外半径分别为R 2和R 3,球壳带正电Q 2(1)此带电系统的场强分布;(2)球的电势U 1和球壳的电势U 2; (3)球与球壳的电势差;(4)若用导线将球和球壳相连,U 1和U 2解:(1)电量均匀分布在球面上,即R 1球面电量为Q 1,R 2球面电量为-Q 1,R 3球面电量为Q 1+Q 2 ,利用均匀带电球面在空间任一点场强的结果和场强叠加原理,可求得场强分布为: r < R 1: E 1 = 0; R 1 < r <R 2 : E 2 = Q 1/4πε0r 2; R 2 < r < R 3 : E 3 = 0 r > R 3: E 4 = (Q 1+Q 2)/4πε0r 2(2) 30214243R Q Q dr E U Rπε+==⎰∞dr E dr E dr E U R R R R R ⎰⎰⎰∞++=332214321302121014)11(4R Q Q R R Q πεπε++-=(3) )11(421012112R R Q U U U -=-=πε (4) 3021214R Q Q U U πε+== 2、如图,在半径为a 的金属球外有一层外半径为b 的均匀电介质球壳,电介质的相对电容率为εr (1)介质层内外的场强大小;(2)介质层内外的电势; (3)金属球的电势;(4)电场的总能量; (5)解:(1)电量Q 均匀分布在半径为a r的球面为高斯面,利用高斯定理可求得场强分布 r < a : E 1 = 0; a < r < b : 2024rQ E r επε=; r > b : rQ E 034πε=(2) r > b : rQ dr E U r0334πε==⎰∞a < r <b : b Q b r Q dr E dr E U r bb r 003224)11(4πεεπε+-=+=⎰⎰∞r < a : b Q b a Q dr E dr E dr E U r bb a a r 0032114)11(4πεεπε+-=++=⎰⎰⎰∞(3)金属球的电势等于U 1(4)abb a a Q dV E dV E W r r b r baεπεεεεε022302208)(2121+-=+=⎰⎰∞ (5)ba a ab U Q C r r +-==εεπε014 3、在半径为R 的导体球壳薄壁附近与球心相距为d(d >R)的P 点处,放一点电荷q ,求:(1)球壳表面感应电荷在的球心O 处产生电势和场强; (2)空腔内任一点的电势和场强; (3)若将球壳接地,计算球壳表面感应电荷的总电量。
第十七讲§5.6静电场的能量—习题课
第十七讲 §5.6静电场的能量—习题课 一、电容和电容器1、电容:UqC =是描述孤立导体带电而引起自身电势变化的物理量。
即孤立导体的电容。
2、电容器:BA U U qC -=是描述两个导体组成电容器的电容,二者是相互关联的,即将一个导体放在无限远处就为孤立导体的电容。
二、电容器的储能(电容器的能量):静电场是一个物理场。
此物是否是物质的?其中的一个重要特性就是是否具有能量的特性,即在静电场中移动电荷是需要静电场力做功,这说明静电场是具有能量的。
下面通过对静电场形成能量的过程来说明静电场是具有能量的。
1、带电体的能量:外力做功就等于带电体的能量(电势能)P E W = ①把dq 从∞转移到带电体上,需外力做的微功:()Udq dqU dW U U dq dW A U B B A B ==−−−→−-==∞→0, q Q②把Q 从∞源源不断的转移到带电体上,需外力做的总功:⎰⎰==QUdq dW W 02、电容器的能量:通过电容器储能的过程来推导电容器能量的公式。
①把dq 从A B →上,需外力做的微功:Udq dW = −−→−=UqC dq CqdW =②把Q 从A B →上,需外力做的总功:QU CU C Q dq C q dW W Q21212220=====⎰⎰③电容器的能量:外力所做的总功就等于电容器的能量。
QU CU C Q dq C q dW W Qe 21212220=====⎰⎰可见,外力克服静电力所做的功,就是电容器的带电过程,即非静电能转化为静电能的过程,满足能量守恒定律。
上述三个表达式都非常有用,希望能熟记。
3、静电场的能量 能量密度①电场的能量密度(能量的体密度):单位体积内电场的能量。
()2020221V 2121E Ed d SV CU V W w e e εε==== Sd V = 可见,电能存在于电场之中,电场是电能的携带者,电场的能量是电场物质性的一个重要标志!静电场是物质的,是不以人们的意志为转移,是非精神的。
(三)静电场习题课
答:(1)第①式和第②式中的电荷q的意义不同。第① 式中q是置于静电场中并受到电场力F的点电荷;第② 式中电荷q是产生场E的场源电荷。
(2)它们适用的范围怎样?
①式普遍适用,它是电场的定义式;②式只适用于 点电荷;③式当A、B两点间距为l时适用于均匀场。
16.一个孤立导体球壳B带电量为Q,当另一个带电体A 移近球壳B时:
(1)B的引入不改变A表面附近的场强。
能够做到的。如B是和A同心的球壳,但B的半径较 大,就可不改变A表面附近的场。
(2)B的引入不改变A表面的电势。
这是不可能的。电势由整个空间总电场确定的,随 着另一带电体的引入,总电场的分布必将改变。
23.(1)电容器的电容与其带电量有关吗?与哪些物理量有
关? 无关
(2) 若将球 A接地, A、B 上的电荷如何分布 ?
A球接地仅意味着电势为零!
Q
UA
q
4 0R1
q
4 0R2
Q q
4 0R3
0
解出q既可.
B
R1
A q
R2
R3
(3) 若在距球心O为r 处(r > R3)放一电荷q,则A、B 两导体的 电势是否改变? A、B 的电势差是否改变?
答:若在距球心O为r 处(r>R3)放一电荷q , r <R3 空间的电场强度不变则 A、B 的电势差不改变。而
势升高。
(4)带电体A是否在球壳内产生电场?壳内场强是否还是零?
答:带电体A在球壳内产生电场,当静电平衡时 和B球壳上的感应电荷所产生的电场抵消,即B
壳内场强为零。
(5) 如果在球壳内放一个点电荷,它是否受到壳外带电体A
的静电力作用?静电屏蔽如何体现?
答:如果在球壳内放一个点电荷,它将受到壳外带电
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.平行板电容器 C 0S ( E )
d
0
2 3
qa qb
S d
B.圆柱形电容器 C 20L
ln R2 R1
C.球形电容器 C 40R1R2
R2 R1
( E ) 2 0 r
( E Q )
4 0 r 2
26.电容器的串联:极板首尾相接
R2 R1 L
特点:A、 有一个公共端,且 公共端上不再引出其它元件。
电学习题课(下)
20.导体的静电 平衡条件:导体内部电场强度处 处为零。即 E内部=0
21. 导体处于静电平衡状态时的性质:
A.导体是个等势体,导体表面是个等势面。
B. 导体内部各点(宏观点)净余电荷为零;电荷只 能分布在表面。
C. 导体表面附近一点的总电场强度方向
与导体表面垂直;场强大小与导体
表面对应点的电荷面密度成正比。
-q .把另一电荷为Q(Q<0 )的点电荷从D
点沿路径DCO移到O点,
C
则电场力所做的功为
l
__-_Q__q_/_(_6___0_l)_____
AO +q
B q
D
2l
13.在匀强电场中,将一负电
B
荷从A移到B,如图所示.则:
E
A
(A) 电场力作正功,负电荷的电势能减少
(B) 电场力作正功,负电荷的电势能增加
C总
Q总 U总
•只要有一个电容增大,则总电容增大
28、电介质对电容的影响
A、两导体板之间均匀充满电介质时,将电容公
式中的 0 改为 即可。
B、 若按等势面分层均匀充满电介质,则:
(1)仍按电容定义式计算电容
d1 d2
1 2
E1
1
E2 2
U E1d1 E2d2
C QU
(2)将两种介质交界面处看成有一个金属薄板,故
E
0
例:静电平衡后,金属板各面所带电
1 2 3 4
荷面密度之间的关系 1 4 , 2 3
• 当两板带等量异号电荷时: 1 4=0 , 2 3
• 当两板带等量同号电荷时: 1 4 , 2 3 0
22.静电平衡下空腔导体的性质
A.若金属空腔内部无带电体,则空腔内表面不带 任何电荷,空腔内部任一点场强为零。
B.若金属空腔内部有带电体,则空腔内表面有等 量异号感应电荷。 )
C.导体接地时,(A)若外界无电荷,则外壁上电 荷处处为零,外部空间任一点场强为零; (B)若 外界有电荷,则外壁上一定有异号电荷。
D.腔内电荷(包括内壁上的电荷)对内壁以外空间 任何一点的合场强为零;腔外电荷(包括外壁上的 电荷)对外壁以内空间任何一点的合场强为零。
思考:若断开电源,其 C1 C2
它条件不变,则应选哪
个答案?
[A]
[A] 思考:
1、电势差如何变化? 2、若断开电源,其它条件不变,则电荷 和电势差如何变化?
后面为未讲习题
12.如图,A点与B点间距离为2l,OCD是 以B为中心,以l为半径的半圆路径. A、B 两处各放有一点电荷,电荷分别为+q和
(A) U12减小,E减小,W减小. (B) U12增大,E增大,W增大. (C) U12增大,E不变,W增大. (D)U12减小,E不变,W不变.
[C]
4、C1和C2两空气电容器并联以后接电源充 电.在电源保持联接的情况下,在C1中插入一电 介质板,如图所示, 则 [ ]C (A) C1极板上电荷增加,C2极板上电荷减少 (B) C1极板上电荷减少,C2极板上电荷增加 (C) C1极板上电荷增加,C2极板上电荷不变 (D) C1极板上电荷减少,C2极板上电荷不变
两极板间的电势差为_______2_F_d__/ _C_,极板上的 电荷_____2_F_d_C__.
作业题6.两导体球A、B.半径分别为R1=0.5 m, R2 =1.0 m,中间以导线连接,两球外分别包以 内半径为R =1.2 m的同心导体球壳(与导线绝缘)
并接地,导体间的介质均为空气,如图所示.已
原电容器看成两个电容器的串联。
C1
1S d1
,
C2
2S d2
1 1 1 C C1 C2
d1 1 d2 2
C.电容器的两板之间平行放入一层金属板
d’
d C 0S
d d'
29. 带电电容器所存储的静电能 W Q2 1 CU2
2C 2
外力作功等于静电能的增加。 30.电场的能量密度: w 1 E2
2
➢一个带电系统的静电能就是它在整个空间激
发的电场能量
W 1 E2dV 2 电场空间
1.如图所示,将一正电荷从无穷远处移到一个不 带电的导体附近,则导体内的电场强度_____, 导体的电势_______.(填增大、不变、减小)
(不变, 增大 )
+
2.一空气平行板电容器,电容为C,两极板间距
离为d.充电后,两极板间相互作用力为F.则
B、q1=q2=…=q ;U=U1+U2 +…+Un
C、 1 = 1 + 1 ++ 1
C C1 C2
Cn
R2R1
27、电容器的并联:
特点:A、有两个公共端,且在公共端上还引 出导线接其它元件。
B、U1=U2=…=U ; q=q1+q2+…+qn
C、 C=C1+C2+…+Cn
•讨论:无论是串联还是并联:
知:空气的击穿场强为3×106 V/m,今使A、B两
球所带电荷逐渐增加,计算: (1)此系统何处首先被击穿?这里场强为何值?
(2) 击穿时两球所带的总电荷Q为多少?
(设导线本身不带电,且对电场无影响.)
A R R1
B R2
R
3.一个平行板电容器,充电后与电源断开, 当用绝缘手柄将电容器两极板间距离拉大, 则两极板间的电势差U12、电场强度的大小 E、电场能量W将发生如下变化:
(C) 电场力作负功,负电荷的电势能减少
(D) 电场力作负功,负电荷的电势能增加.Fra bibliotek[] D
14. 有N个电量均为q的点电荷,以两种方式分布
在相同半径的圆周上:一种是无规则地分布,另
一种是均匀分布.比较这两种情况下在过圆心O并 垂直于圆平面的z轴上任一点P(如图所示)的场强
与电势,则有
(A) 场强相等,电势等.
23. 接地线的存在意味着: A.导体的电势为零;
B.接地线只提供导体与地交换电荷的通道,并不 保证导体腔外壁上的电荷在任何情况下都为零。
例:如图,两导体板分别带qa和
qb当一导体接地时,求两板之间
的场强。E 2 qa
S
0 0s
24. 孤立导体的电容
C q U
25. 电容器电容的定义
C q U
z
P
(B) 场强不等,电势不等.