人工智能控制技术在电气传动领域的运用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能控制技术在电气传动领域的运用
阎巍娟
(郑州纺织机械股份有限公司,河南省郑州市450000)
摘要: 本文论述了人工智能在电气传动领域的发展概况。其中主要包括模糊控制、神经网络和遗传算法的应用特点及发展趋势等。
关键词: 神经网络控制;模糊神经元控制;自适应控制
1引言
人工智能控制技术一直没能取代古典控制方法。但随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术(人工神经网络、模糊控制、模糊神经网络、遗传算法等)所替代。这些方法的共同特点是:都需要不同数量和类型的必须的描述系统和特性的“a priori”知识。由于这些方法具有很多优势,因此工业界强烈希望开发、生产使用这些方法的系统,但又希望该系统实现简单、性能优异。在将来,智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用。但是,还有很多研究工作要做,现在还只有少数实际应用的例子(学术研究组实现少,工业运用的就更少了),大多数研究只给出了理论或仿真结果,因此,常规控制器在将来仍要使用相当长一段时间。
2人工智能控制器的优势
人工智能控制器可分为监督、非监督或增强学习型屯种。常规的监督学习型神经网络控制器的拓朴结构和学习算法已经定型,这就给这种结构的控制器增加了限制,使得计算时间过长,常规非人工智能学习算法的应用效果不好。采用自适应神经网络和试探法就能克服这些困难,加快学习过程的收敛速度。常规模糊控制器的规则初值和模糊规则表是既定”a-priori"型,这就使得调整困难,当系统得不到’'a-priori"(既定)信息时,整个系统就不能正常工作。而应用自适应AI控制器,例如使用自适应模糊神经控制器就能克服这些困难,并且用DSP比较容易实现这些控制器。
总而言之,当采用自适应模糊神经控制器,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置,自学习迅速,收敛快速。
3人工智能在电气传动控制中的运用
这一部分主要讨论人工智能在交直流传动中运用的进展。值得指出的是这是一个广阔的领域,在过去二年中,研究活动极快的增长,本文只是概括一下人工智能在电气传动中的运用这一领域的进展,不可能覆盖研究的每一个可能领域。AI控制器在直流传动中运用的大多数研究集中于模糊逻辑应用,在人工神经网络和其它智能控制的研究还很少。下面主要讨论模糊、神经元和模糊神经元和模糊神经元控制器在交直流传动中的应用。
3.1人1:智能在直流传动中的运用
模糊逻辑控制应用
主要有两类模糊控制器,Mamdani和Sugeno型。到目前为止只有Mamdani模糊控制
器用于调速控制系统中。限于篇幅本文不详绥讨论其中的原因。值得注意的是这两种控制器都有规则库,它是一个if-then模糊规则集。但Sugeno控制器的典型规则是”如果X是A,并且Y是B,那么Z=f(x,y)"。这里A和B是模糊集;Z=f(x,y)是x,y的函数,通常是输人变量x,y的多项式。当f是常数,就是零阶Sugeno模型,因此Sugen。是Mamdani控制器的特例。
Mamdani控制器由下面四个主要部分组成:
模糊化实现输人变量的测量、量化和模糊化。隶属函数有多种形式;知识库由数据库和语言控制规则库组成。开发规则库的主要方法是:把专家的知识和经历用于应用和控制目标;建模操作器的控制行动;建模过程;使用自适应模糊控制器和人工神经网络推理机制;推理机是模糊控制器的核心,能模仿人的决策和推理模糊控制行为;反模糊化实现量化和反模糊化。有很多反模糊化技术,例如,最大化反模糊化,中间平均技术等。
ANNS的应用
过去二十年,人工神经网络(ANNS)在模式识别和信号处理中得到广泛运用。由于ANNS 有一致性的非线性函数估计器,因此它也可有效的运用于电气了传动控制领域,它们的优势是不需要被控系统的数学模型,一致性很好,对噪音不敏感。另外,由于ANNS的并行结构,它很适合多传感器输人运用,比如在条件监控、诊断系统中能增强决策的可靠性,当然,最近电气传动朝着最小化传感器数量方向发展,但有时,多传感器可以减少系统对特殊传感器缺陷的敏感性,不需要过高的精度,也不需要复杂的信号处理。
3.2人工智能在交流传动中的应用
模糊逻辑的应用
在大多数讨论模糊逻辑在交流传动中运用的文章中,都介绍的是用模糊控制器取代常规的速度调节器,可英国Aberdeen大学开发的全数字高性能传动系统中有多个模糊控制器,这些模糊控制器不仅用来取代常规的PI或PID控制器,同时也用于其他任务。该大学还把模糊神经控制器用于各种全数字高动态性能传动系统开发中。也有一些优秀的文章论述运用模糊逻辑控制感应电机的磁通和力矩。讨论这种技术的第一篇文章发表于1992年。该文中讨论了两种控制策略,如用第一种策略,规则表有36条规则,模糊控制器的输人是磁通和转矩误差,根据转矩和磁通误差,改变磁通矢量的辐值和旋转方向,反模糊化技术用到的是中心梯度法,第一种策略没有考虑最优电压矢量选择的梯度。而第二种策略考虑了,这种方案被成功地实现了。
神经网络的应用
非常少的文章讨论神经网络用于交流电机的控制,大量文章讨论神经网络在交流电机和驱动系统的条件监测和诊断中的运用。文献介绍了使用常规反向转波算法的ANN用于步进电机控制算法的最优化。该方案使用实验数据,根据负载转矩和初始速度来确定最大可观测速度增量。这就需要ANN学习三维图形映射。该系统与常规控制算法(梯形控制法)相比具有更好的性能,并且大大减少了定位时间,对负载转矩的大范围变化和非初始速度也有满意的控制效果。文献用两个ANNS控制和辩识感应电机,但只给出了仿真研究。这是第一篇讨论神经网络在感应电机控制中的应用,这个方案与 3.1节中讨沦的直流驱动方案类似,ANNS的结构是多层前馈型,运用常规反向传播学习算法。该系统由两个子系统构成,一个系统通过电气动态参数的辩识自适应控制定子电流,另一个系统通过对机电系统参数的辩识自适应控制转子速度。该文讨论了这些控制方案与常规方案的各种优点。
结论二本文试图对人工智能电气传动控制系统领域的进展做一回顾。内容涉及模糊控制、神经网络、模糊神经网络在电气传动系统中的应用,讨论了模糊、神经和模糊神经控制器等人工智能技术的优点。也讨沦了人工智能最小配置的应用。但到目前为止,使用人工智能技术的变速传动工业产品才一刚刚出现,只有少数公司推出他们的产品。虽然使用人工智能技术的实际产品和应用还不多,但不久的将来,人工智能技术在电气传动领域将会取得重要的地位,特别是自适应模糊神经控制器将在高性能驱动产品中得到广泛使用。
参考文献
[1]张玉清.计算机通信网安全协议的分析研究[D].西安电子科技大学,2000.
[2]安靖,王亚弟,韩继红,安全协议的CSP描述技术[J]微计算机信息,2006,10-3:P52-55.