电大经济数学形考册第三次作业答案

合集下载

(完整版)经济数学基础形成性考核册答案

(完整版)经济数学基础形成性考核册答案

电大经济数学基础形成性核查册及参照答案(一)填空题 1. limx sin x__________ _________ .答案: 0x 0x2. 设 f ( x) x 2 1, x0 0 处连续,则 k________ .答案: 1k ,x,在 x3. 曲线 yx 在 (1,1) 的切线方程是.答案: y1 x 12 24. 设函数 f ( x 1) x 2 2x 5 ,则 f ( x)__________ __ .答案: 2x5. 设 f ( x)x sin x ,则 f ( π __________ . 答案:π) 22(二)单项选择题1. 函数 y x 1的连续区间是(D )x 2x 2A . (,1) (1, )B . ( , 2) ( 2,)C . ( , 2) ( 2,1) (1,)D . (, 2)( 2, ) 或( ,1) (1, )2. 以下极限计算正确的选项是(B )x1B. limx1A. limx xxx 011D. lim sin x 1C. lim x sinxxxx3. 设 ylg2 x ,则 d y( B ).A .1dxB .1 dx C .ln10dxD .1dx2xx ln10xx4. 若函数 f ( x)在点 x 0 处可导,则 (B )是错误的.A .函数 f (x)在点 x 0 处有定义B . limf ( x)A,但A f (x 0 )xx 0C .函数 f (x) 在点 x 0 处连续D .函数 f (x) 在点 x 0 处可微5. 当 x0 时,以下变量是无量小量的是(C) .A . 2xB . sin xC . ln(1x) D . cos xx ( 三)解答题 1.计算极限( 1) limx 22 3x21x 1x12原式 lim( x1)( x 2)x 1( x 1)( x 1)limx2 x 1 x1 12( 2) lim x25x 6 1 x 2x26x 8 2原式 = lim(x - 2)(x - 3) x 2(x - 2)(x - 4)limx3 x2x 4 12( 3)lim1 x 11x2x原式 =lim(1 x 1)( 1 x 1) xx( 1 x 1)1= limx 01 x 11 =2x 23x5 1 ( 4) lim2x3x 2x4 31 351xx 2原式 == 3 3 4 3x x 2( 5)limsin 3x3 xsin 5x53sin 3x3lim 3x原式 =sin 5x=5 x55xx 2 44( 6) limx2sin( x 2)原式 =limx 22)x2sin( xx 2lim ( x 2)x 2= 4=lim sin( x 2)x 2x 2x sin1b, x 02.设函数 f (x)xx 0 ,a,sin xx 0x问:(1)当 a, b 为何值时,f ( x) 在 x 0处有极限存在?(2)当 a, b 为何值时, f ( x) 在x0处连续 .解: (1) limf ( x) b , lim f ( x)1xx当a b 1时,有 lim f(x)f(0) 1x(2). 当ab 1时, 有lim f(x)f(0) 1x函数 f(x) 在 x=0 处连续 .3.计算以下函数的导数或微分:( 1)yx22xlog 2 x22 ,求 y答案: y2x 2 x ln 21x ln 2( 2)yax bcx ,求 yd答案:ya(cx d )c(ax b) ad bc (cxd) 2(cx d )2( 3)y1,求 y3x 53(3x3答案: y5) 22( 4) yx xe x ,求 y答案:y 1 (e x xe x ) = 1 e x xe x2 x 2 x( 5)y eax sin bx ,求 dyy (e ax ) (sin bx e ax (sin bx)答案:∵ax axae sin bx be cosbxe ax (sin bx bcosbx)∴ dy e ax (a sin bx bcosbx)dx 1( 6)y e x x x ,求 dy1 1 3答案:∵ y e x xx2 2( 311∴ dy x e x )dx2 x2( 7)y cos x e x2 ,求 dy答案:∵ y sin x ( x) e x 2 (= sin x 2xe x22 x∴ dy ( sin x 2xe x2 )dx2 x( 8)y sin n x sin nx ,求 y答案: y nsin n 1 x cos x n cosnx ( 9)y ln( x 1 x2 ) ,求y答案: y 1 ( x 1 x 2 )x 1 x 2=1 1 x2 x=x2 x 2x 1 1cot 1 1 3 x 2 2x( 10)y 2 x ,求 yx x 2 )=1 (1 x )1 x2 1 x2x11x2111 1cos( x 2 x 6y 2xln 2 (cos ) 2) 答案:x12 cos11 112 x ln 2 sinxx 2x 3 6 x 54.以下各方程中y 是 x 的隐函数,试求 y 或dy(1) 方程两边对 x 求导:2x 2 y y y xy 3 0(2 y x) yy 2x 3所以 dyy 2x3dx2y x(2) 方程两边对 x 求导:cos(x y)(1 y ) e xy ( y xy )4[cos(x y)xe xy ] y4 cos(x y) ye xy所以y4 cos(x y) ye xy cos(x y)xe xy5.求以下函数的二阶导数:( 1)yln(1x 2 ) ,求 y答案: (1)y2x1 x2y 2(1 x 2 ) 2x 2x2 2x 2(1 22(1 22x )x )(2)y (xy3x41 11 x 2x 2 )25 321x 243 21 1x 223 1 1y (1)4 4作业(二)(一)填空题1.若f (x)dx 2 x 2x c ,则 f ( x) __________ _________ .答案: 2x ln 2 22.(sinx) dx ________.答案: sin x c3. 若f ( x) dxF ( x) c ,则 xf (1 x 2 )dx.答案:1F (1 x 2 ) cd24.设函数eln(1 x 2)dx ___________ .答案: 0dx 15. 若 P(x) 01dt ,则 P ( x) __________ .答案:1x 2x1 t 21 (二)单项选择题1. 以下函数中,( D2)是 xsinx的原函数.A .1cosx 2B .2cosx 2C .- 2cosx2D . -1cosx 2222. 以低等式成立的是(C ).A . sinxdxd(cosx)B . ln xdxd( 1)xC . 2 xdx1 d(2 x )D .1 dx d xln 2x3. 以下不定积分中,常用分部积分法计算的是(C ).A . cos(2x1)dx ,B .x 1 x 2 dxC . xsin 2xdxD .x 2 dx1 x4. 以下定积分计算正确的选项是(D).12 d216B .dx15x x11C .23D . sin d( xx )dx 0x x5. 以下无量积分中收敛的是( B ).A .1(三)解答题1dx B .112dx C .e x dxD .sinxdxxx 011.计算以下不定积分3x( 1) 3xdx 原式 =3 x dx = (e )c3x ce x(e ) ln 3e x (ln 3 1)e( 2)(1x) 213dx 答案:原式 = (x 2 2 x x 2 )dxx=14 32 5 c2x 23 x 2x 25x 24 (x 2)dx1 x 22x c( 3)dx 答案:原式 =( 4)1 1 dx答案:原式 = 1 d (1 2x)1ln 1 2x c 2x 2 1 2x 21 13( 5)x 2 x2dx答案:原式 = 2 x 2 d (2 x 2 ) = ( 2 x2) 2 c2 3( 6)sinxdx 答案:原式=2 sin xd x 2 cos x c x( 7)xdx xsin2答案:∵ (+) x sinx2(-) 1 2 cosx2(+) 0 4 sinx2∴原式 = 2x cosx4 sinxc2 2(8) ln( x 1)dx答案:∵ (+) ln( x 1) 1(-)1x x 1∴原式 = x ln( x 1) x dxx 1= x ln( x 1) (1 1 )dxx 1 = x ln( x 1) x ln( x 1) c 2.计算以下定积分2xdx( 1) 111x)dx 2 1)dx = 2 ( 1x2 x)12 2 5 9答案:原式 = (1 (x1 12 2 212e x( 2) x2 dx11112e xx 2)d112答案:原式 =2 ( = ex e e 21xxe3( 3)1dx1x 1 ln xe3x d(1 ln x) = 2 1 ln xe 3 答案:原式 =1 ln x 21x1( 4)2x cos2xdx答案:∵ (+) xcos2x (-)11sin 2x2(+)01cos2x4∴ 原式 = (1x sin 2x1cos2x) 0224=1 1 1442e( 5) x ln xdx 1答案:∵ (+)ln xx(-)1x 2x21 2ln x e1e∴ 原式 =x 12 xdx21 =e 2 1 x 21e1 (e2 1)2 444 xxx(1( 6)答案:∵原式 = 44 xe xdx(-)1 -e x (+)0e x4e x ) 04∴xe xdx ( xex 0=5e 4 1故:原式 =55e4作业三(一)填空题10 4 51.设矩阵 A32 32 ,则 A 的元素 a 23 __________ ________ .答案: 321612.设 A, B 均为 3 阶矩阵,且 A B3,则2AB T = ________. 答案: 723. 设 A, B 均为 n 阶矩阵,则等式 ( AB) 2 A 2 2 ABB 2 成立的充分必要条件是.答案: AB BA4. 设 A, B 均为 n 阶矩阵, ( IB) 可逆,则矩阵 A BXX 的解 X__________ ____ .答案:( IB) 1 A1 01 0 0 5. 设矩阵 A020 ,则 A1__________ .答案:A0 10 0 032 10 03(二)单项选择题1. 以下结论或等式正确的选项是( C ).A .若 A,B 均为零矩阵,则有 A B B .若 AB AC ,且 A O ,则 BCC .对角矩阵是对称矩阵D .若 AO, B O ,则 AB O2. 设 A 为 34 矩阵, B 为5 2矩阵,且乘积矩阵 ACB T 有意义,则 C T 为(A )矩阵.A . 2 4B . 4 2C . 3 5D . 533. 设 A, B 均为 n 阶可逆矩阵,则以低等式成立的是(C ).`A . ( A B) 1A 1B 1 ,B . ( A B) 1 A 1 B 14. 以下矩阵可逆的是(A).1 2 31 01 A .2 3 B .10 1 0 0 3123C .1 11 1 0 0D .222 2 25. 矩阵 A3 3 3 的秩是(B ).4 44A . 0B . 1C .2D .3三、解答题 1.计算2 1 0 1 1 2( 1)3 1 0 =553( 2)( 3)2.计算0 2 1 1 0 0 03 0 00 0312 5 4= 0121 2 3 1 2 4 2 4 51 2 2 1 4 3 6 1 01 32 23 1 3 2 71 2 3 1 2 4 2 4 5 7 19 7 2 4 5 解1 221 4 3 6 17 12 0 6 1 013 223132 7 0 4 732 7515 2 =1 11 032142 31 12 33.设矩阵 A111 , B 1 12 ,求 AB 。

电大经济数学基础形成性考核册及参考答案

电大经济数学基础形成性考核册及参考答案

电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D ) A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln 10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x 2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x (3)2111lim-=--→x x x 原式=)11()11)(11(lim 0+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31(5)535sin 3sin lim0=→x x x原式=xx x x x 55sin 33sin lim530→ =53(6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续. 解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f (0)f (x )lim 10x ====→有时,b a(2).1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续.3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x,求y '答案:2ln 12ln 22x x y x++=' (2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+=' (3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y axsin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'=' ∴dx bx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin x xe xx-+-∴dx xe xxdy x )22sin (2-+-= (8)nx x y nsin sin +=,求y '答案:nx n x x n y n cos cos sin1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='- 4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导: 0322=+'--'⋅+y x y y y x32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导: 4)()1)(cos(='+⋅+'++y x y e y y x xyxy xy ye y x y xe y x -+-='++)cos(4])[cos(所以 xyxyxey x ye y x y ++-+-=')cos()cos(4 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y '' 答案: (1) 212x xy +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2) 212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ).A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x x x =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ).A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sin D .⎰+x x xd 124. 下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x(三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x xx +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 2cos2x - (+) 0 2sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln( =⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=- (3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d x x x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x x (+)0 cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=-- (5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=440)(x x x e xe dx xe =154+--e故:原式=455--e作业三(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵. A .42⨯ B .24⨯ C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). ` A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

电大经济数学基础形成性考核册及参考答案[1]

电大经济数学基础形成性考核册及参考答案[1]

电大经济数学基础形成性考核册及参考答案[1]关建字摘要:答案,矩阵,下列,百台,产量,成本,利润,求解,未知量,对称竭诚为您提供优质文档,本文为收集整理修正,共13页,请先行预览,如有帮助感谢下载支持经济数学基础形成性考核册及参考答案作业(一)(三)解答题1.计算极限x 2-3x +21(x -2)(x -1)x -2(1)lim==-=lim lim 2x →1x →1x →12x -1(x -1)(x +1)(x +1)x 2-5x +61(x -2)(x -3)x -3(2)lim 2=lim =lim =x →2x -6x +8x →2(x -2)(x -4)x →2(x -4)2(1-x -1)(1-x +1)1-x -1lim (3)lim=x →0x →0x x (1-x +1)=limx →0-x -11=lim=-2x (1-x +1)x →0(1-x +1)351-+2x 2-3x +5x x =1lim (4)lim =x →∞x →∞3x 2+2x +42433++2x x (5)lim5x sin 3x 33sin 3x==lim x →03x sin 5x 55x →0sin 5xx 2-4(x -2)(x +2)(6)lim=lim =4x →2sin(x -2)x →2sin(x -2)1⎧x sin +b ,x <0⎪x ⎪2.设函数f (x )=⎨a ,x =0,⎪sin xx >0⎪x ⎩问:(1)当a ,b 为何值时,f (x )在x =0处有极限存在?(2)当a ,b 为何值时,f (x )在x =0处连续.答案:(1)当b =1,a 任意时,f (x )在x =0处有极限存在;(2)当a =b =1时,f (x )在x =0处连续。

3.计算下列函数的导数或微分:(1)y =x +2+log 2x -2,求y '答案:y '=2x +2ln 2+x 2x 21x ln 2(2)y =ax +b,求y 'cx +d答案:y '=a (cx +d )-c (ax +b )ad -cb=22(cx +d )(cx +d )13x -513x -5,求y '12(3)y =答案:y ==(3x -5)-y '=-32(3x -5)3(4)y =答案:y '=x -x e x ,求y '12xax -(x +1)e x(5)y =e sin bx ,求d y答案:y '=(e )'sin bx +e (sin bx )'ax ax =a e ax sin bx +e ax cos bx ⋅b=e ax (a sin bx +b cos bx )dy =e ax (a sin bx +b cos bx )dx(6)y =e +x x ,求d y1x311答案:d y =(x -2e x )d x 2x (7)y =cos x -e -x ,求d y 答案:d y =(2x e -x -n 22sin x 2x)d x(8)y =sin x +sin nx ,求y '答案:y '=n sin n -1x cos x +cos nxn =n (sin n -1x cos x +cos nx )(9)y =ln(x +1+x 2),求y '答案:1-1x 1122'=y '=(x +1+x )=(1+)=(1+(1+x )2x )2x +1+x 2x +1+x 21+x 21+x 2x +1+x 2121(10)y =2cot 1x+1+3x 2-2xx,求y 'ln 21-21-6-x +x 答案:y '=126x 2sinx4.下列各方程中y 是x 的隐函数,试求y '或d y (1)x 2+y 2-xy +3x =1,求d y 答案:解:方程两边关于X 求导:2x2cot 1x 35+2yy '-y -xy '+3=0y -3-2xd x2y -x(2y -x )y '=y -2x -3,d y =(2)sin(x +y )+e xy =4x ,求y '答案:解:方程两边关于X 求导cos(x +y )(1+y ')+e xy (y +xy ')=4(cos(x +y )+e xy x )y '=4-ye xy -cos(x +y )4-y e xy -cos(x +y )y '=xy x e +cos(x +y )5.求下列函数的二阶导数:(1)y =ln(1+x ),求y ''22-2x 2答案:y ''=22(1+x )(2)y =1-x x,求y ''及y ''(1)3-1-答案:y ''=x 2+x 2,y ''(1)=14453作业(二)(三)解答题1.计算下列不定积分3x (1)⎰xd xe3xx 3x 3xe 答案:⎰xd x =⎰()d x =+c 3e e ln e(2)⎰(1+x )2xd x113-(1+x )2(1+2x +x 2)答案:⎰d x =⎰d x =⎰(x 2+2x 2+x 2)d x x x42=2x +x 2+x 2+c35x2-4d x (3)⎰x +21x2-4d x =⎰(x -2)d x =x 2-2x +c答案:⎰2x +2(4)351⎰1-2xd x 答案:1111d x -ln1-2x +c ==-d(1-2x )⎰1-2x ⎰221-2x2(5)x 2+x d x 3211222答案:⎰x2+x d x =⎰2+x d(2+x )=(2+x )+c 322⎰(6)⎰sinx xd x答案:⎰sinx xd x =2⎰sin xd x =-2cos x +c(7)x sin⎰xd x 2答案:x sin ⎰x xd x =-2⎰xdco s d x 22x x x x +2⎰co s d x =-2x cos +4sin +c 2222=-2x cos (8)ln(x +1)d x 答案:ln(x +1)d x ==(x +1)ln(x +1)-2.计算下列定积分(1)⎰⎰⎰ln(x +1)d(x +1)⎰(x +1)dln(x +1)=(x +1)ln(x +1)-x +c⎰2-11-x d x答案:⎰12-11-x d x =1x21211252+==(x -x )+(x -x )(1-x )d x (x -1)d x -11⎰-1⎰12221(2)⎰2ed x x 22答案:⎰1121e x x -e d x ==-e d ⎰1x x21x1121=e -e(3)⎰e 31x 1+ln xd xe 311d(1+ln x )=2(1+ln x )21+ln x答案:⎰e 31x 1+ln x1d x =⎰1e 31=2π(4)⎰20x cos 2x d x ππππ111122--sin 2xdx 答案:⎰2x cos 2x d x =⎰2xd sin 2x =x sin 2x 0=⎰0002222(5)⎰e1x ln x d xe答案:⎰01x ln x d x =e 21e12122e (e +1)==ln x d x x ln x -x d ln x 1⎰⎰11422(6)⎰4(1+x e-x)d x40答案:⎰(1+x e)d x =x -⎰xd e =3-xe -x414-x -x4+⎰0e -x d x =5+5e -44作业三三、解答题1.计算(1)⎢⎡-21⎤⎡01⎤⎡1-2⎤=⎢⎥⎢⎥⎥⎣53⎦⎣10⎦⎣35⎦⎡02⎤⎡11⎤⎡00⎤(2)⎢⎥⎢00⎥=⎢00⎥0-3⎦⎣⎦⎣⎦⎣⎡3⎤⎢0⎥(3)[-1254]⎢⎥=[0]⎢-1⎥⎢⎥⎣2⎦23⎤⎡-124⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥02.计算-122143-61⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦23⎤⎡-124⎤⎡245⎤⎡7197⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥=⎢7120⎥-⎢610⎥0解-122143-61⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦⎢⎣0-4-7⎥⎦⎢⎣3-27⎥⎦⎡515=⎢⎢111⎢⎣-3-2⎡23-1⎤⎡123⎤3.设矩阵A =⎢⎢111⎥,B =⎢112⎥,求AB 。

国家开放大学一网一平台电大《经济学》形考任务3及6网考题库答案

国家开放大学一网一平台电大《经济学》形考任务3及6网考题库答案

国家开放大学一网一平台电大《经济学》形考任务3及6网考题库答案形考任务3一、单选题(15道,共30分)1经济物品是指Oo【正确答案】有用且稀缺的物品2 .经济学主要是研究O o【正确答案】与稀缺性和选择有关的问题3 .供给曲线是一条倾斜的曲线,其倾斜的方向为O【正确答案】右上方4 .关于均衡价格的正确说法是O【正确答案】供给曲线与需求曲线交点上的价格5 .如果消费者消费15个面包获得的总效用是100个效用单位,消费16个面包获得的总效用是106个效用单位,则第16个面包的边际效用是O【正确答案】6个6 .如果某厂商的产量为9单位时,总成本为95元,产量增加到10单位时,平均成本为10元,由此可知边际成本为O【正确答案】5元7 .如果连续地增加某种生产要素,在总产量达到最大时,边际产量曲线O【正确答案】与横轴相交8 .在生产技术水平不变的条件下,生产同一产量的两种不同的生产要素的不同组合构成的曲线是O【正确答案】等产量曲线9 .在完全竞争市场上,厂商短期均衡的条件是O【正确答案】MR=SMC10 .垄断厂商面临的需求曲线是O【正确答案】向右下方倾斜的I1当价格大于平均成本时,此时存在()【正确答案】超额利润12 .基尼系数越小,收入分配越O,基尼系数越大,收入分配越O【正确答案】平均,不平均13 .劳动的供给曲线是一条O【正确答案】向右上方倾斜的曲线14 .西方国家使用最广泛的公共选择理论的原则是O【正确答案】多数票原则15 .如果上游工厂污染了下游居民的饮水,按照科斯定理,()问题可妥善解决【正确答案】只要产权明确,且交易成本为零二、多选题(10道,共30分)16 .微观经济学的特点有Oo【正确答案】考察微观经济行为【正确答窠】用西方经济理论和观点分析个体经济行为【正确答案】考察大生产条件下的微观经济【正确答案】突出微观经济分析方法【正确答案】运用数学分析工具17 .随着消费商品数量的增加O【正确答案】边际效用递减【正确答案】边际效用会小于零18 .关于交叉弹性,正确的是()【正确答案】交叉弹性可能是正值,也可能是负值【正确答案】如果交叉弹性是正值,说明这两种商品是替代品19 .属于等产量曲线的特征的有()【正确答案】等产量曲线向右下方倾斜【正确答案】等产量曲线有无数多条,其中每一条代表一个产值,并且离原点越远,代表的产量越大【正确答案】等产量曲线互不相交20 .厂商在生产过程中投入的生产要素主要有O【正确答案】劳动【正确答案】资本【正确答案】土地【正确答案】企业家才能21 .一个完全竞争的市场结构,必须具备下列条件()【正确答案】市场上有很多生产者和消费者【正确答案】行业中厂商生产的产品是无差别的【正确答案】厂商和生产要素可以自由流动【正确答案】购买者和生产者对市场信息完全了解22 .在亏损状态下,厂商继续生产的条件是O【正确答案】P>SAVC【正确答案】P=SAVC23 .洛伦斯曲线与基尼系数的关系是()【正确答案】洛伦兹曲线的弯度越大基尼系数越大【正确答案】洛伦兹曲线的弯度越小基尼系数越小24 .影响劳动供给的因素有()【正确答案】工资率【正确答案】闲暇【正确答案】人口总量及其构成25 .市场不能提供纯粹的公共物品是因为O【正确答案】公共物品不具有竞争性【正确答案】公共物品不具有排他性【正确答案】消费者都想“免费搭车”三、判断题(10道,共20分)26 .规范分析的特点是回答是什么?分析问题具有客观性和得出的结论可进行论证。

电大【经济数学基础】形成性考核册答案(附题目)

电大【经济数学基础】形成性考核册答案(附题目)

电大在线【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题1. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21xe - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .1/ 2xB .-1/2xC .x 1D .x1- (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

电大经济数学基础形成性考核册答案[]

电大经济数学基础形成性考核册答案[]

电大经济数学基础形成性查核册及参照答案(一)填空题 1. limx sin x__________ _________ .答案: 0x 0x2. 设 f ( x)x 2 1, x0 0 处连续,则 k________ .答案: 1k,x,在 x3. 曲线 yx 在 (1,1) 的切线方程是 . 答案: y 1 x1224. 设函数 f ( x 1) x22 x 5,则f ( x) __________ __ .答案: 2x5. 设 f ( x)x sin x ,则 f ( π__________ . 答案:π ) 22(二)单项选择题1. 函数 yx 1 的连续区间是(D )x2x 2A . ( ,1) (1, )B . ( , 2) ( 2, )C . (, 2)( 2,1) (1,) D . ( , 2) ( 2, )或( ,1) (1, )2. 以下极限计算正确的选项是(B )A. limx 1 B. limx x1 x 0xxC. lim x sin11D. limsin x1xxxx3. 设 ylg2 x,则d y( B ).A .1dx B . 1 dx C . ln10dx D .2x x ln10 x4. 若函数 f (x)在点 x 0处可导,则( B) 是错误的.1d x xA .函数 f (x) 在点 x 0处有定义B .lim f ( x)A,但A f ( x 0 )x x 0C .函数 f ( x)在点 x 0 处连续D .函数 f ( x)在点 x 0 处可微5.当 x 0 时,以下变量是无量小量的是( C ).A . 2xB . sin xC . ln(1x)D . cos xx( 三)解答题 1.计算极限x 2 3x 21 ( 1) limx2 12x1原式 lim(x1)( x 2)x1 ( x 1)( x 1)limx2 x 1x 112( 2) lim x25x 6 1 x 2x26x82原式 = lim(x - 2)(x - 3) x 2(x - 2)(x - 4)limx3x 2 x412( 3)lim1 x 11x2x 0原式 =lim( 1 x1)( 1 x 1)x 0x( 1 x 1)1= limx 01 x 11 =2( 4)limx2 3x 5 1 2x3x2x 4 31 351xx 2原式 ==34 33x x 2( 5) limsin 3x3 xsin 5x53lim sin 3x原式 =3x = 3 5 x 0 sin 5x 55x ( 6)limx 244原式 = limx22)x 2 sin( xx2lim ( x2)x 2= 4 =sin( x2)limx2x 2xsin 1b,x0 x2.设函数f (x)a,x0,sin xx0x问:( 1)当a,b为什么值时,f (x) 在x0处有极限存在?(2)当a, b为什么值时, f ( x) 在 x0处连续 .解: (1) lim f(x)b, lim f()1x0x0x当 a b1时,有lim f(x)f(0)1x0(2).当a b时,有lim f(x)f(0) 1x0函数 f(x) 在 x=0 处连续 .3.计算以下函数的导数或微分:( 1)y x 22x log 2 x22,求 y答案:y2x 2 x ln 21ax b x ln 2( 2)ycx,求 y d答案:y a(cx d)c( ax b)ad bc (cx d ) 2(cx d ) 2( 3)y1,求 y3x53(3x3答案: y5) 22( 4)y x xe x,求y答案:y1x (e x xe x ) =1e x xe x22x ( 5)y e ax sin bx ,求dyy (e ax ) (sin bxe ax (sin bx)答案:∵axaxae sin bx be cosbxe ax (sin bx b cosbx)∴ dye ax (asinbx bcosbx)dx1( 6) ye x x x ,求 dy1 1 3答案:∵ ye x x x 2231 1∴ dy( x e x )dx 2x 2( 7)y cos xe x 2,求 dy答案:∵ysin x ( x ) e x 2( x 2 )= sin x 2xe x 22 x∴dy ( sin x2xe x 2 )dx2 x( 8) ysin n x sin nx ,求 y答案: y n sin n 1 x cosxn cosnx( 9)yln( x1 x2 ) ,求 y答案: y1 ( x1x 2 )=1(1x )x 1 x 2x 1 x 21 x 2=11 x 2x=1x1 x 21 x 21 x 211 3x 22 x( 10)y2cotx,求 yx1 ln2 (cos 1)11ycos( x2x62)2x答案:x121sin111cos2 x ln 2 26xxx 3 x 54.以下各方程中y 是 x 的隐函数,试求 y或 dy(1) 方程两边对 x 求导:2x 2y y y xy 3 0 (2 yx) y y 2x 3因此dyy2x 3dx2y x(2) 方程两边对 x 求导:cos(x y)(1 y ) e xy ( y xy ) 4[cos(xy) xe xy ] y 4 cos(x y) ye xy4 cos(x y)ye xy 因此ycos(x y)xe xy5.求以下函数的二阶导数:(1) y ln(1 x 2) ,求 y2x答案: (1) yx 212(1x 2 ) 2x 2x 2 2x 2y(1 x 2 )2(1 x 2 ) 21 13(2)y(x2x 2)1x2253y3 x 2 1 x 2441 x21 2y (1)3 1 144作业(二)(一)填空题1. 若 f (x)dx2 x 2x c ,则 f ( x) __________ _________ .答案: 2x ln 2 22.(sin x) dx ________ .答案: sin x c3. 若 f (x)dxF ( x) c ,则 xf (1x 2)dx .答案:1F(1 x 2 ) cd2ex 2)dx___________ .答案: 04. 设函数ln(1dx15. 若 P( x)0 1dt ,则 P (x)__________ .答案:11 x 2xt 211. 以下函数中,( D )是 xsinx 2的原函数.A .1 cosx 2B . 2cosx2 C .- 2cosx 2D . - 1 cosx 22 22. 以下等式建立的是( C ). A . sinxdx d(cosx) B . ln xdxd( 1)xC . 2 x dx1d(2 x)D .1dx dxln 2x3. 以下不定积分中,常用分部积分法计算的是( C ).A . cos(2 x1)dx ,B . x 1x 2 dx C .x sin 2xdx D .x 2 dx1 x4. 以下定积分计算正确的选项是( D ).11615A . 2xdx2 B .dx1 1C .( x 2 x 3 )dx 0 D . sin xdx 05. 以下无量积分中收敛的是(B ).A .11dx B .1 1 dx C . 0 e x dxD .sinxdxxx 21( 三)解答题1.计算以下不定积分3x( 1) 3xdx 原式 =3 xdx = (e )ce x3xce x(e )ln 3(ln 3 1)e(1 x) 213( 2)dx 答案:原式 =(x22 xx 2 )dxx135= 2x 24x 22x 2 c3 5( 3)x 2 4(x2)dx1x 22x cxdx 答案:原式 =22( 4)1dx 答案:原式 =1 d(1 2x)112 xc121 2xln2x2113x2x 2d (2 x 2) = (2 x 2) 2 c( 5)2 x 2dx 答案:原式 =23( 6)sinxdx 答案:原式 = 2 sin xdx2cos x cx( 7)xsin xdx2答案:∵ (+)(-) 1(+) 0∴原式 =x sinx22 cosx24sinx22x cosx4sinxc2 2(8) ln( x 1)dx答案:∵ (+)ln( x 1)1(-)1 xx 1∴原式= x ln( x1)x dxx 1=x ln( x 1) (11 )dxx 1 =x ln( x 1) x ln(x1) c2.计算以下定积分2xdx ( 1)111x)dx21)dx = 2 ( 1x 2x)122 5 9答案:原式 =(1 (x1122 212e x(2)1 x2dx1112exx 2 )d112答案:原式 = 2 (=exe e 21xxe 31dx( 3)1x 1 ln xe 3答案:原式 =1x e 3 d(1 ln x) = 2 1 ln x2x 1 ln x1( 4)2x cos2xdx答案:∵ (+) x cos 2 x(-)11sin 2x2(+)01cos2x4∴ 原式 = ( 1x sin 2x1cos2x) 0224=1 11442e( 5)x ln xdx 1答案:∵ (+)ln x x(-)1x 2x21 2e1 e∴ 原式=x ln x12xdx21=e 2 1 x 2 1e 1(e 2 1)244( 6)4xxx(1e)d答案:∵原式 = 44xexdx又∵ (+) x ex(-)1 -e x(+)0e x4 xx x 4 0 xe dx(xee)0∴=5e 4 1故:原式 =55e 4作业三 (一)填空题10451.设矩阵 A323 2 ,则 A 的元素a23__________________ .答案:321612.设A,B均为3阶矩阵,且A B3,则 2 AB T= ________ . 答案:723. 设A, B均为n阶矩阵,则等式( A B) 2A22AB B2建立的充足必需条件是.答案:AB BA4.设 A, B 均为n阶矩阵, (I B) 可逆,则矩阵A BX X的解 X______________ .答案:(I B)1A1001005.设矩阵A020,则A1__________.答案: A01000321 003(二)单项选择题1.以下结论或等式正确的选项是( C ).A .若A, B均为零矩阵,则有AB B.若 AB AC,且 A O,则B CC.对角矩阵是对称矩阵D.若A O,B O,则 AB O2.设A为3 4 矩阵, B 为 5 2 矩阵,且乘积矩阵ACB T存心义,则 C T为(A)矩阵.A.2 4B.4 2C.3 5D.5 33. 设A, B均为n阶可逆矩阵,则以下等式建立的是( C ).`A.(A B)1 A 1 B 1,B.(A B) 1A1B1C.AB BA D.AB BA4.以下矩阵可逆的是( A).123101A .023B .10100312311D.11C.0222225.矩阵A333的秩是( B ).444A.0 B.1 C.2 D .3三、解答题1.计算2 1 0 1 1 2( 1)3 1 0 =553( 2)( 3)0 21 10 0 03 0 00 031 2 5 40 = 01212 3 1 2 4 2 4 5 2.计算1221 4 3 6 1 0 13 2 2 3132 712 3 1 2 4 2 4 5 7 19 7 2 4 5解1 2 21 4 36 17 12 0 6 1 013 22 31 32 74732 7515 2 =1 113 2 142 3 11 2 3 3.设矩阵 A1 1 1 , B1 12 ,求 AB 。

春电大《经济数学基础》形成性考核册及参考答案

春电大《经济数学基础》形成性考核册及参考答案

春电大《经济数学基础》形成性考核册及参考答案作业()(一)填空题 .___________________sin lim=-→xxx x .答案: .设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案: .曲线x y =在)1,1(的切线方程是 .答案:2121+=x y .设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 .设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 . 函数212-+-=x x x y 的连续区间是( )答案: .),1()1,(+∞⋃-∞ .),2()2,(+∞-⋃--∞.),1()1,2()2,(+∞⋃-⋃--∞ .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ . 下列极限计算正确的是( )答案: .1lim=→xx x .1lim 0=+→xx x.11sinlim 0=→x x x .1sin lim =∞→xx x. 设y x =lg2,则d y =( ).答案: .12d x x .1d x x ln10 .ln10x x d .1d xx . 若函数 ()在点处可导,则( )是错误的.答案:.函数 ()在点处有定义 .A x f x x =→)(lim 0,但)(0x f A ≠.函数 ()在点处连续 .函数 ()在点处可微 .当0→x 时,下列变量是无穷小量的是( ). 答案: .x2 .xxsin .)1ln(x + .x cos (三)解答题 .计算极限()=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x )1(2lim 1+-→x x x 21-()8665lim 222+-+-→x x x x x )4)(2()3)(2(lim 2----→x x x x x )4(3lim 2--→x x x 21 ()x x x 11lim--→)11()11)(11(lim 0+-+---→x x x x x)11(lim+--→x x x x 21)11(1lim 0-=+--→x x()=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x ()=→x x x 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →53()=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:()当b a ,为何值时,)(x f 在0=x 处有极限存在? ()当b a ,为何值时,)(x f 在0=x 处连续.答案:()当1=b ,a 任意时,)(x f 在0=x 处有极限存在; ()当1==b a 时,)(x f 在0=x 处连续。

国开电大《高等数学基础》形考任务三国家开放大学试题答案

国开电大《高等数学基础》形考任务三国家开放大学试题答案

高等数学基础第三次作业第4章 导数的应用(一)单项选择题⒈若函数)(x f 满足条件( ),则存在),(b a ∈ξ,使得ab a f b f f --=)()()(ξ.A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是( ). A. )2,(-∞ B. )1,1(- C. ),2(∞+ D. ),2(∞+- ⒊函数542-+=x x y 在区间)6,6(-内满足( ). A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的( ).A. 间断点B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足( ),则)(x f 在0x 取到极小值.A. 0)(,0)(00=''>'x f x fB. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是( ).A. 单调减少且是凸的B. 单调减少且是凹的C. 单调增加且是凸的D. 单调增加且是凹的(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f . ⒊函数)1ln(2x y +=的单调减少区间是 .⒋函数2e )(x xf =的单调增加区间是 .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 . ⒍函数3352)(x x x f -+=的拐点是 .(三)计算题⒈求函数2)5)(1(-+=x x y 的单调区间和极值.⒉求函数322+-=x x y 在区间]3,0[内的极值点,并求最大值和最小值. ⒊求曲线x y 22=上的点,使其到点)0,2(A 的距离最短.⒋圆柱体上底的中心到下底的边沿的距离为L ,问当底半径与高分别为多少时,圆柱体的体积最大?⒌一体积为V 的圆柱体,问底半径与高各为多少时表面积最小?⒍欲做一个底为正方形,容积为62.5立方米的长方体开口容器,怎样做法用料最省?(四)证明题⒈当0>x 时,证明不等式)1ln(x x +>.⒉当0>x 时,证明不等式1e +>x x.上面题目答案在最后一页,购买后才能查看参考答案单项选择题 题1答案:D 题2答案:D 题3答案:A 题4答案:C 题5答案:C 题6答案:A填空题题1答案:极小值 题2答案:0题3答案:)0,(-∞ 题4答案:),0(+∞ 题5答案:)(a f 题6答案:x=0计算题题1答案:令)2)(5(2)5(2)1(2--=++='x x x x y5,2==⇒x x 驻点列表:极大值:27)2(=f 极小值:0)5(=f题2答案:令:)x x y 驻点(1022=⇒=-='6)3(=⇒f 最大值 2)1(=⇒f 最小值题3答案:解:上的点是设x y y x p 2),(2=,d 为p 到A 点的距离,则:x x y x d 2)2()2(222+-=+-=102)2(12)2(22)2(222=⇒=+--=+-+-='x xx x xx x d 令。

经济数学基础形考答案

经济数学基础形考答案

经济数学基础形考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/2 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 25.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x x f =)1(,则=')(x f ( B ).A .21xB .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。

它包括: ⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量) ⑷利用连续函数的定义。

最新秋经济数学基础形考任务三网上作业参考答案资料

最新秋经济数学基础形考任务三网上作业参考答案资料

精品文档2018年秋季经济数学基础形考任务三网上作业参考答案2018年秋季国家开放大学经济数学基础网上作业此作业是针对单项选择题1 ).=a设矩阵(,则的元素题目24选择一项: A. 2B. 1C. -2D. 32正确答案是:2 设,,则().题目选择一项:A.B.C.D.正确答案是:3设为有意义,则C为()矩矩阵,且乘积矩阵矩阵,为题目阵.选择一项:A.精品文档.精品文档B.C.D.正确答案是:4 ).设,为单位矩阵,则(题目选择一项:A.B.C.D.正确答案是:5设均为阶矩阵,则等式成立的充分必要条件是题目).(选择一项:A. 均为对称矩阵或B.C.D.正确答案是:6下列关于矩阵的结论正确的是().题目选择一项:精品文档.精品文档,则若,且A.B. 若,,则C. 对角矩阵是对称矩阵均为零矩阵,则有D. 若正确答案是:对角矩阵是对称矩阵7 ).设,,则(题目选择一项: A. -2B. 2C. 0D. 4: -2, 4正确答案是:8).均为设阶可逆矩阵,则下列等式成立的是(题目选择一项:A.B.C.D.正确答案是:9).下列矩阵可逆的是(题目选择一项:A.精品文档.精品文档B.C.D.正确答案是:10 ).,则(设矩阵题目选择一项:A.B.C.D.精品文档.精品文档正确答案是:11设).均为阶矩阵,可逆,则矩阵方程的解(题目选择一项:A.B.C.D.正确答案是:12).矩阵的秩是(题目选择一项: A. 1B. 3C. 2D. 02正确答案是:13 最小.)时,(,则当设矩阵题目选择一项: A. 2 精品文档.精品文档 B. 0C. 1D. -22正确答案是:14 的增广矩阵做初等行变换可对线性方程组题目得),其中是自由未知量.则该方程组的一般解为(选择一项:A.B.C.D.正确答案是:15 ).(解,则0设线性方程组有非题目选择一项: A. 1B. 0C. -1精品文档.精品文档D.1正确答案是:16 )时,方程组没有,且,则当(设线性方程组题目唯一解.选择一项:=0 t A.B.≠1t C.D.正确答案是:17线性方程组).有无穷多解的充分必要条件是(题目选择一项:A.B.C.D.正确答案是:18 ).,则方程组有解的充分必要条件是(设线性方程组题目选择一项:A.B.精品文档.精品文档C.D.正确答案是:19 的增广矩阵做初等行变换可对线性方程组题目得则当()时,该方程组有唯一解.选择一项:A.且B.且C.D.正确答案是:20.)(若线性方程组有唯一解,则线性方程组题目选择一项:有无穷多解A.B. 只有零解C. 无解解不能确定D.精品文档.精品文档正确答案是:只有零解精品文档.。

经济数学基础形成性考核册及参考答案作业(三)

经济数学基础形成性考核册及参考答案作业(三)

经济数学基础形成性考核册及参考答案作业(三)(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X . 答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( ).A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠答案C2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯ 答案A3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 答案C4. 下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 答案A 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( ). A .0 B .1 C .2 D .3 答案B三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

电大经济数学基础形成性考核册答案

电大经济数学基础形成性考核册答案

电大经济数学基础形成性考核册及参考答案一填空题1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-二单项选择题1. 函数212-+-=x x x y 的连续区间是 D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞2. 下列极限计算正确的是 BA.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y = B .A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f x 在点x 0处可导,则 B 是错误的.A .函数f x 在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f x 在点x 0处连续D .函数f x 在点x 0处可微5.当0→x 时,下列变量是无穷小量的是 C .A .x 2B .xxsin C .)1ln(x + D .x cos 三解答题1.计算极限121123lim 221-=-+-→x x x x 2218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →32111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-43142353lim 22=+++-∞→x x x x x 原式=22433531xx x x +++-=315535sin 3sin lim0=→x x x原式=xx x xx 55sin 33sin lim 530→ =5364)2sin(4lim22=--→x x x 原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:1当b a ,为何值时,)(x f 在0=x 处有极限存在2当b a ,为何值时,)(x f 在0=x 处连续. 解:11)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a2. 1f(0)f(x)lim 1b a 0x ====→有时,当函数fx 在x=0处连续.3.计算下列函数的导数或微分:12222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='2dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='3531-=x y ,求y '答案:23)53(23---='x y4x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--215bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a e dy ax )cos sin (+=6x x y x+=1e ,求y d答案:∵x e x y x23112+-=' ∴dx e xx dy x )123(12-= 72e cos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx-+-∴dx xe xxdy x )22sin (2-+-=8nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-9)1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+10xxx y x212321cot-++=,求y '答案:531cos 261211cos 61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d1 方程两边对x 求导:所以 dx xy x y dy ---=2322 方程两边对x 求导:所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数:1)1ln(2x y +=,求y ''答案: 1 212x x y +='2 212321212121)(-----='-='x x x xy作业二一填空题1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2. ⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:05. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-二单项选择题1. 下列函数中, D 是x sin x 2的原函数.A .21cos x 2B .2cos x 2C .-2cos x 2D .-21cos x 22. 下列等式成立的是 C .A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x x x =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是 C .A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xxd 124. 下列定积分计算正确的是 D .A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是 B .A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x三解答题1.计算下列不定积分1⎰x x x d e 3原式=⎰dx ex )3( =c e c ee x x x+-=+)13(ln 33ln )3( 2⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++252321523423⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 4⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 5⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(316⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 27⎰x xx d 2sin答案:∵+ x 2sinx - 1 2cos2x - + 0 2sin4x - ∴原式=c xx x ++-2sin 42cos2 8⎰+x x 1)d ln(答案:∵ + )1ln(+x 1- 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln( =⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分1x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x 2x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-3x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x 4x x x d 2cos 20⎰π答案:∵ +x x 2cosx 2x 2∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--5x x x d ln e1⎰答案:∵ + x ln x- x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e xe e 6x x x d )e 1(40⎰-+答案:∵原式=⎰-+404dx xe x又∵ +x x e --1 -x e -+0 x e -∴⎰-----=404)(x x x e xe dx xe=154+--e故:原式=455--e作业三一填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A二单项选择题1. 以下结论或等式正确的是 C .A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则T C 为 A 矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是 C . `A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB =4. 下列矩阵可逆的是 A .A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是 B .A .0B .1C .2D .3三、解答题1.计算1⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-53212⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 3[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB ;解 因为B A AB =所以002=⨯==B A AB4.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01112421λA ,确定λ的值,使)(A r 最小;解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-⨯+-⨯+74041042141074042101112421)1()2(λλλ),(③②①③①②A 所以当49=λ时,秩)(A r 最小为2; 5.求矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=32114024713458512352A 的秩; 答案:解:−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=-⨯+-⨯+-⨯+)4()2()5()(3211412352345850247132114024713458512352①④①③①②③①A , 所以秩)(A r =2;6.求下列矩阵的逆矩阵:1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111103231A答案解:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-⨯+⨯+101340013790001231100111010103001231)1(3①③①②I A 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-9437323111A ;2A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1121243613.答案解:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=⨯+10011201012470141110011201012400136137③①I A 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-2101720311A ;7.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =.答案:1-=BA X四、证明题1.试证:若21,B B 都与A 可交换,则21B B +,21B B 也与A 可交换;证明:∵ A B AB 11=,A B AB 22=∴ A B B A B A B AB AB B B A )()(21212121+=+=+=+即 21B B +,21B B 也与A 可交换;2.试证:对于任意方阵A ,T A A +,A A AA T T ,是对称矩阵;证明:∵ T T T T T T T A A A A A A A A +=+=+=+)()(∴ T A A +,A A AA T T ,是对称矩阵;3.设B A ,均为n 阶对称矩阵,则AB 对称的充分必要条件是:BA AB =;证明:充分性∵ A A T =,B B T =,AB AB T =)(∴ BA A B AB AB T T T ===)(必要性∵ A A T =,B B T =,BA AB = ∴ AB B A BA AB T T T T ===)()(即AB 为对称矩阵;4.设A 为n 阶对称矩阵,B 为n 阶可逆矩阵,且T B B =-1,证明AB B 1-是对称矩阵;证明:∵ A A T =,T B B =-1∴ AB B B A B B A B B A B AB B T T T T T 11111111)()()()(--------====即 AB B 1-是对称矩阵;作业四一填空题1.函数xx x f 1)(+=在区间___________________内是单调减少的.答案:)1,0()0,1(⋃-2. 函数2)1(3-=x y 的驻点是________,极值点是 ,它是极 值点.答案:1,1==x x ,小3.设某商品的需求函数为2e10)(p p q -=,则需求弹性=p E .答案:p 2-4.行列式____________111111111=---=D .答案:45. 设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010********1t A ,则__________t 时,方程组有唯一解.答案:1-≠二单项选择题1. 下列函数在指定区间(,)-∞+∞上单调增加的是 B .A .sin xB .e xC .x 2D .3 – x2. 已知需求函数p p q 4.02100)(-⨯=,当10=p 时,需求弹性为 C .A .2ln 244p -⨯B .2ln 4C .2ln 4-D .2ln 24-4p -⨯3. 下列积分计算正确的是 A .A .⎰--=-110d 2e e x xx B .⎰--=+110d 2e e x xxC .0d sin 11=⎰x x x - D .0)d (3112=+⎰x x x -4. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是 D .A .m A r A r <=)()(B .n A r <)(C .n m <D .n A r A r <=)()(5. 设线性方程组⎪⎩⎪⎨⎧=++=+=+33212321212ax x x a x x a x x ,则方程组有解的充分必要条件是 C .A .0321=++a a aB .0321=+-a a aC .0321=-+a a aD .0321=++-a a a三、解答题1.求解下列可分离变量的微分方程:1 y x y +='e答案:原方程变形为:y x e dxdy+= 分离变量得:dx e dy e x y =-两边积分得:⎰⎰=---dx e y d e x y )( 原方程的通解为:C e e x y +=--223e d d yx x y x =答案:分离变量得:dx xe dy y x =23两边积分得:⎰⎰=dx xe dy y x 23 原方程的通解为:C e xe y x x +-=32. 求解下列一阶线性微分方程:13)1(12+=+-'x y x y 答案:原方程的通解为:2x x xyy 2sin 2=-' 答案:原方程的通解为:3.求解下列微分方程的初值问题:1 y x y -='2e ,0)0(=y答案:原方程变形为:y x e dxdy-=2 分离变量得:dx e dy e x y 2=两边积分得:⎰⎰=dx e dy e x y 2 原方程的通解为:C e e xy +=221 将00==y x ,代入上式得:21=C 则原方程的特解为:21212+=x y e e20e =-+'x y y x ,0)1(=y 答案:原方程变形为:x y x y xe 1=+'原方程的通解为:将01==y x ,代入上式得:e C -= 则原方程的特解为:)(1e e x y x -=4.求解下列线性方程组的一般解:1⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x答案:原方程的系数矩阵变形过程为: 由于秩A =2<n=4,所以原方程有无穷多解,其一般解为:⎩⎨⎧-=+-=4324312x x x x x x 其中43x x ,为自由未知量; 2⎪⎩⎪⎨⎧=+-+=+-+=++-5114724212432143214321x x x x x x x x x x x x答案:原方程的增广矩阵变形过程为: 由于秩A =2<n=4,所以原方程有无穷多解,其一般解为:⎪⎩⎪⎨⎧-+=--=432431575353565154x x x x x x 其中43x x,为自由未知量;5.当λ为何值时,线性方程组有解,并求一般解;答案:原方程的增广矩阵变形过程为:所以当8=λ时,秩A =2<n=4,原方程有无穷多解,其一般解为:5.b a ,为何值时,方程组答案:当3-=a 且3≠b 时,方程组无解;当3-≠a 时,方程组有唯一解;当3-=a 且3=b 时,方程组无穷多解;原方程的增广矩阵变形过程为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-⨯+-⨯+-⨯+3300112011111140112011113122111111)2()1()1(b a b a b a A ②③①③①②讨论:1当b a ,3-≠为实数时,秩A =3=n=3,方程组有唯一解;2当33=-=b a ,时,秩A =2<n=3,方程组有无穷多解;3当33≠-=b a ,时,秩A =3≠秩A =2,方程组无解;6.求解下列经济应用问题:1设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=万元, 求:①当10=q 时的总成本、平均成本和边际成本;②当产量q 为多少时,平均成本最小答案:①∵ 平均成本函数为:625.0100)()(++==q qq q C q C 万元/单位 边际成本为:65.0)(+='q q C∴ 当10=q 时的总成本、平均成本和边际成本分别为: 5.1861025.010100)10(=+⨯+=C 万元/单位 116105.0)10(=+⨯='C 万元/单位 ②由平均成本函数求导得:25.0100)(2+-='qq C 令0)(='q C 得唯一驻点201=q 个,201-=q 舍去由实际问题可知,当产量q 为20个时,平均成本最小;2.某厂生产某种产品q 件时的总成本函数为201.0420)(q q q C ++=元,单位销售价格为q p 01.014-=元/件,问产量为多少时可使利润达到最大最大利润是多少.答案:2解:由q p 01.014-=得收入函数 201.014)(q q pq q R -==得利润函数: 2002.010)()()(2--=-=q q q C q R q L令 004.010)(=-='q q L解得:250=q 唯一驻点所以,当产量为250件时,利润最大,最大利润:12302025002.025010)250(2=-⨯-⨯=L 元3投产某产品的固定成本为36万元,且边际成本为402)(+='q q C 万元/百台.试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低. 解:当产量由4百台增至6百台时,总成本的增量为答案:①产量由4百台增至6百台时总成本的增量为 10046)40()402()(26464=+=+='=∆⎰⎰x x dx x dx x C C 万元 ②成本函数为:又固定成本为36万元,所以3640)(2++=x x x C 万元平均成本函数为:xx x x C x C 3640)()(++==万元/百台 求平均成本函数的导数得:2361)(xx C -=' 令0)(='x C 得驻点61=x ,62-=x 舍去由实际问题可知,当产量为6百台时,可使平均成本达到最低;4已知某产品的边际成本)(q C '=2元/件,固定成本为0,边际收益q q R 02.012)(-=',求:①产量为多少时利润最大②在最大利润产量的基础上再生产50件,利润将会发生什么变化答案:①求边际利润:q q C q R q L 02.010)()()(-='-'='令0)(='q L 得:500=q 件由实际问题可知,当产量为500件时利润最大;②在最大利润产量的基础上再生产50件,利润的增量为:25500550)01.010()02.010()(2550500550500-=-=-='=∆⎰⎰q q dq q dq q L L 元即利润将减少25元;。

2018年秋会计专【经济数学基础】形成性考核册答案(附

2018年秋会计专【经济数学基础】形成性考核册答案(附

电大天堂【经济数学基础】形成性考核册答案注:本答案仅供参考,如有错误敬请指正有不对的地方欢迎指出。

电大天堂【经济数学基础】形考作业一答案:(一)填空题 一.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:一 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题一. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21x e - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设,则( B ). A .B .C .D .4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .一/ 2xB .-一/2xC .x1D .x 1-(三)解答题 一.计算极限(一)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(一)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(一)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

2024最新国开电大经济学(本)形考任务三-六

2024最新国开电大经济学(本)形考任务三-六

一、单选题(15道,共30分)试题 1实现凯恩斯主义和新古典经济学结合的经济学家是()。

A.凯恩斯B.萨缪尔森C.斯蒂格利茨D.曼昆正确答案是:萨缪尔森试题 2在封闭经济条件下,两部门经济是指()。

A.家庭与政府B.厂商与外贸C.厂商与政府D.家庭与厂商试题 3其他因素保持不变,只是某种商品的价格下降,将产生什么样的结果()A.需求量增加B.需求量减少C.需求增加D.需求减少正确答案是:需求量增加试题 4需求曲线是一条倾斜的曲线,其倾斜的方向为()A.右上方B.右下方C.左下方D.左上方正确答案是:右下方试题 5下列变化中,哪种变化不会导致需求曲线的位移()A.产品的价格B.人们的偏好和爱好C.相关产品的价格D.消费者的收入正确答案是:产品的价格试题 6假定某企业全部成本函数为TC=30000+5Q-Q2,Q为产出数量。

那么TVC为()A.30000B.5-QC.5Q-Q2D.30000/Q正确答案是:5Q-Q2试题 7随着产量的增加,平均固定成本()A.在开始时增加,然后趋于减少B.在开始时减少,然后趋于增加C.一直趋于增加D.一直趋于减少正确答案是:一直趋于减少试题 8边际成本曲线与平均成本曲线的相交点是()A.边际成本曲线的最低点B.平均成本曲线的最低点C.平均成本曲线下降阶段的任何一点D.边际成本曲线的最高点正确答案是:平均成本曲线的最低点试题 9最需要进行广告宣传的市场是()A.寡头垄断市场B.垄断竞争市场C.完全垄断市场D.完全竞争市场正确答案是:垄断竞争市场试题 10某企业生产的商品价格为12元,平均成本为11元,平均可变成本为8元,则该企业在短期内()A.停止生产且不亏损B.继续生产但亏损C.停止生产且亏损D.继续生产且存在利润正确答案是:继续生产且存在利润试题 11在完全垄断市场上,厂商的边际收益与平均收益之间的关系是()A.边际收益等于平均收益B.边际收益小于平均收益C.边际收益大于平均收益D.边际收益曲线交于平均收益曲线的最低点正确答案是:边际收益小于平均收益试题 12在要素市场上厂商使用生产要素最优数量的原则是()A.MP=WB.VMP=WC.MR=WD.MRP=W正确答案是:VMP=W试题 13厂商每增加一单位生产要素投入所增加的生产力,是()A.边际生产力B.边际收益C.边际产品D.边际产品价值正确答案是:边际生产力试题 14某人的吸烟行为属()A.消费的外部经济B.生产的外部经济C.生产的外部不经济D.消费的外部不经济正确答案是:消费的外部不经济试题 15.只要交易成本为零,财产的法定所有权的分配就不影响经济运行的效率,这种观点称为()A.逆向选择B.科斯定理C.有效市场理论D.看不见的手正确答案是:科斯定理二、多选题(10道,共30分)试题 16家庭部门是()。

电大经济数学基础形成性考核册答案[]

电大经济数学基础形成性考核册答案[]

电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:02.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D )A .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =(B ).A .12d x x B .1d x x ln10C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x时,下列变量是无穷小量的是( C ).A .x2 B .xx sin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim)2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a(2). 1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-='∴dx e xx dy x )123(12-=(7)2e cos xx y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx -+-∴dx xe xxdyx )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导:0322=+'--'⋅+y x y y y x 32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导:4)()1)(cos(='+⋅+'++y x y e y y x xy xy xy ye y x y xe y x -+-='++)cos(4])[cos( 所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2)212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3.若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2.答案:c x F +--)1(212 4.设函数___________d )1ln(d d e 12=+⎰x x x .答案:0 5.若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,(D )是x sin x 2的原函数. A .21cos x 2B .2cos x 2C .-2cos x 2D .-21cos x 22. 下列等式成立的是( C ). A .)d(cos d sin x xx =B .)1d(d ln x x x =C .)d(22ln 1d 2x xx =D .x x xd d 1= 3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x x xd 124. 下列定积分计算正确的是(D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x x x+-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x xd 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 cos2- (+) 0 sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x(+)0 2cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) xln x(-)x 122x∴ 原式=⎰-e e xdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)xx e -(-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe =154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是.答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵XBX A =+的解______________=X .答案:A B I1)(--5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). `A .111)(---+=+B A B A ,B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB =4. 下列矩阵可逆的是(A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

电大经济数学基础形成性考核册答案

电大经济数学基础形成性考核册答案

电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D ) A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =(B ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x(2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim22=--→x x x 原式=2)2sin(2lim 2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f (0)f (x )lim 10x ====→有时,b a(2).1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a e dy ax)cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx-+-∴dx xe xxdy x )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导: 所以 dx xy x y dy ---=232(2) 方程两边对x 求导:所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='(2)212321212121)(-----='-='x x x xy作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e 12=+⎰x x x.答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数.A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ). A .)d(cos d sin x xx =B .)1d(d lnxx x =C .)d(22ln 1d 2x xx =D .x x xd d 1= 3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x x xd 124. 下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ).A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x x x +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx(-) 1 cos2- (+) 0 sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e 2121⎰答案:原式=⎰-212211)(xdx x e x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 2⎰π答案:∵ (+)x (+)0 2cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21=)1(414122122+=-e x e e (6)x x xd )e1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe-(-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe=154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n阶矩阵,)(B I -可逆,则矩阵XBX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是(C ). `A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB = D .BA AB =4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡22115. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3 三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000(3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档