机械振动讲义第四章课件

合集下载

机械振动Pa讲义rt04

机械振动Pa讲义rt04

简谐激励下的响应
系统的全响应为:
xtR entco ds t 1r2 F 0 2 k2r2si ntarc1 2 trr2 a n
上式中等式右边第一项表示有阻尼自由振动响应,它是衰减振动,仅 在振动开始后一段时间内有意义,属于瞬态解。右边第二项表示受迫 振动响应,它是持续的等幅振动,属于稳态解。
(a)若测得系统共振时的振幅为1.27cm,周期为 0.20s,求其阻尼系数c.
(b)若f=4Hz,试求除去阻尼后的振幅是有阻尼 时的振幅的几倍?
kX
1
F0 (1r2)2(2r)2
c c
cc 2 mk
例题3
例题3
单自由度系统-实际系统的阻尼
➢ 在振动分析中,对阻尼的研究具有很重要的意义。 ➢ 自由振动中阻尼使振幅逐步衰减 ➢ 在受迫振动中,阻尼耗散能量-抑制共振振幅的作用 ➢ 实际上:建立阻尼详细的力学模型极其困难。 ➢ 阻尼类型
➢ 阻尼因子
c c
cc 2 mk
n k/m
➢ 振动特性
二自由度系统与多自由度系统
➢ 二自由度系统
固有频率:
频率较低的一个称为基频或第一频率 频率较高的一个称为第二频率
主振型
第一主振型,与基频相对应 第二主振型,与第二频率相对应
➢ 多自由度系统
M x K x 0
第4章 受迫振动
F0sin t[ ()]
F 0 sit n ) c (o F 0 c s o t ) s s( in
{ F0cos (km2)X F0sincX
X
F 0
F 0/k
(k m2)2 (c)2 (1 r2)2 (2r)2
r n
m k2 n 2 2r2;ck 2 n2r

第四章机械振动(XXXX11改编)

第四章机械振动(XXXX11改编)

0
c
o
x>0 a
x<0,v>0
x>0,v>0
v >0
v >0
d
b点:x = 0,v < 0,平衡位置处,φ0= π/2
d点:x = 0,v > 0,平衡位置处,φ0= 3π/2 , 或φ0= -π/2
32
首 页 上 页 下 页退 出
P130例4.2 如图4.6所示,轻质弹簧一端固定,另一端系一轻绳, 绳过定滑轮挂一质量为m的物体.设弹簧的劲度系数为k,滑轮
28 首 页 上 页 下 页退 出
(1)t =0时,旋转矢量 A 与 x 轴夹角φ0 (初位相); (2)旋转矢量 A以角速度ω沿逆时针方向, t 时刻,A 与 x 轴夹角ωt + φ0(位相); (3)以O为原点旋转矢量A的端点,在 x 轴上的投影 点的运动为简谐运动.

t 0
o
A
0
x0 x

0
(3)振动表达式 (运动学特征)
x Acos(t 0 )
8 首 页 上 页 下 页退 出
3. 简谐振动的速度和加速度
由 x Acos(t 0 )
简谐振动表达式
速度
v

dx dt

A
sin(t
0 )
最大速度 vmax A
加速度
a

d2 x dt 2

A 2
J
T 2π 2π J

m gh
0 cos( t 0 ) ——角谐振动
转动正向 O
h
*C
mg
(C点为质心)
首 页 上 页 下 页退 出

大学物理机械振动课件

大学物理机械振动课件

03 阻尼振动
阻尼振动的定义与特点
定义
阻尼振动是指振动系统受到阻力 作用,使得振动能量逐渐减少的
振动过程。
特点
随着时间的推移,振幅逐渐减小, 频率逐渐降低,直至振动停止。
阻尼力
阻尼振动过程中,系统受到的阻力 称为阻尼力,它与振动速度成正比, 方向与振动速度方向相反。
阻尼振动的描述方法
微分方程
阻尼振动的运动方程通常表示为二阶常微分方程,形式为 `m * d²x/dt² + c * dx/dt + k * x = 0`,其中 m、c、k 分别为质量、
振动压路机
利用共振原理来提高压实效果。
振动输送机
利用共振来输送物料,提高输送效率。
受迫振动与共振的能量转换
能量转换过程
外界周期性力对系统做正 功,系统动能增加;阻尼 使系统能量耗散,系统势 能减小。
转换关系
在振动过程中,外界对系 统的总能量输入等于系统 动能和势能的变化之和。
影响因素
阻尼系数、驱动力频率、 物体固有频率等。
能量耗散途径
阻尼振动的能量耗散途径 主要包括与周围介质之间 的摩擦、空气阻力、内部 摩擦等。
能量耗散的意义
阻尼振动的能量耗散有助 于减小系统振幅,避免因 过大振幅导致的结构破坏 或噪声污染等问题。
04 受迫振动与共振
受迫振动的定义与特点
定义:在外来周期性力的持 续作用下,物体发生的振动
称为受迫振动。
确定各简谐振动的振幅、相位差和频 率,在复平面内绘制振动相量,通过 旋转和位移操作找到合成振动的相量 表示。
振动合成的能量法
描述
能量法是通过分析各简谐振动的能量分布和转化,来研究振 动合成过程中的能量传递和平衡。

大学物理机械振动(课堂PPT)

大学物理机械振动(课堂PPT)

k , k串k,串, k并k,并
m
.
12
上一页 下一页
t :相 位 , 或 位 相(r, ad)或相相 位决定谐振子某
: t 0时的相,称 位为初. 相一瞬时的运动状态
: 相位差,即两个相位之差。
1)对同一简谐运动,相位差可以给出两运动状
态间变化所需的时间.
t t2
t1
(t2) (t1)
4 上一页 下一页
要定义或证明一个运动是简谐振动,可以从 是否满足下面三个方程之一为依据。
Fkx
d2x dt2
2x
0
动力学特点
x A c o t s
运动学特点
某物理量如果满足后两个方程,那么这个物理量
是简谐振动量。
.
5
上一页 下一页
A (振幅决定谐振子运动的范围)
振子偏离平衡位 大置 位的 移最 的绝对 m)值
T
对于弹 :簧 k振 , T 子 2 m, 1 k
m
k 2 m
☆ 确定振动系统周期的方法:
(1)分析受力情F况 m,a或M 由J,写出动力学
(2)将动力学方dd2程 t2x变 2x为 0的形式,
如果能化为这种 也形 就式 证, 明了振动 振为 动
(3)由动力学方程 , 求写出出周T或 期频率 。
cos x0 0
A
sin v0 0
2
A
物体的振动 x方 0.1c程 o1st0 为 : m
.
2 19
上一页 下一页
振 A 幅 矢 A 的 量长
角频率 矢量逆时针匀角 速速 度 旋转的
周 期 T矢 量 旋 转 一 圈 所 T需 2 时 间
频率 矢量单位时间内圈旋数转的P

推荐-机械振动讲课课件 精品

推荐-机械振动讲课课件 精品
T 2
(3)旋转矢量法
§2 谐振动的旋转矢量投影表示法
当t 0时
A
o
x0 x
x0 Acos
A
以 o为
t t 时
o
t
x Acos(t )
原点的 旋转
矢量A在 x
x 轴上的投影 点的运动为
简谐运动.
以 o为 原点的 旋转
矢量A在 x
轴上的投影
点的运动为
简谐运动.
x Acos(t )
用旋转矢量图画简谐运动的 x t 图
3 相位 t
x Acos(t )
1) t ( x, v) 存在一一对应的关系;
物理意义:可据以描述物体在任一时刻的运动状态.
2)相位在 0 ~ 2π 内变化,质点无相同的运动状态; 相差 2nπ (n为整数)质点运动状态全同.(周期性)
4 初相位 (t 0) 描述质点初始时刻的运动状态.
4)加速度与位移成正比而方向相反 a 2 x
三 描述简谐振动的物理量(三要素) x Acos(t )
1 振幅
A xmax
2 周期、频率
x Acos(t )
x xt图
A
o
Tt
T
A
2
Acos[(t T ) ]
周期 T 2π
频率 1
弹簧振子周期
T 2π m k
单摆周期
T 2 l
2 单摆 mg sin mat
ml
ml
d 2
••
ml
dt 2
••
g
sin
0
l
5 时 ,sin 令 2 g
l
••
2 0
m cos(t )
转动

机械振动学ppt课件

机械振动学ppt课件
第一章 绪 论
2 机械振动的研究对象和分类
2.1 研究对象——“振动系统”
振动概念(vibration)——物体经过它的静 平衡位置所做的往复运动。或者说某一物 理量在其平衡位置或平衡值附近来回的变 动。 振动首先是一种运动。比如:地壳的运动、 交流电、电磁波、潮水的涨落等。
第一章 绪 论
• 系统的定义:
n
k ; f n m 2
;T1 f
应用:利用“等时的 性特 ”点,座钟。
思考:钟表的钟摆的摆角大是准确还是小准确?
机械振动学
第2章 单自由度线性系统的振动 2.2 计算系统固有频率的其它方法
在振动研究中,计算振动系统的固有频率有很重要的意义 ,除
用定义法(牛顿法)外,通常还有以下几种常用的方法,即静 变形法、能量法和瑞利法,现分别加以介绍。
力矩、扭转阻尼系数和角速度 的单位分别为Nm、 Nms / rad 和rad/s
第2章单 自由度线性系统的振动 2.1 离散系统的组成
等效弹簧刚度
斜向布置的弹簧
n
并联弹簧 k e k i
i 1
传动系统的等效刚度
等效阻尼系数 并联系统
n
ce ci
i 1
传动系统的等效阻尼
kxe Fx/xkco2s
2.1 离散系统的组成
平动: Fs k x
转动: Ts kt
力、刚度和位移的单位分别为 N、N / m和m 。
力矩、扭转刚度和角位移的单 位分别为Nm、 Nm / rad和 rad
阻尼元件
无质量、无弹性、线性耗能元件
平动: Fd c x
转动: Td ct
力、阻尼系数和速度的单位分 别为N、N s/ m和m/s。

大学物理第4章机械振动 机械波课件讲义

大学物理第4章机械振动 机械波课件讲义

则系统受到的合力为

F mg FS mgi k(x l0 )i
Fx mg k(x l0 ) max
mgBiblioteka k(xl0
)

m
d2x dt 2

k
x

m
d2 dt
x
2
2 k
m
d2x dt 2

2
x

0
动力学方程
l
0A
x
F
A
x
mg
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
§4.1 简谐振动的动力学特征
振动中最简单最基本的是简谐振动 简谐振动:一个做往复运动的物体,如果其偏离平
衡位置的位移x(或角位移)随时间t按余弦(或正弦)
Fx F ,x , ax a
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
谐振动的位移、速度、加速度之间的相位关系
x A cos( t 0 ) A cos


A
sin(
t
0 )

机械振动的PPT精选全文

机械振动的PPT精选全文

x0 0
x0
0
x0 0
按指数规律衰减的非周期运 动
0
t
临界阻尼( 1)
• 定义临界阻尼系数
1 cc 2mn 2 mk
(9)
阻尼 比
c
cc
(10)
超临界阻尼( 1)
• 运动方程的通解为
x C e C e n 21 t 1
n 2 1 t 2
设系统的初始条件为
n 2 1 t 2
x e C e C e nt
i 1 2nt
1
i 1 2nt 2
临界阻尼( 1)
运动方程的通解为
x C1 C2t ent
(6)
设系统的初始条件为
x 0 x0, x 0 x0
对应该初始条件的解为
x x0 n x0 x0 t ent
(7) (8)
x(t) x0
x 0 x0, x 0 x0
对应该初始条件的解为
x
1 2
x0
x0 2 1 n
x0
es1t
2 1
1 2
x0
x0 2 1 n
x0
es2t
2 1
(11) (12)
(13)
超临界阻尼( 1)
x(t)
A
Ae 21 nt
x0
0
t
Be 21 nt B
•一种按指数规律衰减的非周期蠕动,没有振动发生 •注意:实际工程中一般不会出现超临界(过)阻尼的情况
些 x(t)
1.4
1
0.2
t
s2 2ns n2 0
特征方程的根(系统特征值)
s1,2 n 2 1
特征值的三种情况:
(4) (5)

大学物理机械振动和机械波ppt课件

大学物理机械振动和机械波ppt课件
天文学
天文学家通过观察恒星光谱的多普勒效应来判断恒星相对于地球的运动速度,进而研究 恒星的运动规律和宇宙结构。
音乐合成
在音乐制作中,可以利用多普勒效应原理来模拟乐器声音的空间感和运动感,使音乐更 加生动和立体。
05
干涉和衍射现象在机械波中表 现
Chapter
干涉现象产生条件及类型划分
产生条件
两列波频率相同,会出现稳定的干涉现象。
波源。
多普勒效应在医学诊断中应用
超声诊断
医生利用超声波的多普勒效应来检测人体内部器官的运动状态,如心脏跳动、 血流速度等。
胎儿监测
孕妇在产前检查时,医生可以通过多普勒超声仪监测胎儿的心跳和血流情况, 以评估胎儿的健康状况。
其他领域多普勒效应应用案例
交通测速
交警使用雷达测速仪测量车辆速度时,利用了多普勒效应原理。当车辆靠近或远离测速 仪时,反射回来的微波频率会发生变化,从而计算出车辆的速度。
数据分析
根据测量数据,分析波的干涉和衍射现象,验证 相关理论。
06
非线性振动与混沌理论简介
Chapter
非线性振动概念引入和分类
非线性振动定义
描述系统振动特性不满足叠加原理的振动现象。
分类
根据振动性质可分为自治、非自治、周期激励和 随机激励等类型。
与线性振动的区别
线性振动满足叠加原理,而非线性振动则不满足。
振动的特点
周期性、重复性、等时性。
简谐振动与阻尼振动
简谐振动
物体在回复力作用下,离开平衡位置 后所做的简谐运动。
阻尼振动
物体在振动过程中受到阻力作用,振 幅逐渐减小的振动。
受迫振动与共振现象
受迫振动
物体在周期性外力作用下所发生的振动。

机械振动基础知识培训(ppt 86页)实用资料

机械振动基础知识培训(ppt 86页)实用资料
7 隔振
PAG 4
§4-1 单自由度系统的自由振动
一、自由振动微分方程
模型:弹簧质量系统
(弹簧原长l0,刚性系数k)
l0
在重力作用下弹簧变形δst为
st
静变形,该位置为平衡位置。
Ox
平衡
Fst kst mgkst
st
mg k
x
Fst F mg mg
取重物平衡位置O点为坐标原点,x 轴铅直向下为正;
阻尼类型
介质阻尼 内阻尼 干摩擦阻尼
粘性阻尼:当振动速度不大时,介质粘性引起的阻力 与速度一次方成正比(较多)
设振动质点的速度为v
粘性阻尼力
Fcv
负号表示方向
c :粘性阻尼系数
PAG 30
§4-3 单自由度系统的有阻尼自由振动 一、阻尼 — 振动过程中的阻力
振动系统中存在粘性阻尼时,常用阻尼元件c表示
§4-1 单自由度系统的自由振动
例4-1 如图所示,质量为m = 0.5kg的物块沿光滑斜面无初速度 滑下。当物块下落高度h = 0.1m时撞于无质量的弹簧上并与弹
簧不再分离。弹簧刚度k = 0.8 kN/m,倾角β= 30°,求此系统振
动的固有频率和振幅,并给出物块的运动方程。
解:⑴ 取质量弹簧系统为研究对象
一般的机械振动系统都可简化为: 由惯性元件(m) 弹性元件(k) 阻尼元件(c)组成的系统
k
c
m
上节研究的振动是不受阻力作用的,振动的振幅是不随时间改变 的,振动过程将无限地进行下去。实际中的振动系统由于存在阻力, 而不断消耗着振动的能量,使振幅不断地减小,直到最后振动停止。
PAG 31
§4-3 单自由度系统的有阻尼自由振动 二、振动微分方程

《机械振动教学》课件

《机械振动教学》课件
质量块
质量块。质量块的质量大小和分布对系统的动态特性有 重要影响。
阻尼器
阻尼器是机械振动系统中的阻尼元件,它能够吸收和消耗 振动的能量,从而减小振动的幅值。常见的阻尼器有油阻 尼器、橡胶阻尼器等。
02
机械振动的数学模型
建立振动方程
确定振动系统的自由度
振动应用领域的拓展
航空航天领域
随着航空航天技术的不断发展,振动控制在航空航天领域的应用将得到进一步拓展,涉及结构健康监测、减振降噪等 方面的应用。
新能源领域
新能源领域如风能、太阳能等涉及到大量机械振动问题,未来振动控制将在新能源领域发挥重要作用,涉及风力发电 机组振动控制、太阳能电池板减振等领域。
混合控制法
总结词
结合主动和被动控制方法的优点,以提高振 动控制的效率和效果。
详细描述
混合控制法综合了主动和被动控制法的优点 ,既通过主动施加控制力来抵消原始振动, 又通过改变系统结构或增加阻尼来降低系统 的振动响应。这种方法可以实现更好的振动 控制效果,但同时也需要更高的成本和更复 杂的控制系统。
描述机械振动的物理量
描述机械振动的物理量包括位移、速度、加速度、角频率、周期等。这些物理 量在振动分析中具有重要意义,可以帮助我们了解振动的特性和规律。
机械振动的分类
自由振动和受迫振动
根据外界对振动系统的影响,机械振动 可分为自由振动和受迫振动。自由振动 是指系统在没有外界干扰力作用下的振 动,其振动的频率和振幅只取决于系统 本身的物理性质;受迫振动则是在外界 周期性力的作用下产生的振动,其频率 和振幅取决于外界力和系统本身的物理 性质。
振型
描述系统在不同频率下的振动形态。
模态分析
通过分析系统的模态参数,了解系统的动态特性。

机械振动基础培训讲义课件

机械振动基础培训讲义课件

解:取静平衡位置为其坐标原点,
由动量矩定理,得
F
JO
d 2
dt 2
mgl cos
Fa cos
mg
F k( st a sin )
考虑到微转角,则 cos 1, sin
在静平衡位置处,有
mgl k sta
JO
d 2
dt 2
mgl k( st
a)a
ka2
l
JO ka2 0
n a
1. 阻 尼
阻尼-系统中存在的各种阻力:干摩擦力,润滑
表面阻力,液体或气体等介质的阻力、材料内部的 阻力。
物体运动沿润滑表面的阻力与速度的关系
Fc cv
C-粘性阻尼系数或粘阻系数
2. 振动微分方程
取平衡位置为坐标原点,在建 立此系统的振动微分方程时, 可以不再计入重力的影响。
Fk kx 弹性恢复力 Fc cx 粘性阻尼力
my ky 0 meq keq=F0sin( t)
非线性振动-系统的刚度呈非线性特性时,将得到非 线性运动微分方程,这种系统的振动称为非线性振动。
按系统的自由度划分:
单自由度振动-一个自由度系统的振动。
多自由度振动-两个或两个以上自由度系统的振动。
连续系统振动-连续弹性体的振动。这种系统具有无 穷多个自由度。
物块的运动微分方程为
m
d2x dt 2
kx
c
dx dt
令:
2 n
k m
,
n c 2m
Fk Fc k
O
m v
x
c m
d2 dt
x
2
2n
dx dt
2 n
x
0
d2 dt

物理讲义机械振动PPT课件

物理讲义机械振动PPT课件

旋转矢量
§2 旋转矢量
自Ox轴的原点 O作一矢量 A,使 它 振的 幅模A ,等并于使振矢动量的A
在 Oxy平面内绕点 O作逆时针方向的 匀角速转动,其角
速度 与振动频率
相等,这个矢量就 叫做旋转矢量.
xA co ts ()
点旋以转o 矢为量原A
的端点在 x轴
上的投影点的
运动为简谐运
动.
t 0
第十一章
机械振动
2009.11
教学基本要求
一 掌握描述简谐运动的各个物理量 (特 别是相位)的物理意义及各量间的关系.
二 掌握描述简谐运动的旋转矢量法和图线表 示法,并会用于简谐运动规律的讨论和分析.
三 掌握简谐运动的基本特征,能建立一维简谐 运动的微分方程,能根据给定的初始条件写出 一维简谐运动的运动方程,并理解其物理意义.
例题:弹簧振子,轻弹簧劲度系数k=0.72 N/m,振
子质量m=0.02 kg,从平衡位置向右拉到
x0=
0.04 m处释放,求:
(1)谐振动方程;
(2)物体从初始位置运动到第一次经过A/2处时的
速度;
v
0
(3)如在 x 0 =0.04 m处给物体一个向右的初速
度=0.24 m/s,求谐振动方程。
(1) x 0 .0c4 o 6 .0 ts(m )
t0时 , xx0, v=v0
解得 xA co ts ()
简谐运动方程
积分常数,根据初始条件确定
由 xA cots ()
简谐运动方程
得 vdxAsi nt()
dt
ad2xA2cost ()
dt2
其中 A
x2 0
(v0
)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档