2020年九年级数学中考复习微专题 勾股定理(解析版)

合集下载

中考数学第一部分考点研究复习第四章三角形第20课时直角三角形与勾股定理练习含解析

中考数学第一部分考点研究复习第四章三角形第20课时直角三角形与勾股定理练习含解析

2019-2020年中考数学第一部分考点研究复习第四章三角形第20课时直角三角形与勾股定理练习含解析1. (xx百色)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=( )A. 6B. 6 2C. 6 3D. 12第1题图第2题图2. (xx河南)如图,在△ABC中,∠ACB=90°,AC=8,AB=10.DE垂直平分AC 交AB于点E,则DE的长为( )A. 6B. 5C. 4D. 33. (xx荆州)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为( )A. 1B. 2C. 3D. 4第3题图第4题图4. (xx陕西)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )A. 7B. 8C. 9D. 105. (xx东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A. 10B. 8C. 6或10D. 8或106. (xx黔东南州)如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于( )A. 2B. 3C. 2D. 6第6题图7. (xx 株洲)如图,以直角三角形a 、b 、c 为边,向外分别作等边三角形、半圆 、等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3的图形个数有( )第7题图A. 1个B. 2个C. 3个D. 4个8. (xx 哈尔滨)在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为____________.9. (xx 桂林)如图,在Rt △ACB 中,∠ACB =90°,AC =BC =3,CD =1,CH ⊥BD 于H ,点O 是AB 中点,连接OH ,则OH =________.第9题图 第10题图10. (xx 资阳)如图,在等腰直角△ABC 中,∠ACB =90°,CO ⊥AB 于点O ,点D 、E 分别在边AC 、BC 上,且AD =CE ,连接DE 交CO 于点P .给出以下结论:①△DOE 是等腰直角三角形;②∠CDE =∠COE ;③若AC =1,则四边形CEOD 的面积为14; ④AD2+BE 2-2OP 2=2DP ·PE .其中所有正确结论的序号是________.11. (xx 北京)如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M 、N 分别为AC 、CD 的中点,连接BM ,MN ,BN . (1)求证:BM =MN ;(2)∠BAD =60°,AC 平分∠BAD ,AC =2,求BN 的长.第11题图答案1. A 【解析】∵在直角三角形中,30°角所对的直角边是斜边的一半,在Rt △ABC 中,∠A =30°,AB =12,∴BC =12AB =6.2. D 【解析】∵DE 垂直平分AC ,∴∠ADE =90°,∵∠ACB =90°,∴DE ∥BC ,∴DE 是△ABC 的中位线,∵BC =AB 2-AC 2=102-82=6,∴ DE =12BC =3.3. A 【解析】∵AD 是∠BAC 的平分线,AC ⊥BC ,AE ⊥DE , ∴DC =DE ,AE =AC .又∵DE 是AB 的垂直平分线,∴BE =AE ,即AB =2AE =2AC , ∴∠B =30°.设DE =x ,则BD =3-x .在Rt △BDE 中,x 3-x =12,解得DE =x =1. 4. B 【解析】∵∠ABC =90°,AB =8,BC =6,∴AC =82+62=10,∵DE 是△ABC 的中位线,∴DE ∥BC ,DE =12BC =3,∵CF 平分∠ACM ,∴∠ACF =∠MCF ,又∵DE ∥BC ,∴∠EFC =∠MCF ,∴∠EFC =∠ACF , ∴EF =CE =12AC =5,∴DF =DE +EF =3+5=8.5. C 【解析】如解图①,当△ABC 是锐角三角形时:在Rt △ABD 中,BD =AB 2-AD 2=8,同理在Rt △ACD 中,DC =2,所以BC =10;如解图②,当△ABC 是钝角三角形时:在Rt △ABD 中,BD =AB 2-AD 2=8,同理在Rt △ACD 中,DC =2,所以BC =6;故答案为C .第5题解图① 第5题解图②6. B 【解析】如解图,连接OC ,∵AB =6,∴AC =BC = 3.∵∠COD +∠COE =90°,∠EOB +∠EOC =90°,∴∠EOB =∠COD ,∵△ABC 是等腰直角三角形,O 是AB 中点,∴OB =OC ,∠B =∠OCD =45°,∴△BOE ≌△COD (ASA ),得EB =CD ,进而得CD +CE =CE +EB =BC = 3.第6题解图7. D 【解析】图①中,∵S 1=34a 2,S 2=34b 2,S 3=34c 2,∴a 2=43S 1,b 2=43S 2,c 2=43S3,∵a2+b2=c2,∴43S1+43S2=43S3,即S1+S2=S3;图②中,∵S1=12π(a2)2=πa28,S2=12π(b2)2=πb28,S3=12π(c2)2=πc28,∴a2=8πS1,b2=8πS2,c2=8πS3,∵a2+b2=c2,∴8πS1+8πS2=8πS3,即S1+S2=S3;图③中,设斜边长为a的等腰直角三角形的直角边为x,则x=22a,同理可得,另两个三角形的直角边分别为22b和22c,∴S1=12×22a×22a=a24,S2=12×22b×22b=b24,S3=12×22c×22c=c24,∴a2=4S1,b2=4S2,c2=4S3,∵a2+b2=c2,∴4S1+4S2=4S3,即S1+S2=S3;图④中,S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.8. 13或10 【解析】由题知,P为直角边BC的三等分点,分两种情况讨论:①如解图①所示,当P点靠近B点时,∵AC=BC=3,∴CP=2,在Rt△ACP中,由勾股定理得AP=13;②如解图②所示,当P点靠近C点时,∵AC=BC=3,∴CP=1,在Rt△ACP中,由勾股定理得AP=10,综上可得:AP=13或10.第8题解图9.355【解析】取BC的中点E,连接HE,OE,又∵O是AB的中点,∴OE是△ABC的中位线,∴OE=12AC=32,OE∥AC,∵CH⊥BD,CE=BE,∴HE是Rt△BCH的斜边中线,∴HE=12 BC=32,∴CE=HE=OE=BE,∴C、H、O、B都在⊙E上,∵∠ACB=90°,OE∥AC,∴∠BEO =90°,∴∠BHO=12∠BEO=45°=∠A,又∵∠1=∠1,∴△BOH∽△BDA,∴OHAD=OBBD,又∵AD =AC-CD=2,OB=12AB=12AC2+BC2=322,BD=BC2+CD2=10,∴OH2=32210,∴OH=355.第9题解图10. ①②③④ 【解析】①∵在等腰直角三角形ABC 中,CO ⊥AB , ∠ACB =90°,∵O 为AB 的中点,∴AO =OC , ∠DAO =∠OCE =45°,又∵AD =CE ,∴△ADO ≌△CEO ,∴OD =OE , ∠AOD =∠COE ,∵∠AOD +∠DOC =90°,∴∠COE +∠DOC =90°,∴△DOE 是等腰直角三角形,故①正确;②∵∠CDE +∠DCO +∠CPD =180°,∠COE +∠OED +∠OPE =180°,∠DCO =∠OED =45°,∠CPD =∠OPE ,∴∠CDE =∠COE ,故②正确;③∵四边形CEOD 的面积=S △COD +S △CEO,△ADO ≌△CEO ,∴四边形CEOD 的面积=S △COD +S △ADO =S △AOC =12S △ABC =12×12×1×1=14,故③正确;④如解图,过点O 作ON ⊥DE 于点N ,则ON =12DE =12(DP +PE ),PN =NE -PE =12DE-PE =12(DP +PE )-PE =12(DP -PE ),又∵OP 2=ON 2+PN 2=⎣⎢⎡⎦⎥⎤12(DP +PE )2+⎣⎢⎡⎦⎥⎤12(DP -PE )2,化简得:2OP 2=DP 2+PE 2,AD 2+BE 2=CE 2+CD 2=DE 2=(DP +PE )2=DP 2+2DP ·PE +PE 2,∴AD 2+BE 2-2OP 2=2DP ·PE ,可得④正确.故答案为:①②③④.第10题解图11. (1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点, ∴MN ∥AD 且MN =12AD ,在Rt △ABC 中,∵M 是AC 的中点, ∴BM =12AC ,又∵AC =AD , ∴MN =BM ;(2)解:∵∠BAD =60°且AC 平分∠BAD , ∴∠BAC =∠DAC =30°, 由(1)知,BM =12AC =AM =MC ,∴∠BMC =∠BAM +∠ABM =2∠BAM =60° ∵MN ∥AD ,∴∠NMC =∠DAC =30°, ∴∠BMN =∠BMC +∠NMC =90°,∴BN 2=BM 2+MN 2,由(1)知,MN =BM =12AC =12×2=1,∴在Rt △BMN 中,BN =BM 2+MN 2= 2.23739 5CBB 岻6 26503 6787 枇O@CU34455 8697 蚗26865 68F1 棱31052 794C 祌O328735 703F 瀿。

中考数学勾股定理(讲义及答案)附解析

中考数学勾股定理(讲义及答案)附解析

一、选择题1.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .9 2.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .63.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③4.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1525.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .826.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )A .3B .3.3C .4D .4.58.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .610.有下列的判断: ①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形③如果△ABC 是直角三角形,那么a 2+b 2=c 2以下说法正确的是( )A .①②B .②③C .①③D .②二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.14.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.18.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.19.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.28.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠.求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.29.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.30.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 2.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 3.A解析:A【分析】作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形;由割补法可知四边形CDFE 的面积保持不变;△DEF 是等腰直角三角形2DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值42,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.4.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S 1,S 2,S 3,再利用S 1+S 2+S 3=15求解是解决问题的关键.5.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=12×CD×BC=12×3×4=6,∵P是BD的中点,∴S△PBC=12S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.9.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.12.45【分析】如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可【详解】如下图,延长BA 至网络中的点D 处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14.【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,BD BE DE64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.15.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.1671【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N 22''OM ON +. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.18.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD , ∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.19.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解. 【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ , 12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.20.【分析】根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4,∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DMBM ,进而可得BE +CF(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC ﹣∠AED =45°,理由如下:∵∠AED =∠ABE =α,∴∠BAE =180°﹣2α,∴∠CAE =∠BAE ﹣∠BAC =90°﹣2α,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =45°+α,∴∠AEC ﹣∠AED =45°;(3)如图,过点C 作CG ⊥AH 于G ,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;③在Rt AHB 中,由①知:6EH HB ==∴622 AH AE EH=+=+,22222256623AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN∠+∠=︒,∴AN DE⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为2033或1235. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=22236c a b a ∴=++根据优三角形的定义,分以下三种情况:当2a b c +=时,26236a a +=+,整理得24360a a -+=,此方程没有实数根。

2020年中考数学精选考点试卷13 三角形和勾股定理(解析版)

2020年中考数学精选考点试卷13 三角形和勾股定理(解析版)

中考数学 专题13.1三角形和勾股定理精选考点专项突破卷(一)考试范围:三角形和勾股定理;考试时间:90分钟;总分:120分一、单选题(每小题3分,共30分)1.(2017·江苏中考真题)三角形的重心是( )A .三角形三条边上中线的交点B .三角形三条边上高线的交点C .三角形三条边垂直平分线的交点D .三角形三条内角平行线的交点2.(2019·江苏中考真题)下列长度的三条线段,能组成三角形的是( )A .2,2,4B .5,6,12C .5,7,2D .6,8,103.(2019·山东中考真题)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .24.(2019·吉林中考真题)如图,在ABC ∆中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点D .使ADC 2B ∠=∠,则符合要求的作图痕迹是( )A .B .C .D .5.(2019·湖南中考真题)如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .16.(2018·浙江中考真题)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,△CAD=20°,则△ACE 的度数是( )A .20°B .35°C .40°D .70°7.(2015·贵州中考真题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A B .C .6,7,8 D .2,3,48.(2019·湖南中考真题)如图,Rt△ABC 中,△C =90°,△B =30°,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则△CAD 的度数是( )A .20°B .30°C .45°D .60°9.(2012·黑龙江中考真题)如图,△ABC 中,AB=AC=10,BC=8,AD 平分△BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( )A .20B .12C .14D .1310.(2019·广西中考真题)如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A.B.C.D.二、填空题(每小题4分,共28分)11.(2019·沭阳县修远中学中考模拟)如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积为____.12.(2019·山东中考模拟)如图,在线段AD,AE,AF中,△ABC的高是线段________.13.(2019·北京中考模拟)如图,在△ABC中,射线AD交BC于点D,BE△AD于E,CF△AD于F,请补充一个条件,使△BED△△CFD,你补充的条件是______(填出一个即可).14.(2019·北京中考模拟)当三角形中的一个内角α是另一个内角β的一半时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为直角三角形,则这个“特征角”的度数为______.15.(2019·辽宁中考模拟)如图,已知AB△CF,E为DF的中点,若AB=8,CF=5,则BD=_______.16.(2018·安徽中考模拟)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在△BCD的平分线上时,CA1的长为__.17.(2019·双柏县雨龙中学中考模拟)已知三角形的两边长分别是7和10,则第三边长a的取值范围是_____.三、解答题一(每小题6分,共30分)18.(2014·江苏中考真题)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.19.(2015·浙江中考真题)如图,已知△ABC,△C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若△B=37°,求△CAD的度数.20.(2013·浙江中考真题)如图,在△ABC中,△C=90°,AD平分△CAB,交CB于点D,过点D作DE△AB,于点E(1)求证:△ACD△△AED;(2)若△B=30°,CD=1,求BD的长.21.(2019·重庆中考真题)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分△ABC交AC 于点E,过点E作EF△BC交AB于点F.(1)若△C=36°,求△BAD的度数.(2)若点E在边AB上,EF//AC叫AD的延长线于点F.求证:FB=FE.22.(2019·四川中考真题)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE△直线m于点E,BD△直线m于点D.;①求证:EC BD②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.四、解答题二(每小题8分,共32分)23.(2017·江苏中考真题)如图,已知在四边形ABCD中,点E在AD上,△BCE=△ACD=90°,△BAC=△D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求△DEC的度数.24.(2018·山东中考真题)已知,在△ABC 中,△A=90°,AB=AC ,点D 为BC 的中点.(1)如图①,若点E 、F 分别为AB 、AC 上的点,且DE△DF ,求证:BE=AF ;(2)若点E 、F 分别为AB 、CA 延长线上的点,且DE△DF ,那么BE=AF 吗?请利用图②说明理由.25.(2015·广西中考真题)如图,在△ABC 中,△ACB=90°,AC=BC=AD .(1)作△A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.26.(2019·山东中考真题)在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.13.1三角形和勾股定理精选考点专项突破卷(一)参考答案1.A【解析】三角形的重心是三条中线的交点,故选A .2.D【解析】根据三角形三边关系,看其中较小两边的和是否大于最长边即可判断各个选项中的三条线段是否能组成三角形.【详解】224+=Q ,2∴,2,4不能组成三角形,故选项A 错误,5612+<Q ,5∴,6,12不能组成三角形,故选项B 错误,527+=Q ,5∴,7,2不能组成三角形,故选项C 错误,6810+>Q , 6∴,8,10能组成三角形,故选项D 正确,故选D .【点睛】本题考查了三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.3.B【解析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】△//CF AB ,△A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△()ADE CFE AAS ∆≅∆,△3AD CF ==,△4AB =,△431DB AB AD =-=-=.故选:B .【点睛】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ADE FCE ∆≅∆是解此题的关键.4.B【解析】由ADC 2B ∠=∠且ADC B BCD ∠=∠+∠知B BCD ∠=∠,据此得DB DC =,由线段的中垂线的性质可得答案.【详解】解:△ADC 2B ∠=∠且ADC B BCD ∠=∠+∠,△B BCD ∠=∠,△DB DC =,△点D 是线段BC 中垂线与AB 的交点,故选B【点睛】考核知识点:线段垂直平分线.理解线段垂直平分线性质是关键.5.C【解析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=Q ,1DC AD 3=, 1CD 8213∴=⨯=+, C 90∠︒=Q ,BD 平分ABC ∠,DE CD 2∴==,即点D到AB的距离为2,故选C.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键. 6.B【解析】先根据等腰三角形的性质以及三角形内角和定理求出△CAB=2△CAD=40°,△B=△ACB=12(180°-△CAB)=70°.再利用角平分线定义即可得出△ACE=12△ACB=35°.【详解】△AD是△ABC的中线,AB=AC,△CAD=20°,△△CAB=2△CAD=40°,△B=△ACB=12(180°-△CAB)=70°.△CE是△ABC的角平分线,△△ACE=12△ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出△ACB=70°是解题的关键.7.B【解析】试题解析:A.)2+)2≠2,故该选项错误;B.12+)2=2,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.考点:勾股定理.8.B【解析】根据内角和定理求得△BAC=60°,由中垂线性质知DA=DB,即△DAB=△B=30°,从而得出答案.【详解】在△ABC中,△△B=30°,△C=90°,△△BAC=180°-△B-△C=60°,由作图可知MN为AB的中垂线,△DA=DB,△△DAB=△B=30°,△△CAD=△BAC-△DAB=30°,故选B.【点睛】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.9.C【解析】解:△AB=AC,AD平分△BAC,BC=8,△AD△BC,CD=BD=12BC=4,△点E为AC的中点,△DE=CE=12AC=5,△△CDE的周长=CD+DE+CE=4+5+5=14.故选C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.10.B【解析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【详解】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D 不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,△选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.11.7【解析】如下图,连接A 1C ,B 1A ,C 1B ,,因B 是线段B 1C 的中点,所以B 1B=BC.△A 1B 1A 和△AB 1B 等底同高,根据等底同高的两个三角形面积相等可得S △B1AB =S △ABC =1;同理可得S △A1B1A =S △AB1B =1;所以=S △A1B1A +S △AB1B =1+1=2;同理可得S △C1CB1=2, S △C1AA1=2.S △A1B1C1= S △A1BB1+ S △C1CB1+ S △C1AA1+S △ABC =2+2+2+1=7.考点:等底同高的两个三角形面积相等.12.AF【解析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【详解】△AF△BC 于F ,△AF 是△ABC 的高线,故答案为:AF .【点睛】本题主要考查了三角形的高线,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.13.答案不唯一,如BD=DC【解析】根据全等三角形的判定定理AAS 判定△BED△△CFD .【详解】解:可以添加条件:BD=DC .理由:△BD=CD ;又△BE△AD ,CF△AD ,△△E=△CFD=90°;△在△BED 和△CFD 中,90BDE CDF E CFD BD CD ∠∠⎧⎪∠∠︒⎨⎪⎩====,△△BED△△CFD(AAS).故答案是:答案不唯一,如BD=DC.【点睛】本题考查了全等三角形的判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.14.45°或30°【解析】分①“特征角”的2倍是直角时,根据“特征角”的定义列式计算即可得解;②“特征角”的2倍与“特征角”都不是直角,根据直角三角形两锐角互余列方程求解即可.【详解】解:①“特征角”的2倍是直角时,“特征角”=12×90°=45°;②“特征角”的2倍与“特征角”都不是直角时,设“特征角是x”,由题意得,x+2x=90°,解得x=30°,所以,“特征角”是30°,综上所述,这个“特征角”的度数为45°或30°.故答案为:45°或30°.【点睛】本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余的性质,读懂题目信息,理解“特征角”的定义是解题的关键.15.3【解析】△AB//CF,△△A=△FCE,△ADE=△F,又△DE=FE,△△ADE△△CFE,△AD=CF=5,△AB=8,△BD=AB-AD=8-5=3,故答案为3.16.【解析】过点A1作A1M△BC于点M.由A1C是角平分线可知△A1CM=45°,可证明A1M=CM,可知△AMC是等腰直角三角形,设CM=A1M=x,在Rt△A1MB中利用勾股定理列方程求出x的值,根据△AMC是等腰直角三角形即可求出答案.【详解】过点A1作A1M△BC于点M.△点A的对应点A1恰落在△BCD的平分线上,△BCD=90°,△△A1CM=45°,即△AMC是等腰直角三角形,△设CM=A 1M=x,则BM=7-x.又由折叠的性质知AB=A 1B=5,△在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x)2,△25-(7-x)2=x 2,解得x 1=3,x 2=4,△在等腰Rt△A 1CM 中,CA 1A 1M ,△CA 1或.【点睛】本题考查折叠性质及解直角三角形,图形折叠后对应边相等,对应角相等,熟练掌握折叠的性质是解题关键.17.3<a <17.【解析】根据三角形的第三边大于两边之差,小于两边之和,即可解决问题.【详解】解:△三角形的两边长分别是10和7,△第三边长a 的取值范围是3<a <17.故答案为3<a <17.【点睛】本题考查三角形三边关系的运用,熟记三角形的第三边大于两边之差,小于两边之和是解题的关键.18.证明见解析.【解析】试题分析:根据等腰三角形的性质可证△DBM=△ECM ,可证△BDM△△CEM ,可得MD=ME ,即可解题. 试题解析:证明:△ABC 中,△AB=AC ,△△DBM=△ECM.△M 是BC 的中点,△BM=CM.在△BDM 和△CEM 中,△,△△BDM△△CEM (SAS ).△MD=ME .BD CE DBM ECM BM CM =⎧⎪∠=∠⎨⎪=⎩考点:1.等腰三角形的性质;2.全等三角形的判定与性质.19.(1)点D的位置如图所示(D为AB中垂线与BC的交点).(2)16°.【解析】(1)根据到线段两个端点的距离相等的点在这条线段的垂直平分线上,作出AB的中垂线.(2)要求△CAD的度数,只需求出△CAD,而由(1)可知:△CAD=2△B【详解】解:(1)点D的位置如图所示(D为AB中垂线与BC的交点).(2)△在Rt△ABC中,△B=37°,△△CAB=53°.又△AD=BD,△△BAD=△B=37°.△△CAD=53°—37°=16°.考点:尺规作图,直角三角形两锐角互余、垂直平分线的性质.20.(1)见解析(2)BD=2【解析】解:(1)证明:△AD平分△CAB,DE△AB,△C=90°,△CD=ED,△DEA=△C=90°.△在Rt△ACD和Rt△AED中,AD AD {CD DE==,△Rt△ACD△Rt△AED(HL).(2)△Rt△ACD△Rt△AED ,CD=1,△DC=DE=1.△DE△AB,△△DEB=90°.△△B=30°,△BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出△DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.21.(1)54BAD︒∠=;(2)见解析.【解析】(1)利用等腰三角形的三线合一的性质证明△ADB=90°,再利用等腰三角形的性质求出△ABC即可解决问题.(2)只要证明△FBE=△FEB即可解决问题.【详解】解:(1)AB AC =QC ABC ∴∠=∠36C ︒∠=Q36ABC ︒∴∠=Q D 为BC 的中点,AD BC ∴⊥90903654BAD ABC ︒︒︒︒∴∠=-∠=-=(2)Q BE 平分ABC ∠ABE EBC ∴∠=∠又//EF BC QEBC BEF ∴∠=∠EBF FEB ∴∠=∠BF EF ∴=【点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.①证明见解析;②见解析.【解析】①通过AAS 证得CAE BCD ∆≅∆,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【详解】①证明:△90ACB ︒∠=,△90ACE BCD ︒∠+∠=.△90ACE CAE ︒∠+∠=,△CAE BCD ∠=∠.在△AEC 与△BCD 中,CEA BDC CAE BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩△()CAE BCD AAS ∆∆≌.△EC BD =;②解:由①知:BD CE a ==CD AE b == △1()()2AEDB S a b a b =++梯形 221122a ab b =++. 又△AEC BCD ABC AEDB S S S S =++V V V 梯形2111222ab ab c =++ 212ab c =+. △222111222a ab b ab c ++=+. 整理,得222+=a b c .【点睛】主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.23.(1)证明见解析;(2)112.5°.【解析】()1根据同角的余角相等可得到24∠=∠,结合条件BAC D ∠=∠,再加上BC CE =, 可证得结论; ()2根据90ACD AC CD ∠=︒=,,得到145D ∠=∠=︒, 根据等腰三角形的性质得到3567.5∠=∠=︒, 由平角的定义得到1805112.5DEC ∠=︒-∠=︒.【详解】() 1证明:90BCE ACD ∠=∠=︒Q ,2334,∴∠+∠=∠+∠ 24∴∠=∠,在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DEC ∴V V ≌,AC CD ∴=;(2)△△ACD =90°,AC =CD ,△△1=△D =45°,△AE =AC ,△△3=△5=67.5°,△△DEC =180°-△5=112.5°.24.(1)证明见解析;(2)BE=AF ,证明见解析.【解析】分析:(1)连接AD ,根据等腰三角形的性质可得出AD=BD 、△EBD=△FAD ,根据同角的余角相等可得出△BDE=△ADF ,由此即可证出△BDE△△ADF (ASA ),再根据全等三角形的性质即可证出BE=AF ;(2)连接AD ,根据等腰三角形的性质及等角的补角相等可得出△EBD=△FAD 、BD=AD ,根据同角的余角相等可得出△BDE=△ADF ,由此即可证出△EDB△△FDA (ASA ),再根据全等三角形的性质即可得出BE=AF . 详(1)证明:连接AD ,如图①所示.△△A=90°,AB=AC ,△△ABC 为等腰直角三角形,△EBD=45°.△点D 为BC 的中点, △AD=12BC=BD ,△FAD=45°. △△BDE+△EDA=90°,△EDA+△ADF=90°,△△BDE=△ADF .在△BDE 和△ADF 中,EBD FAD BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BDE△△ADF (ASA ),△BE=AF ;(2)BE=AF ,证明如下:连接AD ,如图②所示.△△ABD=△BAD=45°,△△EBD=△FAD=135°.△△EDB+△BDF=90°,△BDF+△FDA=90°,△△EDB=△FDA .在△EDB 和△FDA 中,EBD FAD BD ADEDB FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△EDB△△FDA (ASA ),△BE=AF .点睛:本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA 证出△BDE△△ADF ;(2)根据全等三角形的判定定理ASA 证出△EDB△△FDA . 25.(1)作图见试题解析;(2)作图见试题解析;(3)△ACE△△ADE ,△ACE△△CFB .【解析】试题分析:(1)利用角平分线的作法得出△A 的平分线;(2)利用钝角三角形高线的作法得出BF ;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE 即为所求;(2)如图所示:BF 即为所求;(3)如图所示:△ACE△△ADE ,△ACE△△CFB ,△AC=AD ,AE 平分△CAD ,△AE△CD ,EC=DE ,在△ACE 和△ADE 中,△AE=AE ,△AEC=△AED ,EC=ED ,△△ACE△△ADE (SAS ).考点:1.作图—复杂作图;2.全等三角形的判定.26.(1) AM =(2)见解析;(3)见解析.【解析】(1)根据等腰三角形的性质、直角三角形的性质得到 AD =BD =DC =,求出 △MBD =30°,根据勾股定理计算即可;(2)证明△BDE △△ADF ,根据全等三角形的性质证明; (3)过点 M 作 ME △BC 交 AB 的延长线于 E ,证明△BME △△AMN ,根据全等三角形的性质得到 BE =AN ,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:90BAC ∠=︒Q ,AB AC =,AD BC ⊥,AD BD DC ∴==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒,2AB =Q ,AD BD DC ∴===,30AMN ∠=︒Q ,180903060BMD ∴∠=︒-︒-︒=︒,30BMD ∴∠=︒,2BM DM ∴=,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得,DM =AM AD DM∴=-=(2)证明:AD BC⊥Q,90EDF∠=︒,BDE ADF∴∠=∠,在BDE∆和ADF∆中,{B DAFDB DABDE ADF∠=∠=∠=∠,()BDE ADF ASA∴∆∆≌BE AF∴=;(3)证明:过点M作//ME BC交AB的延长线于E,90AME∴∠=︒,则AE=,45E∠=︒,ME MA∴=,90AME∠=︒∵,90BMN∠=︒,BME AMN∴∠=∠,在BME∆和AMN∆中,{E MANME MABME AMN∠=∠=∠=∠,()BME AMN ASA∴∆∆≌,BE AN∴=,AB AN AB BE AE∴+=+==.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键。

勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。

2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。

3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

⑷ 定理:用推理的方法判断为正确的命题叫做定理。

⑸ 证明:判断一个命题的正确性的推理过程叫做证明。

⑹ 证明的一般步骤① 根据题意,画出图形。

② 根据题设、结论、结合图形,写出已知、求证。

③ 经过分析,找出由已知推出求证的途径,写出证明过程。

AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

2020年九年级中考数学一轮复习 勾股定理 练习(含答案)

2020年九年级中考数学一轮复习 勾股定理 练习(含答案)

2020年中考数学一轮复习勾股定理一、单选题1.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13B .13或15C .13D .152.下列长度的线段中,能构成直角三角形的一组是( )A B .6,7,8 C .12,25,27 D . 3.如图,网格中每个小正方形的边长均为1,点A,B,C 都在格点上,以A 为圆心,AB 为半径画弧,交最上方的网格线于点D ,则CD 的长为A .√5B .0. 8C .3−√5D .√134.如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .65.如图,一只蚂蚁从长、宽都是3cm ,高是8cm 的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是( )A .+8)cmB .10cmC .14cmD .无法确定6.一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A 下落了( )米.A .0.5B .1C .1.5D .27.在△ABC 中,AB =8,BC =15,AC =17,则下列结论正确..的是( ) A .△ABC 是直角三角形,且△A =900B .△ABC 是直角三角形,且△B =900 C .△ABC 是直角三角形,且△C =900D .△ABC 不是直角三角形8.点O 在线段AB 上,AO =2,OB =1,OC 为射线,且△BOC =60°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒.当△ABP 是直角三角形时,t 的值为( )A .18-+BC .1或18-+D .19.如图,在△ABC 中,5,6AB AC BC ===,动点P ,Q 在边BC 上(P 在Q 的左边),且2PQ =,则AP AQ +的最小值为( )A .8B .C .9D .10.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .9+B .9+C .18+D .18+二、填空题11.已知等腰三角形的底角是30°,腰长为_____.12.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6a =,弦10c =,则小正方形ABCD 的面积是____.13.观察以下几组勾股数,并寻找规律:△3,4,5;△5,12,13;△7,24,25;△9,40,41,…请你写出有以上规律的第△组勾股数:______ .14.如图,直线43y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为________.三、解答题15.在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.16.如图,一架长为5米的梯子AB 斜靠在地面OM 垂直的墙ON 上,梯子底端距离墙的距离OB 的长为3米.(1)求梯子顶端与地面的距离OA的长.(2)若梯子顶点下滑1米到C点,求梯子的底端向右滑到D的距离.17.某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为i AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).18.若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5);(5,12,13);(7,24,25);…第二类(a是偶数):(6,8,10);(8,15,17);(10,24,26);…(1)请再写出两组勾股数,每类各写一组;(2)分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.19.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C 于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.答案1.C 2.D 3.C 4.B 5.B 6.A 7.B8.C9.D10.A11.6+12.413.11、60、6114.15.作AD △BC 于D ,如图所示:设BD = x ,则14CD x =-.在Rt△ABD 中,由勾股定理得:2222215AD AB BD x =-=-,在Rt△ACD 中,由勾股定理得:()222221314AD AC CD x =-=--,△2215x -= ()221314x --,解之得:9x =.△12AD =. △1·2ABC S BC AD ∆= 11412842=⨯⨯=.16.(1)4AO =(米).答:梯子顶端与地面的距离OA 的长为4米;(2)4OD ===(米),431BD OD OB =-=-=(米). 答:若梯子顶点A 下滑1米到C 点,求梯子的底端向右滑到D 的距离是1米.17.作DF AC ⊥于F .:1:DF AF =Q 200AD =米,tan DAF ∴∠=30DAF ∴∠=︒,1120010022DF AD ∴==⨯=(米), 90DEC BCA DFC Q ∠=∠=∠=︒,∴四边形DECF 是矩形,100EC DF ∴==(米),45BAC ∠=︒Q ,BC AC ⊥,45ABC ∴∠=︒,60BDE ∠=︒Q ,DE BC ⊥,90906030DBE BDE ∴∠=︒-∠=︒-︒=︒,453015ABD ABC DBE ∴∠=∠-∠=︒-︒=︒,1453015BAD BAC ∠=∠-∠=︒-︒=︒,ABD BAD ∴∠=∠,200AD BD ∴==(米),在Rt BDE ∆中,sin BE BDE BD∠=,·sin200BE BD BDE∴=∠==),100BC BE EC∴=+=+).18.(1)第一组(a是奇数):9,40,41(答案不唯一);第二组(a是偶数):12,35,37(答案不唯一);(2)当a为奇数时,212ab-=,212ac+=;当a为偶数时,214ab=-,214ac=+;证明:当a为奇数时,a2+b2=2222221122a ca a⎛⎫⎛⎫+==⎪ ⎪⎝⎭⎝⎭-+,△(a,b,c)是“勾股数”.当a为偶数时,a2+b2=222 2221144a ca a⎛⎫⎛⎫+==⎪ ⎪⎝⎭⎝⎭-+△(a,b,c)是“勾股数”19.(1)由折线法及点E是BC的中点,△EB=EB′=EC,△AEB=△AEB′,△△B'EC是等腰三角形,又△EF△B′C△EF为△B'EC的角平分线,即△B′EF=△FEC,△△AEF=180°﹣(△AEB+△CEF)=90°,即△AEF=90°,即AE△EF;(2)连接BB '交AE 于点O ,由折线法及点E 是BC 的中点, △EB =EB ′=EC ,△△EBB ′=△EB ′B ,△ECB ′=△EB ′C ;又△△BB 'C 三内角之和为180°,△△BB 'C =90°;△点B ′是点B 关于直线AE 的对称点,△AE 垂直平分BB ′;在Rt△AOB 和Rt△BOE 中,BO 2=AB 2﹣AO 2=BE 2﹣(AE ﹣AO )2 将AB =4cm ,BE =3cm ,AE =5cm ,△AO =165cm ,△BO 125cm , △BB ′=2BO =245cm ,△在Rt△BB 'C 中,B ′C 518cm , 由题意可知四边形OEFB ′是矩形,△EF =OB ′=125, △S △B ′EC =*111812108225525B C EF '⨯=⨯⨯=.。

2020年九年级数学中考复习题型 解直角三角形(带答案)

2020年九年级数学中考复习题型 解直角三角形(带答案)

解直角三角形题型一 利用勾股定理求面积例 1.在Rt AED ∆中,90E ∠=︒,3AE =,4ED =,以AD 为边在AED ∆的外侧作正方形ABCD ,则正方形ABCD 的面积是( )A .5B .25C .7D .10【解析】根据勾股定理得到225AD AE DE =+=,根据正方形的面积公式即可得到结论.【答案】解:在Rt AED ∆中,90E ∠=︒,3AE =,4ED =,225AD AE DE ∴=+=,四边形ABCD 是正方形,∴正方形ABCD 的面积22525AD ===,故选:B .变式训练1.如图,图中所有的三角形都是直角三角形,四边形都是正方形,其中最大正方形E 的边长为10,则四个正方形A ,B ,C ,D 的面积之和为( )A .24B .56C .121D .100【解析】根据正方形的性质和勾股定理的几何意义解答即可.【答案】解:根据勾股定理的几何意义,可知:E F G S S S =+A B C D S S S S =+++100=;即四个正方形A ,B ,C ,D 的面积之和为100;故选:D .题型二 勾股定理逆定理的应用例2-1.在以线段a ,b ,c 的长三边的三角形中,不能构成直角三角形的是( )A .4a =,5b =,6c =B .::5:12:13a b c =C .2a =,3b =,5c =D .4a =,5b =,3c =【解析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【答案】解:A .222456+≠,不能构成直角三角形,故本选项符合题意;B .设三角形三边为5k ,12k ,13k ,2(5)(k +2212)(13)k k =,能构成直角三角形,故本选项不符合题意;C .(22)(+23)(=25),能构成直角三角形,故本选项不符合题意;D .222345+=,能构成直角三角形,故本选项不符合题意;故选:A .例2-2.如图,已知在四边形ABCD 中,20AB cm =,15BC cm =,7CD cm =,24AD cm =,90ABC ∠=︒.(1)连结AC ,求AC 的长;(2)求ADC ∠的度数;(3)求出四边形ABCD 的面积【解析】(1)连接AC ,利用勾股定理解答即可;(2)利用勾股定理的逆定理解答即可;(3)根据三角形的面积公式解答即可.【答案】解:(1)连接AC ,在Rt ABC ∆中,90ABC ∠=︒,20AB cm =,15BC cm =,∴由勾股定理可得:2222201525AC AB BC cm ++=;(2)在ADC ∆中,7CD cm =,24AD cm =,222CD AD AC ∴+=,90ADC ∴∠=︒;(3)由(2)知,90ADC ∠=︒,∴四边形ABCD 的面积2112015724234()22ABC ACD S S cm ∆∆=+=⨯⨯+⨯⨯=. 变式训练1.下列说法中,正确的有( )①如果0A B C ∠+∠-∠=,那么ABC ∆是直角三角形;②如果::5:12:13A B C ∠∠∠=,则ABC ∆是直角三角形; 71017ABC ∆为直角三角形;④如果三角形三边长分别是24n -、4n 、24(2)n n +>,则ABC ∆是直角三角形;A .1个B .2个C .3个D .4个【解析】根据直角三角形的判定进行分析,从而得到答案.【答案】解:①正确,由三角形内角和定理可求出C ∠为90度;②不正确,因为根据三角形的内角和得不到90︒的角;7x ,10x 17x ,则有2271017x +=;④正确,因为222(4)(4)(4)n n n -+=+.所以正确的有三个.故选:C .变式训练2.如图,在四边形ABCD 中,已知12AB =,9BC =,90ABC ∠=︒,且39CD =,36DA =.求四边形ABCD 的面积.【解析】连接AC ,在Rt ADC ∆中,已知AB ,BC 的长,运用勾股定理可求出AC 的长,在ADC ∆中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD 的面积为Rt ACD ∆与Rt ABC ∆的面积之差.【答案】解:连接AC ,90ABC ∠=︒,12AB =,9BC =,15AC ∴=,39CD =,36DA =,222215361521AC DA +=+=,22391521CD ==,ADC ∴∆为直角三角形,ACD ABC ABCD S S S ∆∆∴=-四边形1122AC AD AB BC =⨯-⨯ 11153612922=⨯⨯-⨯⨯ 27054=-216=.故四边形ABCD 的面积为216.题型三 利用勾股定理求最短路径例3.如图,一圆柱高BC 为20cm ,底面周长是10cm ,一只蚂蚁从点A 爬到点P 处吃食,且35PC BC =,则最短路线长为( )A.20cm B.13cm C.14cm D.18cm【解析】根据题意画出图形,连接AP,则AP就是蚂蚁爬行的最短路线长,根据勾股定理求出AP即可.【答案】解:如图展开,连接AP,则AP就是蚂蚁爬行的最短路线长,则90C∠=︒,11052AC cm cm=⨯=,20BC cm=,35PC BC=,12CP cm∴=,由勾股定理得:222251213()AP AC CP cm=+=+=,即蚂蚁爬行的最短路线长是13cm,故选:B.变式训练1.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm【解析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【答案】解:三级台阶平面展开图为长方形,长为8dm,宽为(23)3dm+⨯,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为xdm ,由勾股定理得:22228[(23)3]17x =++⨯=,解得17x =.故选:B .变式训练 2.如图,长方体的底面边长为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达B ,那么所用细线最短需要( )A .12cmB .11cmC .10cmD .9cm【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【答案】解:将长方体展开,连接A 、B ',则13138()AA cm '=+++=,6A B cm ''=,根据两点之间线段最短,228610AB cm '=+=.故选:C .变式训练3.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A .73厘米B .10厘米C .82厘米D .8厘米【解析】由于小虫从外壁进入内壁,要先到杯子上沿,再进入杯子,故先求出到杯子沿的最短距离即可解答.【答案】解:如图所示:最短路径为:P A '→,将圆柱展开,2222(162)(6 1.5 1.5)10PA PE EA cm ''=+=÷+-+=,最短路程为10PA cm '=.故选:B .题型四 利用勾股定理解折叠问题例4.如图,有一块直角三角形纸片,两直角边6AC cm =,8BC cm =,将纸片沿AD 折叠,直角边AC 恰好落在斜边上,且与AE 重合,求BDE ∆的面积.【解析】由勾股定理可求AB 的长,由折叠的性质可得6AC AE cm ==,90DEB ∠=︒,由勾股定理可求DE 的长,由三角形的面积公式可求解.【答案】解:6AC cm =,8BC cm =2210AB AC CB cm ∴=+=将纸片沿AD 折叠,直角边AC 恰好落在斜边上,且与AE 重合,6AC AE cm ∴==,90DEB ∠=︒1064BE cm ∴=-=设CD DE x ==,则在Rt DEB ∆中,2224(8)x x +=-解得3x =,即DE 等于3cmBDE ∴∆的面积14362=⨯⨯= 答:BDE ∆的面积为26cm变式训练1.如图,把长为12cm 的纸条ABCD 沿EF ,GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,且90FPH ∠=︒,3BF cm =,求FH 的长.【解析】由翻折不变性可知:BF PF =,CH PH =,设FH x cm =,则(9)PH x cm =-,在Rt PFH ∆中,根据222FH PH PF =+,构建方程即可解决问题.【答案】解:由翻折不变性可知:BF PF =,CH PH =,设FH x cm =,则(9)PH x cm =-,在Rt PFH ∆中,90FPH ∠=︒,222FH PH PF ∴=+,222(9)3x x ∴=-+,5x ∴=,FH ∴的长是5cm .变式训练 2.如图,把长方形ABCD 沿AC 折叠,AD 落在AD '处,AD '交BC 于点E ,已知2AB cm =,4BC cm =.(长方形的对边相等,四个角都为直角)(1)求证:AE EC =;(2)求EC 的长;(3)求重叠部分的面积.【解析】(1)根据轴对称的性质和矩形的性质就可以得出EAC ECA ∠=∠,就可以得出AE CE =,(2)设EC x =,就有AE x =,4BE x =-,在Rt ABE ∆中,由勾股定理就可以求出结论;(3)根据(2)的结论直接根据三角形的面积公式就可以求出结论.【答案】解:(1)四边形ABCD 是矩形,AB CD ∴=,AD BC =,90B ∠=︒,//AD BC ,DAC BCA ∴∠=∠.ADC ∆与△AD C '关于AC 成轴对称ADC ∴∆≅△AD C ',DAC D AC ∴∠=∠',D AC ACB ∴∠'=∠,AE EC ∴=;(2)2AB cm =,4BC cm =,2CD cm ∴=,4AD cm =.设EC x =,就有AE x =,4BE x =-,在Rt ABE ∆中,由勾股定理,得224(4)x x +-=,解得: 2.5x =.答:EC 的长为2.5cm ;(3)2AEC EC AB S ∆=, 22.52 2.52AEC S cm ∆⨯==. 答:重叠部分的面积为22.5cm .题型五 勾股定理的实际应用例5.数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?【解析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【答案】解:设旗杆高xm ,则绳子长为(2)x m +,旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为2228(2)x x +=+,解得15x m =,∴旗杆的高度为15米.变式训练1.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【解析】在Rt ABC ∆中,利用勾股定理计算出AB 长,再根据题意可得CD 长,然后再次利用勾股定理计算出AD 长,再利用BD AB AD =-可得BD 长.【答案】解:在Rt ABC ∆中:90CAB ∠=︒,17BC =米,8AC =米, 2215AB BC AC ∴=-=(米),此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,171710CD ∴=-⨯=(米),22100646AD CD AC ∴=-=-=(米),1569BD AB AD ∴=-=-=(米),答:船向岸边移动了9米.变式训练 2.勾股定理是几何学中的明珠,它充满魅力,在现实世界中有着广泛的应用.请你尝试应用勾股定理解决下列问题:一架2.6m 长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 为2.4m ,如果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 向外移了多少米?(注意:3.15 1.77)≈【解析】先根据勾股定理求出OB 的长,再根据梯子的长度不变求出OD 的长,根据BD OD OB =-即可得出结论.【答案】解:Rt OAB ∆中, 2.6AB m =, 2.4AO m =,222226241OB AB AO m ∴=-=-=;同理,Rt OCD ∆中,2.6CD m =, 2.40.5 1.9OC m =-=,22222619 3.15 1.77OD CD OC m ∴=-=-=,1.7710.77()BD OD OB m ∴=-=-=.答:梯子底端B 向外移了0.77米.题型六 锐角三角函数定义例1.在Rt ABC ∆中,90C ∠=︒,3AB BC =,则sin B 的值为( )A.12B.22C.32D.223【解析】设BC为x,根据题意用x表示出AB,根据勾股定理求出BC,运用正弦的定义解答即可.【答案】解:设BC为x,则AB=3x,由勾股定理得,AC===2x,∴sin B===,故选:D.变式训练1.如图,在Rt ABC∆中,90ACB∠=︒,CD是斜边AB上的高,下列线段的比值等于cos A的值的有()个(1)ADAC(2)ACAB(3)BDBC(4)CDBC.A.1 B.2 C.3 D.4【解析】根据锐角三角函数关系的定义分析得出答案.【答案】解:∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∴cos A===,故(1),(2),(4)正确.故选:C.题型七网格中的锐角三角函数值例7.如图,A,B,C是正方形网格中的格点(小正方形的顶点),则sin ACB∠的值为( )A .55B .255C .12D .33【解析】由勾股定理可求AC ,BC 的长,由三角形的面积公式可求BD 的长,即可求sin ∠ACB 的值.【答案】解:设小正方形的边长为1,过点B 作BD ⊥AC 于D ,过点B 作BF ⊥AE 于点F , ∵S △ABC =2×7﹣=5 由勾股定理可知:AC ==5, ∵AC •BD =5,∴BD =,由勾股定理可知:BC ==, ∴sin ∠ACB === 故选:A .变式训练 1.如图,在22⨯正方形网格中,以格点为顶点的ABC ∆的面积等于32,则sin (CAB ∠= )A.332B.35C.105D.310【解析】根据勾股定理,可得AC、AB、BC的长,根据三角形的面积公式,可得CD的长,根据正弦函数的定义,可得答案.【答案】解:如图:作CD⊥AB于D,AE⊥BC于E,由勾股定理,得AB=AC=,BC=.由等腰三角形的性质,得BE=BC=.由勾股定理,得AE==,由三角形的面积,得AB•CD=BC•AE.即CD==.sin∠CAB===,故选:B.题型八特殊角三角函数值的计算例8.计算:2sin60cos45sin30tan60︒+︒-︒︒.【解析】首先代入特殊角的三角函数值,再计算乘方,后算乘除,最后算加减即可.【答案】解:原式=+﹣×,=+﹣,=.变式训练1.计算:(1)222sin 30sin60sin 45cos 30︒+︒-︒+︒;(2)tan30tan 45tan 60tan 45︒+︒︒︒. 【解析】(1)直接利用特殊角的三角函数值代入求出答案;(2)直接利用特殊角的三角函数值代入求出答案.【答案】解:(1)原式=()2+﹣()2+()2=+﹣+ =+; (2)原式==.变式训练2.22cos30tan30cos60(1tan60)︒+︒︒--︒【解析】把特殊角的三角函数值代入原式,根据二次根式的加减运算法则计算.【答案】解:原式=2×+×﹣+1=+1. 题型九 解直角三角形例9.如图,在ABD ∆中,AC BD ⊥于点C ,32BC CD =,点E 是AB 的中点,tan 2D =,1CE =,求sin ECB ∠的值和AD 的长.【解析】利用已知表示出BC ,CD 的长,再利用勾股定理表示出AB 的长,进而求出sin ∠ECB 的值和AD 的长.【答案】解:∵AC ⊥BD ,∴∠ACB =∠ACD =90°.∵点E 是AB 的中点,CE =1,∴BE =CE =1,AB =2CE =2,∴∠B =∠ECB .∵=,∴设BC =3x ,CD =2x .在Rt △ACD 中,tan D =2,∴=2,∴AC =4x .在Rt △ACB 中,由勾股定理得AB ==5x , ∴sin ∠ECB =sin B ==. 由AB =2,得x =,∴AD ===2x =2×=.变式训练1.如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=. (1)求AD 的长;(2)求sin DBC ∠的值.【解析】(1)过点D 作DH ⊥AB 于点H ,根据等腰直角三角形的性质,勾股定理以及锐角三角形函数的定义即可求出答案.(2)由(1)可求出CD =4,根据勾股定理可求出BD 的长度,然后根据锐角三角函数的定义即可求出答案.【答案】解:(1)过点D 作DH ⊥AB 于点H ,∵等腰三角形ABC ,∠C =90°∴∠A =45°,∴AH =DH ,设AH =x ,∴DH =x ,∵tan∠DBA=,∴BH=5x,∴AB=6x,∵AC=6,∴由勾股定理可知:AB=6,∴x=,∴AH=DH=,∴由勾股定理可知:AD=2;(2)由于AD=2∴DC=4,∴由勾股定理可知:DB=2,∴,变式训练 2.如图,已知Rt ABC∠=︒,CD是斜边AB上的中线,过点A作∆中,90ACB=.AH CH⊥,AE分别与CD、CB相交于点H、E,2AE CD(1)求sin CAH∠的值;(2)如果5CD=,求BE的值.【解析】(1)由勾股定理得出AC==CH,由锐角三角函数定义即可得出答案;(2)根据sinB的值,可得出AC:AB=1:,由AB=2,得AC=2,设CE=x(x>0),则AE=x,由勾股定理得出方程,求出CE=1,从而得出BE.【答案】解:(1)∵AE⊥CD,∴∠AHC=90°,∵AH=2CH,∴由勾股定理得:AC==CH,∴sin∠CAH===;(2)∵∠ACB=90°,CD是斜边AB上的中线,∴AB=2CD=2,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∵∠ACB=90°,∴∠BCD+∠ACH=90°,∴∠B=∠BCD=∠CAH,∵sinB==sin∠CAH==,∴AC:AB=1:,∴AC=2.设CE=x(x>0),则AE=x,在Rt△ACE中,由勾股定理得:x2+22=(x)2,解得:x=1,∴CE=1,在Rt△ABC中,由勾股定理得:BC===4,∴BE=BC﹣CE=3.题型十解直角三角形的应用之坡度坡角问题例10.如图,扶梯AB坡比为1:2,滑梯CD坡比为3.若40=,某人BC mAE m=,30m≈,从扶梯上去,经过顶部BC,再沿滑梯滑下,共经过多少路径?(结果精确到0.1)(2 1.41≈3 1.73≈5 2.24)【解析】首先在直角△ABE中根据AE=40m和坡比求得AB和BE,然后得出CF的长,最后在直角△CFD中求得CD的长即可,继而求出经过的路径=AB+BC+CD的长度即可.【答案】解:∵扶梯AB的坡比为1:2,即BE:AE=1:2,AE=40m,∴BE=20m,∴AB===20(m),∵CF=BE=20米,CF:DF=1:,∴FD=CF=20(m),∴CD===40(m),∴经过的路径=AB+BC+CD=20+30+40=70+20≈114.8(m).答:共经过路径长114.8m.变式训练1.今年“五一”假期,某教学活动小组组织一次登山活动,他们从山脚下A点出发沿斜坡AB到达B点,再从B点沿斜坡BC到达山顶C点,路线如图所示,斜坡AB的长为20013米,斜坡BC的长为2002米,坡度是1:1,已知A点海拔121米,C点海拔721米(1)求B点的海拔;(2)求斜坡AB的坡度;(3)为了方便上下山,若在A到C之间架设一条钢缆,求钢缆AC的长度.【解析】(1)根据题意和图形,可以求得点B的海波,本题得以解决;(2)根据题目中的数据可以求得AF和BF的长度,从而可以求得斜坡AB的坡度;(3)根据题目中的数据可以求得AD和CD的长度,然后根据勾股定理即可求得AC的长度.【答案】解:(1)作CD⊥AM于点D,作BE⊥CD于点E,作BF⊥AM于点F,连接AC,∵斜坡BC的长为200米,坡度是1:1,∴BE=CE=200米,∵A点海拔121米,C点海拔721米,∴CD=600米,∴BF=400米,∵121+400=521(米),∴点B的海拔是521米;(2)∵斜坡AB的长为200米,BF=400米,∴AF==600米,∴BF:AF=400:600=2:3,即斜坡AB的坡度是2:3;(3)∵CD=600米,AD=AF+FD=AF+BE=600+200=800(米),∴AC==1000米,即钢缆AC的长度是1000米.题型十一解直角三角形的应用之仰角俯角问题例11.如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53︒,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45︒,已知山坡AB的坡度1:3,10AB=米,21AE=米,求广告牌CD的高度.(测角器的高度忽略不计,参考数据:4tan533︒≈,cos530.60)︒≈【解析】过B作DE的垂线,设垂足为G,BH⊥AE.在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.【答案】解:过B作BG⊥DE于G,BH⊥AE,Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5米;∴AH=5米,∴BG=AH+AE=(5+21)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(5+21)米.Rt△ADE中,∠DAE=53°,AE=21米,∴DE=AE=28米.∴CD=CG+GE﹣DE=26+5﹣28=(5﹣2)m.答:宣传牌CD高为(5﹣2)米.变式训练1.如图(1),在豫西南邓州市大十字街西南方,耸立着一座古老建筑-福胜寺梵塔,建于北宋天圣十年(公元1032年),当地民谚云:“邓州有座塔,离天一丈八.”学完了三角函数知识后,某校“数学社团”的刘明和王华决定用自己学到的知识测量“福胜寺梵塔”的高度.如图(2),刘明在点C处测得塔顶B的仰角为45︒,王华在高台上的点D处测得塔顶B的仰角为40︒,若高台DE高为5米,点D到点C的水平距离EC为1.3米,且A、C、E三点共线,求该塔AB的高度.(参考数据:sin400.64︒≈,︒≈,cos400.77︒≈,tan400.84结果保留整数)【解析】作DM⊥AB于M,交CB于F,CG⊥DM于G,根据矩形的性质得到CG=DE=5,DG=EC=1.3,设FM=x米,根据正切的定义用x表示出DM、BM,结合图形列出方程,解方程得到答案.【答案】解:作DM⊥AB于M,交CB于F,CG⊥DM于G,则四边形DECG为矩形,∴CG=DE=5,DG=EC=1.3,设FM=x米,由题意得,∠BDM=40°,∠BFM=∠BCA=45°,∴∠CFG=45°,BM=FM=x,∴GF=GC=5,∴DF=DG+GF=5+1.3=6.3,在Rt△BDM中,tan∠BDM=,∴DM=≈,由题意得,DM﹣DF=FM,即﹣6.3=x,解得,x≈33.2,则BA=BM+AM=38.2≈38(米),答:该塔AB的高度约为38米.四、易错点辨析1.三角形构成问题中,忘记对构成三角形的前提(三边关系)进行检验.2.忽视直角三角形致错,题中没有说明角是直角,而直接应用正弦、余弦函数的定义.3.边角关系理解不透致错.4.记忆特殊三角函数值不准确,造成计算错误.五、直击中考1.(2017河北(11))如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的( ).【答案】A.【解析】试题分析:正方形的对角线的长是10214.14,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.2.(2015河北(16))如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以【答案与解析】所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选A.3.(2014河北(8))如图,将长为2,宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠【】A.2B.3C.4D.5【答案】A.【解析】4.(2019河北(19))勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.【答案】(1)20;(2)13;【解析】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.5.(2013河北(26))一透明的敞口正方体容器ABCD -A′B′C′D′装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是___________,BQ的长是____________dm;(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.图1图2图3图4延伸在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM = 1 dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.图5【答案与解析】。

中考数学勾股定理知识点总结及答案

中考数学勾股定理知识点总结及答案

一、选择题1.如图,已知ABC 中,4AB AC ==,6BC =,在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,则这样的点P 共有( ).A .1个B .2个C .3个D .4个2.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于,,D E 连接BD ,则CD 的长为( )A .1B .54C .74D .2543.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( )A .5B .8C .13D .4.8 4.已知一个直角三角形的两边长分别为1和2,则第三边长是( )A .3B .3C .5D .3或5 5.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )A .24B .30C .40D .48 6.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( ) A .8B .9.6C .10D .127.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )A .12cmB .14cmC .20cmD .24cm8.长度分别为9cm 、12cm 、15cm 、36cm 、39cm 五根木棍首尾连接,最多可搭成直角三角形的个数为( ) A .1个B .2个C .3个D .4个9.有下列的判断:①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形 ②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形 ③如果△ABC 是直角三角形,那么a 2+b 2=c 2 以下说法正确的是( ) A .①②B .②③C .①③D .②10.在四边形ABCD 中,AB ∥CD ,∠A =90°,AB =1,BD ⊥BC ,BD =BC ,CF 平分∠BCD 交BD 、AD 于E 、F ,则EDC 的面积为( )A .22﹣2B .32﹣2C .2﹣2D .2﹣1二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________. 13.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________14.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.15.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .16.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.17.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2. 18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.20.如图,Rt△ABC 中,∠BCA =90°,AB 5AC =2,D 为斜边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.三、解答题21.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.22.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.23.已知a ,b ,c 88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.24.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________? (3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.25.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .26.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4, (1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒), ①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.图1 图2 备用图27.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由. 28.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数. (应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且 勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= . (解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空: (3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,分三种情况分析:AP BP =、AB BP =、AB AP =;根据等腰三角形的性质分别对三种情况逐个分析,即可得到答案. 【详解】根据题意,使得ABP △成为等腰三角形,分AP BP =、AB BP =、AB AP =三种情况分析:当AP BP =时,点P 位置再分两种情况分析: 第1种:点P 在点O 右侧,AO BC ⊥于点O∴22172AO AB BC ⎛⎫=-= ⎪⎝⎭设OP x = ∴2227AP AO OP x =+=+∵4AB AC ==∴132BO BC == ∴3BP BO OP x =+=+∴27=3x x ++ ∴2x =-,不符合题意;第2种:点P 在点O 左侧,AO BC ⊥于点O设OP x = ∴2227AP AO OP x ++∴3BP BO OP x =-=- 273x x +=-∴2x =,点P 存在,即1BP =;当AB BP =时,4BP AB ==,点P 存在;当AB AP =时,4AP AB ==,即点P 和点C 重合,不符合题意; ∴符合题意的点P 共有:2个 故选:B . 【点睛】本题考查了等腰三角形、勾股定理、一元一次方程的知识;解题的关键是熟练掌握等腰三角形、勾股定理、一元一次方程的性质,从而完成求解.2.C解析:C 【分析】先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD. 【详解】∵AB=10,AC=8,BC=6,∴2222228610AC BC AB +=+==, ∴△ABC 是直角三角形,且∠C=90°, ∵DE 垂直平分AB , ∴AD=BD ,在Rt △BCD 中,222BD BC CD =+ ,∴222(8)6CD CD -=+,解得CD=74, 故选:C.【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC 是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.3.D解析:D 【分析】过点C 作CH ⊥AB ,连接CD ,根据等腰三角形的三线合一的性质及勾股定理求出CH ,再利用ABCACDBCD SSS=+即可求出答案.【详解】如图,过点C 作CH ⊥AB ,连接CD , ∵AC=BC ,CH ⊥AB ,AB=8, ∴AH=BH=4, ∵AC=5, ∴2222543CH AC AH =-=-=,∵ABCACDBCD S SS=+,∴111222AB CH AC DE BC DF ⋅⋅=⋅⋅+⋅⋅, ∴1118355222DE DF ⨯⨯=⨯+⨯, ∴DE+DF=4.8, 故选:D.【点睛】此题考查等腰三角形三线合一的性质,勾股定理解直角三角形,根据题意得到ABCACDBCD SSS=+的思路是解题的关键,依此作辅助线解决问题.4.D解析:D 【解析】当一直角边、斜边为1和2时,第三边==;当两直角边长为1和2时,第三边==;故选:D .5.A解析:A 【解析】已知△ABC 的三边分别为6,10,8,由62+82=102,即可判定△ABC 是直角三角形,两直角边是6,8,所以△ABC 的面积为12×6×8=24,故选A . 6.B解析:B 【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可. 【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12, ∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠= ,AD BC ∴⊥11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.7.D【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:22201612-=cm∴则该圆柱底面周长为24cm.故选:D.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.8.B解析:B【解析】试题分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故选B.考点:勾股定理的逆定理点评:本题难度中等,主要考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.9.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.10.C解析:C【分析】先过点E 作EG ⊥CD 于G ,再判定△BCD 、△ABD 都是等腰直角三角形,并求得其边长,最后利用等腰直角三角形,求得EG 的长,进而得到△EDC 的面积.【详解】解:过点E 作EG ⊥CD 于G ,又∵CF 平分∠BCD ,BD ⊥BC ,∴BE =GE ,在Rt △BCE 和Rt △GCE 中CE CE BE GE=⎧⎨=⎩, ∴Rt △BCE ≌Rt △GCE ,∴BC =GC ,∵BD ⊥BC ,BD =BC ,∴△BCD 是等腰直角三角形,∴∠BDC =45°,∵AB//CD ,∴∠ABD =45°,又∵∠A =90°,AB =1,∴等腰直角三角形ABD 中,BD=BC ,∴Rt △BDC 中,CD 2,∴DG =DC ﹣GC =2∵△DEG 是等腰直角三角形,∴EG =DG =2,∴△EDC 的面积=12×DC×EG =12×2×(2)=2 故选:C .【点睛】本题主要考查了角平分线的性质,等腰直角三角形的性质与判定,全等三角形的判定与性质,以及勾股定理等知识,解决问题的关键是作辅助线,构造直角三角形EDG 进行求解.二、填空题11.5【详解】解:如图,延长AE 交BC 于点F ,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=,6.52AF AE == 故答案为:6.5.12.32或42【分析】 根据题意画出图形,分两种情况:△ABC 是钝角三角形或锐角三角形,分别求出边BC ,即可得到答案【详解】当△ABC 是钝角三角形时,∵∠D=90°,AC=13,AD=12, ∴222213125CD AC AD -=-=,∵∠D=90°,AB=15,AD=12,∴222215129BD AB AD=-=-=,∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴222213125CD AC AD=-=-=,∵∠ADB=90°,AB=15,AD=12,∴222215129BD AB AD=-=-=,∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.13.53或203【分析】根据折叠后点C的对应点H与AC的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C的对应点H在AC的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得BC=2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83 ∵DE AC ⊥根据勾股定理可得DE=222CD CE -=由折叠的性质可得:DH=CD=103,CP=PH ∴EH=DH -DE=43设CP=PH=x ,则EP=CE -CP=83-x 在Rt △PEH 中,EP 2+EH 2=PH 2即(83-x )2+(43)2=x 2 解得:x=53即此时CP=53; ②当折叠后点C 的对应点H 在AC 的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH ∴EH=DH +DE=163设CP=PH=y ,则EP= CP -CE =y -83在Rt △PEH 中,EP 2+EH 2=PH 2即(y -83)2+(163)2=y 2 解得:y=203即此时CP=203. 综上所述:CP=53或203. 故答案为:53或203. 【点睛】 此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.14【分析】根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, AD ==∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅∴48CE ⨯=得CE =【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 15.55【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长2222105PD QD +=+5cm ),故答案为:5【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.16.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.17.8或10或12或25 3【详解】解:①如图1:当BC=CD=3m时,AB=AD=5m,AC⊥BD,此时等腰三角形绿地的面积:12×6×4=12(m2);②如图2:当AC=CD=4m时,AC⊥CB,此时等腰三角形绿地的面积:12×4×4=8(m2);③如图3:当AD=BD时,设AD=BD=xm,在Rt△ACD中,CD=(x-3)m,AC=4m,由勾股定理,得AD 2=DC 2+CA 2,即(x-3)2+42=x 2,解得x=256, 此时等腰三角形绿地的面积:12BD·AC=12×256×4=253(m 2); ④如图4,延长BC 到D ,使BD=AB=5m ,故CD=2m ,此时等腰三角形绿地的面积:12BD·AC=12×5×4=10(m 2); 综上所述,扩充后等腰三角形绿地的面积为8m 2或12m 2或10m 2或253m 2. 点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式. 19.78. 【解析】 ∵∠C =90°,AB =5,BC =4,∴AC 2254-.∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78.20 【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA =90°,DE ⊥AC ,DF ⊥BC ,证得四边形CEDF 是矩形,连接CD ,则CD=EF ,当CD⊥AB 时,CD 最短,即EF=CD=5.点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.三、解答题21.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥, 12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.22.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵AB =AC ,AD =AE ,∴△ACD ≌△ABE (SAS ),∴CD =BE .(2)如图2,连结BE ,∵AD =AE ,∠DAE =60°,∴△ADE 是等边三角形,∴DE =AD =3,∠ADE =∠AED =60°,∵CD ⊥AE ,∴∠CDA =12∠ADE =12×60°=30°, ∵由(1)得△ACD ≌△ABE ,∴BE =CD =4,∠BEA =∠CDA =30°,∴∠BED =∠BEA +∠AED =30°+60°=90°,即BE ⊥DE ,∴BD =22BE DE +=2234+=5.(3)CD 2、CE 2、BC 2之间的数量关系为:CD 2+CE 2=BC 2,理由如下:解法一:如图3,连结BE .∵AD =AE ,∠DAE =90°,∴∠D =∠AED =45°,∵由(1)得△ACD ≌△ABE ,∴BE =CD ,∠BEA =∠CDA =45°,∴∠BEC =∠BEA +∠AED =45°+45°=90°,即BE ⊥DE ,在Rt △BEC 中,由勾股定理可知:BC 2=BE 2+CE 2.∴BC 2=CD 2+CE 2.解法二:如图4,过点A 作AP ⊥DE 于点P .∵△ADE 为等腰直角三角形,AP ⊥DE ,∴AP =EP =DP .∵CD 2=(CP +PD )2=(CP +AP )2=CP 2+2CP •AP +AP 2,CE 2=(EP ﹣CP )2=(AP ﹣CP )2=AP 2﹣2AP •CP +CP 2,∴CD 2+CE 2=2AP 2+2CP 2=2(AP 2+CP 2),∵在Rt △APC 中,由勾股定理可知:AC 2=AP 2+CP 2,∴CD 2+CE 2=2AC 2.∵△ABC 为等腰直角三角形,由勾股定理可知:∴AB 2+AC 2=BC 2,即2AC 2=BC 2,∴CD 2+CE 2=BC 2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD ,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.23.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c 88a a --|c ﹣17|+b 2﹣30b +225, 2881||7(15)a a c b --+-=﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40; 三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.24.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t . 在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.25.作图见解析,325【分析】作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++ ∵11AB AC=BC AH 22⋅⋅ ∴8545∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭x ∴()2221654=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.26.(1)见详解;(2)①t 值为:103s 或6s ;②t 值为:4.5或5或4912. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-4;分别得出方程,解方程即可.【详解】解:(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AB=AC=10cm.由运动知,AM=10-2t,AN=t,①当MN∥BC时,AM=AN,即10-2t=t,∴103t ;当DN∥BC时,AD=AN,∴6=t,得:t=6;∴若△DMN的边与BC平行时,t值为103s或6s.②存在,理由:Ⅰ、当点M在BD上,即0≤t<2时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=2时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=5当DE=DM,则2t-4=5,∴t=4.5s;当ED=EM,则点M运动到点A,∴t=5s;当MD=ME=2t-4,如图,过点E作EF垂直AB于F,∵ED=EA ,∴DF=AF=12AD=3, 在Rt △AEF 中,EF=4;∵BM=2t ,BF=BD+DF=4+3=7,∴FM=2t-7在Rt △EFM 中,(2t-4)2-(2t-7)2=42,∴t=4912. 综上所述,符合要求的t 值为4.5或5或4912. 【点睛】本题主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.27.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG = ∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒ ∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D 为AC 的中点,DF ∥BC ,∴DG=12BC,DC=12AC , ∴DG=DC ,∴EC=GF ,∵∠DFC=∠FCB ,∴∠GFH=∠FCE ,在△FCE 和△HFG 中 CEF FGH EC GFECF GFH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FCE ≌△HFG(ASA),∴HF=FC.由(1)可知ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==. ∴2233DE DF CF CD ==-= ∴333CE DE DC =-=-∴点E 与点C 之间的距离为333-.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.28.(1)1(491)2-;1(491)2+;(2)21(1)2n -;21(1)2n +;(3)21m -;21m +;(4)10;26; 12;35;【解析】【分析】(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.【详解】解:(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; 故答案为:1(491)2-;1(491)2+;(2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; 故答案为:21(1)2n -;21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;故答案为:m 2-1,m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35;故答案为:10、26;12、35.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.29.(1)45°;(2)GF=AG+CF ,证明见解析;(3)①6; ②s ab =,理由见解析.【解析】【分析】(1)如图1中,连接BE .利用全等三角形的性质证明EB=ED ,再利用等角对等边证明EB=EF 即可解决问题.(2)猜想:GF=AG+CF .如图2中,将△CDF 绕点D 旋转90°,得△ADH ,证明△GDH ≌△GDF (SAS )即可解决问题.(3)①设CF=x ,则AH=x ,BF=6-x ,GF=3+x ,利用勾股定理构建方程求出x 即可. ②设正方形边长为x ,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE .∵四边形ABCD 是正方形,∴CD=CB ,∠ECD=∠ECB=45°,∵EC=EC ,∴△ECB ≌△ECD (SAS ),∴EB=ED ,∠EBC=∠EDC ,∵∠DEF=∠DCF=90°,∴∠EFC+∠EDC=180°,∵∠EFB+∠EFC=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴EB=EF,∴DE=EF,∵∠DEF=90°,∴∠EDF=45°故答案为45°.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,∴∠DAC+∠DAH=180°,∴H、A、G三点共线,∴GH=AG+AH=AG+CF,∵∠EDF=45°,∴∠CDF+∠ADG=45°,∴∠ADH+∠ADG=45°∴∠GDH=∠EDF=45°又∵DG=DG∴△GDH≌△GDF(SAS)∴GH=GF,∴GF=AG+CF.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,则有(3+x)2=(6-x)2+32,解得x=2∴S△BFG=1•BF•BG=6.2②设正方形边长为x,∵AG=a,CF=b,∴BF=x-b,BG=x-a,GF=a+b,则有(x-a)2+(x-b)2=(a+b)2,化简得到:x2-ax-bx=ab,∴S=12(x-a)(x-b)=12(x2-ax-bx+ab)=12×2ab=ab.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.30.(1)AB=45;(2)见解析;(3)CD+CF的最小值为47.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE=2DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC =43,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.【详解】(1)∵点A(0,4),B(m,0),且m=8,∴AO=4,BO=8,在Rt△ABO中,AB=2245AO BO+=(2)如图,过点D作DF⊥AO,∵DE=DO,DF⊥AO,∴EF=FO,∵m=4,∴AO=BO=4,∴∠ABO=∠OAB=45°,∵点C,O关于直线AB对称,∴∠CAB=∠CBA=45°,AO=AC=OB=BC=4,∴∠CAO=∠CBO=90°,∵DF⊥AO,∠BAO=45°,∴∠DAF=∠ADF=45°,。

中考数学复习----勾股定理知识点总结与专项练习题(含答案解)

中考数学复习----勾股定理知识点总结与专项练习题(含答案解)

中考数学复习----勾股定理知识点总结与专项练习题(含答案解) 知识点总结1. 勾股民定理的内容:在直角三角形中,两直角边的平方的和等于斜边的平方。

若直角三角形的两直角边是b a ,,斜边是c ,则222b a c +=。

2. 勾股数:满足直角三角形勾股定理的三个正整数是一组勾股数。

3. 勾股定理的逆定理:若三角形的三条边分别是c b a ,,,且满足222b a c +=,则三角形是直角三角形,且∠C 是直角。

4. 特殊三角形三边的比:①含30°的直角三角形三边的比例为(从小打大):2:3:1。

②45°的等腰直角三角形三边的比例为(从小到大):2:1:1。

5. 两点间的距离公式:若点()11y x A ,与点()22y x B ,,则线段AB 的长度为:()()221221y y x x AB −+−=。

练习题 1、(2022•攀枝花)如图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC .若OC =,BC =1,∠AOB =30°,则OA 的值为( )A .3B .23C .2D .1【分析】根据勾股定理和含30°角的直角三角形的性质即可得到结论.【解答】解:∵∠OBC=90°,OC=,BC=1,∴OB===2,∵∠A=90°,∠AOB=30°,∴AB=OB=1,∴OA===,故选:A.2、(2022•荆门)如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为120m的正方形,且每一个侧面与地面成60°角,则金字塔原来高度为()A.120m B.603m C.605m D.1203m【分析】根据底部是边长为120m的正方形求出BC的长,再由含30°角的直角三角形的性质求解AB的长,利用勾股定理求出AC的长即可.【解答】解:如图,∵底部是边长为120m的正方形,∴BC=×120=60m,∵AC⊥BC,∠ABC=60°,∴∠BAC=30°,∴AB =2BC =120m ,∴AC ==m . 故选:B .3、(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC 中,∠A =30°,AC =3,∠A 所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC 是一个直角三角形),则满足已知条件的三角形的第三边长为( )A .23B .23﹣3C .23或3D .23或23﹣3【分析】根据题意知,CD =CB ,作CH ⊥AB 于H ,再利用含30°角的直角三角形的性质可得CH ,AH 的长,再利用勾股定理求出BH ,从而得出答案.【解答】解:如图,CD =CB ,作CH ⊥AB 于H ,∴DH =BH ,∵∠A =30°,∴CH =AC =,AH =CH =,在Rt △CBH 中,由勾股定理得BH ==,∴AB =AH +BH ==2,AD =AH ﹣DH ==, 故选:C . 4、(2022•荆州)如图,在Rt △ABC 中,∠ACB =90°,通过尺规作图得到的直线MN 分别交AB ,AC 于D ,E ,连接CD .若CE =31AE =1,则CD = .【分析】如图,连接BE ,根据作图可知MN 为AB 的垂直平分线,从而得到AE =BE =3,然后利用勾股定理求出BC ,AB ,最后利用斜边上的中线的性质即可求解.【解答】解:如图,连接BE ,∵CE =AE =1,∴AE =3,AC =4,而根据作图可知MN 为AB 的垂直平分线,∴AE =BE =3,在Rt △ECB 中,BC ==2,∴AB ==2, ∵CD 为直角三角形ABC 斜边上的中线,∴CD =AB =.故答案为:. 5、(2022•广元)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于21AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .25B .3C .22D .310 【分析】利用勾股定理求出AB ,再利用相似三角形的性质求出AE 即可.【解答】解:在Rt △ABC 中,BC =6,AC =8,∴AB ===10, ∵BD =CB =6,∴AD =AB ﹣BC =4,由作图可知EF 垂直平分线段AD ,∴AF =DF =2,∵∠A =∠A ,∠AFE =∠ACB =90°,∴△AFE ∽△ACB ,∴=, ∴=,∴AE =,故选:A .6、(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连结PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A .42B .6C .210D .35【分析】在网格中,以MN 为直角边构造一个等腰直角三角形,使PM 最长,利用勾股定理求出即可.【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,此时PM最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP==2,则PM==2.故选:C.7、(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O到超市、学校、体育场、医院的距离,再比较大小即可.【解答】解:如右图所示,点O到超市的距离为:=,点O到学校的距离为:=,点O到体育场的距离为:=,点O到医院的距离为:=,∵<=<,∴点O到超市的距离最近,故选:A.8、(2022•舟山)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE 的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为()A.14B.15C.4D.17【分析】方法一:根据题意先作出合适的辅助线,然后根据勾股定理可以得到AB和BC的长,根据等面积法可以求得EG的长,再根据勾股定理求得EF的长,最后计算出CE的长即可.方法二:延长ED到F,使得DE=DF,连接CF,BF,然后根据全等三角形的判定和性质,以及勾股定理,可以求得CE的长.【解答】解:方法一:作EF⊥CB交CB的延长线于点F,作EG⊥BA交BA的延长线于点G,∵DB=DE=2,∠BDE=90°,点A是DE的中点,∴BE===2,DA=EA=1,∴AB===,∵AB=BC,∴BC=,∵=,∴,解得EG=,∵EG⊥BG,EF⊥BF,∠ABF=90°,∴四边形EFBG是矩形,∴EG=BF=,∵BE=2,BF=,∴EF===,CF=BF+BC=+=,∵∠EFC=90°,∴EC===,故选:D.方法二:延长ED到F,使得DE=DF,连接CF,BF,如图所示,∵BD=DE=2,∠BDE=90°,∴∠BDE=∠BDF=90°,EF=4,∴△BDE≌△BDF(SAS),∴BE=BF,∠BEA=∠BF A=45°,∵∠EBA+∠ABF=90°,∠ABF+∠FBC=90°,∴∠EBA=∠FBC,∵BE=BF,BA=BC,∴△EBA≌△FBC(SAS),∴∠BEA=∠BFC=45°,AE=CF,∴∠CFE=∠BFC+∠AFB=90°,∵点A为DE的中点,∴AE=1,∴CF=1,∴EC===,故选:D.9、(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是.【分析】设直角三角形两条直角边分别为a、b,斜边为c,由一元二次方程根与系数的关系可得a+b=6,ab=4,再由勾股定理即可求出斜边长.【解答】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c====2,故答案为:2.10、(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE ∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDE+∠FDB=90°,∵∠CDE+∠DEC=90°,∴∠DEC=∠FDB,∵tan∠DEC=,tan∠FDB=,∴,解得BF=,故选项A错误;故选:A.11、(2022•通辽)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.【分析】题中60°的锐角,可能是∠A也可能是∠B;∠PCB=30°可以分为点P在在线段AB上和P在线段AB的延长线上两种情况;直角三角形中30°角所对的直角边等于斜边的一半,同时借助勾股定理求得AP的长度.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CP A=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CP A=30°.∵∠PCB=30°,∴∠PCB=∠CP A,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.12、(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.【分析】过点D作DM⊥CI于点M,过点F作FN⊥CI于点N,由正方形的性质可证得△ACJ≌△CDM,△BCJ≌△CFN,可得DM=CJ,FN=CJ,可证得△DMI≌△FNI,由直角三角形斜边上的中线的性质可得DI=FI=CI,由勾股定理可得MI,NI,从而可得CN,可得BJ与AJ,即可求解.【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.13、(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.【分析】由勾股定理和乘法公式完成计算即可.【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.14、(2022•永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是25,小正方形的面积是1,则AE=.【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH =BG=x,结合图形得出AE=x﹣1,利用勾股定理列方程求解.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,∴(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),∴x﹣1=3,故答案为:3.15、(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,径隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是(结果用含m的式子表示).【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【解答】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2﹣1,∴弦是a+2=m2﹣1+2=m2+1,故答案为:m2+1.16、(2022•常州)如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC断裂(填“会”或“不会”,参考数据:3≈1.732).【分析】设AC与BD相交于点O,根据菱形的性质可得AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,从而可得△ABD是等边三角形,进而可得BD=20cm,然后再在Rt△ADO中,利用勾股定理求出AO,从而求出AC的长,即可解答.【解答】解:设AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=20cm,∴DO=BD=10(cm),在Rt△ADO中,AO===10(cm),∴AC=2AO=20≈34.64(cm),∵34.64cm<36cm,∴橡皮筋AC不会断裂,故答案为:不会.17、(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.【分析】如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•DE•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.18、(2022•泰州)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为.【分析】根据勾股定理即可得到结论.【解答】解:如图,第一步到①,第二步到②,故走两步后的落点与出发点间的最短距离为=,故答案为:.。

中考数学一轮复习勾股定理知识点-+典型题及解析

中考数学一轮复习勾股定理知识点-+典型题及解析

中考数学一轮复习勾股定理知识点-+典型题及解析一、选择题1.如图,在RtΔABC 中,∠ACB =90°,AC =9,BC =12,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .245B .365C .12D .15 2.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .93.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .64.如图,已知AB AC =,则数轴上C 点所表示的数为( )A .3B .5C .13-D .15-5.下列说法不能得到直角三角形的( )A .三个角度之比为 1:2:3 的三角形B .三个边长之比为 3:4:5 的三角形C .三个边长之比为 8:16:17 的三角形D .三个角度之比为 1:1:2 的三角形 6.以下列各组数为边长,不能构成直角三角形的是( )A .3,4,5B .1,12C.8,12,13 D.2、3、57.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是()A.6 B.8 C.10 D.128.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.245B.5 C.6 D.89.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.410.如图,在△ABC,∠C=90°,AD平分∠BAC交CB于点D,过点D作DE⊥AB,垂足恰好是边AB的中点E,若AD=3cm,则BE的长为()A.332cm B.4cm C.2cm D.6cm二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).13.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).14.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.15.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .16.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.17.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .18.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.(1)求BF 的长;(2)求CE 的长.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程) 24.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.25.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.26.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .(1)若OA =52,求点B 的坐标; (2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 1(2,2),P 2(2,22),P 3(2+2,2﹣2),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.28.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,根据勾股定理可求出AB 的长度,再根据EQ ⊥AC 、∠ACB=90°即可得出EQ ∥BC ,进而可得出AE EQ AB BC=,代入数据即可得出EQ 的长度,此题得解. 【详解】解:如图所示,过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,在Rt △ABC 中,∠ACB=90°,AC=9,BC=12,∴2215AB AC BC +=,∵AD 是∠BAC 的平分线,∴∠CAD=∠EAD ,在△ACD 和△AED 中,90CAD EAD ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴AE=AC=9.∵EQ ⊥AC ,∠ACB=90°,∴EQ ∥BC ,AE EQ AB BC ∴=, ∴91512EQ =, 653EQ ∴=. 故选B.【点睛】本题考查了勾股定理、轴对称中的最短路线问题以及平行线的性质,找出点C 的对称点E ,及通过点E 找到点P 、Q 的位置是解题的关键.2.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 3.C解析:C试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.4.D解析:D【分析】根据勾股定理求出AB 的长,即为AC 的长,再根据数轴上的点的表示解答.【详解】 由勾股定理得,22125AB =+=∴5AC AB ==∵点A 表示的数是1∴点C 表示的数是15-故选D.【点睛】本题考查了勾股定理、实数与数轴,熟记定理并求出AB 的长是解题的关键.5.C【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理. 6.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.)2+2=2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.D解析:D【分析】此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.【详解】当5和13当13是斜边长时,第三边长为:2213512-=;故这个三角形的第三条边可以是12.故选:D.【点睛】本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.8.A解析:A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又1122ABCS AB CM AC BC==△,∴6824105 CM⨯==,∴PC+PQ的最小值为245,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.9.C解析:C根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA 是4.2尺.故答案选:C .【点睛】本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.10.A解析:A【分析】先根据角平分线的性质可证CD=DE ,从而根据“HL”证明Rt △ACD ≌Rt △AED ,由DE 为AB 中线且DE ⊥AB ,可求AD=BD=3cm ,然后在Rt △BDE 中,根据直角三角形的性质即可求出BE 的长.【详解】∵AD 平分∠BAC 且∠C=90°,DE ⊥AB ,∴CD=DE ,由AD =AD ,所以,Rt △ACD ≌Rt △AED ,所以,AC=AE.∵E 为AB 中点,∴AC=AE=12AB , 所以,∠B=30° .∵DE 为AB 中线且DE ⊥AB ,∴AD=BD=3cm ,∴DE=12BD=32, ∴22332⎛⎫-= ⎪⎝⎭ 332cm. 故选A.本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.二、填空题11.103. 【解析】 试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=10,故3x+12y=10, x+4y=103, 所以S 2=x+4y=103. 考点:勾股定理的证明.12.①③【分析】①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③; ④由BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===, ∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.13.15厘米【分析】要想求得最短路程,首先要画出圆柱的侧面展开图,把A 和C 展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.【详解】解:如图,展开圆柱的半个侧面是矩形,∴矩形的长是圆柱的底面周长的一半,即AB =39π=厘米,矩形的宽BC =12厘米. ∴蚂蚁需要爬行最短路程222212915AC BC AB =+=+=厘米.故答案为:15厘米【点睛】求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.14.5【分析】在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =,∴10AC =,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒∴ 3.6AE =, 1.4ED =,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.15.36或84【分析】过点A 作AD ⊥BC 于点D ,利用勾股定理列式求出BD 、CD ,再分点D 在边BC 上和在CB 的延长线上两种情况分别求出BC 的长度,然后根据三角形的面积公式列式计算即可得解.【详解】解:过点A 作AD ⊥BC 于点D ,∵BC 边上的高为8cm ,∴AD=8cm ,∵AC=17cm ,由勾股定理得:6BD ===cm ,15CD ===cm ,如图1,点D 在边BC 上时,BC=BD+CD =6+15=21cm ,∴△ABC 的面积=12BC AD =12×21×8=84cm 2, 如图2,点D 在CB 的延长线上时,BC= CD −BD =15−6=9cm ,∴△ABC 的面积=12BC AD =12×9×8=36 cm 2, 综上所述,△ABC 的面积为36 cm 2或84 cm 2,故答案为:36或84.【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.16.25 8【分析】先根据勾股定理求出AC的长,再根据DE垂直平分AC得出FA的长,根据相似三角形的判定定理得出△AFD∽△CBA,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC=2222AB+BC=3+4=5;∵DE垂直平分AC,垂足为F,∴FA=12AC=52,∠AFD=∠B=90°,∵AD∥BC,∴∠A=∠C,∴△AFD∽△CBA,∴ADAC=FABC,即AD5=2.54,解得AD=258;故答案为258.【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17.55【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长=cm ),故答案为:【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.18.485【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485. 19.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.20.28+ 【分析】依次求出在Rt △OAB 中,OA 1Rt △OA 1B 1中,OA 2OA 1)2;依此类推:在Rt △OA 5B 5中,OA 6=(2)6,由此可求出△OA 6B 6的周长.【详解】∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1=2OA =2,在22Rt OA B ∆中OA 2OA 1)2, …故在Rt △OA 6B 6中OA 6=2OA 5=(2)6= OB 666A B OB 6故△OA 6B 6+2×)6+2×18故答案为:28+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)BF 长为6;(2)CE 长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】解:(1)∵四边形ABCD 为矩形,∴∠B=90°,且AD=BC=10, 又∵AFE 是由ADE 沿AE 翻折得到的,∴AF=AD=10,又∵AB=8,在Rt △ABF 中,由勾股定理得:,故BF 的长为6.(2)设CE=x ,∵四边形ABCD 为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x ,又∵△AFE 是由△ADE 沿AE 翻折得到的,∴FE=DE=8-x ,由(1)知:BF=6,故CF=BC-BF=10-6=4,在Rt △CEF 中,由勾股定理得:222CF +CE =EF ,∴2224+x =(8-x),解得:x=3,故CE 的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.22.(1)213;(2)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,222246213()PQ BQ BP cm =+=+=;(2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)见解析;(2)CD 2AD +BD ,理由见解析;(3)CD 3+BD【分析】(1)由“SAS ”可证△ADB ≌△AEC ;(2)由“SAS ”可证△ADB ≌△AEC ,可得BD =CE ,由直角三角形的性质可得DE 2AD ,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=3AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD =DE +EC =2DH +BD =3AD +BD ,故答案为:CD =3AD +BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.24.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=,解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 45322HB BE =︒==, ∴点B 到直线AE 的距离为6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =,∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯⨯+⨯⨯ 13=+,故②正确;③在Rt AHB 中,由①知:62EH HB ==, ∴62AH AE EH =+=+, 22222256623AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 21153222ABD S AB AD AB ∆=⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称,∴523AB BC ==+∴225231043AC BC ==+=+∴ min PC AC AP =-,10432=+⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.25.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D-∠B=30°,即∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△AD′C.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.26.(1)(5,0);(2)见解析;(3)①P(4,2),②满足△ACP与△BDC全等的点是P1、P2,P3.理由见解析【分析】(1)由题意可以假设A(a,a)(a>0),根据AB2+OB2=OA2,构建方程即可解决问题;(2)由角平分线的性质定理证明CH=CF,CG=CF即可解决问题;(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.只要证明△ACP≌△CDB(SAS),△ABP是等腰直角三角形即可解决问题;②根据SAS即可判断满足△ACP与△BDC全等的点是P1、P2,P3;【详解】解:(1)∵点A在射线y=x(x≥0)上,故可以假设A(a,a)(a>0),∵AB⊥x轴,∴AB=OB=a,即△ABO是等腰直角三角形,∴AB2+OB2=OA2,∴a2+a2=(52)2,解得a=5,∴点B坐标为(5,0).(2)如图2中,作CF⊥x轴于F.∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.27.(1)假;(2)∠A=45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;(3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=12(c-a),AG=12(a+c),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt△ABC是类勾股三角形,∴ab+a2=c2,在Rt△ABC中,∠C=90°,根据勾股定理得,a2+b2=c2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A图3作CG⊥AB于G,∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,∴∠CDB=∠B,∴CD=CB=a,∵∠ACD=∠A,∴AD=CD=a,∴DB=AB﹣AD=c﹣a,∵CG⊥AB,∴DG=BG=12(c﹣a),。

中考数学一轮复习勾股定理知识点总结及解析

中考数学一轮复习勾股定理知识点总结及解析

一、选择题1.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为( ) A .6B .7C .8D .92.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DGQM的值为( )A .32B .53C .45D .31-3.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .2B .6C .210D .84.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .45.如图,在四边形ABCD 中,∠DAB =30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,DE =3,BC =1,CD =13,则CE 的长是( )A .14B .17C .15D .136.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )A .36B .9C .6D .187.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .68.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .8 9.下列各组线段能构成直角三角形的一组是( )A .30,40,60B .7,12,13C .6,8,10D .3,4,610.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A .217B .25C .42D .7二、填空题11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.12.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.13.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________. 14.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.15.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.16.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.17.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2. 18.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.19.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则2________BD =.20.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.三、解答题21.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O . (1)“距离坐标”为(1,0)的点有 个;(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;(3)如图3,点M 的“距离坐标”为3),且∠DOB = 30︒,求OM 的长.24.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 25.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.26.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.27.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.28.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S ()()()()a b c a b c a c b b c a +++-+-+-.(1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;(2)(实际应用)有一块四边形的草地如图所示,现测得AB =(62)m ,BC =5m ,CD =7m ,AD =6m ,∠A =60°,求该块草地的面积.29.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG≌△BDF;(2)请你连结EG,并求证:EF=EG;(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;(4)求线段EF长度的最小值.30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】本题考查三角形的中线定义,根据条件先确定ABC 为直角三角形,再根据勾股定理求得228AC BC = ,最后根据12ABC AC BC ∆=⋅求解即可. 【详解】解:如图,在ABC 中,AB 边上的中线, ∵CD=3,AB= 6, ∴CD=3,AB= 6, ∴CD= AD= DB ,12∠∠∴=,34∠=∠ , ∵1234180∠+∠+∠+∠=︒,∴1390∠+∠=︒, ∴ABC 是直角三角形,∴22236AC BC AB +==, 又∵8AC BC +=,∴22264AC AC BC BC +⋅+=,∴22264()643628AC BC AC BC ⋅=-+=-=, 又∵12ABC AC BC ∆=⋅, ∴128722ABC S ∆=⨯=, 故选B.【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形.2.D解析:D【分析】先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,PQ =,所以32QM QP PM =+=;易证Rt △ACB ≌Rt △DCG (HL),从而得DG AB ==然后代入所求数据即可得DG QM的值. 【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠,∴△EAB ≌△CAM (SAS ),∴30EBA CMA ==︒∠∠,∴60BPQ APM ==︒∠∠,∴90BQP ∠=︒,12PQ PB =, 设1AP =,则AM =2PM=,1PB =,12PQ =,∴2QM QP PM =+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BC AC CD =⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ),∴DG AB ==∴1DG GM==. 故选D .本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.3.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠FAO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42故选:A .【点睛】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.4.B解析:B过点A 作AE ⊥AD 交CD 于E ,连接BE ,利用SAS 可证明△BAE ≌△CAD ,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD.【详解】解:如图,过点A 作AE ⊥AD 交CD 于E ,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,∴在Rt △ADE 中,22112+=∵∠DAE=∠BAC=90°,∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE ,又∵AB=AC,∴△BAE ≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴在Rt △BED 中,()22223211BE DE +=+=故选B.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键. 5.D解析:D【解析】【分析】连接BD ,作CF ⊥AB 于F ,由线段垂直平分线的性质得出BD=AD ,AE=BE ,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=233DE=3,证出△BCD 是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=12BC=12,33求出EF=BE+BF=72,在Rt △CEF 中,由勾股定理即可得出结果.解:连接BD ,作CF ⊥AB 于F ,如图所示:则∠BFC=90°,∵点E 为AB 的中点,DE ⊥AB ,∴BD=AD ,AE=BE ,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=233,∵BC 2+BD 2=12+(32=13=CD 2,∴△BCD 是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=12BC=12,33 ∴EF=BE+BF=72, 在Rt △CEF 中,由勾股定理得:22731322⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭故选D .【点睛】本题考查了勾股定理、勾股定理的逆定理、线段垂直平分线的性质、等腰三角形的性质;熟练掌握勾股定理和逆定理是解题的关键. 6.A解析:A【分析】先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.【详解】 CE 平分ACB ∠,CF 平分ACD ∠,,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=,111(90222)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,,BCE CEF DCF F ∠=∴∠∠=∠,,ACE CEF ACF F ∴∠=∠∠=∠,3,3EM CM FM CM ∴====,6EF EM FM ∴=+=,在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,故选:A .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.7.C解析:C【详解】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .考点:勾股定理的证明.8.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A 的面积等于100-64=36;故选:B .【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.9.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.10.A解析:A【解析】试题解析:作AD ⊥l 3于D ,作CE ⊥l 3于E ,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE ,{BAD CBEAB BC ADB BEC∠=∠=∠=∠,∴△ABD ≌△BCE∴BE=AD=3在Rt △BCE 中,根据勾股定理,得25+9=34,在Rt △ABC 中,根据勾股定理,得342=217.故选A .考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.二、填空题11.21021332【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即455AE =,1455DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即45BE =,145DE = ∴2225CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E∴1122BC AC AB BE ⋅=⋅, ∴45BE =355CE ∴= ∵ABD △为等腰直角三角形 ∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 2535555CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:210或213或32【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 12.413【分析】延长AD 至点E ,使得DE =AD =4,结合D 是中点证得△ADC ≌△EDB ,进而利用勾股定理逆定理可证得∠E =90°,再利用勾股定理求得BD 长进而转化为BC 长即可.【详解】解:如图,延长AD 至点E ,使得DE =AD =4,连接BE ,∵D 是BC 边中点,∴BD =CD ,又∵DE =AD ,∠ADC =∠EDB ,∴△ADC ≌△EDB (SAS ),∴BE =AC =6,又∵AB =10,∴AE 2+BE 2=AB 2,∴∠E =90°,∴在Rt △BED 中,222264213BD BE DE =+=+=,∴BC =2BD =413,故答案为:413.【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.13.23或2【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4,∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:32【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.14.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,CP=22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,22221086PD DM -=-= ,当P 在M 的左边时,CP=10-6=4,则P 的坐标是(4,8);当P 在M 的右侧时,CP=10+6=16,则P 的坐标是(16,8).故P 的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.1515【分析】根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, 222282215AD AB BD -=-=∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE =15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题16.2【分析】连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,【详解】解:(1)如图,连接CD、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC,∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,∴GC=GF,∴EG+CG=EG+GF=EF=BE,∴△ECG的周长2,2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..17.8或10或12或25 3【详解】解:①如图1:当BC=CD=3m时,AB=AD=5m,AC⊥BD,此时等腰三角形绿地的面积:12×6×4=12(m2);②如图2:当AC=CD=4m时,AC⊥CB,此时等腰三角形绿地的面积:12×4×4=8(m2);③如图3:当AD=BD时,设AD=BD=xm,在Rt△ACD中,CD=(x-3)m,AC=4m,由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,解得x=256,此时等腰三角形绿地的面积:12BD·AC=12×256×4=253(m2);④如图4,延长BC到D,使BD=AB=5m,故CD=2m,此时等腰三角形绿地的面积:12BD·AC=12×5×4=10(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或12m2或10m2或253m2.点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.18.6【解析】∵AB=AC,AD是角平分线,∴AD⊥BC,BD=CD,∴B点,C点关于AD对称,如图,过C作CQ⊥AB于Q,交AD于P,则CQ=BP+PQ的最小值,根据勾股定理得,AD=8,利用等面积法得:AB⋅CQ=BC⋅AD,∴CQ=BC ADAB⋅=12810⨯=9.6故答案为:9.6.点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ是解本题的关键.19.41【解析】作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD ′中,;BA CA BAD CAD AD AD ===⎧⎪∠∠'⎨⎪⎩∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,∠DAD′=90°,由勾股定理得22AD AD +' ,∠D′DA+∠ADC=90°,由勾股定理得22DC DD +' 41BD 2=41.故答案是:41.20.78【解析】 试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD ∥BC ,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB ,则∠D′AC=∠ACB ,所以AE=EC ,设BE=x ,则EC=4-x ,AE=4-x ,然后在Rt △ABE 中利用勾股定理可计算出BE 的长即可.试题解析:∵四边形ABCD 为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x ,则EC=4﹣x ,AE=4﹣x ,在Rt△ABE 中,∵AB 2+BE 2=AE 2,∴32+x 2=(4﹣x )2,解得x=78, 即BE 的长为78. 三、解答题21.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.22.(1)213;(2)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,222246213()PQ BQ BP cm =+=+=;(2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形. 【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)2;(2)32q p =;(3)27OM =【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出2232MN MO NO p =-=即可解决问题;(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个, 故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =,∴1122NO MO p ==, ∴223MN MO NO p =-=, ∴3q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =∴2MF =,3ME =,∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒,在Rt FMG △中,112FG MF ==,则3MG =, 在Rt EGF 中,1FG =,33EG ME MG =+=,∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.24.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形, ∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°, ∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°, ∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°, ∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD , ∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.25.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以22228373AC OA +=+所以73在Rt △BCD 中,()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.26.(1)见解析;(2)①见解析;②2.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=12BC CG⋅,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴1302DBC ABC∠=∠=︒,∵CF CD=,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴BD DF=;(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵AE CD=,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=120°,∴△BHE≌△ECF(SAS),∴∠EBH =∠FEC ,EB=EF ,∵BA=BC ,∠A =∠ACB =60°,AE=CD ,∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE =23, ∴BF =226BE =,232GF =-,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,∴6BM ME MF ===,∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =+,266262CF =--=-, ∴()26231CN FN ==⨯-=-,∴()2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB ,∴62CG CF ==-,∴△BCG 的面积=()()116262222BC CG ⋅=+-=. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.27.(1),CM ME CM EM =⊥;(2)见解析;(3)25CM =.【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME ≌△BMH (ASA ),∴HM =EM ,EF =BH ,∵CD =BC ,∴CE =CH ,∵∠HCE =90°,HM =EM ,∴CM =ME ,CM ⊥EM .(2)如图2,连接BD ,∵四边形ABCD 和四边形EDGF 是正方形,∴45,45FDE CBD ︒︒∠=∠=∴点B E D 、、在同一条直线上,∵90,90BCF BEF ︒︒∠=∠=,M 为BF 的中点,∴12CM BF =,12EM BF =,∴CM ME =, ∵45EFD ∠=︒,∴135EFC ∠=︒,∵CM FM ME ==,。

2020年中考数学一轮复习基础考点及题型专题20 勾股定理(解析版)

2020年中考数学一轮复习基础考点及题型专题20 勾股定理(解析版)

专题20 勾股定理考点总结【思维导图】【知识要点】知识点一直角三角形与勾股定理直角三角形三边的性质:1、直角三角形的两个锐角互余。

2、直角三角形斜边的中线,等于斜边的一半。

3、直角三角形中30°角所对的边是斜边的一半。

勾股定理概念:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222+=a b c变式: 1)a ²=c ²- b ² 2)b ²=c ²- a ²适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。

勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+cbaHG F EDCB Abacbac cabcab大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证222a b c +=【考查题型汇总】考查题型一 利用直角三角形的性质解题1.(2018·湖南中考模拟)如图,在△ABC 中,AB=AC ,∠BAC=120°,EF 为AB 的垂直平分线,交BC 于点F ,交AB 于点E .求证:FC=2BF .【答案】见解析 【详解】 证明:连接AF ,∵EF 为AB 的垂直平分线, ∴AF=BF ,又AB=AC ,∠BAC=120°, ∴∠B=∠C=∠BAF=30°, ∴∠FAC=90°,a bcc baE DCBA∴AF=FC , ∴FC=2BF .2.(2013·江苏中考模拟)如图,在Rt △ABC 中,∠C =90°,AC ,点D 为BC 边上一点,且BD =2AD ,∠ADC =60°,求△ABC 的周长(结果保留根号).【答案】57【解析】在Rt △ADC 中,∠C =90°,AC =ADC =60°,因为sin AC ADC AD ∠=,即2AD =,所以AD =2.由勾股定理得:1DC ==.所以BD =2AD =4,BC =BD +DC =5.在Rt △ABC 中,∠C =90°,AC =BC =5,由勾股定理得:AB ==所以Rt △ABC 的周长为5AB BC AC ++=+3.(2019·江苏中考模拟)如图,在△ABC 中,AB=AC ,∠BAC=120°,D 为BC 的中点,DE ⊥AB 于E ,求EB :EA 的值.【答案】3【详解】如图,连接AD ,∵AB=AC,∠BAC=120°,D为BC的中点,∴∠BAD=60°,AD⊥BC,∴∠B=90°﹣60°=30°,∵DE⊥AB,∴∠ADE=90°﹣60°=30°,设EA=x,在Rt△ADE中,AD=2EA=2x,在Rt△ABD中,AB=2AD=4x,∴EB=AB﹣EA=4x﹣x=3x,∴EB:EA=3x:x=3.考查题型二含30°角的直角三角形解题方法1.(2018·黑龙江中考模拟)如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4,则BC的长为()A.4B.8C.12D.16【答案】C【详解】∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB⊥AD,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12.故选C.2.(2019·丹东市第十七中学中考模拟)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.8【答案】B【解析】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选B.3.(2018·湖北中考模拟)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是( )A.∠CAD=30°B.AD=BD C.BD=2CD D.CD=ED【答案】D【解析】试题分析:在△ABC中,∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,只有D错误,选项A、B、C的答案都正确.故选D.4.(2018·安徽中考模拟)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1B.2C.3D.4【答案】A【解析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考查题型三利用勾股定理求几何体表面最短距离1.(2017·河北中考模拟)如图,一只蚂蚁沿边长为a的正方体表面从点A爬到点B,则它走过的路程最短为()A a B.()a C.3a D【答案】D【解析】详解:如图,则AB.故选D.2.(2016·山东中考模拟)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2√61cm C.√61cm D.2√34cm【答案】A【解析】试题解析:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12-3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=√A′D2+BD2=√52+122=13(cm).故选A.3.(2018·南宫市奋飞中学中考模拟)如图,在底面周长为12,高为8的圆柱体上有A,B两点,若沿圆柱的侧面积运动,则AB之间的最短距离是( )A.10B.3C.5D.4【答案】A【解析】展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半是6,矩形的宽是圆柱的高是8.根据勾股定理求得矩形的对角线是10.即A、B两点间的最短距离是10.故选C.考查题型四利用勾股定理解决实际问题1.(2019·重庆市全善学校中考模拟)如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米【答案】D【详解】在Rt△ABC 中,∠C=90°,AB=5,BC=3,∴AC=4米,∴可得地毯长度=AC+BC=7米,故选D.2.(2019·福建中考模拟)《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本六尺。

2020中考数学总复习 第六章 三角形 6.3 直角三角形与勾股定理

2020中考数学总复习 第六章  三角形  6.3  直角三角形与勾股定理

2020中考数学总复习第六章三角形6.3 直角三角形与勾股定理课标解读1.理解并掌握直角三角形的概念、性质及判定.2.掌握并运用特殊直角三角形的性质:030角所对的直角边等于斜边的一半.3.理解并会运用勾股定理.知识梳理知识点一直角三角形的性质1.两锐角互余 .2.直角三角形斜边上的中线等于斜边的一半 .3.030角所对的直角边等于斜边的一半 .4.勾股定理:两直角边的平方和等于斜边的平方.知识点二直角三角形的判定1.定义法:有一个角是直角的三角形是直角三角形.2.如果一个三角形的两个角互余,那么这个三角形是直角三角形.3.勾股定理的逆定理:在一个三角形中,如果其中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

基础训练1.下列四组线段中,可以构成直角三角形的是( B )2.在△ABC中,∠ACB=090,∠A=070,CD⊥AB,则∠BCD=700;DC BA3.在Rt△ABC中,AC=3,BC=4,则AB的值为( C )5 D.无法确定4.在△ABC中,∠C=090,∠B=030,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=2,则BC的长为(B)A.4B.6C.5. △ABC的三边长分别为 a,b,c,则满足下列条件的三角形是直角三角形的是(C)A. ∠A: ∠B: ∠:3 B.a:b:c=1:2:3C. ∠A=12∠B=13∠C D. ∠A+∠B=1800-∠C6. 如图:在Rt △ABC 中, ∠ACB=090,D 、E 、F 分别是AB 、AC 、BC 的中点,若CD=4cm ,则EF= 4 cm.7.已知在△ABC 中,AB=AC ,∠BAC=1200,DE 垂直平分AC 交BC 于点D,垂足为E ,若DE=2cm,则BC= 12cm .8.某农场对一块直角三角形的菜地进行改造,测得两直角边长分别为6米、8米,现将其扩建成等腰三角形.且扩充部分是以8米为直角边的直角三角形,求扩建后的等腰三角形菜地的周长.C BAD CBA图1 图2解:①如图1,AC=DC=6,BC=8,AB=DB=10,菜地的周长为32米,面积为12×8÷2=48平方米。

《勾股定理》专题复习(含答案)

《勾股定理》专题复习(含答案)

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:m m ),计算两圆 孔中心A 和B 的距离为______m m .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180-60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A3A4A 5A 5E2E 1E1D 1C 1B 4C3C2C 图344332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠ 122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C )222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x ,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7.5米; (C )12米; (D )8米 4、下列说法中正确的有( )(1)如果∠A+∠B+∠C=3:4:5,则△ABC 是直角三角形;(2)如果∠A+∠B=∠C ,那么△ABC 是直角三角形;(3)如果三角形三边之比为6:8:10,则ABC 是直角三角形;(4)如果三边长分别是221,2,1(1)n n n n -+>,则ABC 是直角三角形。

2020中考数学,勾股定理+方程思想解几何+分类讨论+

2020中考数学,勾股定理+方程思想解几何+分类讨论+

150°


CE
Fa
在下图三角形的边上找出一点,使得该点与 三角形的两顶点构成等腰三角形!
A 110°
B 20°
50° C
(分类讨论)
1、对∠A进行讨论
A 110°
C
20°
20°
A C
20° 20°
A C
80°
20°
80°
A
B 20°
50° C
B 2、对∠B进行讨论
3、对∠C进行讨论
B A
C
65° 65° 50°
❖ 分类必须有一定的标准,标准不同分类的结 果也就不同。分类要做到不遗漏,不重复。 分类后,对每个类进行研究,使问题在各种 不同的情况下,分别得到各种结论,这就是 讨论。
分类讨论思想
❖ 分类讨论是对问题深入研究的思想方法,用分类讨 论的思想,有助于发现解题思路和掌握技能技巧, 做到举一反三,触类旁通。
Q C AP
(4)如图当P在OB的延长线上时,
∵∠OQC=∠OCQ=x,∴∠OQC=∠QPO+∠QOP,
∴∠QPO= 12∠OQC= 12x, 又∠COA=∠OCP+∠CPO, 解方程30=x+
1 x2,
得到x=200 即∠OCP=200
Q P
B
C
O
A
4.在半径为1的圆O中,弦AB、AC的长
分别是 3 、 2 ,
C
B
A
OP
解:∵OQ=OC,Q OQ=QP
∴∠OQC=∠OCQ,
∠QOP=∠QPO 设∠OCP=x0 , 则有:
(1)如上图, 当点P在线段OA上时, ∵∠OQC=∠OCP=x,
1

2020年九年级数学中考复习微专题 勾股定理(解析版)

2020年九年级数学中考复习微专题 勾股定理(解析版)

2020年中考数学复习解答题专题练勾股定理1. 如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,求点D到BC的距离.2. 在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,求PD+PE的长.3. 如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,求AP的长.4. 如图为一个棱长为1的正方体的展开图,A,B,C是展开后小正方形的顶点,则∠ABC的度数为________.5.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.6. 如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长.(2)在△ABC中,求BC边上高的长.7. 如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.8. 如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.9. 已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.10. 如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A 开始沿AB边向B点以每秒1cm的速度移动,点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少?11如图,在四边形ABCD中,AB∶BC∶CD∶DA=2∶2∶3∶1,且∠ABC=90°,求∠DAB的度数.12.在三角形ABC中,D为BC的中点,AB等于5,AD等于6,AC等于13,试判断AD与AB的位置关系.13.如图,已知△ABC,AB=8,BC=10,AC=6.(1)判断△ABC是什么三角形?(2)用尺规作图法作出边BC的垂直平分线,交BC于点D,交AB于点E.(3)连接CE,求CE的长.14. 在某小区的A处有一个凉亭,道路AB,BC,AC两两相交于点A,B,C,并且道路AB与道路BC互相垂直,如图所示.已知点A与点B之间的距离为20m,若有两个小朋友在与点B相距10m的点D处玩耍,玩累了他们分别沿不同的路线D →B→A,D→C→A到凉亭A处喝水休息,已知路线D→B→A与D→C→A路程相等,求AC的长度.15. 如图,是某次机器人创意大赛中一位参赛队员设计的机器人行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问从点A到点B的直线距离是多少?2020年中考数学复习解答题专题练勾股定理(解析版)1. 如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,求点D到BC的距离.【解析】选A.过D点作DE⊥BC于E.因为∠A=90°,AB=4,BD=5,所以AD 2=BD 2-AB 2=52-42=9,所以AD=3,因为BD 平分∠ABC ,∠A=90°,所以点D 到BC 的距离DE=AD=3.2. 在△ABC 中,AB=AC=5,BC=8,点P 是BC 边上的动点,过点P 作PD ⊥AB 于点D ,PE ⊥AC 于点E ,求PD+PE 的长.【解析】过A 点作AF ⊥BC 于点F ,连接AP ,因为△ABC 中,AB=AC=5,BC=8,所以BF=4,所以在Rt △ABF 中,AF 2=AB 2-BF 2=9,所以AF=3.所以12×8×3=12×5×PD+12×5×PE ,12=12×5×(PD+PE),PD+PE=4.8.3. 如图,矩形ABCD 中,AB=8,BC=6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE=OD ,求AP 的长.【解析】如图:设AP=x ,则DP=AD-AP=6-x ,因为将△ABP 翻折至△EBP ,所以EP=AP=x ,EB=AB=8,∠E=∠A=90°,因为∠D=∠E=90°,OE=OD ,∠DOP=∠EOF ,所以△DOP ≌△EOF ,所以EF=DP=6-x,OP=OF,因为OE=OD,所以DF=PE=x,所以CF=CD-DF=8-x,因为EF=6-x,BE=8,所以BF=BE-EF=8-(6-x)=x+2,在Rt△BCF中,CF2+BC2=BF2,所以(8-x)2+62=(x+2)2,解得x=4.8,所以AP=4.8.答案:4.84. 如图为一个棱长为1的正方体的展开图,A,B,C是展开后小正方形的顶点,则∠ABC的度数为________.【解析】连接AC,则AC2=22+1=5,BC2=22+1=5,AB2=32+1=10.因为AC2+BC2=AB2,所以△ABC为直角三角形.又因为AC2=BC2,所以AC=BC,所以∠CAB=∠ABC=45°.5.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.【解析】如图,延长AE交BC于点F.因为AB⊥BC,AB⊥AD,所以AD∥BC所以∠D=∠C,∠DAE=∠CFE,又因为点E是CD的中点,所以DE=CE.因为在△AED与△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,所以△AED≌△FEC(AAS),所以AE=FE,AD=FC.因为AD=5,BC=10.所以BF=5.在Rt△ABF中,AF2=AB2+BF2=122+52=169,AF=6.5.所以AF=13,所以AE=126. 如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长.(2)在△ABC中,求BC边上高的长.【解析】(1)因为DB⊥BC,BC=4,CD=5,所以BD2=52-42=9,所以BD=3.(2)延长CB,过点A作AE⊥CB延长线于点E,因为DB⊥BC,AE⊥BC,所以AE∥DB,因为D为AC边的中点,所以BD=1AE,所以AE=6,即BC边上高的长为6.27.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.【解析】因为a2+b2+c2+50=6a+8b+10c,所以a2+b2+c2-6a-8b-10c+50=0,即a2-6a+9+b2-8b+16+c2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a2+b2=c2,所以三角形为直角三角形.8. 如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【解析】设EC=xcm,则DE=(8-x)cm,由折叠可知,EF=DE,AD=AF,在直角△ABF中,由勾股定理得AB2+BF2=AF2,即82+BF2=102,所以BF=6cm,所以FC=10-6=4(cm).在直角△EFC中,由勾股定理得FC2+CE2=EF2,即42+x2=(8-x)2,解之得x=3,即EC的长度为3cm.9. 已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.【解析】过D作DE⊥AB,垂足为E,因为∠1=∠2,所以CD=DE=15,在Rt△BDE中,BE2=BD2-DE2=252-152=202,所以BE=20,因为∠1=2,∠C=∠DEA=90°,AD=AD,所以Rt△ACD≌Rt△AED,又因为AB2=AC2+BC2,即(AC+20)2=AC2+(15+25)2,解得AC=30.10. 如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A 开始沿AB边向B点以每秒1cm的速度移动,点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少?【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9cm,BC=12cm,AC=15cm.因为AB2+BC2=AC2,所以△ABC是直角三角形,过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),所以S△BPQ =12BP·BQ=12×6×6=18(cm2).11如图,在四边形ABCD中,AB∶BC∶CD∶DA=2∶2∶3∶1,且∠ABC= 90°,求∠DAB的度数.【解析】设AB=2a,BC=2a,CD=3a,DA=a.因为∠ABC=90°,AB=BC,所以∠BAC=∠BCA=45°,在Rt△ABC中,AC2=AB2+BC2=(2a)2+(2a)2=8a2,又AD2=a2,CD2=(3a)2=9a2.所以AC2+AD2=CD2,所以△ACD是以∠CAD为直角的直角三角形,所以∠CAD=90°,所以∠DAB=∠BAC+∠CAD=45°+90°=135°.12.在三角形ABC中,D为BC的中点,AB等于5,AD等于6,AC等于13,试判断AD与AB的位置关系.【解析】延长AD至点E,使DE=AD,并连接BE,因为D为BC的中点,所以CD=BD,因为∠ADC=∠EDB,所以△ADC≌△EDB,所以EB=AC=13,因为AD=6,所以AE=12,因为52+122=132,即AB2+AE2=EB2,所以∠EAB=90°,所以AD⊥AB.13.如图,已知△ABC,AB=8,BC=10,AC=6.(1)判断△ABC是什么三角形?(2)用尺规作图法作出边BC的垂直平分线,交BC于点D,交AB于点E.(3)连接CE,求CE的长.【解析】(1)因为AB=8,BC=10,AC=6,所以102=82+62,即BC2=AB2+AC2,所以△ABC是直角三角形.(2)作图如图1:(3)连接CE,如图2:设CE为x,因为边BC的垂直平分线交BC于点D,交AB于点E,所以CE=BE=x,在Rt△ACE中,CE2=AE2+AC2,即x2=(8-x)2+62,解得x=6.25,所以CE=6.25.14. 在某小区的A处有一个凉亭,道路AB,BC,AC两两相交于点A,B,C,并且道路AB与道路BC互相垂直,如图所示.已知点A与点B之间的距离为20m,若有两个小朋友在与点B相距10m的点D处玩耍,玩累了他们分别沿不同的路线D →B→A,D→C→A到凉亭A处喝水休息,已知路线D→B→A与D→C→A路程相等,求AC的长度.【解析】设AC的距离为xm,则DC的长为(30-x)m,则BC的长为(40-x)m,在Rt△ABC中,由勾股定理得:AB2+BC2=AC2,即202+(40-x)2=x2,解得x=25.答:AC之间的距离是25m.15. 如图,是某次机器人创意大赛中一位参赛队员设计的机器人行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问从点A到点B的直线距离是多少?【解析】过点B作BC⊥AD于C,从图中可以看出AC=4-2+0.5=2.5(m),BC=4.5+1.5=6(m),在Rt△ABC中,AB为斜边,,则AB2=AC2+BC2=1694所以AB=13m.2答:从点A到点B的直线距离是13m.2。

中考数学二轮复习勾股定理知识点-+典型题附解析

中考数学二轮复习勾股定理知识点-+典型题附解析

中考数学二轮复习勾股定理知识点-+典型题附解析一、选择题1.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个 2.如图,将一个等腰直角三角形按图示方式依次翻折,若DE a =,则下列说法正确的是( ) ①DC '平分BDE ∠;②BC 长为()22a +;③BCD 是等腰三角形;④CED 的周长等于BC 的长.A .①②③B .②④C .②③④D .③④3.棱长分别为86cm cm ,的两个正方体如图放置,点A ,B ,E 在同一直线上,顶点G 在棱BC 上,点P 是棱11E F 的中点.一只蚂蚁要沿着正方体的表面从点A 爬到点P ,它爬行的最短距离是( )A .(3510)cmB .513cmC 277cmD .583)cm4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( )A .2n ﹣2B .2n ﹣1C .2nD .2n+15.如图,ABC 中,90ACB ∠=︒,2AC =,3BC =.设AB 长是m ,下列关于m 的四种说法:①m 是无理数;②m 可以用数轴上的一个点来表示;③m 是13的算术平方根;④23m <<.其中所有正确说法的序号是( )A .①②B .①③C .①②③D .②③④6.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形 7.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )A .3B .4C .7(21)D .7(21)8.下列命题中,是假命题的是( )A .在△ABC 中,若∠A:∠B:∠C=1:2:3,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠B=∠C=∠A,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形9.如图,在△ABC 中,AB=8,BC=10,AC=6,则BC 边上的高AD 为( )A .8B .9C .245D .1010.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm二、填空题11.将一副三角板按如图所示摆放成四边形ABCD ,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD =32,则AB 的长为__________.12.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.13.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.14.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.15.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.16.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.17.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.18.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.19.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.20.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM =7EF ,则正方形ABCD 的面积为_______.三、解答题21.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.22.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.23.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.24.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.25.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③ ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.28.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________;(2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD的长.30.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF ,交DE 于点P ,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .∵FC ⊥AB ,FD ⊥FE ,∴∠AFD=∠CFE .∴△AFD ≌△CFE (ASA ).同理可证:△CFD ≌△BFE .结论②正确,理由如下:∵△AFD ≌△CFE ,∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.结论③错误,理由如下:∵△AFD ≌△CFE ,∴CE=AD ,∴2FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.2.B解析:B【分析】根据折叠前后得到对应线段相等,对应角相等判断①③④式正误即可,根据等腰直角三角形性质求BC 和DE 的关系.【详解】解:根据折叠的性质知,△C ED CED '≅∆,且都是等腰直角三角形,∴90BDE ∠<︒,45C DE ∠'=︒, ∴12C DE BDE ∠'≠∠ ∴DC '不能平分BDE ∠①错误;45DC E DCE ∴∠'=∠=︒,C E CE DE AD a '====,CD DC ='=,AC a ∴=,2)BC a ==,∴②正确;2ABC DBC ∠=∠,22.5DBC ∴∠=︒,45DCB ∠=︒,112.5BDC ∴∠=︒,BCD ∴∆不是等腰三角形,故③错误;CED ∴∆的周长(2CE DE CD a a a BC =++=+==,故④正确.故选:B .【点睛】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.3.C解析:C【分析】当E 1F 1在直线EE 1上时,,得到AE=14,PE=9,由勾股定理求得AP 的长;当E 1F 1在直线B 2E 1上时,两直角边分别为17和6,再利用勾股定理求AP 的长,两者进行比较即可确定答案【详解】① 当展开方法如图1时,AE=8+6=14cm ,PE=6+3=9cm ,由勾股定理得AP ===② 当展开方法如图2时,AP 1=8+6+3=17cm ,PP 1=6cm ,由勾股定理得AP ===<,【点睛】此题考察正方体的展开图及最短路径,注意将正方体沿着不同棱线剪开时得到不同的平面图形,路径结果是不同的4.A解析:A【分析】连续使用勾股定理求直角边和斜边,然后再求面积,观察发现规律,即可正确作答.【详解】解:∵△ABC 是边长为1的等腰直角三角形121111222ABC S -∆∴=⨯⨯== , ∴2222AC 112,AD (2)(2)2=+==+=223212212:2122122AACD ADE S S --∆∴====⨯⨯== ∴第n 个等腰直角三角形的面积是22n - ,故答案为A.【点睛】本题的难点是运用勾股定理求直角三角形的直角边,同时观察、发现也是解答本题的关键.5.C解析:C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB =90°,∴在Rt ABC 中,m =AB 22AC BC +13故①②③正确,∵m 2=13,9<13<16,∴3<m <4,故④错误,故选:C .【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型.6.D解析:D【分析】由(a-b )(a 2-b 2-c 2)=0,可得:a-b=0,或a 2-b 2-c 2=0,进而可得a=b 或a 2=b 2+c 2,进而判断△ABC 的形状为等腰三角形或直角三角形.【详解】解:∵(a-b )(a 2-b 2-c 2)=0,∴a-b=0,或a 2-b 2-c 2=0,即a=b 或a 2=b 2+c 2,∴△ABC 的形状为等腰三角形或直角三角形.故选:D .【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.7.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD ,即:()()22277-x x +=,解得: 1)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.8.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC中,若∠B=∠C-∠A,则∠C =∠A+∠B,则△ABC是直角三角形,本选项正确;B. △ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2= a2+c2,则△ABC是直角三角形,本选项正确;C. △ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D. △ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.9.C解析:C【分析】本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.【详解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式可知,S△ABC=12AB⋅AC=12BC⋅AD,∴AD=245.故选C.【点睛】本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD 的值.10.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD 是筷子,AB 长是杯子直径,BC 是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm ,BC=8cm ,△ABC 是直角三角形∴在Rt △ABC 中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.二、填空题11.3【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=32∴226AD CD +=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =,∵222AC BC AB +=, ∴22216()2AB AB +=,解得AB=43,负值舍去,故答案为:43.【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键. 12.5cm【分析】连接AC ',分三种情况进行讨论:画出图形,用勾股定理计算出AC '长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC ',分三种情况讨论:如图1,AB=4,BC '=1+2=3,∴在Rt △ABC '中,由勾股定理得AC '2243+(cm ),如图2,AC=4+2=6,CC '=1∴在Rt △ACC '中,由勾股定理得AC '2261+37(cm ),如图3,AD =2,DC '=1+4=5,∴在Rt △ADC '中,由勾股定理得AC '2225+29(cm )∵2937,∴蚂蚁爬行的最短路径长是5cm ,故答案为:5cm .【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.13.32 2n 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=2,求出△ABC 的面积是4;求出113ABB BCB S S ==B 1B 2=4,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2=4,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3=8,B 3B 4,B 4B 5,B n﹣1B n=3.故答案为:332,32n.【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.14.82【分析】根据S△PAD=13S矩形ABCD,得出动点P在与AD平行且与AD的距离是4的直线l上,作A关于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.【详解】设△PAD中AD边上的高是h.∵S△PAD=13S矩形ABCD,∴12AD•h=13AD•AB,∴h=23AB=4,∴动点P在与AD平行且与AD的距离是4的直线l上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE22228882AE AD++=即PA+PD的最小值为2.故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.【分析】设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值【详解】如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10设绳索x 尺,则OA=OB=x∴OC=x+1-5=x-4在Rt △OBC 中,OB 2=OC 2+BC 2∴222(4)10x x =-+得x=14.5(尺)故填14.5 ,【点睛】此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键. 16.10【分析】先根据勾股定理得出a 2+b 2=c 2,利用完全平方公式得到(a +b )2﹣2ab =c 2,再将a +b =5c =5代入即可求出ab 的值.【详解】解:∵在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,∴a 2+b 2=c 2,∴(a +b )2﹣2ab =c 2,∵a +b =5c =5,∴(52﹣2ab =52,∴ab =10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.17.222【分析】连接CE ,交AD 于M ,根据折叠和等腰三角形性质得出当P 和D 重合时,PE+BP 的值最小,此时△BPE 的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE ,先求出BC 和BE 长,代入求出即可.【详解】如图,连接CE ,交AD 于M ,∵沿AD 折叠C 和E 重合,∴∠ACD=∠AED=90°,AC=AE ,∠CAD=∠EAD ,∴AD 垂直平分CE ,即C 和E 关于AD 对称,BD=2,∴2,∴当P 和D 重合时,PE+BP 的值最小,即此时△BPE 的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE ,∵∠DEA=90°,∴∠DEB=90°,∵∠ABC=45°,∴∠B=45°,∵2,∴2即2,∴△PEB 的周长的最小值是222.故答案为2【点睛】本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P 点的位置.18.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG S S S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ , 12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键. 19.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm =利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=, 解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM EF ,2,,a a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH EF ,CH =CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH2AF,∵在Rt△AEF中,AE2=AF2+EF2,∴(2AF)2+(2EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.22.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD≌△ECD(SAS),∴DE=DA,∠A=∠CED=60°,∴∠CED=2∠CBA,∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE,∵BE=BC−CE=BC−AC,∴BC−AC=AD.(2)①如图(b),在AB上截取AM=AD,连接CM,∵AC平分∠DAB,∴∠DAC=∠MAC,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.23.(1)①见解析;②DE =297;(2)DE 的值为517 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=综上所述,DE的值为.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.24.(15132)见解析;(3)23【分析】(1)分两种分割法利用勾股定理即可解决问题;(2)如图,过点A作AD⊥AB,且AD=BN.只要证明△ADC≌△BNC,推出CD=CN,∠ACD=∠BCN,再证明△MDC≌△MNC,可得MD=MN,由此即可解决问题;(3)过点B作BP⊥AB,使得BP=AM=1,根据题意可得△CPB≌△CMA,△CMN≌△CPN,利用全等性质推出∠BNP=30°,从而得到NB和NP的长,即得BM.【详解】解:(1)当MN最长时,225MN AM-,当BN最长时,2213AM MN+(2)证明:如图,过点A作AD⊥AB,且AD=BN,在△ADC和△BNC中,AD BNDAC BAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BNC(SAS),∴CD=CN,∠ACD=∠BCN,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°,∴∠MCD=∠MCN,在△MDC和△MNC中,CD CNMCD MCNCM CM=⎧⎪∠=∠⎨⎪=⎩,∴△MDC≌△MNC(SAS),∴MD=MN在Rt △MDA 中,AD 2+AM 2=DM 2,∴BN 2+AM 2=MN 2,∴点M ,N 是线段AB 的勾股分割点;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,∴∠AMC=∠BPC=120°,AM=PB=1,∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,∴∠BPN=120°-60°=60°,∴∠BNP=30°,∴NP=2BP=2=MN ,∴BN=22213-=,∴BM=MN+BN=23+.【点睛】本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.25.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.26.②③⑤【分析】 ①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=, ∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==, ∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;。

九的级《勾股定理》中考中的勾股定理(含详细解析)-精选学习文档

九的级《勾股定理》中考中的勾股定理(含详细解析)-精选学习文档

中考中的勾股定理勾股定理及其逆定理是初中几何中的重要内容之一,也是中考热点内容之一,下面以近两年中考题为例给大家介绍一下勾股定理在中考中的常见考查形式,希望对你的学习有所帮助!一、利用勾股定理进行计算求值例1:(北京大纲中考题)已知:如图,在△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足.求:AD 的长.解析:过C 作CE⊥BE 交BA 的延长线于E∵∠CAB=120°,∴∠CAE=60°,∴∠ACE=30° ∵AC=2,∴AE=1在Rt△ACE 中,由勾股定理可得:CE 2=AC 2-AE 2=3在Rt△BCE 中,由勾股定理可得:BC 2=CE 2+BE 2=28∴BC= ∵12ABC S ∆=AB×CE=12CB×AD=二、古诗中的勾股定理例2:(厦门课标B 卷)折竹抵地:今有竹高一丈,末折抵地,去本三尺.问折者高几何?如图所示友情提醒:请写出解答这首诗的方法和步骤.解析:如右图所示,由题可知AC+AB=10(尺)…………①BC=3(尺)AB 2-AC 2=BC 2 AB 2-AC 2=9(AB +AC )(AB -AC )=9AB -AC =910…………② ①+②得:1091092 5.451020AB AB =⇒==(尺) 代入②得: A BC DE10919904.5202020AC=-==(尺)∴原处还有4.5尺高的竹子.三、规律探索问题例 3 (邵阳中考题)图(六)中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n个等腰直角三角形的斜边长为_____________.,③对应的斜边长为n个对应斜边长为.四、勾股定理及逆定理的应用例4(潍坊中考题)小明家准备建造长为28米的蔬菜大棚,示意图如图(1).它的横截面为如图(2)所示的四边形ABCD,已知3AB=米,6BC=米,45BCD=︒∠,AB BC⊥,D到BC的距离DE为1米.矩形棚顶ADD A''及矩形DCC D''由钢架及塑料薄膜制作,造价为每平方米120元,其它部分(保温墙体等)造价共9250元,则这个大棚的总造价为多少元?(精确到1元)1.732.24=== 5.39= 5.83=)解析:过D作DF AB⊥于F,又DE BC⊥,DE AB∴∥,∴四边形BEDF为矩形,又45BCD∠=,1CE CD∴==,又6BC=,5DF BE∴==,在Rt AFD△中,25AF DF==,,所以总造价为(150.939.5)120925032098+⨯+≈(元).2nAB CDEC'D'A'图1E图2C。

中考数学勾股定理知识点总结附解析

中考数学勾股定理知识点总结附解析

一、选择题1.在△ABC 中,∠BCA=90∘,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )A .5B .75C .145D .3652.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .98 3.如图,是一长、宽都是3 cm ,高BC =9 cm 的长方体纸箱,BC 上有一点P ,PC =23BC ,一只蚂蚁从点A 出发沿纸箱表面爬行到点P 的最短距离是( )A .2B .3C .10 cmD .12 cm4.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( ) A 37B 13C 3713D 371375.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .66.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .457.如图,已知AB AC =,则数轴上C 点所表示的数为( )A .3-B .5-C .13-D .15-8.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒正方形ADOF 的边长是2,4BD =,则CF 的长为( )A .6B .2C .8D .109.在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( )A .34B .35C .45D .12510.已知三组数据:①2,3,4;②3,4,5;③1,25为三角形的三边长,能构成直角三角形的是( )A .②B .①②C .①③D .②③二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.将一副三角板按如图所示摆放成四边形ABCD,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD=32,则AB的长为__________.13.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是_____.14.如图,在矩形ABCD中,AB=6,AD=8,矩形内一动点P使得S△PAD=13S矩形ABCD,则点P到点A、D的距离之和PA+PD的最小值为_____.15.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.16.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.17.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.18.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.19.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5.①线段OA 的取值范围是______________;②若BD -AC =1,则AC •BD = _________.20.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.三、解答题21.(1)计算:1312248233⎛⎫-+÷⎪⎪⎝;(2)已知a、b、c满足2|23|32(30)0a b c+-+--=.判断以a、b、c为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.23.如图,在矩形ABCD中,AB=8,BC=10,E为CD边上一点,将△ADE沿AE折叠,使点D落在BC边上的点F处.(1)求BF的长;(2)求CE的长.24.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.26.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.27.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.28.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm,点Q从点B开始沿B C A→→方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)则BC=____________cm;(2)当t为何值时,点P在边AC的垂直平分线上?此时CQ=_________?∆成为等腰三角形的运动时间.(3)当点Q在边CA上运动时,直接写出使BCQ29.如图,点A是射线OE:y=x(x≥0)上的一个动点,过点A作x轴的垂线,垂足为B,过点B作OA的平行线交∠AOB的平分线于点C.(1)若OA=52,求点B的坐标;(2)如图2,过点C作CG⊥AB于点G,CH⊥OE于点H,求证:CG=CH.(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.②在(3)①的条件下,在平面内另有三点P1(2,2),P2(2,22),P3(2+2,2﹣2),请你判断也满足△ACP与△BDC全等的点是.(写出你认为正确的点)30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH ⊥BE 于H ,EG ⊥CD 于G ,证明△DHE ≌△EGD ,利用勾股定理求出75EH DG ==,即可得到BE. 【详解】∵∠BCA=90∘,AC=6,BC=8, ∴22226810AB AC BC ,∵D 是AB 的中点,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC ,CE=AC=6,∴BD=DE ,作DH ⊥BE 于H ,EG ⊥CD 于G ,∴∠DHE=∠EGD=90︒,∠EDH=12∠BDE=12(180︒-2∠EDC )=90︒-∠EDC , ∴∠DEB= 90︒-∠EDH=90︒-(90︒-∠EDC)=∠EDC ,∵DE=DE ,∴△DHE ≌△EGD ,∴DH=EG ,EH=DG ,设DG=x ,则CG=5-x ,∵2EG =2222DE DG CE CG -=-,∴222256(5)x x -=--,∴75x =, ∴75EH DG ==, ∴BE=2EH=145, 故选:C.【点睛】此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE 转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE ≌△EGD ,由此求出BE 的长度.2.C解析:C【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+…… 2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.3.A解析:A【解析】【分析】将图形展开,可得到安排AP 较短的展法两种,通过计算,得到较短的即可.【详解】解:(1)如图1,AD=3cm ,DP=3+6=9cm ,在Rt △ADP 中,2239+10cm((2)如图2, AC=6cm,CP=6cm,Rt△ADP中,AP=2266+=62 cm综上,蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是62cm.故选A.【点睛】题考查了平面展开--最短路径问题,熟悉平面展开图是解题的关键.4.C解析:C【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论.【详解】当如图1所示时,AB=2,BC=3,∴AC=2223=13+;当如图2所示时,AB=1,BC=6,∴221+6=37故选C.【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.5.C解析:C如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C.考点:勾股定理的证明.6.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt△ABC中,AB2=BC2+AC2,∵S1=AB2,S2=BC2,S3=AC2,∴S1=S2+S3.∵S2=7,S3=2,∴S1=7+2=9.故选:A.【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.D解析:D【分析】根据勾股定理求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【详解】由勾股定理得,AB====∴AC AB∵点A表示的数是1∴点C表示的数是1-故选D.【点睛】本题考查了勾股定理、实数与数轴,熟记定理并求出AB的长是解题的关键.8.A解析:A【分析】设CF=x,则AC=x+2,再由已知条件得到AB=6,BC=6+x,再由AB2+AC2=BC2得到62+(x+2)2=(x+4)2,解方程即可.设CF=x ,则AC=x+2,∵正方形ADOF 的边长是2,BD=4,△BDO ≌△BEO ,△CEO ≌△CFO ,∴BD=BE ,CF=CE ,AD=AF=2,∴AB=6,BC=6+x ,∵∠A=90°,∴AB 2+AC 2=BC 2,∴62+(x+2)2=(x+4)2,解得:x=6,即CF=6,故选:A .【点睛】考查正方形的性质、勾股定理,解题关键是设CF=x ,则AC=x+2,利用勾股定理得到62+(x+2)2=(x+4)2.9.D解析:D【解析】在Rt △ABC 中 ∠C=90°,AC=3,BC=4,根据勾股定理求得AB=5,设点C 到AB 的距离为h ,即可得12h×AB=12AC×BC ,即12h×5=12×3×4,解得h=125,故选D. 10.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③2221+2=5=, 所以能构成直角三角形的是②③.故选D .【点睛】考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 二、填空题11.103. 【解析】试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=10,故3x+12y=10, x+4y=103, 所以S 2=x+4y=103. 考点:勾股定理的证明.12.【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=∴6=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =, ∵222AC BC AB +=, ∴22216()2AB AB +=,解得AB=故答案为:【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键. 13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14.【分析】根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.【详解】设△PAD中AD边上的高是h.∵S△PAD=13S矩形ABCD,∴12AD•h=13AD•AB,∴h=23AB=4,∴动点P在与AD平行且与AD的距离是4的直线l上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE22228882AE AD++=即PA+PD的最小值为2.故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.15..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP22OP OC-2254-3,则P的坐标是(3,4).②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM 中,PM =22PD DM -=3,当P 在M 的左边时,CP =5﹣3=2,则P 的坐标是(2,4);当P 在M 的右侧时,CP =5+3=8,则P 的坐标是(8,4).故P 的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.16.5【分析】在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =,∴22=10AC AB BC +=,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.17.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=,22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得,22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.18.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N ′=22''OM ON +=10. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.19.①1<OA <4. ②672. 【解析】(1)由三角形边的性质5-3<2OA <5+3,1<OA <4.(2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE ,由题意知,22BD DE =+()2BC CE +=2DE +()24CE +, ()()222225AC DE BC CE DE CE ∴=+-=+-,2AC ∴+ 2BD=2DE +()()22245CE DE CE +++-=2(22)5018DE CE ++=+50=68,BD -AC =1,两边平方2AC ∴+ 2BD -2AC •BD =1, ∴AC •BD =672.20.639+或639- 【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== ,AH ∴===. 3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =-=, 45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒, 230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ ,12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.三、解答题21.(1)423;(2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a 、b 、c 的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)⎛÷ ⎝=÷=÷ =423; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a 、b 、c 满足2|a (c 0-=,∴a ﹣=0,﹣b =0,c 0,∴a =,b =,c∵,,∴以a 、b 、c 为边能组成三角形,∵a =,b =,c∴a 2+b 2=c 2,∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,则此三角形的面积是12⨯. 【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.22.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15,答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.23.(1)BF长为6;(2)CE长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt△ABF中,可由勾股定理求出BF的长;(2)设CE=x,根据翻折可知,EF=DE=8-x,由(1)可知BF=6,则CF=4,在Rt△CEF中,可由勾股定理求出CE的长.【详解】解:(1)∵四边形ABCD为矩形,∴∠B=90°,且AD=BC=10,又∵AFE是由ADE沿AE翻折得到的,∴AF=AD=10,又∵AB=8,在Rt△ABF中,由勾股定理得:,故BF的长为6.(2)设CE=x ,∵四边形ABCD为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,又∵△AFE是由△ADE沿AE翻折得到的,∴FE=DE=8-x,由(1)知:BF=6,故CF=BC-BF=10-6=4,CF+CE=EF,在Rt△CEF中,由勾股定理得:222∴2224+x=(8-x),解得:x=3,故CE的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.24.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH EF,CH=CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH=2AF,∵在Rt△AEF中,AE2=AF2+EF2,∴(2AF)2+(2EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=22+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED=2CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD:AF=1:2AF=2x,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 3x ,∵AE 2+AD 2=2CD 2,∴2223)x x ++=,解得x =1,∴AB =+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c |c ﹣17|+b 2﹣30b +225,21||7(15)c b +-﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40; 三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状. 27.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=,解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-,解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅,即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.28.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t .在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.29.(1)(5,0);(2)见解析;(3)①P (4,2),②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.理由见解析【分析】(1)由题意可以假设A (a ,a )(a >0),根据AB 2+OB 2=OA 2,构建方程即可解决问题; (2)由角平分线的性质定理证明CH=CF ,CG=CF 即可解决问题;(3)①如图3中,在BC 的延长线上取点P ,使得CP=DB ,连接AP .只要证明△ACP ≌△CDB (SAS ),△ABP 是等腰直角三角形即可解决问题;②根据SAS 即可判断满足△ACP 与△BDC 全等的点是P 1、P 2,P 3;【详解】解:(1)∵点A在射线y=x(x≥0)上,故可以假设A(a,a)(a>0),∵AB⊥x轴,∴AB=OB=a,即△ABO是等腰直角三角形,∴AB2+OB2=OA2,∴a2+a2=(52)2,解得a=5,∴点B坐标为(5,0).(2)如图2中,作CF⊥x轴于F.∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.30.(1)t ,45;(2)详见解析;(3)90°;(4)t 的值为2﹣1或2+1,BE =3.【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)根据SAS 即可证明△ADE ≌△CDF ;(3)由△ADE ≌△CDF ,即可推出∠ADE =∠CDF ,推出∠EDF =∠ADC =90°;(4)分两种情形分别求解即可解决问题.【详解】(1)由题意:AE =t .∵CA =CB ,∠ACB =90°,CD ⊥AB ,∴∠BCD =∠ACD =45°.故答案为t ,45.(2)∵∠ACB =90°,CA =CB ,CD ⊥AB ,∴CD =AD =BD ,∴∠A =∠DCB =45°.∵AE =CF ,∴△ADE ≌△CDF (SAS ).(3)∵点E 在边AC 上运动时,△ADE ≌△CDF ,∴∠ADE =∠CDF ,∴∠EDF =∠ADC =90°.(4)①当点E 在AC 边上时,如图1.在Rt △ACB 中,∵∠ACB =90°,AC =CB ,AB =2,CD ⊥AB ,∴CD =AD =DB =1,AC =BC 2=. ∵CE =CD =1,∴AE =AC ﹣CE 2=-1,∴t 2=-1. ∵BC =22112+=,∴BE =22EC BC +=12+=3;②当点E 在AC 的延长线上时,如图2,AE =AC +EC 2=+1,∴t 2=+1. ∵BC =22112+=,∴BE =22EC BC +=12+=3;综上所述:满足条件的t 2121,BE 3【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学复习解答题专题练勾股定理1. 如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,求点D到BC的距离.2. 在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,求PD+PE的长.3. 如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,求AP的长.4. 如图为一个棱长为1的正方体的展开图,A,B,C是展开后小正方形的顶点,则∠ABC的度数为________.5.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.6. 如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长.(2)在△ABC中,求BC边上高的长.7. 如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.8. 如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.9. 已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.10. 如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A 开始沿AB边向B点以每秒1cm的速度移动,点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少?11如图,在四边形ABCD中,AB∶BC∶CD∶DA=2∶2∶3∶1,且∠ABC=90°,求∠DAB的度数.12.在三角形ABC中,D为BC的中点,AB等于5,AD等于6,AC等于13,试判断AD与AB的位置关系.13.如图,已知△ABC,AB=8,BC=10,AC=6.(1)判断△ABC是什么三角形?(2)用尺规作图法作出边BC的垂直平分线,交BC于点D,交AB于点E.(3)连接CE,求CE的长.14. 在某小区的A处有一个凉亭,道路AB,BC,AC两两相交于点A,B,C,并且道路AB与道路BC互相垂直,如图所示.已知点A与点B之间的距离为20m,若有两个小朋友在与点B相距10m的点D处玩耍,玩累了他们分别沿不同的路线D →B→A,D→C→A到凉亭A处喝水休息,已知路线D→B→A与D→C→A路程相等,求AC的长度.15. 如图,是某次机器人创意大赛中一位参赛队员设计的机器人行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问从点A到点B的直线距离是多少?2020年中考数学复习解答题专题练勾股定理(解析版)1. 如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,求点D到BC的距离.【解析】选A.过D点作DE⊥BC于E.因为∠A=90°,AB=4,BD=5,所以AD 2=BD 2-AB 2=52-42=9,所以AD=3,因为BD 平分∠ABC ,∠A=90°,所以点D 到BC 的距离DE=AD=3.2. 在△ABC 中,AB=AC=5,BC=8,点P 是BC 边上的动点,过点P 作PD ⊥AB 于点D ,PE ⊥AC 于点E ,求PD+PE 的长.【解析】过A 点作AF ⊥BC 于点F ,连接AP ,因为△ABC 中,AB=AC=5,BC=8,所以BF=4,所以在Rt △ABF 中,AF 2=AB 2-BF 2=9,所以AF=3. 所以12×8×3=12×5×PD+12×5×PE ,12=12×5×(PD+PE),PD+PE=4.8.3. 如图,矩形ABCD 中,AB=8,BC=6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE=OD ,求AP 的长.【解析】如图:设AP=x ,则DP=AD-AP=6-x ,因为将△ABP 翻折至△EBP ,所以EP=AP=x ,EB=AB=8,∠E=∠A=90°,因为∠D=∠E=90°,OE=OD ,∠DOP=∠EOF ,所以△DOP ≌△EOF ,所以EF=DP=6-x,OP=OF,因为OE=OD,所以DF=PE=x,所以CF=CD-DF=8-x,因为EF=6-x,BE=8,所以BF=BE-EF=8-(6-x)=x+2,在Rt△BCF中,CF2+BC2=BF2,所以(8-x)2+62=(x+2)2,解得x=4.8,所以AP=4.8.答案:4.84. 如图为一个棱长为1的正方体的展开图,A,B,C是展开后小正方形的顶点,则∠ABC的度数为________.【解析】连接AC,则AC2=22+1=5,BC2=22+1=5,AB2=32+1=10.因为AC2+BC2=AB2,所以△ABC为直角三角形.又因为AC2=BC2,所以AC=BC,所以∠CAB=∠ABC=45°.5.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.【解析】如图,延长AE交BC于点F.因为AB⊥BC,AB⊥AD,所以AD∥BC所以∠D=∠C,∠DAE=∠CFE,又因为点E是CD的中点,所以DE=CE.因为在△AED与△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,所以△AED≌△FEC(AAS),所以AE=FE,AD=FC.因为AD=5,BC=10.所以BF=5.在Rt△ABF中,AF2=AB2+BF2=122+52=169,AF=6.5.所以AF=13,所以AE=126. 如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长.(2)在△ABC中,求BC边上高的长.【解析】(1)因为DB⊥BC,BC=4,CD=5,所以BD2=52-42=9,所以BD=3.(2)延长CB,过点A作AE⊥CB延长线于点E,因为DB⊥BC,AE⊥BC,所以AE∥DB,因为D为AC边的中点,所以BD=1AE,所以AE=6,即BC边上高的长为6.27.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.【解析】因为a2+b2+c2+50=6a+8b+10c,所以a2+b2+c2-6a-8b-10c+50=0,即a2-6a+9+b2-8b+16+c2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a2+b2=c2,所以三角形为直角三角形.8. 如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【解析】设EC=xcm,则DE=(8-x)cm,由折叠可知,EF=DE,AD=AF,在直角△ABF中,由勾股定理得AB2+BF2=AF2,即82+BF2=102,所以BF=6cm,所以FC=10-6=4(cm).在直角△EFC中,由勾股定理得FC2+CE2=EF2,即42+x2=(8-x)2,解之得x=3,即EC的长度为3cm.9. 已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.【解析】过D作DE⊥AB,垂足为E,因为∠1=∠2,所以CD=DE=15,在Rt△BDE中,BE2=BD2-DE2=252-152=202,所以BE=20,因为∠1=2,∠C=∠DEA=90°,AD=AD,所以Rt△ACD≌Rt△AED,又因为AB2=AC2+BC2,即(AC+20)2=AC2+(15+25)2,解得AC=30.10. 如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A 开始沿AB边向B点以每秒1cm的速度移动,点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少?【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9cm,BC=12cm,AC=15cm.因为AB2+BC2=AC2,所以△ABC是直角三角形,过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),所以S△BPQ =12BP·BQ=12×6×6=18(cm2).11如图,在四边形ABCD中,AB∶BC∶CD∶DA=2∶2∶3∶1,且∠ABC= 90°,求∠DAB的度数.【解析】设AB=2a,BC=2a,CD=3a,DA=a.因为∠ABC=90°,AB=BC,所以∠BAC=∠BCA=45°,在Rt△ABC中,AC2=AB2+BC2=(2a)2+(2a)2=8a2,又AD2=a2,CD2=(3a)2=9a2.所以AC2+AD2=CD2,所以△ACD是以∠CAD为直角的直角三角形,所以∠CAD=90°,所以∠DAB=∠BAC+∠CAD=45°+90°=135°.12.在三角形ABC中,D为BC的中点,AB等于5,AD等于6,AC等于13,试判断AD与AB的位置关系.【解析】延长AD至点E,使DE=AD,并连接BE,因为D为BC的中点,所以CD=BD,因为∠ADC=∠EDB,所以△ADC≌△EDB,所以EB=AC=13,因为AD=6,所以AE=12,因为52+122=132,即AB2+AE2=EB2,所以∠EAB=90°,所以AD⊥AB.13.如图,已知△ABC,AB=8,BC=10,AC=6.(1)判断△ABC是什么三角形?(2)用尺规作图法作出边BC的垂直平分线,交BC于点D,交AB于点E.(3)连接CE,求CE的长.【解析】(1)因为AB=8,BC=10,AC=6,所以102=82+62,即BC2=AB2+AC2,所以△ABC是直角三角形.(2)作图如图1:(3)连接CE,如图2:设CE为x,因为边BC的垂直平分线交BC于点D,交AB于点E,所以CE=BE=x,在Rt△ACE中,CE2=AE2+AC2,即x2=(8-x)2+62,解得x=6.25,所以CE=6.25.14. 在某小区的A处有一个凉亭,道路AB,BC,AC两两相交于点A,B,C,并且道路AB与道路BC互相垂直,如图所示.已知点A与点B之间的距离为20m,若有两个小朋友在与点B相距10m的点D处玩耍,玩累了他们分别沿不同的路线D →B→A,D→C→A到凉亭A处喝水休息,已知路线D→B→A与D→C→A路程相等,求AC的长度.【解析】设AC的距离为xm,则DC的长为(30-x)m,则BC的长为(40-x)m,在Rt△ABC中,由勾股定理得:AB2+BC2=AC2,即202+(40-x)2=x2,解得x=25.答:AC之间的距离是25m.15. 如图,是某次机器人创意大赛中一位参赛队员设计的机器人行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问从点A到点B的直线距离是多少?【解析】过点B作BC⊥AD于C,从图中可以看出AC=4-2+0.5=2.5(m),BC=4.5+1.5=6(m),在Rt△ABC中,AB为斜边,,则AB2=AC2+BC2=1694所以AB=13m.2答:从点A到点B的直线距离是13m.2。

相关文档
最新文档