反演原理及公式介绍工科
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章反演理论
第一节基本概念
一.反演和正演
1.反演
反演是一个很广的概念,根据地震波场、地球自由振荡、交变电磁场、重力场以及热学等地球物理观测数据去推测地球内部的结构形态及物质成分,来定量计算各种有关的物理参数,这些都可以归结为反演问题。在地震勘探中,反演的一个重要应用就是由地震记录得到波阻抗。
有反演,还有正演。要正确理解反演问题,还要知道正演的概念。
2.正演
正演和反演相反,它是对一个假设的地质模型,给定某些参数(如速度、层数、厚度)用理论关系式(数学模型)推导出某种可测量的量(如地震波)。在地震勘探中,正演的一个重要应用就是制作合成地震记录。
3.例子
考虑地球内部的温度分布,假定地球内部的温度随深度线性增加,其关系式可表示成:T(z)=a+bz
正演:给定a和b,求不同深度z的对应温度T(z)
反演:已经在不同点z测得T(z),求a和b。
二.反演问题描述和公式表达的几个重要问题
1.应用哪种参数化方式——离散的还是连续的?
2.地球物理数据的性质是什么?观测中的误差是什么?
3.问题能不能作为数学问题提出,如果能够,它是不是适定的?
4.对问题有无物理约束?
5.能获得什么类型的解,达到什么精度?要求得到近似解、解的范围、还是精确解?
6.问题是线性的还是非线性的?
7.问题是欠定的、超定的、还是适定的?
8.什么是问题的最好解法?
9.解的置信界限是什么?能否用其它方法来评价?
第二节反演的数学基础
一.解超定线性反问题
1.简单线性回归
可利用最小平方法确定参数a 、b 使误差的平方和最小。
⎪⎪⎩
⎪
⎪⎨⎧∑-∑∑∑-∑=-=∑∑-=2
2)()(x x n y x xy n b x b y n x b y a (1-2-1) 拟合公式为:
bx a y
+=ˆ (1-2-2) 该方法的公式原来只适用于解超定问题,但同样适用于欠定问题,当我们有多个参数时,称为多元回归,在地球物理领域广泛采用这种方法。此过程用矩阵形式表示,则称为广义最小平方法矩阵方演。
2.非约束最小平方法反演——广义矩阵方法
由前面讨论可知,参数估计的最小平方方法用矩阵公式表示,所得到的算法等价于一个或多个模型参数的一个或多个数据集反演,步骤为:
问题定义→矩阵公式→最小平方解 线性问题采用广义矩阵形式
d=Gm (1-2-3) 对于精确的数据模型,参数m 为
m=G -1d (1-2-4)
但是由于试验误差,实际数据将不能精确拟合获得,故采用最小平方法求解。解的矩阵表示式为
d G G G m
T T 1][ˆ-= (1-2-5) 上式具体计算时可用奇异值分解方法 G=U ∧V
T
最后,得
m
ˆ=(G T G )-1G T d=V ∧-1U T d (1-2-6)
二. 约束线性最小平方反演
为了得到最合适的解,通常可在方程d=Gm 中加先验信息,进行约束反演。 约束方程为
Dm=h (1-2-7)
D 一般为只有对角线有值的矩阵,我们希望朝着j h 偏置j m 使得ϕ最小。 ϕ=(d-Gm ()T
d-Gm )+β2(Dm-h ()T
Dm-h ) (1-2-8)
如果D 是单位矩阵,可以得到约束解
c m
ˆ=(G T
G+β2I )1
-(G T
d+β2h ) (1-2-9)
式中,β称为Lagrange 乘子。
三.解非线性反演问题 1.思路
在实际工作中许多问题都是非线性的,而非线性问题求解通常比较复杂,这样就产生这样一个问题,给定一些非线性问题,而它们又不服从简单的线性变换,那么能否用通用的方法使我们可以用一些线性反演的方法来估算未知模型参数,并最终求得问题的解决呢?答案是肯定的。
2.初始模型和线性化 对于非线性问题
d i =f i (m 1,m 2,…m p )=f i (m ), i=1,2,…n (1-2-10) 设m 0
为初始模型,则其响应为 )(00
m f d
= (1-2-11)
现假定f (m )在m 0
附近是线性的,从而关于m 0
的模型响应的微小摄动可以用Taylor 级数展开为
高次项+∂∂+
+∂∂+∂∂+∂∂+=++++=p p
i
i i i i p p i m m f m m f m m f m m f m f m m m m m m m m f m f δδδδδδδδ 3322110
030
3202101)()
,,,()( 或简记为
)||(|||)()()(21000
m O m m m f m f m f p j j m m j i δ+⎭
⎬⎫
⎩⎨⎧∑δ∂∂+===
实际情况要考虑噪声
d=f (m )+e (1-2-12)
⎭
⎬⎫⎩⎨⎧∑δ∂∂--=-===p j j m m j i
m m m f m f d m f d e 10
0.|)()()(0
令y=d-f (m 0),m x m f A j ij
δ=∂∂=,/,则有
e=d-)(m f =y-Ax (1-2-13) e=y-Ax
这样,非线性问题转化成线性问题,我们可以用线性的方法求出问题的解。
四、无约束非线性反演
1.问题的公式化 目标函数:
q=e T
e=(d-f(m))T
(d-f(m)) (1-2-14) 利用前述结果,上式改写为
q=e T
e=(y-Ax)T
(y-Ax) (1-2-15)
2.问题的解法:Gauss-Newton 法 对参数摄动的最小平方解 y A A A x
T T 1)(-= (1-2-16)
将摄动(x=δm )应用于起始模型m 0
,迭代公式如下: