大学物理实验报告思考题部分答案
大学物理实验报告答案大全(实验数据与思考题答案全包括)
0.12
0.6%
2
2
2
2
c
u( y )
u (m)
u(n)
= 0.12 8.9 10 8=0.6 %
R
y
mn
mn
20.635
uc ( R) R
uc ( R) R
=5.25mm;U
= 2 ×uc ( R) = 11 mm
R ( R U ) =(875 ±11)mm
1. 透射光牛顿环是如何形成的 ?如何观察 ?画出光路示意图。答:光由牛顿环装置下方射入,在 空气层上下两表面对入射光的依次反射,形成干涉条纹,由上向下观察。
光的干涉 —牛顿环
实验目的
(1) 观察等厚干涉现象及其特点。
(2) 学会用干涉法测量透镜的曲率半径与微小厚度。
实验方法原理
利用透明薄膜 (空气层 )上下表面对人射光的依次反射,人射光的振幅将分成振幅不同且有一定光程差的两部分, 这是一种获得相干光的重要途径。由于两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,同一条干涉条纹所
对应的薄膜厚度相同,这就是等厚干涉。将一块曲率半径
R 较大的平凸透镜的凸面置于光学平板玻璃上,在透镜的凸
面和平板玻璃的上表面间就形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。当平行的单色光垂直入射时,
入射光将在此薄膜上下两表面依次反射,产生具有一定光程差的两束相干光。因此形成以接触点为中心的一系列明暗交
(角
游标的读数方法与游标卡尺的读数方法基本一致 )。 ③为了使十字丝对准光谱线,可以使用望远镜微调螺钉
12来对准。
④测量时,可将望远镜置最右端,从 -l 级到 +1 级依次测量,以免漏测数据。
数据处理
大学物理实验报告答案大全+实验数据+思考题答案
大学物理实验报告答案报 答 大全(实验数据及思考题答案全包括)全 括伏安法测电阻实验目的 (1) 利用伏安法测电阻。
(2) 验证欧姆定律。
(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。
U实验方法原理根据欧姆定律, R = ,如测得 U 和 I 则可计算出 R 。
值得注意的是,本实验待测电阻有两只,I一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。
实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。
必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。
分压电路是必须要使用的,并作具体提示。
(1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。
对每一个电阻测量 3 次。
(2) 计算各次测量结果。
如多次测量值相差不大,可取其平均值作为测量结果。
(3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。
数据处理 测量次数 U /VI /mAR / Ω测量次数U /VI /mAR / Ω1 5.4 2.00 2700 1 2.08 38.0 54.72 6.9 2.60 2654 2 2.22 42.0 52.93 8.5 3.20 2656 3 2.50 47.0 53.2∆U = U max× 1.5% ,得到 ∆U 1=0.15V ,UV (1) 由(2) 由∆I = I max× 1.5% ,得到 ∆I 1= 0.075mA , ∆2= 0.075 ; ∆I 2= 0.75mA ;∆U2∆I2u = ×1 , u= = (3) 再由 u RR( 3V +) (3I )3,求得 R 1 9 10 ΩR 2 1Ω ; (4) 结果表示 R 1= (2.92 ± 0.09) , R×10 Ω2=(44 1)± Ω光栅衍射实验目的(1) 了解分光计的原理和构造。
大学物理实验报告及答案共51页
大学物理实验报告答案大全(实验数据及思考题答案全包括)伏安法测电阻实验目的 (1) 利用伏安法测电阻。
(2) 验证欧姆定律。
(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。
U实验方法原理 根据欧姆定律, R = ,如测得 U 和 I 则可计算出 R 。
值得注意的是,本实验待测电阻有两只,I一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。
实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。
必要时,可提示学生参照第 2 章中的第 2.4 一节的有关内容。
分压电路是必须要使用的,并作具体提示。
(1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。
对每一个电阻测量 3 次。
(2) 计算各次测量结果。
如多次测量值相差不大,可取其平均值作为测量结果。
(3) 如果同一电阻多次测量结果相差很大,应max ∆U 1 = 0.15V ,2 (2) 由 ∆I = I max × 1.5% ,得到 ∆I 1 = 0.075mA , ∆I 2 = 0.75mA ;(3) 再由u= R ( ∆U )2 + ( ∆I)2 ,求得u = 9 × 101 Ω, u= 1Ω ;R 3V 3IR 1 R 2(4) 结果表示 R 1 = (2.92 ± 0.09) ×10光栅衍射实验目的(1) 了解分光计的原理和构造。
(2) 学会分光计的调节和使用方法。
Ω, R2 = (44 ± 1)Ω(3) 观测汞灯在可见光范围内几条光谱线的波长实验方法原理若以单色平行光垂直照射在光栅面上,按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定: (a + b) sin ψk=dsin ψk =±k λ 如果人射光不是单色,则由上式可以看出,光的波长不同,其衍射角也各不相同,于是复色光将被分解,而在中央 k =0、 ψ =0 处,各色光仍重叠在一起,形成中央明条纹。
大学物理实验报告答案大全实验数据及思考题答案全包括
大学物理实验报告答案大学物理实验报告答案大学物理实验报告答案大学物理实验报告答案大全(实验数据及思考题答案全包括)大全(实验数据及思考题答案全包括)大全(实验数据及思考题答案全包括)大全(实验数据及思考题答案全包括)伏安法测电阻实验目的(1)利用伏安法测电阻。
(2)验证欧姆定律。
(3)学会间接测量量不确定度的计算;进一步掌握有效数字的概念。
实验方法原理根据欧姆定律, I U R =,如测得U 和I 则可计算出R 。
值得注意的是,本实验待测电阻有两只,一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置待测电阻两只,0~5mA 电流表1只,0-5V 电压表1只,0~50mA 电流表1只,0~10V 电压表一 只,滑线变阻器1只,DF1730SB3A 稳压源1台。
实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。
必要时,可提示学 生参照第2章中的第2.4一节的有关内容。
分压电路是必须要使用的,并作具体提示。
(1)根据相应的电路图对电阻进行测量,记录U 值和I 值。
对每一个电阻测量3次。
(2)计算各次测量结果。
如多次测量值相差不大,可取其平均值作为测量结果。
(3)如果同一电阻多次测量结果相差很大,应分析原因并重新测量。
数据处理 测量次数123 U1/V5.46.98.5 I1/mA2.002.603.20 R1/Ω270026542656 测量次数123 U2/V2.082.222.50 I2/mA38.042.047.0 R2/Ω54.752.953.2(1)由%.max 55551111××××==== UU ∆,得到,. VU 1515151500001111====∆ VU 07507507507500002222. ==== ∆; (2)由%.max55551111××××==== II ∆,得到,. mAI 07507507507500001111==== ∆ mAI 7575757500002222. ==== ∆; (3)再由2222222233333333)()( I I V U RuR∆∆ ++++==== ,求得ΩΩ1111101010109999222211111111====××××====RRuu,;(4)结果表示Ω±=Ω×±=)144(,10)09.092.2(231RR光栅衍射实验目的(1)了解分光计的原理和构造。
大学物理实验报告答案大全+实验数据+思考题答案
大学物理实验报告答案报 答 大全(实验数据及思考题答案全包括)全 括伏安法测电阻实验目的 (1) 利用伏安法测电阻。
(2) 验证欧姆定律。
(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。
U实验方法原理根据欧姆定律, R = ,如测得 U 和 I 则可计算出 R 。
值得注意的是,本实验待测电阻有两只,I一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。
实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。
必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。
分压电路是必须要使用的,并作具体提示。
(1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。
对每一个电阻测量 3 次。
(2) 计算各次测量结果。
如多次测量值相差不大,可取其平均值作为测量结果。
(3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。
数据处理 测量次数 U /VI /mAR / Ω测量次数U /VI /mAR / Ω1 5.4 2.00 2700 1 2.08 38.0 54.72 6.9 2.60 2654 2 2.22 42.0 52.93 8.5 3.20 2656 3 2.50 47.0 53.2∆U = U max× 1.5% ,得到 ∆U 1=0.15V ,UV (1) 由(2) 由∆I = I max× 1.5% ,得到 ∆I 1= 0.075mA , ∆2= 0.075 ; ∆I 2= 0.75mA ;∆U2∆I2u = ×1 , u= = (3) 再由 u RR( 3V +) (3I )3,求得 R 1 9 10 ΩR 2 1Ω ; (4) 结果表示 R 1= (2.92 ± 0.09) , R×10 Ω2=(44 1)± Ω光栅衍射实验目的(1) 了解分光计的原理和构造。
大学物理实验报告思考题答案
大学物理实验报告思考题答案【篇一:大学物理实验思考题答案及解析】>1.在示波器状况良好的情况下,荧光屏看不见亮点,怎样才能找到亮点?显示的图形不清晰怎么办?首先将亮点旋钮调至适中位置,不宜过大,否则损坏荧光屏,也不宜聚焦。
在示波器面板上关掉扫描信号后(如按下x-y键),调节上下位移键或左右位移键。
调整聚焦旋钮,可使图形更清晰。
2.如果正弦电压信号从y轴输入示波器,荧光屏上要看到正弦波,却只显示一条铅直或水平直线,应该怎样调节才能显示出正弦波?如果是铅直直线,则试检查x方向是否有信号输入。
如x-y键是否弹出,或者(t/div)扫描速率是否在用。
如果是水平直线,则试检查y方向是否信号输入正常。
如(v/div)衰减器是否打到足够档位。
3.观察正弦波图形时,波形不稳定时如何调节?调节(t/div)扫描速率旋钮及(variable)扫描微调旋钮,以及(trig level)触发电平旋钮。
4.观察李萨如图形时,如果只看到铅直或水平直线的处理方法?因为李萨如图形是由示波器x方向的正弦波信号和y方向的正弦波信号合成。
所以,试检查ch1通道中的(v/div)衰减器旋钮或ch2通道中的(v/div)衰减器旋钮。
5.用示波器测量待测信号电压的峰-峰值时,如何准确从示波器屏幕上读数?在读格数前,应使“垂直微调”旋到cal处。
建议用上下位移(position)旋钮将正弦波的波峰或波谷对齐某一横格再数格数,就不会两头数格时出现太大的误差。
6.用示波器怎样进行时间(周期)的测量?7.李萨如图形不稳定怎么办?调节y方向信号的频率使图形稳定。
实验六、霍尔效应(hall effect)1、实验过程中导线均接好,开关合上,但vh无示数,im和is示数正常,为什么?(1) vh组的导线可能接触不良或已断。
仔细检查导线与开关连接以及导线是否完好正常。
(2)vh的开关可能接触不良。
反复扳动开关看是否正常。
(3)可能仪器的显示本身有问题。
大学物理实验报告答案大全(实验数据及思考题答案全包括)
精品文档大学物理实验报告答案大全(实验数据及思考题答案全包括)伏安法测电阻实验目的 (1) 利用伏安法测电阻。
(2) 验证欧姆定律。
(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。
实验方法原理根据欧姆定律, R =U,如测得 U 和 I 则可计算出 R。
值得注意的是,本实验待测电阻有两只,一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。
实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。
必要时,可提示学生参照第 2 章中的第 2.4 一节的有关内容。
分压电路是必须要使用的,并作具体提示。
(1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。
对每一个电阻测量 3 次。
(2) 计算各次测量结果。
如多次测量值相差不大,可取其平均值作为测量结果。
(3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。
数据处理(1) 由 U = U max ⋅ 1.5%,得到 U 1 = 0.15V , U 2 = 0.075V ;(2) 由 I = I max ⋅ 1.5%,得到 I1 = 0.075mA, I 2 = 0.75mA;(3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R1 = 9 ⋅ 101 &, u R 2 = 1&;(4) 结果表示 R1 = (2.92 ± 0.09) ⋅10 3 &, R2 = (44 ± 1)&光栅衍射实验目的(1) 了解分光计的原理和构造。
(2) 学会分光计的调节和使用方法。
(3) 观测汞灯在可见光范围内几条光谱线的波长精品文档U 2 I 2实验方法原理精品文档又∵a+b=1/500mm=2*10m , λ=589.0nm=589.0*10m ∴k=2*10/589.0*10=3.4若以单色平行光垂直照射在光栅面上,按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定:(a + b) sin ψk=dsin ψk =±k λ如果人射光不是单色,则由上式可以看出,光的波长不同,其衍射角也各不相同,于是复色光将被分解,而在中央 k =0、 ψ =0 处,各色光仍重叠在一起,形成中央明条纹。
大学物理实验报告及答案
(此文档为word格式,下载后您可任意编辑修改!)大学物理实验报告答案大全(实验数据及思考题答案全包括)伏安法测电阻实验目的(1) 利用伏安法测电阻。
(2) 验证欧姆定律。
(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。
U实验方法原理根据欧姆定律,R =,如测得U 和I 则可计算出R。
值得注意的是,本实验待测电阻有两只,I一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。
实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。
必要时,可提示学生参照第2 章中的第2.4 一节的有关内容。
分压电路是必须要使用的,并作具体提示。
(1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。
对每一个电阻测量3 次。
(2) 计算各次测量结果。
如多次测量值相差不大,可取其平均值作为测量结果。
(3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。
数据处理(1) 由∆U =U max ×1.5% ,得到∆U 1 = 0.15V,∆U2 = 0.075V ;(2) 由∆I = I max ×1.5% ,得到∆I 1 = 0.075mA,∆I 2 = 0.75mA;(3) 再由u= R ( ∆U)2 + (∆I) 2 ,求得u= 9 ×101Ω, u= 1Ω;R 3V 3I R1 R2(4) 结果表示R1 = (2.92 ± 0.09) ×10光栅衍射实验目的(1) 了解分光计的原理和构造。
(2) 学会分光计的调节和使用方法。
Ω, R2= (44 ±1)Ω(3) 观测汞灯在可见光范围内几条光谱线的波长实验方法原理若以单色平行光垂直照射在光栅面上,按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定: (a + b) sin ψk =dsin ψk =±k λ 如果人射光不是单色,则由上式可以看出,光的波长不同,其衍射角也各不相同,于是复色光将被分解,而在中央 k =0、 ψ =0 处,各色光仍重叠在一起,形成中央明条纹。
大学物理实验报告思考题部分答案
实验十三拉伸法测金属丝得扬氏弹性摸量【预习题】1.如何根据几何光学得原理来调节望远镜、光杠杆与标尺之间得位置关系?如何调节望远镜?答:(1)根据光得反射定律分两步调节望远镜、光杠杆与标尺之间得位置关系。
第一步:调节来自标尺得入射光线与经光杠杆镜面得反射光线所构成得平面大致水平。
具体做法如下:①用目测法调节望远镜与光杠杆大致等高。
②用目测法调节望远镜下得高低调节螺钉,使望远镜大致水平;调节光杠杆镜面得仰俯使光杠杆镜面大致铅直;调节标尺得位置,使其大致铅直;调节望远镜上方得瞄准系统使望远镜得光轴垂直光杠杆镜面。
第二步:调节入射角(来自标尺得入射光线与光杠杆镜面法线间得夹角)与反射角(经光杠杆镜面反射进入望远镜得反射光与光杠杆镜面法线间得夹角)大致相等。
具体做法如下:沿望远镜筒方向观察光杠杆镜面,在镜面中若瞧到标尺得像与观察者得眼睛,则入射角与反射角大致相等。
如果瞧不到标尺得像与观察者得眼睛,可微调望远镜标尺组得左右位置,使来自标尺得入射光线经光杠杆镜面反射后,其反射光线能射入望远镜内.(2)望远镜得调节:首先调节目镜瞧清十字叉丝,然后物镜对标尺得像(光杠杆面镜后面2D处)调焦,直至在目镜中瞧到标尺清晰得像。
2。
在砝码盘上加载时为什么采用正反向测量取平均值得办法?答:因为金属丝弹性形变有滞后效应,从而带来系统误差. 【思考题】1。
光杠杆有什么优点?怎样提高光杠杆测量微小长度变化得灵敏度?答:(1)直观、简便、精度高.(2)因为,即,所以要提高光杠杆测量微小长度变化得灵敏度,应尽可能减小光杠杆长度(光杠杆后支点到两个前支点连线得垂直距离),或适当增大D(光杠杆小镜子到标尺得距离为D)。
2。
如果实验中操作无误,得到得数据前一两个偏大,这可能就是什么原因,如何避免?答:可能就是因为金属丝有弯曲。
避免得方法就是先加一两个发码将金属丝得弯曲拉直。
3.如何避免测量过程中标尺读数超出望远镜范围?答:开始实验时,应调节标尺得高低,使标尺得下端大致与望远镜光轴等高,这样未加砝码时从望远镜当中瞧到得标尺读数接近标尺得下端,逐渐加砝码得过程中瞧到标尺读数向上端变化。
大学物理实验报告答案大全 实验数据及思考题答案全包括
伏安法测电阻
实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。
实验方法原理
根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R。值得注意的是,本实验待测电阻有两只, I
替的同心圆环——牛顿环。透镜的曲率半径为: R = D2m − D2n =
y
4(m − n)λ 4(m − n)λ
实验步骤
(1) 转动读数显微镜的测微鼓轮,熟悉其读数方法;调整目镜,使十字叉丝清晰,并使其水平线与主尺平行(判断的
方法是:转动读数显微镜的测微鼓轮,观察目镜中的十字叉丝竖线与牛顿环相切的切点连线是否始终与移动方向平行)。
577.9
0.45%
绿(明) 左 右
紫(明) 左 右
101°31′ 63°29′ 19.025° 543.3
281°34′ 243°30′
97°35′ 67°23′ 15.092° 433.9
277°37′ 247°28′
λ0 为公认值。 (2) 计算出紫色谱线波长的不确定度
546.1 435.8
0.51% 0.44%
一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置
待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一
只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学
伏安特性曲线
大学物理实验报告答案大全(实验数据及思考题答案全包括)
环的位置/mm 右22.237 22.435 22.662 22.881 23.162
左27.632 27.451 27.254 26.965 26.723
环的直径/mm Dn 5.395 5.016 4.592 4.084 3.561
游标的读数方法与游标卡尺的读数方法基本一致)。
③ 为了使十字丝对准光谱线,可以使用望远镜微调螺钉12来对准。
④ 测量时,可将望远镜置最右端,从-l 级到+1 级依次测量,以免漏测数据。
数据处理
(1) 与公认值比较
计算出各条谱线的相对误
差
λ
λ λ
0
E 0 x
?
= 其中
λ0 为公认值。
∴k=2*10-6/589.0*10-9=3.4 最多只能看到三级光谱。
2. 当狭缝太宽、太窄时将会出现什么现象?为什么? 答:狭缝太宽,则分辨本领将下降,如两条黄色光谱线分不开。
狭缝太窄,透光太少,光线太弱,视场太暗不利于测量。
3. 为什么采用左右两个游标读数?左右游标在安装位置上有何要求?
③ 使光电管远离光源(光源亮度不变)重复上述步骤作好记录。
数据处理
(1) 伏安特性曲线
U /V
-0.6
4
0 1.0 2.0 4.0 6.0 8.0 10.0 20.0 30.0 40.0 I /mA 0 2.96 源自.68 10.3 4
16.8
5
18.7
8
19.9
0
19.9
实验方法原理
(1) 光子打到阴极上,若电子获得的能量大于逸出功时则会逸出,在电场力的作用下向阳极运动而形成正向
大学物理实验报告答案大全(实验数据及思考题答案全包括)-d8b9e5c708a1284ac850436b
U 大学物理实验报告答案大全(实验数据及思考题答案全包括)伏安法测电阻实验目的 (1) 利用伏安法测电阻。
(2) 验证欧姆定律。
(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。
实验方法原理根据欧姆定律, R =,如测得 U 和 I 则可计算出R 。
值得注意的是,本实验待测电阻有两只,I一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。
实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。
必要时,可提示学生参照第 2 章中的第 2.4 一节的有关内容。
分压电路是必须要使用的,并作具体提示。
(1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。
对每一个电阻测量 3 次。
(2) 计算各次测量结果。
如多次测量值相差不大,可取其平均值作为测量结果。
(3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。
(1)由∆U =Um ax(2) 由∆I = I max ×1.5% ,得到∆I 1 = 0000.075075075075m A ,∆U 2222 ==== 000∆I 2222====000075m A ;(3) 再由u R = R,求得u R 1= 9 × 101 Ω, u R 2 = 1Ω ;(4) 结果表示 R = (2.92 ± 0.09) ×103Ω, R = (44 ± 1)Ω 1 2 光栅衍射实验目的(1) 了解分光计的原理和构造。
(2) 学会分光计的调节和使用方法。
(3) 观测汞灯在可见光范围内几条光谱线的波长实验方法原理( ∆U )2 + ( ∆I)23V 3Iλ0 λx 若以单色平行光垂直照射在光栅面上,按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定:(a + b) sin ψk=dsin ψk=±kλ如果人射光不是单色,则由上式可以看出,光的波长不同,其衍射角也各不相同,于是复色光将被分解,而在中央 k =0、ψ=0 处,各色光仍重叠在一起,形成中央明条纹。
大学物理实验思考题答案(完整版)
大学物理实验报告答案大全(实验数据及思考题答案全包括)伏安法测电阻实验目的(1) 利用伏安法测电阻。
(2) 验证欧姆定律。
(3) 学会间接测量量不确定度de计算;进一步掌握有效数字de概念。
实验方法原理根据欧姆定律,IR = U ,如测得U 和I 则可计算出R。
值得注意de是,本实验待测电阻有两个,一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置待测电阻两个,O~5mA电流表1 个,O-5V 电压表1 个,O~5OmA电流表1 个,O~1OV 电压表一个,滑线变阻器1 个,DF173OSB3A稳压源1 台。
实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。
必要时,可提示学生参照第2 章中de第2.4 一节de有关内容。
分压电路是必须要使用de,并作具体提示。
(1) 根据相应de电路图对电阻进行测量,记录U 值和I 值。
对每一个电阻测量3 次。
(2) 计算各次测量结果。
如多次测量值相差不大,可取其平均值作为测量结果。
(3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。
数据分析处理测量次数1 2 3U1 /V 5.4 6.9 8.5I1 /mA 2.OO 2.6O 3.2OR1 / Ω 27OO 2654 2656测量次数1 2 3U2 /V 2.O8 2.22 2.5OI2 /mA 38.O 42.O 47.OR2 / Ω 54.7 52.9 53.2(1) 由. % max ΔU =U ×1 5 ,得到U O.15V , 1 Δ = U O O75V Δ 2 = . ;(2) 由. % max ΔI = I ×1 5 ,得到I O.O75mA, 1 Δ = I O 75mA Δ 2 = . ;(3) 再由2 23 3( ) ( )IIVu R U RΔ Δ= + ,求得9 1O Ω 1Ω 211 = × = R R u , u ;(4) 结果表示= (2.92 ± O.O9)×1O Ω, = (44 ±1)Ω 231 R R光栅衍射实验目的(1) 了解分光计de原理和构造。
大学物理实验报告答案大全(实验数据及思考题答案全包括)
级光谱线的位置,两位置的差值之半即为实验时k取1 。 ② 为了减少分光计刻度盘的偏心误差,测量每条光谱线时,刻度盘上的两个游标都要读数,然后取其平均值(角
游 标 的 读 数 方 法 与 游 标卡尺的读数方法基本一致)。 ③ 为了使十字丝对准光谱线,可以使用望远镜微调螺钉12来对准。 ④ 测量时,可将望远镜置最右端,从-l 级到+1 级依次测量,以免漏测数据。 数据处理
替的同心圆环——牛顿环。透镜的曲率半径为: R = D2m − D2n =
y
4(m − n)λ 4(m − n)λ
实验步骤
(1) 转动读数显微镜的测微鼓轮,熟悉其读数方法;调整目镜,使十字叉丝清晰,并使其水平线与主尺平行(判断的
方法是:转动读数显微镜的测微鼓轮,观察目镜中的十字叉丝竖线与牛顿环相切的切点连线是否始终与移动方向平行)。
20.635
875.4
0.12
0.6%
u (R)
c
=
R
⎛ ⎜⎜ ⎝
2
u( y) ⎞
y
⎟⎟ ⎠
+
⎜⎛ ⎝
u(m) m−n
2
⎞ ⎟ ⎠
+
⎜⎛ ⎝
u(n) m−n
2
⎞ ⎟ ⎠
=
⎛ ⎜
0.12
2
⎞ ⎟
+ 8.9 ×10−8 =0.6%
物理实验报告及思考答案——东北石油大学
1.是否可以测摆动一次的时间作周期值?为什么?答:不可以。
因为一次测量随机误差较大,多次测量可减少随机误差。
2.将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。
答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。
因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。
3.三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么?答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。
1.光杠杆有什么优点,怎样提高光杠杆测量的灵敏度?答:优点是:可以测量微小长度变化量。
提高放大倍数即适当地增大标尺距离D或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。
2.何谓视差,怎样判断与消除视差?答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。
3.为什么要用逐差法处理实验数据?答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。
因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。
为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。
1.什么是统计直方图?什么是正态分布曲线?两者有何关系与区别?答:对某一物理量在相同条件下做n次重复测量,得到一系列测量值,找出它的最大值和最小值,然后确定一个区间,使其包含全部测量数据,将区间分成若干小区间,统计测量结果出现在各小区间的频数M,以测量数据为横坐标,以频数M为纵坐标,划出各小区间及其对应的频数高度,则可得到一个矩形图,即统计直方图。
中南大学大学物理实验报告答案大全+实验数据+思考题答案
∆I = I × 1.5%
max
,得到
V ∆U = 0.15V , U ∆ = 0.075 ; ∆I = 0.075mA, ∆I = 0.75mA ;
2 1 2
∆U
(3) 再由
2
∆I + ( 3I )
2
= uR
R
( 3V
u
,求得
R1
)
= × 1 , u = R2 9 10 Ω 1Ω ; (44 1) ± Ω
(2) 照度与光电流的关系 L /cm 1/L
2
20.0 0.002 5 19.97
25.0 0.001 6 12.54
30.0 0.001 1 6.85
I /µ A
25 20 15 10 5 0 -10 0 10 20 30 40 50
伏安特性曲线
照度与光电
流曲线 (3) 零电压下的光电流及截止电压与照度的关系
0
λ 0 x λ0
−
其中
2
(
)
⎤ ⎡ ∂ + (a b)sin ϕ
u(λ) = =
1 600 ×
⎢ ⎣
∂ϕ
�
× × . cos15 60 180 092
u ϕ⎥ = a+ ϕ ( ) ( b) | cosϕ | u( ) ⎦ π
=0.467nm ; U =2×u(λ) =0.9 nm
1.
最后结果为: λ=(433.9±0.9) nm 当用钠光(波长λ=589.0nm)垂直入射到 1mm 内有 500 条刻痕的平面透射光栅上时,试问最多能看到第几级光谱?并 请说明理由。 答:由(a+b)sinφ=kλ ∵φ最大为 90º 又∵a+b=1/500mm=2*10 m,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十三 拉伸法测金属丝的扬氏弹性摸量【预习题】1.如何根据几何光学的原理来调节望远镜、光杠杆和标尺之间的位置关系?如何调节望远镜?答:(1)根据光的反射定律分两步调节望远镜、光杠杆和标尺之间的位置关系。
第一步:调节来自标尺的入射光线和经光杠杆镜面的反射光线所构成的平面大致水平。
具体做法如下:①用目测法调节望远镜和光杠杆大致等高。
②用目测法调节望远镜下的高低调节螺钉,使望远镜大致水平;调节光杠杆镜面的仰俯使光杠杆镜面大致铅直;调节标尺的位置,使其大致铅直;调节望远镜上方的瞄准系统使望远镜的光轴垂直光杠杆镜面。
第二步:调节入射角(来自标尺的入射光线与光杠杆镜面法线间的夹角)和反射角(经光杠杆镜面反射进入望远镜的反射光与光杠杆镜面法线间的夹角)大致相等。
具体做法如下:沿望远镜筒方向观察光杠杆镜面,在镜面中若看到标尺的像和观察者的眼睛,则入射角与反射角大致相等。
如果看不到标尺的像和观察者的眼睛,可微调望远镜标尺组的左右位置,使来自标尺的入射光线经光杠杆镜面反射后,其反射光线能射入望远镜内。
(2)望远镜的调节:首先调节目镜看清十字叉丝,然后物镜对标尺的像(光杠杆面镜后面2D 处)调焦,直至在目镜中看到标尺清晰的像。
2.在砝码盘上加载时为什么采用正反向测量取平均值的办法?答:因为金属丝弹性形变有滞后效应,从而带来系统误差。
【思考题】1.光杠杆有什么优点?怎样提高光杠杆测量微小长度变化的灵敏度?答:(1)直观 、简便、精度高。
(2)因为D x b L 2∆=∆,即bD L x 2=∆∆,所以要提高光杠杆测量微小长度变化的灵敏度L x ∆∆,应尽可能减小光杠杆长度b (光杠杆后支点到两个前支点连线的垂直距离),或适当增大D (光杠杆小镜子到标尺的距离为D )。
2.如果实验中操作无误,得到的数据前一两个偏大,这可能是什么原因,如何避免?答:可能是因为金属丝有弯曲。
避免的方法是先加一两个发码将金属丝的弯曲拉直。
3.如何避免测量过程中标尺读数超出望远镜范围?答:开始实验时,应调节标尺的高低,使标尺的下端大致与望远镜光轴等高,这样未加砝码时从望远镜当中看到的标尺读数接近标尺的下端,逐渐加砝码的过程中看到标尺读数向上端变化。
这样就避免了测量过程中标尺读数超出望远镜范围。
实验十四 冰的熔解热的测定【思考题】1.设计一实验,通过实验的方法测定量热器的水当量。
答:用混合法,将质量分别为1m 、2m ,温度分别为1t 、2t 的两份水放入量热器里混合,热平衡方程式)())((2211t T cm T t w W m c -=-++,式中cm c W 00=为量热器的水当量(0m 、0c 分别为量热器的质量和材料的比热容),w 为温度计的水当量,c 为水的比热容,测出各温度和质量即可求出W 。
2.为了减小实验误差,操作时应注意哪些问题?答:(1)在测量量热器质量时注意使量热器干燥。
(2)加入热水的温度不超过室温10℃,水量为量热器的五分之二(3)加冰前读出热水的温度(4)冰块大小合适,应该是熔化的冰,但表面用纸吸干水。
(5)加冰后搅动冰块,仔细观察混合后混度的变化,读出最低温度。
实验十五 牛顿环和劈尖干涉【预习题】1.何为等厚干涉?答:对分振幅薄膜干涉,当入射角一定、入射光波波长一定,光程差仅是膜厚e 的函数,干涉条纹是厚度相同点的轨迹时,这样的干涉为等厚干涉。
2.如何正确调节读数显微镜? 在测量中怎样避免空程误差? 答:先将显微镜降到靠近牛顿环装置附近,然后慢慢而又小心地自下而上调节镜筒,直至看到清晰的牛顿环为止。
在测量中为了避免空程误差,应作到两点:①先转动测微鼓轮向右侧(或向左侧)移动,将显微镜的十字叉丝超过第35条暗纹(到40条),然后再退到35条暗纹,进行测量;②测量中读数显微镜只向一方向移动,中途不可倒退。
3.测量牛顿环直径时要注意哪些问题?答:应注意两点:①在测量中,测微鼓轮只能向一个方向旋转,否则会产生空程误差.②测量牛顿环直径时, 注意左右两侧环纹不要数错,且十字叉丝纵丝对准暗纹中心,防止工作台震动。
【思考题】1.若把牛顿环倒过来放置,干涉图形是否变化?答:不变。
2.在测量牛顿环直径时,若实际测量的是弦,而不是牛顿环直径,对结果有何影响?答:没有影响。
3.实验中如何使十字叉丝的水平丝与镜筒移动方向平行?若与镜筒移动方向不平行, 对测量有何影响?答:测量过程中如何竖叉丝始终与干涉圆环相切则十字的水平丝与镜筒移动方向平行,若不是,则须调节目镜叉丝的方位。
若与镜筒移动方向不平行, 干涉圆环直径的测量将产生误差。
4.牛顿环和劈尖干涉条纹有何相同和不同之处? 为什么?答:牛顿环和劈尖干涉条纹有何相同为都是等厚干涉。
不同之处为牛顿环的干涉条纹为明暗相间的同心圆,相邻条纹间距不等;劈尖的干涉条纹为明暗相间的直条纹,且相邻条纹间距相等。
因为牛顿环和劈尖干涉条纹都是厚度相同点的轨迹,牛顿环厚度相同点的轨迹是圆,劈尖厚度相同点的轨迹是直线。
5.用什么方法来鉴别待测光学面为平面、球面和柱面? 球面是凸球面还是凹球面? 如何鉴别?答:将一平晶置于待测光学面上,当(1)待测光学面为平面时,干涉条纹为明暗相间的直条纹,且相邻条纹间距相等;(2)待测光学面为球面时,干涉条纹为明暗相间的同心圆;(3)待测光学面为柱面时,干涉条纹为明暗相间的直条纹,条纹对称于平面和柱面的交线,相邻条纹间距不等。
(4)当轻按球面,干涉圆环向外扩张时球面是凸球面;干涉圆环向内收缩时球面是凹球面。
实验十六示波器的使用【预习题】1.示波器为什么能把看不见的变化电压显示成看得见的图象?简述其原理。
答:(1)示波管内高速电子束使荧光屏上产生光亮点,而电子束的偏转角度(光点在荧光屏上的位移)是受X 轴和Y 轴偏转板上所加电压的控制。
(2)若只在X 轴偏转板上加一个锯齿波电压(该电压随时间从-U 按一定比例增大到+U ),则光点就会从荧光屏左端水平地移动到右端(称为扫描),由于荧光屏上的发光物质的特性使光迹有一定保留时间,因而在屏幕水平方向形成一条亮迹(称为扫描线)。
(3)若只在Y 轴偏转板上加信号电压,则随着信号幅度的变化光点就会在荧光屏竖直方向作上下移动形成一条竖直亮迹。
(4)如在Y 轴偏转板加上电压信号,同时又在X 轴偏转板加上锯齿波扫描电压,则电子束受到水平和竖直电场的共同作用,光点的轨迹呈现二维图形(光点在X 方向均匀地从左向右水平移动的同时又在Y 方向随信号幅度的变化在竖直方向作上下移动),即将Y 轴偏转板上电压信号幅度随时间变化的规律在屏幕上展开成为函数曲线(即信号波形)。
(5)要得到清晰稳定的信号波形,扫描电压的周期x T 与信号电压的周期y T 必须满足y x nT T ,以保证x T 的起点始终与电压信号固定的一点相对应(称同步),屏幕上的波形才能稳定。
(6)为了得到可观察的图形,锯齿波扫描电压必须重复扫描.2.观察波形的几个重要步骤是什么?答:(1)开启示波器电源开关后,将耦合开关置“⊥”,,调整辉度、聚焦以及垂直、水平位移旋钮使屏幕中部出现亮度适中细小的亮点。
(2)观察、测量时将耦合开关置“AC ”或“DC ”, 触发选择开关置“INT ”,将信号用同轴电缆线连接到Y 轴输入端。
(3)调节Y 轴灵敏度选择开关和X 轴扫描选择开关以及触发电平旋钮,使信号幅度在屏幕范围内(屏幕竖直标尺的2/3左右),且有2—5个完整稳定的波形。
(4)定量测量时还应注意将扫描微调旋钮和Y 轴微调旋钮置于校准位置(顺时针旋转至最大)。
3.怎样用李萨如图形来测待测信号的频率?答:1.将示波器功能置于外接状态(触发选择开关置“EXT ”,触发信号极性开关置“X ”)。
将信号发生器的正弦波信号用同轴电缆线连接到X 轴输入端,待测频率的信号用同轴电缆线连接到Y轴输入端,分别调节信号发生器幅度旋钮和Y 轴灵敏度选择开关,使亮迹形成的图形在屏幕范围内。
2.调节信号发生器输出信号的频率,使合成的李萨如图形为稳定的“○”形,从信号发生器上读出输出信号的的频率值Fx 1,根据合成李萨如图形的两个信号频率比与图形切点数的关系Fx :Fy =N Y :N X ,求出Fy 1 。
3.再改变信号发生器输出信号的频率,使合成的图形为“∞” 、“ 8”、“000”等,N Y :N X 分别为“1:2”、“2:1”、“1:3”等,相应地读出信号发生器输出信号的频率为F X2 、 F X3 、 F X4 等 ,求出F Y2 、 F Y3 、 F Y4 等,算出的F Y 的平均值即为待测信号的频率。
【思考题】1.在示波器的荧光屏上得到一李萨如图形,Y 轴、X 轴与图形相交时交点数之比34=y x N N ,已知Hz f x 100=,求y f 。
答:Hz f N N f x y x y 13310034=⨯=⨯= 。
2.为什么在共振状态下测声速? 如何判断系统是否处于共振状态?答:本实验中将电信号转换为超声波信号的器件是压电陶瓷换能器,该换能器有一最佳响应的频率,当电信号频率等于该响应的频率时,压电陶瓷片产生共振,输出信号最大,便于测量。
示波器屏幕上的信号幅度为最大值时,系统处于共振状态。
实验十七 分光计的使用 用光栅测波长【预习题】1.分光计主要由几部分组成?各自作用是什么?答:(1)分光计主要由底座、平行光管、载物台、望远镜和刻度盘五个部分组成。
(2)底座上承载着其它四个部分,其中载物台、望远镜和刻度盘都可绕底座上的主轴转动;平行光管用来产生平行光;载物台用来放置被测样品;望远镜用来接收平行光;刻度盘与游标盘配合用来读取数据。
2.分光计调节要求是什么?答:分光计的调节要达到三个要求:(1)望远镜能接收平行光。
(2)平行光管能发出平行光。
(3)望远镜的光轴和平行光管的光轴与仪器的主轴垂直。
载物台与仪器的主轴垂直。
3.用光栅测波长时,光栅应如何放置?为什么?答:用光栅测波长时按图17-7放置光栅。
因为这样放置可方便调节。
当调节平行光垂直照射光栅表面时(即光栅平面与平行光管轴线垂直),只须调节螺钉Ⅰ和Ⅱ;调节平行光管的狭缝与光栅刻痕平行时,只须调节螺钉Ⅲ。
【思考题】1.为什么要用各半调节法调节望远镜的主轴垂直于仪器的主轴?答:综合考虑调节载物台调平螺钉Ⅰ或Ⅱ与调节望远镜水平度调节螺钉对正反两面亮十字反射像与分划板上方的水平刻线间高度差的相互影响,从而加快调节速度。
2.当狭缝过宽或过窄时,将会出现什么现象?为什么?答:当狭缝过宽时,衍射条纹将变粗,相互靠近的条纹无法分开,在测量时难以确定条纹的中心位置。
当狭缝过窄时,将看不见衍射条纹,因而无法测量。
3.用公式λθk =sin d 测光波波长应保证什么条件?实验中如何检查条件是否满足?答:用公式λθk =sin d 测光波波长应保证:平行光垂直照射在光栅上。