凝聚态物理学发展状况

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1 凝聚态物理学发展状况

凝聚态物理学研究物质的宏观物理性质的学科。所谓“凝聚态”,指的是由大量粒子组成,并且粒子间有很强相互作用的系统。自然界中存在着各种各样的凝聚态物质。固态和液态是最常见的凝聚态。低温下的超流态,超导态,玻色-爱因斯坦凝聚态,磁介质中的铁磁态,反铁磁态等,也都是凝聚态。

研究凝聚态物质的宏观性质及其微观本质的物理学分支。凝聚态物质的共同特点是原子(或分子)的间距和原子(或分子)本身的线度有大致相同的数量级,因而原子(或分子)间有较强的相互作用,这使凝聚态物质表现出具有一定的体积和压缩率很小这些共同的宏观特征;在微观结构上则具有长程有序(晶体)或短程有序(液体)的特点(见非晶态)。和气体相比,凝聚态物质具有迥然不同且更为多样化的属性。凝聚态物理学涉及范围极广的研究领域。自建立了量子理论后,晶态固体的一系列基本宏观性质得到了较好的理论解释,逐渐形成了较完整的晶态物理学基础。以后,晶态物理所研究的内容又有极大的扩展,如开始了对非晶态固体的研究,从完整的和纯净的晶体转移到对杂质和缺陷的研究,从体内性质扩展到表面和界面性质的研究,由平衡态转向瞬态、亚稳态和相变的研究,从常温常压条件转向极低温和超高压条件下的研究,以及从普通晶格扩展到超晶格(一种由不同单晶薄膜周期性地交替叠合而成的人工晶格)的研究,等等。所有这些构成了固体物理学这个宏大学科,按所研究的问题的不同,固体物理学又分出结晶学、金属物理学、半导体物理学、电介质物理学、磁性物理学、表面物理学和超导物理学等分支学科。凝聚态物理学除上述内容外还包括对液态氦和液晶的研究内容。凝聚态物理学由于其实用性强,和其他自然科学领域联系紧密,已成为物理学发展的重点之一。

目前凝聚态物理学面临的主要问题是铁磁态和高温超导体的理论模型。

1. 概况

凝聚态物理学是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其和宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。

凝聚态物理的研究对象除晶体、非晶体和准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。特别是八十年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理和团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。目前凝聚态物理学正处在枝繁叶茂的兴旺时期。并且,由于凝聚态物理的基础性研究往往和实际的技术使用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。近年来凝聚态物理学的研究成果、研究方法和技术日益向相邻学科渗透、扩展,有力的促进了诸如化学、物理、生物物理和地球物理等交叉学科的发展。

2.学科研究范围

研究凝聚态物质的原子之间的结构、电子态结构以及相关的各种物理性质。研究领域包括固体物理、晶体物理、金属物理、半导体物理、电介质物理、磁学、固体光学性质、低温物理和超导电性、高压物理、稀土物理、液晶物理、非晶物理、低维物理(包括薄膜物理、

表面和界面物理和高分子物理)、液体物理、微结构物理(包括介观物理和原子簇)、缺陷和相变物理、纳米材料和准晶等。

汉语中“凝聚”一词是由“凝”字双音演化而来的。“凝”在东汉许慎的“说文解字”一书中同“冰”,指的是水结成冰的过程。可见我们的祖先最初对凝聚现象的注意可能始于对水的观察,特别是水从液态到固态的现象。英语的condense来源于法语,后者又来源于拉丁文,指的是密度变大,从气或蒸汽变液体。看来西方人对凝聚现象的注意可能始于对气体的观察,特别是水汽从气态到液态的现象。这是很有意思的差别,大概和各自的古代自然生活环境和生活习惯有关。不过东西方二者原始意义的结合,恰恰就是今天凝聚态物理主要研究的对象—液态和固态。当然从科学的含义上来说,二者不是截然分开的。所以凝聚态物理还研究介于这二者之间的态。例如液晶等。液态和固态物质一般都是由量级为1023的极大数量微观粒子组成的非常复杂的系统。凝聚态物理正是从微观角度出发,研究这些相互作用多粒子系统组成的物质的结构、动力学过程及其和宏观物理性质之间关系的一门学科。

众所周知,复杂多样的物质形态基本上分成三类:气态、液态和固态,在这三种物态中,凝聚态物理研究的对象就占了二个,这就决定了这门学科的每一步进展都和我们人类的生活休戚相关。从传统的各种金属、合金到新型的各种半导体、超导材料,从玻璃、陶瓷到各种聚合物和复合材料,从各种光学晶体到各种液晶材料等等;所有这些材料所涉及到的声、光、电、磁、热等特性都是建立在凝聚态物理研究的基础上的。凝聚态物理研究还直接为许多高科学技术本身提供了基础。当今正蓬勃发展着的微电子技术、激光技术、光电子技术和光纤通讯技术等等都密切联系着凝聚态物理的研究和发展。

凝聚态物理以万物皆成于原子为宗旨,以量子力学为基础研究各种凝聚态,这是一个非常雄心勃勃的举措。凝聚态物理这个学科名称的诞生仅仅是最近几十年的事。如果追寻一下它的渊源。应该说出自于对固态中晶态固体的研究和对液态中量子液体的研究。在对这二种特殊态的长期研究中,人们积累了一些经验,也建立起了一些信心,并逐步把一些已有的方法推广用于非晶态和液晶乃至液态的研究,从而大大拓宽了视野,逐步形成了凝聚态物理。今天,凝聚态物理的视野还在继续开拓。然而作为渊源的二种凝聚态即晶态固体和量子液体,时至今日仍然是它主要的研究对象,内容当然越来越丰富了,考虑的问题也越来越深入了。毕竟我们面临的是同一个自然界,许多现象和规律是普适的。人们正是通过对一系列特殊态的深入研究来逐步认识和掌握那些普适的规律。

凝聚态物理学是当今物理学最大也是最重要的分支学科之一。研究由大量微观粒子(原子、分子、离子、电子)组成的凝聚态物质的微观结构、粒子间的相互作用、运动规律及其物质性质和使用的科学。它是以固体物理学为主干,进一步拓宽研究对象,深化研究层次形成的学科。其研究对象除了晶体、非晶体和准晶体等固体物质外,还包括稠密气体、液体以及介于液体和固体之间的各种凝聚态物质,内容十分广泛。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数,从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用,等等,形成了比固体物理学更深刻更普遍的理论体系。经过半个世纪的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的分支学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;和生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发使用研究的性质,研究成果可望迅速转化为生产力。

近20年来凝聚态物理的研究热点:

1.准晶态的发现(1984年)

相关文档
最新文档