线性代数(同济大学)3.矩阵的初等变换与线性方程组
第三章 矩阵的初等变换与线性方程组.
显然 把B的第2行乘以(2)加到第1行即得B3.
第三章 矩阵的初等变换与线性方程组
方程组的同解变换与增广矩阵的关系
在解线性方程组的过程中 我们可以把一个方程变为另一个同 解的方程 这种变换过程称为同解变换.
同解变换有 交换两个方程的位置 把某个方程乘以一个非零数 某个方程的非零倍加到另一个方程上.
为行阶梯形矩阵和行最简形矩阵.
第三章 矩阵的初等变换与线性方程组
矩阵初等变换举例
~ ~ 21
1 1
1 2
1 1
42
43
6 6
2 9
2 7
94
r
01
1 1
2 1
1 1
04
00
0 0
0 0
1 0
03
r
0001
0 1 0 0
1 1 0 0
第三章 矩阵的初等变换与线性方程组
§3.1 矩阵的初等变换
矩阵的初等变换是矩阵的一种十分重要的 运算 它在解线性方程组、求逆阵及矩阵理论的 探讨中都可起重要的作用.
第三章 矩阵的初等变换与线性方程组
方程组的同解变换与增广矩阵的关系
在解线性方程组的过程中 我们可以把一个方程变为另一个同
解的方程 这种变换过程称为同解变换.
线性方程组与其增广矩阵相互对应 对方程组的变换完全可以 转换为对方程组的增广矩阵的变换.
把方程组的上述三种同解变换移植到矩阵上 就得到矩阵的三种 初等变换.
第三章 矩阵的初等变换与线性方程组
矩阵的初等变换
下面三种变换称为矩阵的初等行(列)变换 (i)对调两行(列) (ii)以非零数k乘某一行(列)中的所有元素 (3)把某一行(列)的k倍加到另一行(列)上去.
线性代数(同济六版)ch3
x1 x2 2 x3 3x1 x2 8 x3
0 0
x1 3 x2 9 x3 0
是否有非零解?
解由
1 1 5
A
1 3 1
1 1 3
2
8 9
1 1 5
r2 - r1 r3 - 3r1 r4 - r1
~
0
0 0
2 2 4
7
7 14
1 1 5
r3 - r2 r4 - 2r2
其中
Ax = b
x1
x
xxn2 ,
b1
b
bbm2 .
定理 3 n 元非齐次线性方程组 Ax = b 有解的充分必要条 件是 R(A) = R(B) , 其中 B = ( A b ) 为非齐次线性方程组 Ax = b 的增广矩阵.
证明 必要性 设非齐次线性方程组 Ax = b 有解,要证R(A) = R(B) . 用反证法, 假设R(A) < R(B) ,则 B可化成 行阶梯形矩阵
~
0
0 0
2 0 0
7
0 0
可知R(A)=2. 因为R(A)=2<3
所以此齐次线性方程组有非
零解.
例2. 当 取何值时,齐次线性方程组
3
3x1 x1 2
x2 x2
x3 0 3x3 0
x2 x3 0
有非零解.
解 用初等行变换化系数矩阵
3 A3
1 2
1 3
r2~ r1
3 0
1 0 0
1 0 0
1 3 0
2 3,
2 0
0 0
3 1 0
1 0 1
1 1, 3
0
0
0 0
2 0 0 0
同济大学第四版线性代数习题解答
线性代数答案解答第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b cb a(3)222111c b a c b a ; (4)yxyx x y x y y x y x +++.解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=(4)yxyx x y x y y x y x+++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-260523********12; (3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c ba100110011001 解(1)7110025102021421434327c c c c --010142310202110214---=34)1(143102211014+-⨯---=143102211014--321132c c c c ++141717201099-=0(2)2605232112131412-24c c -260532122130412-24r r -0412032122130412-14r r -0000032122130412-=0(3)efcfbfde cd bd ae ac ab---=ecbe c b e c badf ---=111111111---adfbce=abcdef 4(4)d cb a10110011001---21ar r +d cb a ab 10011011010---+=12)1)(1(+--d c a ab 101101--+ 23dc c +010111-+-+cd c ada ab=23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明:(1)1112222b b a a b aba +=3)(b a -; (2)bz ay by ax bx az by ax bx az bzay bxaz bzay byax +++++++++=yxzx z y z yxb a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a ;(4)444422221111d c b a dcbad c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x xx n n n +----- n n n n a x a x a x ++++=--111 . 证明(1)122222221312a b a b aa b a ab a c c c c ------=左边ab a b ab a ab 22)1(22213-----=+ 21))((ab a a b a b +--=右边=-=3)(b a (2)bzay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bz ay by ax x by ax bx az z bxaz bz ay y b +++++++++++++002yby ax z x bxaz y zbzay x a 分别再分bzay y x byax x zbxaz z y b +++zyxy x z x z yb y x z x z y z y x a 33+分别再分右边=-+=233)1(yxzx z yzy x b yxzx z yz y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d dd c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423dd c cb b a ac c c c c c c c ----第二项第一项06416416416412222=+d dd c c cb b b a a a(4) 444444422222220001a d a c ab a ad ac ab aa d a c ab a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a d a c a b --------- =)()()(111))()((222a d d a c c a b b ad ac ab a d ac a b++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a xD n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D :1列展开按第则n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得nnnn a a a a D 11111=, 11112n nnn a a a a D = ,11113a a a a D n nnn=,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n n n nnnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nn n n a a a a a a a a 331122111121)1()1( nn n nn n a a a a111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnnn n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaa x a a a xD n=; (3); 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+提示:利用范德蒙德行列式的结果.(4) nnnnnd c d c b a b a D000011112=;(5)ji a a D ij ij n -==其中),det(;(6)nna a a D +++=11111111121,021≠n a a a 其中.解(1)aa aa aD n 00010000000001000=按最后一行展开)1()1(100000000010000)1(-⨯-+-n n n a aa)1)(1(2)1(--⋅-+n n n a aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax xa a x xa a x x a a a a xD n ------=0000000 ax a x a x a a a an x D n ----+=0000000)1(再将各列都加到第一列上,得)(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nnn n n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4)nnnnn d c d c b a b a D 0011112=nn n n n nd d c d c b a b a a 00000011111111----展开按第一行0)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i i i nD c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)ji a ij -=432140123310122210113210)det(--------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111--------------n n n n ,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n=212)1()1(----n n n(6)nn a a a D +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------0000000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++nn n a a a a a a a a -------000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D812073503211111------=145008130032101111---=142142005410032101111-=---=112105132412211151------=D 112105132********----=1121023313090509151------=233130905112109151------= 1202300461000112109151-----=14200038100112109151----=142-=11235122412111512-----=D 81150731203271151-------=31390011230023101151-=28428401910023101151-=----=426110135232422115113-=----=D14202132132212151114=-----=D1,3,2,144332211-========∴DD x DD x DD x D D x(2)510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)5100165100065100650000611=D 展开按第一列6510065100650006+'D46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+=703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651-- 51065106565--=395-=11000051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D即0=-μλμ得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换.解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z 所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B 求.23B A A AB T及-解A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫⎝⎛---1111111112 ⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛----=22942017222132 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x;(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫⎝⎛=49635 (2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321x x x a a a a a a a a a x x x()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫ ⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++= (6)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B 则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫ ⎝⎛=27151610故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060 而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182 故22))((B A B A B A -≠-+6.举反列说明下列命题是错误的:(1)若02=A ,则0=A ; (2)若A A =2,则0=A 或E A =;(3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A(2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠(3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求k A A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1301101120123λλλA A A 利用数学归纳法证明: ⎪⎪⎭⎫⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk 由数学归纳法原理知:⎪⎪⎭⎫ ⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求k A .解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ ⎪⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A由此推测 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明: 当2=k时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵.证明 已知:A A T=则 AB B B A B A B B AB B T T T T TT T T ===)()(从而 AB B T也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T=充分性:BA AB =⇒A B AB TT =⇒)(AB AB T = 即AB 是对称矩阵.必要性:AB AB T =)(⇒AB A B TT =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫ ⎝⎛---145243121; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025; (6)⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021)0(21≠a a a n 解(1)⎪⎪⎭⎫⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A (3) 2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A24=A 0434232413121======A A A A A A68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA11故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A(5)01≠=A 故1-A 存在而002141312111==-==A A A A005242322212===-=A A A A 320043332313-====A A A A 850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-85003200005200211A(6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;(3)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4)⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 (1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2)1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=210110131142121⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111(4)11010100001021102341100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1)方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x (2) 方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===305321x x x 14.设O A k =(k 为正整数),证明121)(--++++=-k A A A E A E .证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及 1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B . 解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A .解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明: ⎪⎪⎭⎫ ⎝⎛=Λk k k2100λλ,⎪⎪⎭⎫⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明: 1-Λ=P P A k k ,1)()(-Λ=P Pf A f .证明(1) i)利用数学归纳法.当2=k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk k k k ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立. ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)(⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫⎝⎛++++++++=m m m m a a a a a a a a 2222210121211000λλλλλλ⎪⎪⎭⎫⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立,即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时有0=*A(2) 由于*-=A A A11, 则E A AA =*取行列式得到: nAA A =* 若0≠A 则1-*=n AA若0=A 由(1)知0=*A 此时命题也成立 故有1-*=n AA20.取⎪⎪⎭⎫⎝⎛==-==1001D C B A ,验证DC B ADC B A ≠检验: =D C BA =--10100101101001011010010100200002--410012002==而01111==D C B A故 DC B AD C B A ≠21.设⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,求8A 及4A解 ⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵, 4C 为s n ⨯矩阵则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A O s s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫⎝⎛s n E O O E 由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解(1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---02003100121)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000000221003211(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----00000410001111020201 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样?解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0230102420536307121131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x xx故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----00007579751025341253414312311112~ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3)3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB 方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解。
同济大学线性代数课件__第三章 矩阵的初等变换与线性方程组
0 0 0
1 0 0
1 0 0
1 2 0
0 6 0
B4
2020/12/12
12
1
rrr123rr1223
0 0 0
0 1 0 0
1 1
0 0
0 0 1 0
4
3 3 0
B5
行最简形
x1 x2
x3 x3
4 3
x4 3
令 x3 c
x1 c 4
x2 x3
c c
3
x4 3
3x2 3x3 4x4 3, ④
2020/12/12
(B1 )
(B2 )
3
② 1
x1
③52②
④3②
x2 2x3 x2 x3
x4 x4 2 x4
4, ① 0, ② 6, ③
x4 3.④
x1 x2 2x3 x4 4, ①
④ 12③
x2 x3 x4 0, ② 2x4 6, ③
2
用消元法
x1 x2 2x3 x4 4, ①
(1)
①③ 12② 22xx11
x2 3x2
x3 x4 2, ② x3 x4 2, ③
3x1 6x2 9x3 7 x4 9, ④
x1 x2 2x3 x4 4, ①
②③
③2①
④3①
2x2 2x3 2x4 0, ② 5x2 5x3 3x4 6, ③
1
1
01
第i行
1
E(i, j)
1 10
第
j
行
1
1
2020/12/12
17
1
1
E(i(k))
k
第i 行
1
【线性代数】 矩阵的初等变换
a1n xn b1 a2 a21 A a m1 a12 a22 am 2 a1n b1 a2 n b2 amn bm
在我国古代数学经典著作《九章算术》(约公 例习 元3世纪)第八章“方程”(线性方程组)中有如下一问: 今有上禾三秉(束),中禾二秉,下禾一秉,实(产量)三 十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上 禾一秉,中禾二秉,下禾三秉,实二十六斗,问上、中、下 禾一秉几何? 该书中列出了如下的方程组(中国古代的书写形式是自上 而下,从右到左): 上禾秉数 试列出此问题的方程 中禾秉数 组,并用高斯消元法求出 下禾秉数 斗数 其解。
经初等变换求解线性方程组的这一思路,反映了一般线 性方程组的求解规律。 思考:方程组的解和未知量符号有没有关系? 那和什么有关呢? 没有 和未知量的系数以及右端的常数项有关! 问题:在用初等变换求解方程组时,本质上是对什么 在运算?什么在变化? 未知量的系数以及右端的常数项! 基于此,在解题时可将未知量舍去不写;此时就出现了 由未知量系数以及右端常数项组成的数表:
式简单的方程。
为了便于将此方法应用到任意形式的方程组的求解,仍以
例1为例,完整规范的写出它的解题步骤。
例1
求解线性方程组
解:第一步,为了便于运算,互换(1)与(2)的位置
第二步,消去第一个方程下面的各个方程中的 x1, (1)-2×(2),(3)-4×(2) 得
(1)-2×(2),(3)-4×(2)得
由以上3例思考 不一定! 1. 线性方程组都有解吗?若有解,解一定唯一吗 ? 2. 如何判断解的各种情况?
唯 一 解
同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-矩阵的初等变
第3章矩阵的初等变换与线性方程组[视频讲解]3.1本章要点详解本章要点■初等变换的概念与性质■矩阵之间的等价关系■初等变换与矩阵乘法的关系■初等变换的应用■矩阵的秩■线性方程组的解重难点导学一、矩阵的初等变换1.初等变换下面三种变换称为矩阵的初等行变换:(1)对调两行(对调i,j两行,记作r i↔r j);(2)以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);(3)把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.2.矩阵等价(1)定义①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.(2)矩阵之间的等价关系的性质①反身性A~A;②对称性若A~B,则B~A;③传递性若A~B,B~C,则A~C.(3)矩阵的类型①两个矩阵,矩阵B4和B5都称为行阶梯形矩阵.行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.②标准形矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A 等价的矩阵组成一个集合,标准形F 是这个集合中形状最简单的矩阵.3.初等变换与矩阵乘法的关系(1)定理设A 与B 为m ×n 矩阵,则:①的充分必要条件是存在m 阶可逆矩阵P ,使PA =B ;②的充分必要条件是存在n 阶可逆矩阵Q ,使AQ =B ;③A ~B 的充分必要条件是存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使PAQ =B .(2)初等矩阵由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵.(3)性质①设A 是一个m ×n 矩阵,对A 施行一次初等行变换,等价于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,等价于在A 的右边乘以相应的n 阶初等矩阵.②方阵A 可逆的充分必要条件是存在有限个初等矩阵P 1,P 2,…P l ,使A =P 1P 2…P l .③方阵A 可逆的充分必要条件是.4.初等变换的应用当||0A ≠时,由12l A PP P = ,有11111l l P P P A E ----= 及111111l l P P P E A -----= 所以()()()1111111111111111|||l l l l l l P P P A E P P P A P P P E E A -------------== 即对n ×2n 矩阵()|A E 施行初等行变换,当把A 变成E 时,原来的E 就变成A -1.二、矩阵的秩1.秩的定义(1)k阶子式在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.(2)矩阵的秩设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.(3)最高阶非零子式由行列式的性质可知,在A中当所有r+1阶子式全等于0时,所有高于r+1阶的子式也全等于0,因此把r阶非零子式称为最高阶非零子式,而A的秩R(A)就是A的非零子式的最高阶数.(4)满秩矩阵与降秩矩阵可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.(5)等价矩阵的秩①若A~B,则R(A)=R(B).②若可逆矩阵P,Q使PAQ=B,则R(A)=R(B).2.秩的性质(1)0≤R(A m×n)≤min{m,n}(2)R(A T)=R(A);(3)若A~B,则R(A)=R(B);(4)若P、Q可逆,则R(PAQ)=R(A);(5)max{R(A),R(B)}≤R(A,B)≤R(A)+R(B)特别地,当B=b为非零列向量时,有R(A)≤R(A,b)≤R(A)+1;(6)R(A+B)≤R(A)+R(B);(7)R(AB)≤min{R(A),R(B)};(8)若A m×n B n×l=0,则R(A)+R(B)≤n.3.满秩矩阵矩阵A的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A为方阵时,列满秩矩阵就成为满秩矩阵.4.结论(1)设A为n阶矩阵,则R(A+E)+R(A-E)≥n.(2)若A m×n B n×l=C,且R(A)=n,则R(B)=R(C).。
同济第五版配套线性方程组与初等变换2
1 2 0 0
3 3 3 8 1 4 1 4
矩阵的初等 变换是线性 代数的一个 重要工具
思考:解线性方程组是线性代数解决的重要内容,同解变形具体过程是什 么,目的是什么? 对线性方程组的研究完全可以通过对其增广矩阵的分析来完成,对应矩阵 相应过程是什么,化为什么?是不是具有推广意义?应用有哪些?逐一揭 晓。 二、矩阵的初等变换 1、矩阵的初等变换 定义 1 对矩阵做如下三种变换称为矩阵的初等行(列)变换: 1)对调矩阵的任意两行(对调 i , j 两行, 记作 ri rj );
由上面可以看出 , 用初等矩阵 E(2,3) 左乘 A , 相当于将 A 的 2, 3 行交 换, 即对 A 做相应的初等行变换.
a11 a12 a13 1 0 k a11 a12 ka11 a13 AE(13(k )) a21 a22 a23 0 1 0 a21 a22 ka21 a23 . a 31 a32 a33 0 0 1 a31 a32 ka31 a33
A~B ;
( 3 )若矩阵 A 经有限次初等变换变成 B , 则称 A 与 B 等价 , 记为 : A ~ B. 矩阵等价关系具有以下性质: (i) 反身性 (ii) 对称性 (iii) 传递性 (2)线性方 程组的增广 矩阵要化为 什么形式?
c
A ~ A;
若A ~ B, 则B ~ A ; 若 A ~ B , B ~ C, 则A ~ C.
E F r 0
0 , 0 m n
此标准型由 m, n, r 三个数完全确定, 其中 r 就是行阶梯型矩阵中非零行的 行数 . 所有与 A 等价的矩阵组成一个集合 , 称为一个等价类 , 标准型 F 是这个等价类中最简单的矩阵. 矩阵化为标准形的一般步骤: 1. 矩阵通过行初等变换化为行阶梯形矩阵; 2. 再通过行初等变换化为行最简形矩阵; 3. 再通过列初等变换化为标准形。 例 2、 设 A 3 解
(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解
目 录
第1章 行列式
1.1 复习笔记
1.2 课后习题详解
1.3 考研真题详解
第2章 矩阵及其运算
2.1 复习笔记
2.2 课后习题详解
2.3 考研真题详解
第3章 矩阵的初等变换与线性方程组
3.1 复习笔记
3.2 课后习题详解
3.3 考研真题详解
第4章 向量组的线性相关性4.1 复习笔记
4.2 课后习题详解
4.3 考研真题详解
第5章 相似矩阵及二次型5.1 复习笔记
5.2 课后习题详解
5.3 考研真题详解
第6章 线性空间与线性变换6.1 复习笔记
6.2 课后习题详解
6.3 考研真题详解
第1章 行列式
1.1 复习笔记
一、二阶与三阶行列式
1二阶行列式
定义 将四个数,,,按一定位置,排成二行二列的数表:
则表达式就是数表的二阶行列式,并记作
2三阶行列式
定义 设有9个数排成3行3列的数表
记
该式称为数表所确定的三阶行列式.
二、全排列和对换
1全排列。
《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答
例 3.10
求齐次线性方程组
⎧ ⎪ ⎨
x1 x1
− −
x2 x2
− +
x3 x3
+ x4 = 0 − 3x4 = 0
的通解.
⎪⎩x1 − x2 − 2x3 + 3x4 = 0
解 系数矩阵经过初等变换得
⎡1 −1 −1 1 ⎤
⎡1 −1 0 −1⎤
A = ⎢⎢1 −1 1 −3⎥⎥ ⎯r⎯→ ⎢⎢0 0 1 −2⎥⎥
阶梯形的非零行数判断矩阵的秩.
2
⎛1 3 1 4⎞
解
A
⎯r⎯→
⎜ ⎜
0
6
−4
4
⎟ ⎟
,故
R(
A)
=
2
.
⎜⎝ 0 0 0 0⎟⎠
⎡1 1 2 2 3 ⎤
例 3.2
设A=
⎢⎢0 ⎢2
1 3
1 a+2
−1 3
−1 a+6
⎥ ⎥ ⎥
,则
A
的秩
R(
A)
=
(
).
⎢⎣4 0 4 a + 7 a +11⎥⎦
(A) 必为 2
6
⎡ 1 1 0 −2 1 −1⎤
⎡1 0 0 2 −1 −1⎤
( A | b) = ⎢⎢−2 −1
1
−4 2
1
⎥ ⎥
⎯r⎯→
⎢⎢0
1
0
−4
2
0
⎥ ⎥
⎢⎣−1 1 −1 −2 1 2 ⎥⎦
⎢⎣0 0 1 −4 2 −1⎥⎦
R( A) = R( A | b) = 3 < 5 ,所以方程组有无穷多解,令 x4 = c1, x5 = c2 ,得
同济大学数学系《工程数学—线性代数》(第6版)-章节题库-第3章 矩阵的初等变换与线性方程组【圣才出
第 3 章 矩阵的初等变换与线性方程组
一、选择题
a1 1
1.设
A
a2 1
a3 1
a1 2 a2 2 a32
a1 3
a21
a 2,3
B
a11
a 3 3
a31 2a11
a22 a12 a32 2a12
a23
a13
a 2 1 a 2 1
2 4 2 2 4 2 4a 12 0
1 2 a a 1 0 a 1
知 r(A)=3。
4 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
由于 AB=0,A 是 3×4 矩阵,有 r(A)+r(B)≤4。那么当 a=1 时,r(A)=1, 1≤r(B)≤3,B 是 4×2 矩阵,所以 B 的秩可能为 1 也可能为 2;当 a≠1 时,r(A)=3, 所以必有 r(B)=1。
6.设 A 为四阶方阵,且满足 A2=A,则秩 r(A)+秩 r(A-E)=( )。 A.4 B.3 C.2 D.1 【答案】A 【解析】由于 A(A-E)=A2-A=0,故 r(A)+r(A-E)≤4,又 E=(E-A)+ A,故 4=r(E)=r(E-A+A)≤r(E-A)+r(A)=r(A-E)+r(A),从而 r(A) +r(A-E)=4。
7 8 9
1 2013 3 D. 4 8049 6
7 14085 9
【答案】B
【解析】P、Q 均为初等矩阵,因为 P-1=P,且 P 左乘 A 相当于互换矩阵 A 的 1,3
两行,那么 P2012A 表示将 A 的 1,3 两行互换 2012 次,从而 (P1)2012 A P2012 A A 。
同济大学《工程数学—线性代数》笔记和课后习题(含真题)详解(矩阵的初等变换与线性方程组)
第3章矩阵的初等变换与线性方程组3.1 复习笔记一、矩阵的初等变换1.初等变换(1)定义下面三种变换称为矩阵的初等行变换:①对调两行(对调i,j两行,记作r i↔r j);②以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);③把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.(2)矩阵等价①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.(3)矩阵之间的等价关系的性质①反身性A~A;②对称性若A~B,则B~A;③传递性若A~B,B~C,则A~C.(4)矩阵的类型①两个矩阵,矩阵B4和B5都称为行阶梯形矩阵.行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.②标准形矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A等价的矩阵组成一个集合,标准形F是这个集合中形状最简单的矩阵.2.初等变换的性质(1)定理设A与B为m×n矩阵,则:①的充分必要条件是存在m阶可逆矩阵P,使PA=B;②的充分必要条件是存在n阶可逆矩阵Q,使AQ=B;③A~B的充分必要条件是存在m阶可逆矩阵P及n阶可逆矩阵Q,使PAQ=B.(2)初等矩阵由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵.(3)性质①设A是一个m×n矩阵,对A施行一次初等行变换,等价于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,等价于在A的右边乘以相应的n阶初等矩阵.②方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,…P l,使A=P1P2…P l.③方阵A可逆的充分必要条件是.二、矩阵的秩1.秩的定义(1)k阶子式在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.(2)矩阵的秩设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.(3)最高阶非零子式由行列式的性质可知,在A 中当所有r +1阶子式全等于0时,所有高于r +1阶的子式也全等于0,因此把r 阶非零子式称为最高阶非零子式,而A 的秩R (A )就是A 的非零子式的最高阶数.(4)满秩矩阵与降秩矩阵可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.(5)等价矩阵的秩①若A ~B ,则()()R A R B =.②若可逆矩阵P ,Q 使PAQ =B ,则R (A )=R (B ). 2.秩的性质(1)0R ≤(){}min ,;m n A m n ⨯≤ (2)()()T R A R A =;(3)若A ~B,则()()R A R B =;(4)若P 、Q 可逆,则()()R PAQ R A =;(5)()(){}()()()max ,,,R A R B R A B R A R B ≤≤+特别地,当B =b 为非零列向量时,有()()(),1R A R A b R A ≤≤+;(6)()()()R A B R A R B +≤+; (7)()()(){}min ,R AB R A R B ≤; (8)若m n n l A B ⨯⨯=0,则()()R A R B n +≤. 3.满秩矩阵矩阵A 的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A 为方阵时,列满秩矩阵就成为满秩矩阵.4.结论(1)设A 为n 阶矩阵,则()()R A E R A E n ++-≥. (2)若,m n n l A B C ⨯⨯=且()R A n =,则()()R B R C =. (3)设AB =0,若A 为列满秩矩阵,则B =0.三、线性方程组的解 1.解的定义设有n 个未知数m 个方程的线性方程组(3-1-1)该式可以写成以向量x 为未知元的向量方程:Ax =b ,其中,A 为系数矩阵,B =(A ,b )称为增广矩阵,线性方程组(3-1-1)如果有解,就称它是相容的,如果无解,就称它不相容.2.解的判断(1)n 元线性方程组Ax =b①无解的充分必要条件是()(),R A R A b <; ②有唯一解的充分必要条件是()(),R A R A b n ==; ③有无限多解的充分必要条件是()(),R A R A b n =<.(2)n 元齐次线性方程组Ax =0有非零解的充分必要条件是()R A n <. (3)线性方程组Ax =b 有解的充分必要条件是()(),R A R A b =.(4)矩阵方程Ax =B 有解的充分必要条件是()(),R A R A B =. (5)设AB =C,则()()(){}min ,R C R A R B ≤.3.2 课后习题详解1.用初等行变换把下列矩阵化为行最简形矩阵:解:(1)(2)(3)。
同济大学线性代数第六版课后答案(全)
第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯( 4)⨯3+0⨯( 1)⨯( 1)+1⨯1⨯8 0⨯1⨯3-2⨯( 1)⨯8 1⨯( 4)⨯( 1) =24+8+16-4=-4。
(2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa ccc =3abc -a 3 b 3-c 3。
(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2 ba 2-cb 2 =(a b )(b c )(c -a )。
(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y ) y 3-3x 2 y -x 3 y 3 x 3 =2(x 3+y 3).2。
按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1。
(4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3。
(5)1 3 ⋅ ⋅ ⋅ (2n 1) 2 4 ⋅ ⋅ ⋅ (2n ); 解 逆序数为2)1(-n n : 3 2 (1个)5 2,5 4(2个)7 2,7 4,7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4,(2n 1)6,⋅⋅⋅,(2n-1)(2n 2) (n 1个)(6)1 3 ⋅⋅⋅(2n 1) (2n) (2n 2) ⋅⋅⋅ 2。
解逆序数为n(n 1) :3 2(1个)5 2,5 4 (2个)⋅⋅⋅⋅⋅⋅(2n 1)2,(2n 1)4, (2n-1)6,⋅⋅⋅,(2n-1)(2n-2)(n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2,(2n)4, (2n)6,⋅⋅⋅,(2n)(2n 2)(n-1个)3。
同济大学线性代数课后答案 第三章
=
⎜ ⎜⎝
0 0
1 0
01⎟⎟⎠ .
⎛0 1 0⎞⎛1 2 3⎞⎛ 1 0 −1⎞
A = ⎜⎜⎝ 10
0 0
10⎟⎟⎠⎜⎜⎝74
5 8
96⎟⎟⎠⎜⎜⎝00
1 0
01⎟⎟⎠
⎛4 5 6⎞⎛ 1 0 −1⎞ ⎛4 5 2⎞
=⎜⎜⎝71
2 8
93⎟⎟⎠⎜⎜⎝
0 0
1 0
01⎟⎟⎠
=
⎜ ⎜ ⎝
1 7
2 8
22⎟⎟⎠ .
A = ⎜⎜ ⎝
2 −3
2 1⎞
−1 3
− 43⎟⎟⎠
,
B
=
⎜⎛ ⎝
1 2
2 −3
31⎟⎠⎞
,
求 X 使 XA=B.
解 考虑 ATXT=BT. 因为
⎛0 (AT, BT ) =⎜2
2 −1
−3 3
1 2
2⎞ −3⎟
r
~
⎛ ⎜
1 0
0 1
0 0
2 −1
−4⎞ 7⎟ ,
⎜⎝ 1 3 −4 3 1⎟⎠ ⎜⎝0 0 1 −1 4⎟⎠
⎜ ⎜⎝
2 2 3 1
1 −3 −2
0
8 0 5 3
3 7 8 2
−75⎟⎞ 00⎟⎟⎠
.
⎛2 1 8 3 7⎞
解
⎜2 −3 0 7 −5⎟
⎜ ⎜ ⎝
3 1
−2 0
5 3
8 2
0⎟ (下一步: r1−2r4, r2−2r4, r3−3r4. ) 0⎟⎠
⎛0 1 2 −1 7⎞
~
⎜
⎜ ⎜ ⎝
0 0 1
解
⎜1 ⎜⎝ 1
同济版线性代数课件矩阵的初等变换
对应的元素上去(第 j 行的 k 倍加到第i 行上 记作ri krj).
同理可定义矩阵的初等列变换(所用记号是 把“r”换成“c”).
2、定义2 矩阵的初等列变换与初等行变换统 称为初等变换.
初等变换的逆变换仍为初等变换, 且变换类型 相同.
ri rj ri k ri krj
0 0 1
4 3 3
0 0 0 0 0
c3 c4 c4 c1 c2
c5 4c1 3c2 3c3
010011 000000
000 111 000 000
000 000 111 000
001 001 000 000
第三章 矩阵的初等变换与线性方程组
§1 矩 阵 的 初 等 变 换
一、矩阵的初等变换 二、消元法解线性方程组
一、矩阵的初等变换
1、定义 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j 两行,记作ri rj); 2以数 k 0 乘以某一行的所有元素;
(第 i 行乘 k,记作 ri k)
二、消元法解线性方程组
同解方程组
分析:用消元法解下列方程组的过程.
引例 求解线性方程组
2 x1 x2 x3 x4 2, 1
4
x1 x2 2 x3 x1 6 x2 2 x3
x4 2 x4
4, 4,
2
32
(1)
3 x1 6 x2 9 x3 7 x4 9, 4
x2 x3 x4 0, 2x4 6,
x4 3,
1 2 3 4
x1 x2 2 x3 x4 4, 1
线性代数第三章矩阵的初等变换与线性方程组第一节矩阵的初等变换演示文稿
矩阵 A 与 B 列等价, 记作 A ~c B ; 如果矩阵 A 经
有限次初等变换变成矩阵 B , 就称矩阵 A 与 B
等价, 记作 A ~ B.
目前十三页\总数二十七页\编于八点
2. 等价关系的性质 (i) 反身性 A ~ A;
(ii) 对称性 若 A ~ B, 则 B ~ A; (iii) 传递性 若 A ~ B, B ~ C, 则 A ~ C.
形 矩 阵 的 特 点
阶 梯 线 下 方 的
,
目前十六页\总数二十七页\编于八点
2. 重要结论 定理 每一个矩阵都可以经过单纯的初等行
变换化为行阶梯形矩阵.
这个定理我们不作证明,下面通过几个具体的
例子说明如何用初等行变换化矩阵为行阶梯形矩
阵.
单击这里开始
目前十七页\总数二十七页\编于八点
五、行最简形矩阵和标准形矩阵
一个 具体 的例 子,
从几何上验证这一结论 .
阵
A
A
1 1 2
1 2 1
1 1
1
3 2 2
,
下 设
A
为 增广 矩阵的 非 齐次 线性 方程 组为
目前十四页\总数二十七页\编于八点
四、行阶梯形矩阵
1. 定义 满足下面两个条件的矩阵称为 行阶梯形矩阵:
(1) 非零行(元素不全为零的行)的标号小于
初等变换的运算规律, 也可以利用矩阵的初等变换
去研究矩阵的乘法. 由定理 1 可得如下推论.
推论 方阵 A 可逆的充要条件是
推 论 方 阵 A 可 逆 的 充 要 条 件 是 A ~r E .
证 明 必 要 性 设 方 阵 A 可 逆 ,由
线性代数第三章,矩阵初等变换与线性方程组
(称 B 是该线性方程组的增广矩阵)
3
6 9
7 9
1 1 2 1 4 1 1 2 1 4
~r1
r2
2
r3
1 2
2
3
1 3 6
1 1 9
1 1 7
~ 2
r2 r3
r3 2 r1
0
2
r4
3r1
0
9 0
2 5 3
2 5 3
2 3 4
0
6
3
1 1 2 1 4 1 1 2 1 4
A,
E
2
3
2 4
1 3
0 0
1 0
0 1
r2 r3
2 r1
~
3r1
0 0
2 5 2 2 6 3
1 0
0
1
1
r1 r2
~ r3 r2
0 0
0 2 1 1 2 5 2 1 0 1 1 1
0 1
0 1
r1 2r3
~
r2 5r3
0 0
0 0 1 3 2
2 0
3
6
5
0 1 1 1 1
2 4 4
2 4 0
4 4 0
240
故 R A 2 。
特别,当 n 阶方阵 A 的行列式 A 0 ,则 R A n ;反之,当 n 阶方阵 A 的秩 R A n ,
则 A 0 。因此 n 阶方阵可逆的充分必要条件是 R A n (满秩)。
定理 若 A ~ B ,则 R A RB 。
3 2 0 5 0
x2
c
1
2
x3 1 0
一些推广:
1. 矩阵方程 AX B 有解 R A R A, B 。 2. AB C ,则 RC min{R A, RB}。 3. 矩阵方程 Amn X nl O 只有零解 R A 0 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 1 −1 1 0 0 0 2 −6 0 0 1 −3 1 −2 1 1 −1 1 0 0 0 0 4 0 = B1 ,( B1 称为行阶梯形矩阵) 1 −3 0 0
1 −2 1
1 r3 ↔ r4 0 ~ 0 0
1 r2 − r3 0 B1 ~ r1 − r3 0 0
P1 L Ps EPs +1 L Pl = A
即
A = P1 P2 L Pl
推论
m × n 矩阵 A ~ B ⇔ 存在 m 阶可逆阵 P 和 n 阶可逆阵 Q ,使得 PAQ = B 。
利用初等行变换求可逆阵的逆阵的方法: 利用初等行变换求可逆阵的逆阵的方法 设 A 是 n 阶可逆矩阵,则有有限个初等矩阵 P1 , P2 ,L , Pl ,使得
对 m × n 矩阵 A ,总能经若干次初等行变换和初等列变换变成如下形式
E A~ r O
O 。 , (称之为标准形) O
§2
初等矩阵
定义 单位阵 E 经一次初等变换得到的矩阵称为初等矩阵,有如下形式:
1 ri ↔ rj 1. E ~ 或ci ↔ c j
r
定义 若矩阵 A 经有限次初等行变换变成矩阵 B ,则称 A 与 B 行等价,记 A ~ B ;
c
若矩阵 A 经有限次初等列变换变成矩阵 B ,则称 A 与 B 列等价,记 A ~ B ; 若矩阵 A 经有限次初等变换变成矩阵 B ,则称 A 与 B 等价,记 A ~ B 。 等价关系满足: 1. 反身性: A ~ A ; 2. 对称性: A ~ B ⇒ B ~ A ; 3. 传递性: A ~ B, B ~ C ⇒ A ~ C 。
d1 d2 M dr d r +1 0 M 0
1.R ( A ) < R ( A, b ) , d r +1 = 1 , 则 上述矩阵的第 r+1 行对应矛盾方程 0 = 1 , 故方程组无解。
d1 1 1 d2 2. R ( A ) = R ( A, b ) = n ,则上述行最简形矩阵为 O 1 dn x1 = d1 x = d 2 2 对应的方程组是 , 即表示方程组有唯一解。 M xn = d n
第三章 矩阵的初等变换与线性方程组
§1
定义
矩阵的初等变换
下面三种变换称为矩阵的初等行变换: 1. 互换两行(记 ri ↔ rj ) ; 2. 以数 k ( k ≠ 0 ) 乘以某一行(记 ri × k ) ; 3. 把某一行的 k 倍加到另一行上(记 ri + krj ) 。 若将定义中的“行”换成“列” ,则称之为初等列变换,初等行变换和初等列变换统称 为初等变换。
ri + kr j ri ×k
ri ↔ r j
ci ↔ c j
(
)
ci ×k
(
)
(
)
ci + kc j
(
)
E ( i, j ) = E ( i, j ) , E ( i ( k ) )
−1
−1
−1 1 = E i , E ( i, j ( k ) ) = E ( i, j ( − k ) ) k
1 ri ×k 2. E ~ 或ci × k
O 0 M 1 L O L 1 M 0 O
= E ( i, j ) 1
O k O
= E (i ( k )) 1
1 ri + kr j 3. E ~ 或c j + kci
O 1 L O k M 1 O
= E ( i, j ( k ) ) 1
上述 E ( i, j ) , E i ( k ) , E i, j ( k ) 就是三种初等矩阵。
(
) (
)
定理 1 设 A 为 m × n 矩阵,对 A 作一次初等行变换,相当于 A 左乘以一个相应的初等矩 阵,对 A 作一次初等列变换,相当于 A 右乘以一个相应的初等矩阵,即 1. A ~ B = E ( i, j ) A , A ~ B = AE ( i, j ) ; 2. A ~ B = E i ( k ) A , A ~ B = AE i ( k ) ; 3. A ~ B = E i, j ( k ) A , A ~ B = AE j , i ( k ) 。 所有初等矩阵均为可逆矩阵,并且其逆阵也是初等矩阵:
3 1 ,求 A −1 。 3
对 ( A , E ) 作初等行变换:
1 ( A, E ) = 2 3 1 ~ 0 r3 − r2 0
r1 + r2
2 2 4
3 1 3 −1 −2 −1
1 0 0 1 1 −1
0 1 0
0 1 r2 − 2 r1 0 ~ 0 r −3r 3 1 0 1
§3
矩阵的秩
定义 在 m × n 矩阵 A 中,任取 k 行 k 列的元素,按原排列组成的 k 阶行列式,称之为 A 的 k 阶子式。 若 m × n 矩阵 A 中有一个 r 阶子式 D ≠ 0 , 并且所有的 r + 1 阶子式全为零, 则称 D 为
A 的最高阶非零子式, r 称为 A 的秩,记 r = R ( A ) 。
故 R ( A) = 2 。 特别, n 阶方阵 A 的行列式 A ≠ 0 , R ( A ) = n ; 当 则 反之, n 阶方阵 A 的秩 R ( A ) = n , 当 则 A ≠ 0 。因此 n 阶方阵可逆的充分必要条件是 R ( A ) = n (满秩) 。
定理 若 A ~ B ,则 R ( A ) = R ( B ) 。
Pl −1 L P2 −1 P1−1 ( A, E ) = ( E , A−1 )
即
( A, E ) ~ ( E , A−1 )
r
上式表明只要对 ( A, E ) 作初等行变换,使得 ( A, E ) 的左边 A 变成 E ,则右边 E 就变成
A−1 。
1 例 设 A = 2 3
解
2 2 4
证 阵
设 R ( A ) = r ,为讨论方便,不妨设增广矩阵经若干次初等行变换变成如下行最简形矩
1 0 M r 0 B = ( A, b ) ~ 0 0 M 0
0 L 0 b11 L b1, n − r 1 L 0 b21 L b2, n − r M M M M 0 L 1 br1 L br ,n − r 0 L 0 0 L 0 0 L 0 M M 0 L 0 0 M 0 L L 0 M 0
x1 − x3 = 4 x2 − x3 = 3 x4 = −3
取 x3 = c ,则
x1 = c +4 x = c +3 2 x3 = c x4 = −3
x1 c 4 1 4 x2 c 3 1 + 3 即 = + =c x3 c 0 1 0 x4 0 −3 0 −3
2 −1 1 2 2 1 = 1 ≠ 0 ,所有 3 阶子式均为零: 例 在 A = 1 1 −1 2 中,一个 2 阶子式 1 1 2 −4 4 0 2 −1 1 2 −1 2 −1 1 2 2 1 2 1 1 −1 = 0 , 1 1 2 = 0 , 1 −1 2 = 0 , 1 −1 2 = 0 2 −4 4 2 −4 0 −4 4 0 2 4 0
1 1 −2 1 4 1 r3 +5 r2 0 1 −1 1 0 0 ~ 0 −5 5 −3 −6 r4~r2 0 −3 0 3 −3 4 −3 0 1 −2 1 1 −1 1 0 0 0 0 4 1 0 r4 − 2 r3 0 1 −3 ~ 0 2 −6 0
定理 2 设 A 是可逆方阵,则存在有限个初等矩阵 P1 , P2 ,L , Pl ,使得
A = P1 P2 L Pl
r r
证: A 可逆,则 A 经有限次初等变换可变成单位阵 E ,即 A ~ E ,同样 E ~ A ,即单位阵
E 经有限次初等变换也可变成 A ,所以存在有限个初等矩阵 P1 ,L , Ps 和 Ps +1 ,L , Pl ,使得
3
所以, R ( A ) = 3 , 3
2
5
−2 6 = −16 是 A 的一个最高阶非零子式。 2 0 5
§4
定理
线性方程组的解
n 元线性方程组 Ax = b 1. 无解 ⇔ R ( A ) < R ( A, b ) 2. 有唯一解 ⇔ R ( A ) = R ( A, b ) = n 3. 有无穷多解 ⇔ R ( A ) = R ( A, b ) < n
3 2 0 5 0 3 −2 3 6 −1 的秩,以及一个最高阶非零子式。 例 求A= 2 0 1 5 −3 1 6 −4 −1 4 解 用初等行变换化 A 为行阶梯形矩阵:
1 6 −4 −1 4 r 0 −4 3 1 −1 A~ =B 0 0 0 4 −8 0 0 0 0 0
r2 × 1 2
解
2 4 4 9
(称 B 是该线性方程组的增广矩阵)
4 1 1 −2 1 4 r2 − r3 2 r3 − 2 r1 0 2 −2 2 0 2 r4~r1 0 −5 5 −3 −6 −3 9 0 3 −3 4 −3
2 −2 −2 0 −2 0
3 −5 −6 0 0 −1
1 −2 −3 1 3 −1 3 6