基本初等函数、函数与方程答案
基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)
冲刺2023年高考二轮 基本初等函数、函数与方程(原卷+答案)1.函数y =log 2(4+3x -x 2)的一个单调增区间是( ) A .⎝ ⎛⎭⎪⎫-∞,32 B .⎣⎢⎡⎭⎪⎫32,+∞ C .⎝ ⎛⎭⎪⎫-1,32 D .⎣⎢⎡⎭⎪⎫32,4 2.已知函数f (x )=⎩⎨⎧ax 2-x -14,x ≤1log a x -1,x >1,是R 上的单调函数,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫14,12B .⎣⎢⎡⎦⎥⎤14,12 C .⎝ ⎛⎦⎥⎤0,12 D .⎝ ⎛⎭⎪⎫12,1 3.若不等式x 2-log a x <0在⎝⎛⎭⎪⎫0,12 内恒成立,则a 的取值范围是( )A .116 ≤a <1B .116 <a <1 C .0<a ≤116 D .0<a <1164.若函数f (x )=x +ax -1在(0,2)上有两个不同的零点,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,14B .⎝ ⎛⎭⎪⎫-2,14C .⎣⎢⎡⎦⎥⎤0,14D .⎝ ⎛⎭⎪⎫0,145.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示,在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫作信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,增加带宽,提高信号功率和降低噪声功率都可以提升信息传递速度,若在信噪比为1 000的基础上,将带宽W 增大到原来的2倍,信号功率S 增大到原来的10倍,噪声功率N 减小到原来的15 ,则信息传递速度C 大约增加了( )(参考数据:lg 2≈0.3) A .87% B .123% C .156% D .213%6.已知函数f (x )=⎩⎪⎨⎪⎧||log 2x ,x >0,-x 2-4x +4,x <0. 若函数g (x )=f (x )-m 有四个不同的零点x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是( )A .(0,4)B .(4,8)C .(0,8)D .(0,+∞)7.已知函数f (x )是定义在R 上的奇函数,满足f (x +2)=f (-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则函数y =f (x )-x 3的零点个数是( )A .2B .3C .4D .5 8.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h )的函数关系为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12, (如图所示)实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.(1)k =________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.9.函数f (x )=⎩⎪⎨⎪⎧x 3+2,x ≤0x -3+e x,x >0 的零点个数为________. 10.已知函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤1log 2x ,x >1 ,若1<f (a )≤2,则实数a 的取值范围为________.11.已知函数f (x )=⎩⎪⎨⎪⎧10x -2-102-x ,x ≤2||x -3-1,x >2,则不等式f (x )+f (x -1)<0的解集为________.12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 恰有两个零点,则实数c 的取值范围是________.13.已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)14.定义在R 上的偶函数f (x )满足f (2-x )=f (2+x ),且当x ∈[0,2]时,f (x )=⎩⎨⎧2x-1,0≤x ≤12sin π2x -1,1<x ≤2,若关于x 的方程m ln ||x =f (x )至少有8个实数解,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎦⎥⎤0,1ln 5B .⎣⎢⎡⎦⎥⎤-1ln 6,1ln 5 C .⎝ ⎛⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎭⎪⎫0,1ln 5 D .⎝ ⎛⎭⎪⎫-1ln 6,1ln 5参考答案1.解析:函数y =log 2(4+3x -x 2)的定义域为(-1,4). 要求函数y =log 2(4+3x -x 2)的一个单调增区间, 只需求y =4+3x -x 2的增区间,只需x <32 . 所以-1<x <32 .所以函数y =log 2(4+3x -x 2)的一个单调增区间是⎝ ⎛⎭⎪⎫-1,32 .故选C.答案:C2.解析:当函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调递减函数,所以⎩⎪⎨⎪⎧0<a <112a ≥1a -54≥-1,解得14 ≤a ≤12 ,因为a >0且a ≠1,所以当x ≤1时,f (x )不可能是增函数, 所以函数f (x )在R 上不可能是增函数, 综上:实数a 的取值范围为⎣⎢⎡⎦⎥⎤14,12 ,故选B.答案:B3.解析:当a >1时,由x ∈⎝ ⎛⎭⎪⎫0,12 ,可得log a x <0,则-log a x >0,又由x 2>0,此时不等式x 2-log a x <0不成立,不合题意; 当0<a <1时,函数y =log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递减,此时函数y =-log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递增,又由y =x 2在⎝ ⎛⎭⎪⎫0,12 上单调递增,要使得不等式x 2-log a x <0在⎝ ⎛⎭⎪⎫0,12 内恒成立,可得⎝ ⎛⎭⎪⎫12 2-log a 12 ≤0,解得116 ≤a <1.故选A.答案:A4.解析:函数f (x )=x +ax -1在(0,2)上有两个不同的零点等价于方程x +ax -1=0在(0,2)上有两个不同的解,即a =-x 2+x 在(0,2)上有两个不同的解.此问题等价于y =a 与y =-x 2+x (0<x <2)有两个不同的交点.由下图可得0<a <14 .故选D. 答案:D5.解析:提升前的信息传递速度C =W log 2S N =W log 21 000=3W log 210=3Wlg 2≈10W ,提升后的信息传递速度C ′=2W log 210S 15N =2W log 250SN =2W log 250 000=2W ·4+lg 5lg 2 =2W ·5-lg 2lg 2 ≈94W 3 ,所以信息传递速度C 大约增加了C ′-CC =943W -10W 10W ≈2.13=213%.故选D.答案:D6.解析:函数g (x )有四个不同的零点等价于函数f (x )的图象与直线y =m 有四个不同的交点.画出f (x )的大致图象,如图所示.由图可知m ∈(4,8).不妨设x 1<x 2<x 3<x 4,则-4<x 1<-2<x 2<0,且x 1+x 2=-4.所以x 2=-x 1-4,所以x 1x 2=x 1(-x 1-4)=-(x 1+2)2+4∈(0,4),则0<x 3<1<x 4,因为||log 2x 3 =||log 2x 4 ,所以-log 2x 3=log 2x 4,所以log 2x -13 =log 2x 4,所以x 3·x 4=1,所以x 1·x 2·x 3·x 4=x 1·x 2∈(0,4).故选A. 答案:A7.解析:由f (x +2)=f (-x )可得f (x )关于x =1对称, 由函数f (x )是定义在R 上的奇函数,所以f (x +2)=f (-x )=-f (x )=-[-f (x -2)]=f (x -2), 所以f (x )的周期为4,求函数y =f (x )-x 3的零点问题即y =f (x )-x 3=0的解, 即函数y =f (x )和y =x 3的图象交点问题,根据f (x )的性质可得如图所示图形,结合y =x 3的图象,由图象可得共有3个交点,故共有3个零点,故选B. 答案:B8.解析:(1)由题图可知,当t =12 时,y =1,所以2k =1,所以k =2. (2)由(1)可知,y =⎩⎪⎨⎪⎧2t ,0<t <12,12t ,t ≥12,当t ≥12 时,y =12t ,令y <0.75,得t >23 ,所以在消毒后至少经过23 小时,即40分钟人方可进入房间.答案:(1)2 (2)409.解析:当x ≤0时,令x 3+2=0,解得x =3-2 ,3-2 <0,此时有1个零点;当x >0时, f (x )=x -3+e x ,显然f (x )单调递增,又f ⎝ ⎛⎭⎪⎫12 =-52 +e 12 <0,f (1)=-2+e>0,由零点存在定理知此时有1个零点;综上共有2个零点.答案:210.解析:若a ≤1,则f (a )=4a -1,故1<4a -1≤2,解得12 <a ≤log 43,故12 <a ≤log 43;若a >1,则f (a )=log 2a ,故1<log 2a ≤2,解得2<a ≤4; 综上:12 <a ≤log 43或2<a ≤4. 答案:⎝ ⎛⎦⎥⎤12,log 43 ∪(2,4]11.解析:①当x ≤2时,x -1≤1,∵f (x )=10x -2-102-x 在(-∞,2]上单调递增,∴f (x )≤f (2)=0,又f (x -1)≤f (1)<f (2)=0, ∴f (x )+f (x -1)<0恒成立;②当2<x ≤3时,1<x -1≤2,f (x )=||x -3 -1=2-x <0, 又f (x -1)≤f (2)=0,∴f (x )+f (x -1)<0恒成立;③当3<x ≤4时,2<x -1≤3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=3-x ;∴f (x )+f (x -1)=-1<0恒成立;④当x >4时,x -1>3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=x -5,∴f (x )+f (x -1)=2x -9<0,解得x <92 ,∴4<x <92 ; 综上所述:不等式f (x )+f (x -1)<0的解集为⎝ ⎛⎭⎪⎫-∞,92 .答案:⎝ ⎛⎭⎪⎫-∞,92 12.解析:因为a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.,所以f (x )=(x 2-2)⊗(x -1)=⎩⎨⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2 ,由图可知,当-2<c ≤-1或1<c ≤2时,函数f (x )与y =c 的图象有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2]. 答案:(-2,-1]∪(1,2] 13.解析:令g (x )=f (x )-x 2, 因为f (x )是定义在R 上的偶函数, 所以f (-x )=f (x ),则g (-x )=f (-x )-(-x )2=g (x ), 所以函数g (x )也是偶函数, g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x ≥0, 所以函数g (x )在(0,+∞)上递增, 不等式f (x )>x 2+2即为不等式g (x )>2, 由f (1)=3,得g (1)=2, 所以g (x )>g (1),所以||x >1,解得x >1或x <-1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞). 故选B. 答案:B14.解析:因为f (2-x )=f (2+x ),且f (x )为偶函数, 所以f (x -2)=f (x +2),即f (x )=f (x +4), 所以函数f (x )是以4为周期的周期函数,作出y=f(x),y=m ln x在同一坐标系的图象,如图,因为方程m ln ||x=f(x)至少有8个实数解,所以y=f(x),y=m ln |x|图象至少有8个交点,根据y=f(x),y=m ln |x|的图象都为偶函数可知,图象在y轴右侧至少有4个交点,由图可知,当m>0时,只需m ln 5≤1,即0<m≤1ln 5,当m<0时,只需m ln 6≥-1,即-1ln 6≤m<0,当m=0时,由图可知显然成立,综上可知,-1ln 6≤m≤1ln 5.故选B.答案:B。
第一部分 专题六 第二讲 基本初等函数、函数与方程
[限时训练·直通高考] 科学设题 拿下高考高分[A 组 基础练]1.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在x ∈(0,+∞)时为增函数,则实数m 的值是( ) A .-2 B .4 C .3D .-2或3解析:f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3. 又在x ∈(0,+∞)上是增函数, 所以m =3. 答案:C2.函数y =a x +2-1(a >0,且a ≠1)的图象恒过的点是( ) A .(0,0) B .(0,-1) C .(-2,0)D .(-2,-1)解析:令x +2=0,得x =-2,所以当x =-2时,y =a 0-1=0,所以y =a x +2-1(a >0,且a ≠1)的图象恒过点(-2,0). 答案:C 3.若c =log 3 cos π5,则( )A .b >c >aB .b >a >cC .a >b >cD .c >a >b解析:因为0<1π<13<1,所以1=>0,所以0<a <1,因为b =>e 0=1,所以b >1.因为0<cos π5<1,所以log 3 cos π5<log 3 1=0,所以c <0.故b >a >c ,选B. 答案:B4.(2020·西安一中月考)下列函数中,与函数y =2x -2-x 的定义域、单调性、奇偶性均一致的是( )A .y =sin xB .y =x 3C .y =⎝ ⎛⎭⎪⎫12xD .y =log 2 x解析:y =2x -2-x 是定义域为R 的单调递增函数,且是奇函数.而y =sin x 不是单调递增函数;y =⎝ ⎛⎭⎪⎫12x 是非奇非偶函数;y =log 2 x 的定义域是(0,+∞);只有y =x 3是定义域为R 的单调递增函数,且是奇函数,符合题意. 答案:B5.(2020·新乡模拟)若函数f (x )=log 2(x +a )与g (x )=x 2-(a +1)x -4(a +5)存在相同的零点,则a 的值为( ) A .4或-52 B .4或-2 C .5或-2D .6或-52解析:g (x )=x 2-(a +1)x -4(a +5)=(x +4)[x -(a +5)],令g (x )=0,得x =-4或x =a +5,则f (-4)=log 2(-4+a )=0或f (a +5)=log 2(2a +5)=0,解得a =5或a =-2. 答案:C6.(2020·大连模拟)已知偶函数y =f (x )(x ∈R )满足f (x )=x 2-3x (x ≥0),若函数g (x )=⎩⎪⎨⎪⎧log 2 x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为( )A .1B .3C .2D .4解析:作出函数f (x )与g (x )的图象,如图所示,由图象可知两个函数图象有3个不同的交点,所以函数y =f (x )-g (x )有3个零点,故选B. 答案:B7.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A. 答案:A8.(2020·绵阳模拟)函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3)D .(0,2)解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C. 答案:C9.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若当x =0时,f (x )取得最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]解析:∵当x ≤0时,f (x )=(x -a )2,且当x =0时,f (x )取得最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.∴2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,∴a 的取值范围是[0,2].故选D. 答案:D10.函数f (x )=(3ax -b )2的图象如图所示,则( ) A .a >0且b >1 B .a >0且0<b <1 C .a <0且b >1 D .a <0且0<b <1解析:由题图可知,当x →-∞时,f (x )→+∞,若a >0,则3a >1,则3ax →0,f (x )→b 2,不合题意,若a =0,则3ax =1,则f (x )=(1-b )2,不合题意,故a <0,此时3a <1.设3ax =t ,则易知当t =b ,即3ax =b 时,f (x )取最小值,由图象可知此时x <0,故3ax >1,即b >1.综上所述,a <0且b >1.故选C. 答案:C11.已知函数f (x )=⎩⎨⎧2,x >m ,x 2+4x +2,x ≤m 的图象与直线y =x 恰有三个公共点,则实数m 的取值范围是( ) A .(-∞,-1] B .[-1,2) C .[-1,2]D .[2,+∞)解析:由题意可得直线y =x 与函数f (x )=2(x >m )有且只有一个交点.若要满足题目要求,则需满足直线y =x 与函数f (x )=x 2+4x +2的图象恰有两个交点,如图,由图象可知,函数y =x 与f (x )=x 2+4x +2的图象交点为A (-2,-2),B (-1,-1),故有m ≥-1.而当m ≥2时,直线y =x 和射线y =2(x >m )无交点,故实数m 的取值范围是[-1,2).故选B. 答案:B12.(2020·武汉调研)已知函数f(x)=e x-a ln(ax-a)+a(a>0),若关于x的不等式f(x)>0恒成立,则实数a的取值范围为()A.(0,e2] B.(0,e2)C.[1,e2]D.(1,e2)解析:因为f(x)=e x-a ln(ax-a)+a>0恒成立,所以e xa>ln(x-1)+ln a-1,e x-ln a+x-ln a>ln(x-1)+x-1,e x-ln a+x-ln a>e ln(x-1)+ln(x-1),令g(x)=e x+x,易得g(x)在(1,+∞)上单调递增,所以x-ln a>ln(x-1),即-ln a>ln(x-1)-x,因为ln(x-1)-x≤x-2-x=-2,所以-ln a>-2,所以0<a<e2,所以实数a的取值范围是(0,e2),故选B.答案:B13.(2020·新余一中质检)已知f(x)=22x+1+sin x,则f(-2)+f(-1)+f(0)+f(1)+f(2)=________.解析:∵f(x)+f(-x)=22x+1+sin x+22-x+1-sin x=22x+1+2x+11+2x=2,且f(0)=1,∴f(-2)+f(-1)+f(0)+f(1)+f(2)=5.答案:514.(2020·杭州期中测试)函数y=log2(-x2+4x)的增区间是________,值域是________.解析:函数y=log2(-x2+4x)的增区间,即函数t=-x2+4x在满足t>0的条件下,函数t的增区间,再利用二次函数的性质可得在满足t>0的条件下,函数t的增区间为(0,2].由于0<t ≤4,故y =log 2 t ∈(-∞,2]. 答案:(0,2] (-∞,2]15.(2020·三明模拟)物体在常温下的温度变化可以用牛顿冷却定律来描述:设物体的初始温度是T 0,经过一定时间t (单位:分)后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 称为环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降到40 ℃需要20分钟,那么此杯咖啡从40 ℃降温到32 ℃时,还需要________分钟.解析:由已知可得T a =24,T 0=88,T =40,则40-24=(88-24)×⎝ ⎛⎭⎪⎫1220h ,解得h =10.当咖啡从40 ℃降温到32 ℃时,可得32-24=(40-24)×⎝ ⎛⎭⎪⎫12t10,解得t =10.故还需要10分钟. 答案:1016.已知函数f (x )=⎩⎨⎧|lg (-x )|,x <0,x 2-6x +4,x ≥0,若关于x 的函数y =f 2(x )-bf (x )+1有8个不同的零点,则实数b 的取值范围是________. 解析:作出函数f (x )=⎩⎪⎨⎪⎧|lg (-x )|,x <0,x 2-6x +4,x ≥0的图象,如图所示.设f (x )=t ,由图可知,t ∈(0,4],f (x )=t 有4个根,∴在(0,4]上,方程t 2-bt +1=0有2个不同的解,∴⎩⎪⎨⎪⎧1>0,b2>0,Δ=b 2-4>0,16-4b +1≥0,解得2<b ≤174.答案:⎝ ⎛⎦⎥⎤2,174[B 组 创新练]1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3.已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为( ) A .{0,1,2,3} B .{0,1,2} C .{1,2,3} D .{1,2}解析:f (x )=2x +32x +1=(1+2x )+21+2x=1+21+2x ,又2x>0,∴21+2x ∈(0,2),∴1+21+2x∈(1,3).∴当f (x )∈(1,2)时,y =[f (x )]=1;当f (x )∈[2,3)时,y =[f (x )]=2.∴函数y =[f (x )]的值域是{1,2}.故选D. 答案:D2.在标准温度和大气压下,人体血液中氢离子的物质的量浓度(单位mol /L ,记作[H +])和氢氧根离子的物质的量浓度(单位mol /L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg [H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg3≈0.48)( ) A.12 B.13 C.16D.110解析:由题意可得pH =-lg [H +]∈(7.35,7.45),且[H +]·[OH -]=10-14,∴lg[H +][OH -]=lg[H +]10-14[H +]=lg [H +]2+14=2lg [H +]+14.∵7.35<-lg [H +]<7.45,∴-7.45<lg [H +]<-7.35,∴-0.9<2lg [H +]+14<-0.7,即-0.9<lg [H +][OH -]<-0.7.∵lg 12=-lg 2≈-0.30,故A 错误,lg 13=-lg 3≈-0.48,故B 错误,lg 16=-lg 6=-(lg 2+lg 3)≈-0.78,故C 正确,lg 110=-1,故D 错误,故选C. 答案:C3.(2020·重庆市学业质量调研)已知函数f (x )=2x +log 32+x 2-x,若不等式f ⎝ ⎛⎭⎪⎫1m >3成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,1) C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫12,1 解析:由2+x 2-x >0得x ∈(-2,2),又y =2x 在(-2,2)上单调递增,y =log 3 2+x2-x =log 3x -2+42-x =log 3⎝⎛⎭⎪⎫-1-4x -2在(-2,2)上单调递增,所以函数f (x )为增函数,又f (1)=3,所以不等式f ⎝ ⎛⎭⎪⎫1m >3成立等价于不等式f ⎝ ⎛⎭⎪⎫1m >f (1)成立,所以⎩⎨⎧-2<1m <2,1m >1,解得12<m <1,故选D.答案:D4.对于实数a 和b ,定义运算“*”:a *b ={a (a -b )3,a ≤b ,b (b -a )3,a >b ,设f (x )=(2x -1)*(x -1),若函数g (x )=f (x )-mx 2(m ∈R )恰有三个零点x 1,x 2,x 3,则m 的取值范围是________,x 1x 2x 3的取值范围是________.解析:当2x -1≤x -1,即x ≤0时,f (x )=(2x -1)x 3,当2x -1>x -1,即x >0时,f (x )=-(x -1)x 3,所以f (x )=⎩⎪⎨⎪⎧(2x -1)x 3,x ≤0,-(x -1)x 3,x >0,因为g (x )有三个零点,所以函数f (x )与y =mx 2的图象有三个交点,即k (x )=⎩⎪⎨⎪⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0的图象与直线y =m 有三个交点,作出k (x )的图象,如图,其中x >0时,函数k (x )的最大值为-⎝ ⎛⎭⎪⎫12-1×12=14,所以0<m <14.不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=1,所以0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322=14. 由⎩⎨⎧(2x -1)x =14,x <0,解得x =1-34,所以1-34<x 1<0,所以1-316<x 1x 2x 3<0,且当m 无限接近14时,x 1x 2x 3趋近于1-316,当m 无限接近0时,x 1x 2x 3趋近于0.故x 1x 2x 3的取值范围为⎝ ⎛⎭⎪⎫1-316,0.答案:⎝ ⎛⎭⎪⎫0,14 ⎝⎛⎭⎪⎫1-316,0。
数学二轮专题复习课时作业17基本初等函数函数与方程文含解析
课时作业17 基本初等函数、函数与方程[A·基础达标]1.函数y=a x-1(a〉0,且a≠1)的图象恒过点A,则下列函数中图象不经过点A的是()A.y=错误!B.y=|x-2|C.y=2x-1 D.y=log2(2x)2.设f(x)是区间[-1,1]上的增函数,且f错误!·f错误!<0,则方程f(x)=0在区间[-1,1]内()A.可能有3个实数根B.可能有2个实数根C.有唯一的实数根D.没有实数根3.如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()4.若函数y=错误!(a〉0,且a≠1)的定义域和值域都是[0,1],则log a错误!+log a错误!=()A.1 B.2C.3 D.45.已知函数y=x a,y=x b,y=c x的图象如图所示,则a,b,c的大小关系为()A.c〈b<a B.a<b<cC.c<a〈b D.a<c<b6.函数f(x)=ln (x2-2x-8)的单调递增区间是()A.(-∞,-2) B.(-∞,1)C.(1,+∞) D.(4,+∞)7.设函数f(x)=a x-k-1(a〉0,且a≠1)过定点(2,0),且f(x)在定义域R上是减函数,则g(x)=log a(x+k)的图象是() 8.已知函数f(x)=lg错误!是奇函数,且在x=0处有意义,则该函数为()A.(-∞,+∞)上的减函数B.(-∞,+∞)上的增函数C.(-1,1)上的减函数D.(-1,1)上的增函数9.函数f(x)=|lg(2-x)|在下列区间中为增函数的是() A.(-∞,1] B.错误!C.错误!D.[1,2)10.[2020·广州市调研检测]已知点(m,8)在幂函数f(x)=(m-1)x n的图象上,设a=f错误!,b=f(ln π),c=f错误!,则a,b,c的大小关系为()A.b<a<c B.a〈b〈cC.b〈c〈a D.a<c〈b11.[2019·北京卷]在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=52lg错误!,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是-26。
(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)
第8讲 函数与方程[基础达标]1.(2019·浙江省名校联考)已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个D .5个解析:选B.依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.(2019·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.法一:因为f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,所以f (1)·f (2)<0,因为函数f (x )=ln x +x -2的图象是连续的,所以函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的区间,作出两函数的图象如图所示,由图可知,函数f (x )的零点所在的区间为(1,2).3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C.作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.4.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x-tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( )A .大于1B .大于0C .小于0D .不大于0解析:选B.y 1=⎝ ⎛⎭⎪⎫1e x是减函数,y 2=-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上也是减函数,可知f (x )=⎝ ⎛⎭⎪⎫1e x-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递减. 因为0<t <x 0,f (t )>f (x 0)=0.故选B.5.(2019·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14 B .18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.6.(2019·宁波市余姚中学期中检测)已知函数f (x )=|x |x +2-kx 2(k ∈R )有四个不同的零点,则实数k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >1解析:选D.分别画出y =|x |x +2与y =kx 2的图象如图所示,当k <0时,y =kx 2的开口向下,此时与y =|x |x +2只有一个交点,显然不符合题意; 当k =0时,此时与y =|x |x +2只有一个交点,显然不符合题意, 当k >0,x ≥0时, 令f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2-x =0, 即x (kx 2+2kx -1)=0, 即x =0或kx 2+2kx -1=0,因为Δ=4k 2+4k >0,且-1k<0,所以方程有一正根,一负根,所以当x >0时,方程有唯一解.即当x ≥0时,方程有两个解.当k >0,x <0时,f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2+x =0,kx 2+2kx +1=0,此时必须有两个解才满足题意,所以Δ=4k 2-4k >0,解得k >1, 综上所述k >1.7.(2019·金丽衢十二校高三联考)设函数f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1,则f (f (e))=________,函数y =f (x )-1的零点为________.解析:因为f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1, 所以f (e)=ln e =1,f (f (e))=f (1)=tan 0=0,若0<x ≤1,f (x )=1⇒tan[π2(x -1)]=1, 方程无解;若x >1,f (x )=1⇒ln x =1⇒x =e. 答案:0 e 8.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为________. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-129.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 10.(2019·杭州学军中学模拟)已知函数f (x )=|x 3-4x |+ax -2恰有2个零点,则实数a 的取值范围为________.解析:函数f (x )=|x 3-4x |+ax -2恰有2个零点即函数y =|x 3-4x |与y =2-ax的图象有2个不同的交点.作出函数y =|x 3-4x |的图象如图,当直线y =2-ax 与曲线y =-x 3+4x ,x ∈[0,2]相切时,设切点坐标为(x 0,-x 30+4x 0),则切线方程为y -(-x 30+4x 0)=(-3x 20+4)(x -x 0),且经过点(0,2),代入解得x 0=1,此时a =-1,由函数图象的对称性可得实数a 的取值范围为a <-1或a >1.答案:a<-1或a >111.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54. [能力提升]1.(2019·杭州市富阳二中高三质检)已知函数f (x )=⎩⎪⎨⎪⎧e x-2(x ≤0)ln x (x >0),则下列关于函数y =f [f (kx )+1]+1(k ≠0)的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有4个零点B .当k >0时,有4个零点;当k <0时,有3个零点C .无论k 为何值,均有3个零点D .无论k 为何值,均有4个零点 解析:选C.令f [f (kx )+1]+1=0得,⎩⎪⎨⎪⎧f (kx )+1≤0,e f (kx )+1-2+1=0或⎩⎪⎨⎪⎧f (kx )+1>0ln[f (kx )+1]+1=0, 解得f (kx )+1=0或f (kx )+1=1e ;由f (kx )+1=0得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=0或⎩⎪⎨⎪⎧kx >0ln (kx )=-1; 即x =0或kx =1e ;由f (kx )+1=1e得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=1e 或⎩⎪⎨⎪⎧kx >0ln (kx )+1=1e ; 即e kx=1+1e (无解)或kx =e 1e -1;综上所述,x =0或kx =1e 或kx =e 1e -1;故无论k 为何值,均有3个解,故选C.2.(2019·宁波市高三教学评估)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R 且a >0),则“f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a <0”是“f (x )与f (f (x ))都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由已知a >0,函数f (x )开口向上,f (x )有两个零点,最小值必然小于0,当取得最小值时,x =-b2a ,即f ⎝ ⎛⎭⎪⎫-b 2a <0,令f (x )=-b2a ,则f (f (x ))=f ⎝ ⎛⎭⎪⎫-b 2a ,因为f ⎝ ⎛⎭⎪⎫-b 2a <0,所以f (f (x ))<0,所以f (f (x ))必有两个零点.同理f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫b 2a <0⇒f ⎝ ⎛⎭⎪⎫-b 2a <0⇒x =-b2a ,因为x =-b2a 是对称轴,a >0,开口向上,f ⎝ ⎛⎭⎪⎫-b 2a <0,必有两个零点所以C 选项正确.3.(2019·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.解析:不等式为2-x 2>|x -a |,则0<2-x 2.在同一坐标系画出y =2-x 2(y ≥0,x ≥0)和y =|x |两个函数图象,将绝对值函数y =|x |向左移动,当右支经过(0,2)点时,a =-2;将绝对值函数y =|x |向右移动让左支与抛物线y =2-x 2(y ≥0,x ≥0)相切时,由⎩⎪⎨⎪⎧y -0=-(x -a )y =2-x2,可得x 2-x +a -2=0, 再由Δ=0解得a =94.数形结合可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫-2,94. 答案:⎝⎛⎭⎪⎫-2,944.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.解析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22,所以x 1+x 2=5.答案:55.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解:(1)法一:因为g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 所以m 的取值范围是[2e ,+∞).法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使y =g (x )-m 有零点,则只需m ≥2e,即m 的取值范围是[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的大致图象.因为f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 所以其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.所以m 的取值范围是(-e 2+2e +1,+∞).6.(2019·绍兴一中高三期中)已知函数f (x )=x |x -a |+bx . (1)当a =2,且f (x )是R 上的增函数,求实数b 的取值范围;(2)当b =-2,且对任意a ∈(-2,4),关于x 的方程f (x )=tf (a )有三个不相等的实数根,求实数t 的取值范围.解:(1)f (x )=x |x -2|+bx =⎩⎪⎨⎪⎧x 2+(b -2)x ,x ≥2-x 2+(b +2)x ,x <2,因为f (x )连续,所以f (x )在R 上递增等价于这两段函数分别递增, 所以⎩⎪⎨⎪⎧2-b2≤22+b 2≥2,解得,b ≥2.(2)f (x )=x |x -a |-2x =⎩⎪⎨⎪⎧x 2-(a +2)x ,x ≥a -x 2+(a -2)x ,x <a ,tf (a )=-2ta ,当2≤a <4时,a -22<a +22≤a ,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a 上单调递减,在(a ,+∞)上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f (a )=-2a ,所以⎩⎪⎨⎪⎧-2a <-2ta ,a 24-a +1>-2ta 对2≤a <4恒成立,解得0<t <1,当-2<a <2时,a -22<a <a +22,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a +22上单调递减,在⎝ ⎛⎭⎪⎫a +22,+∞上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f ⎝ ⎛⎭⎪⎫a +22=-a 24-a -1,所以-a 24-a -1<-2ta <a 24-a +1对-2<a <2恒成立,解得0<t <1,综上所述,0<t <1.。
基本初等函数含答案,附上学生版
基本初等函数1.若函数y =f (x )的定义域是[0, 2 018],则函数g (x )=f (x +1)x -1的定义域是________. 解析:要使函数f (x +1)有意义,则0≤x +1≤2 018,解得-1≤x ≤2 017,故函数f (x +1)的定义域为[-1,2 017],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 017x -1≠0,解得-1≤x <1或1<x ≤2 017.故函数g (x )的定义域为[-1,1)∪(1,2 017]. 2解析:∵ƒ(x )=log 2(x 2+a )且ƒ(3)=1,∴1=log 2(9+a ),∴9+a =2,∴a =-7. 答案:-73.若幂函数y =(m 2-3m +3)·x (m-2)(m +1)的图象不经过原点,则实数m 的值为________.解析:由⎩⎪⎨⎪⎧m 2-3m +3=1,(m -2)(m +1)≤0,解得m =1或2,经检验m =1或2都适合.答案:1或24.下列函数在其定义域上既是增函数又是奇函数的是________. A .f (x )=sin xB .f (x )=x 3+1C .f (x )=log 2(x 2+1+x )D .f (x )=1-2x1+2x解析:依题意,对于选项A ,注意到f (0)=f (π),因此函数f (x )=sin x 在其定义域上不是增函数;对于选项B ,注意到f (x )的定义域为R ,但f (0)=1≠0,因此函数f (x )=x 3+1不是奇函数;对于选项C ,注意到f (x )的定义域是R ,且f (-x )=log 2(x 2+1-x )=log 21x 2+1+x=-log 2(x 2+1+x )=-f (x ),因此f (x )是奇函数,且f (x )在R 上是增函数;对于选项D ,注意到f (x )=1-2x 1+2x =-1+21+2x 在R 上是减函数.故选C. 5.函数f (x )=|log 2 x |+x -2的零点个数为_______.解析:函数f (x )=|log 2 x |+x -2的零点个数,就是方程|log 2 x |+x -2=0的根的个数.令h (x )=|log 2 x |,g (x )=2-x ,画出两函数的图象,如图.由图象得h (x )与g (x )有2个交点,∴方程|log 2 x |+x -2=0的解的个数为2.6.已知a =log 372,b =⎝⎛⎭⎫1413,c =log 1315,则a ,b ,c 的大小关系为 .A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:∵ c =log 1315=log 35,a =log 372,又y =log3x 在(0,+∞)上是增函数, ∴ log35>log372>log33=1,∴ c >a >1.∵ y =14x 在(-∞,+∞)上是减函数,∴ 1413<140=1,即b <1.∴ c >a >b . 故选D.7.已知定义在R 上的偶函数f (x )满足对任意的0<x 1<x 2,f (x 2)-f (x 1)x 2-x 1>0均成立,若a =f (334),b=f (943-),c =f (-543),则a ,b ,c 的大小关系为( )A .b <a <cB .a <b <cC .c <b <aD .b <c <a解析:因为偶函数f (x )满足对任意的0<x 1<x 2,f (x 2)-f (x 1)x 2-x 1>0均成立,所以f (x )在(0,+∞)上是增函数.因为幂函数y =x 43在(0,+∞)上是增函数,指数函数y =3x 在(0,+∞)上是增函数,所以343<543,943-=383-<334<343,故c =f (-543)=f (543)>a =f (334)>b =f (943-),故b <a <c ,故选A.8.已知f (x )是R 上的奇函数,且f (x )=则f = .[解析] f=-f =-f =-f =-log 2=-log 22-1=1.9.若函数y =⎝⎛⎭⎫12|1-x |+m 的图象与x 轴有公共点,则实数m 的取值范围是________. 解析:∵|1-x |≥0,∴0<⎝⎛⎭⎫12|1-x |≤1,由题意得0<-m ≤1,即-1≤m <0. 答案:[-1,0)10.已知函数f (x )在定义域(0,+∞)上是单调函数,若对于任意x ∈(0,+∞),都有f =2,则f的值是 . 因为函数f (x )在定义域(0,+∞)上是单调函数,且f=2恒成立,所以f (x )-为一个大于0的常数,令这个常数为n (n>0),则有f (x )-=n ,且f (n )=2,所以f (n )=+n=2,解得n=1,所以f (x )=1+,11.设m ∈N ,若函数f (x )=2x -m 10-x +10存在整数零点,则符合条件的m 的个数为 .解析:由f (x )=0得m =2x +1010-x .又m ∈N ,因此有⎩⎪⎨⎪⎧10-x >0,2x +10≥0,解得-5≤x <10,x ∈Z ,∴x=-5,-4,-3,…,1,2,3,…,8,9,将它们分别代入m =2x +1010-x,一一验证得,符合条件的m 的取值为0,4,11,28,共4个.12.已知函数f (x )=⎩⎪⎨⎪⎧|x +2|,-3≤x <0,log a x ,x >0,其中a >0且a ≠1,若函数f (x )的图象上有且仅有一对点关于y 轴对称,则实数a 的取值范围是 . 解析:∵函数f (x )的图象上有且仅有一对点关于y 轴对称,∴f (x )=|x +2|(-3≤x <0)的图象关于y 轴对称的图象与f (x )=log a x (x >0)的图象有且只有一个交点.记f (x )=|x +2|(-3≤x <0)的图象关于y 轴对称的图象对应的函数为g (x ),则g (x )=|x -2|(0<x ≤3),作出函数f (x )与g (x )的大致图象.当0<a <1时,如图(1),显然g (x )的图象与f (x )(x >0)的图象有且只有一个交点,符合题意;当a >1时,如图(2),要使g (x )的图象与f (x )(x >0)的图象有且只有一个交点,则需log a 3>1,∴ 1<a <3.综上a ∈(0,1)∪(1,3).13.已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3,若存在实数a 、b 、c 、d ,满足f (a )=f (b )=f (c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围是 .解析:画出f (x )的图象,如图.由图象知0<a <1,1<b <3,则f (a )=|log 3a |=-log 3a ,f (b )=|log 3b |=log 3b ,∵f (a )=f (b ),∴-log 3a =log 3b ,∴ab =1.又由图象知,3<c <4,d >6,点(c ,f (c ))和点(d ,f (d ))均在二次函数y =13x 2-103x +8的图象上,故有c +d 2=5,∴d =10-c ,∴abcd =c (10-c )=-c 2+10c =-(c -5)2+25,∵3<c <4,∴21<-(c -5)2+25<24,即21<abcd <24.14.已知f (x )=2|x |+x 2+a 有唯一的零点,则实数a 的值为________.解析:设函数g (x )=2|x |+x 2,因为g (-x )=g (x ),所以函数g (x )为偶函数,当x ≥0时,g (x )=2x +x 2,为增函数;当x <0时,g (x )=⎝⎛⎭⎫12x +x 2,为减函数,所以g (x )≥g (0)=1.因为f (x )=2|x |+x 2+a 有唯一的零点,所以y =g (x )与y =-a 有唯一的交点,即a =-1. 答案:-115.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.解析:∵f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理:若log 3n =2,得n =9,则m =19,此时-log 3m 2=4,不满足题意.综上,可得nm=9.答案:916.函数f (x )的定义域为D ,若满足f (x )在D 内是单调函数,且存在[a ,b ]⊆D ,使得f (x )在[a ,b ]上的值域为,则称函数f (x )为“成功函数”.若函数f (x )=log m (m x +2t )(其中m>0且m ≠1)是“成功函数”,则实数t 的取值范围为 .[解析] 无论m>1还是0<m<1,f(x)=log m(m x+2t)都是R上的增函数,故应有则问题可转化为已知f(x)=,即log m(m x+2t)=,即m x+2t=在R上有两个不相等的实数根,求实数t的取值范围.令λ=(λ>0),则m x+2t=可化为2t=λ-λ2=-+,结合图像(图略)可得t∈.。
小题考法专练 (二) 基本初等函数、函数与方程、函数的实际应用问题
小题考法专练 (二) 基本初等函数、函数与方程、函数的实际应用问题一、小题提速练1.函数f (x )=ln x -2x 2的零点所在的区间为( )A .(0,1) B.(1,2) C .(2,3)D.(3,4)解析:选B 易知f (x )=ln x -2x 2的定义域为(0,+∞),且在定义域上单调递增.∵f (1)=-2<0,f (2)=ln 2-12>0,∴f (x )的零点所在的区间为(1,2).2.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,e x ,x ≥1,则f (-2)+f (ln 6)=( )A .3 B.6 C .9D.12解析:选C 由题意,函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,e x ,x ≥1,则f (-2)+f (ln 6)=1+log 2[2-(-2)]+e ln 6=1+2+6=9. 3.若a ,b ,c 满足2a =3,b =log 25,3c =2,则( ) A .c <a <b B.b <c <a C .a <b <cD.c <b <a解析:选A ∵2a =3,21<3<22,∴1<a <2. ∵b =log 25>log 24,∴b >2. ∵3c =2,30<2<31,∴0<c <1, ∴c <a <b ,故选A.4.(多选)若10a =4,10b =25,则( ) A .a +b =2 B.b -a =1 C .ab >8lg 22D.b -a >lg 6 解析:选ACD 由10a =4,10b =25,得a =lg 4,b =lg 25,∴a +b =lg 4+lg 25=lg 100=2,∴b -a =lg 25-lg 4=lg254,∵lg 10=1>lg 254>lg 6,∴b -a >lg 6,∴ab =4lg 2lg 5>4lg 2lg 4=8lg 22,故正确的有A 、C 、D.5.(2020·枣庄二模)已知a >b >0,若log a b +log b a =52,a b =b a ,则a b =( )A. 2B.2 C .2 2D.4解析:选B ∵log a b +log b a =52,∴log a b +1log a b =52,解得log a b =2或log a b =12.若log a b=2,则b =a 2,代入a b =b a 得aa 2=(a 2)a =a 2a ,a 2=2a ,又a >0,∴a =2,则b =22=4,不合题意;若log a b =12,则b =a 12,即a =b 2,代入a b =b a 得(b 2)b =b 2b =bb 2,∴2b =b 2,又b >0,∴b =2,则a =b 2=4.综上,a =4,b =2,∴ab =2.故选B.6.(2020·临沂一模)已知函数f (x )=12x 2-2x +1,x ∈[1,4],当x =a 时,f (x )取得最大值b ,则函数g (x )=a |x +b |的大致图象为( )解析:选C f (x )=12x 2-2x +1=12(x -2)2-1,故a =4,b =1,g (x )=a |x +b |=4|x +1|=⎩⎪⎨⎪⎧4x +1,x ≥-1,4-x -1,x <-1,对比图象知C 满足条件.故选C.7.已知函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3) B.(1,2) C .(0,3)D.(0,2)解析:选C 由题意知,显然函数f (x )=2x -2x -a 在区间(1,2)内连续且递增,因为f (x )的一个零点在区间(1,2)内,所以f (1)f (2)<0,即(2-2-a )(4-1-a )<0,解得0<a <3,故选C.8.(2020·济南期末)已知函数f (x )=lg(x 2+1+x )+12,则f (ln 5)+f ⎝⎛⎭⎫ln 15=( ) A .0 B.12 C .1D.2解析:选C ∵f (x )=lg(x 2+1+x )+12,∴f (-x )=lg((-x )2+1-x )+12,∴f (x )+f (-x )=lg(x 2+1+x )+12+lg(x 2+1-x )+12=lg(x 2+1+x )(x 2+1-x )+1=lg [](x 2+1)2-x 2+1=lg 1+1=0+1=1,∴f (ln 5)+f ⎝⎛⎭⎫ln 15=f (ln 5)+f (-ln 5)=1.故选C. 9.(2020·文登模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x <0,log 2(x +1),x ≥0,若|f (x )|≥2ax ,则实数a 的取值范围是( )A .(-∞,0] B.[-1,0] C .[-1,1]D.⎣⎡⎦⎤-12,0 解析:选D 作出函数图象如图.结合图象可得, 要使|f (x )|≥2ax 恒成立, 当x >0时,必有a ≤0;当x ≤0时,只需x 2-x ≥2ax ,即x -1≤2a 恒成立,所以a ≥-12.综上所述,a ∈⎣⎡⎦⎤-12,0,故选D. 10.(多选)已知x ,y 均大于0,e x +x =e y +2y ,则下列结论正确的是( ) A .log 3x <log 3y B.x -23<y -23C .sin x >sin yD.11+x 2<11+y 2解析:选BD 因为x ,y 均大于0,所以e x +x =e y +2y =e y +y +y >e y +y .易知函数m =e n +n 在(0,+∞)上单调递增,故x >y .根据对数函数的性质得log 3x >log 3y ,选项A 错误.因为x >y >0,函数m =n -23在(0,+∞)上单调递减,所以x 23-<y 23-,选项B 正确.函数m =sin n 在(0,+∞)上的单调性不确定,因此sin x >sin y 不一定成立,选项C 错误.因为x >y >0,所以x 2>y 2,所以11+x 2<11+y 2,选项D 正确.11.(2018·江苏高考)函数f (x )=log 2x -1的定义域为________. 解析:由log 2x -1≥0,即log 2x ≥log 22,解得x ≥2,所以函数f (x )=log 2x -1的定义域为{x |x ≥2}.答案:{x |x ≥2}12.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,f (x -2),x ≥0,则f (log 23)=________.解析:因为f (x )=⎩⎪⎨⎪⎧2x ,x <0,f (x -2),x ≥0,log 23>0,所以f (log 23)=f (log 23-2)=f ⎝⎛⎭⎫log 234,又log 234<log 21=0,所以f (log 23)=f ⎝⎛⎭⎫log 234=2log 234=34. 答案:3413.已知函数f (x )=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a ,b 满足2a =3,3b=2,则n =______.解析:a =log 23>1,0<b =log 32<1,令f (x )=0,得a x =-x +b .在同一平面直角坐标系中画出函数y =a x 和y =-x +b 的图象,如图所示.由图可知,两函数的图象在区间(-1,0)内有交点,所以函数f (x )在区间(-1,0)内有零点,所以n =-1.答案:-114.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间T (单位:年)的衰变规律满足N =N 0·25730T-(N 0表示碳14原有的质量),则经过5 730年后,碳14的质量变为原来的______;经过测定,良渚古城遗址文物样本中碳14的质量是原来的37至12,据此推测良渚古城存在的时期距今约在5 730年到______年之间.(参考数据:lg 2≈0.3,lg 7≈0.84,lg 3≈0.48)解析:∵N =N 0·25730T-,∴当T =5 730时,N =N 0·2-1=12N 0,∴经过5 730年后,碳14的质量变为原来的12.由题意可知25730T->37,两边同时取以2为底的对数得:log 225730T->log 237,∴-T 5 730>lg 37lg 2=lg 3-lg 7lg 2≈-1.2,∴T <6 876,∴推测良渚古城存在的时期距今约在5 730年到6 876年之间.答案:12 6 876二、小题拔高练15.设函数f (x )的定义域为R ,f (-x )=f (x ),f (x )=f (2-x ),当x ∈[0,1]时,f (x )=x 3,则函数g (x )=|cos πx |-f (x )在区间⎣⎡⎦⎤-12,32上零点的个数为( ) A .3 B.4 C .5D.6解析:选C 由f (-x )=f (x ),得f (x )的图象关于y 轴对称.由f (x )=f (2-x ),得f (x )的图象关于直线x =1对称.当x ∈[0,1]时,f (x )=x 3,所以f (x )在[-1,2]上的图象如图.令g (x )=|cos πx |-f (x )=0,得|cos πx |=f (x ).由图可知,两函数y =f (x )与y =|cos πx |的图象在⎣⎡⎦⎤-12,32上的交点有5个.故选C. 16.已知函数f (x )=|ln(x 2+1-x )|,设a =f (log 30.2),b =f (3-0.2),c =f (-31.1),则a ,b ,c 的大小关系为( )A .a >b >c B.b >a >c C .c >a >bD.c >b >a解析:选C 法一:f (x )=|ln(x 2+1-x )|=⎪⎪⎪⎪⎪⎪ln 1x 2+1+x =|ln(x 2+1+x )|=f (-x ),所以函数f (x )=|ln(x 2+1-x )|是偶函数.当x >0时,f (x )=ln(x 2+1+x ),此时函数f (x )单调递增.a =f (log 30.2)=f (log 35),b =f (3-0.2),c =f (-31.1)=f (31.1),因为31.1>3>log 35>1>3-0.2>0,所以c >a >b ,故选C.法二:令g (x )=ln(x 2+1-x ),则g (-x )+g (x )=ln(x 2+1+x )+ln(x 2+1-x )=ln 1=0,所以g (x )为奇函数,y =f (x )=|g (x )|为偶函数.当x >0时,函数f (x )=|ln(x 2+1-x )|=ln(x 2+1+x )单调递增,又f (0)=ln 1=0,所以函数f (x )的大致图象如图所示.-2<log 30.2=log 315=-log 35<-1,0<3-0.2<1,-31.1<-3,结合图象可知f (-31.1)>f (log 30.2)>f (3-0.2),即c >a >b ,故选C.17.(多选)若实数x ,y 满足5x -4y =5y -4x ,则下列关系式中可能成立的是( ) A .x =y B.1<x <y C .0<x <y <1D.y <x <0解析:选ACD 由题意,实数x ,y 满足5x -4y =5y -4x ,可化为4x +5x =5y +4y ,设f (x )=4x +5x ,g (x )=5x +4x ,由初等函数的性质,可得f (x ),g (x )都是单调递增函数,画出函数f (x ),g (x )的图象,如图所示.根据图象可知,当x =0时,f (0)=g (0)=1;当x =1时,f (1)=g (1)=9.当x =y 时,f (x )=g (y ),所以5x -4y =5y -4x 成立,所以A 正确;当1<x <y 时,f (x )<g (y ),所以B 不正确;当0<x <y <1时,f (x )=g (y )可能成立,所以C 正确;当y <x <0时,此时f (x )≤g (x ),所以f (x )=g (y )可能成立,所以D 正确.故选A 、C 、D.18.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-2ax +8,x ≤1,2x -a ln x ,x >1,若函数f (x )有三个零点,则实数a 的取值范围是( )A .(7,+∞) B.(-4,+∞) C .[8,+∞)D.[9,+∞)解析:选C 当a =0时,f (x )=⎩⎪⎨⎪⎧8,x ≤1,2x ,x >1,易知函数f (x )无零点,舍去.当a <0,且x ≤1时,f (x )=ax 2-2ax +8的图象开口向下,对称轴为直线x =1,且f (1)=a -2a +8=-a +8>0,所以当a <0,且x ≤1时,函数f (x )只有一个零点;当a <0,且x >1时,f (x )=2x -a ln x ,f ′(x )=2-a x =2x -ax >0,函数f (x )在(1,+∞)上单调递增,f (x )>2,所以当a <0,且x >1时,函数f (x )无零点.故当a <0时,函数f (x )只有一个零点,与题意不符,舍去.当a >0,且x ≤1时,f (x )=ax 2-2ax +8的图象开口向上,对称轴为直线x =1,且f (0)=8>0,所以函数f (x )在(-∞,1]上最多有一个零点;当a >0,且x >1时,f (x )=2x -a ln x ,f ′(x )=2x -a x ,令f ′(x )=0,得x =a 2,若0<a2≤1,则函数f (x )在(1,+∞)上单调递增,若a2>1,则f (x )在⎝⎛⎭⎫a 2,+∞上单调递增,在⎝⎛⎭⎫1,a 2上单调递减,f ⎝⎛⎭⎫a 2=a -a ln a2,此时函数f (x )最多有两个零点.若使得函数f (x )有三个零点,则⎩⎨⎧-a +8≤0,a -a ln a2<0,a2>1,解得a ≥8.19.(2020·北京高考)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W =f (t ),用-f (b )-f (a )b -a 的大小评价在[a ,b ]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[0,t 1]的污水治理能力最强. 其中所有正确结论的序号是________.解析:由题图可知甲企业的污水排放量在t 1时刻高于乙企业,而在t 2时刻甲、乙两企业的污水排放量相同,故在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强,故①正确;由题图知在t 2时刻,甲企业对应的关系图象斜率的绝对值大于乙企业的,故②正确;在t 3时刻,甲、乙两企业的污水排放量都低于污水达标排放量,故都已达标,③正确;甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[0,t 1]的污水治理能力明显低于[t 1,t 2]时的,故④错误.答案:①②③三、大题融会练20.已知函数f (x )=e x -cos x .(1)求f (x )的图象在点(0,f (0))处的切线方程; (2)求证:f (x )在⎝⎛⎭⎫-π2,+∞上仅有2个零点. 解:(1)f ′(x )=e x +sin x ,f ′(0)=1,f (0)=0,∴f (x )的图象在点(0,f (0))处的切线方程为y -0=x -0,即y =x . (2)证明:令g (x )=f ′(x )=e x +sin x , 则g ′(x )=e x +cos x , 当-π2<x <π2时,g ′(x )>0,∴g (x )在⎝⎛⎭⎫-π2,π2上单调递增. 而g ⎝⎛⎭⎫-π2=e 2-π-1<0,g ⎝⎛⎭⎫π2=e 2π+1>0,由零点存在性定理知g (x )在⎝⎛⎭⎫-π2,π2上有唯一零点, ∴f ′(x )在⎝⎛⎭⎫-π2,π2上有唯一零点. 又f ′⎝⎛⎭⎫-π2<0,f ′(0)=1>0, ∴f ′(x )在⎝⎛⎭⎫-π2,π2上单调递增且有唯一零点α∈⎝⎛⎭⎫-π2,0, ∴x ∈⎝⎛⎭⎫-π2,α时,f ′(x )<0;x ∈⎝⎛⎭⎫α,π2时,f ′(x )>0. ∴f (x )在⎝⎛⎭⎫-π2,α上单调递减,在⎝⎛⎭⎫α,π2上单调递增, 又f (0)=0,∴f (α)<0,结合f ⎝⎛⎭⎫-π2=e 2-π>0,f ⎝⎛⎭⎫π2=e 2π>0, 由零点存在性定理知f (x )在⎝⎛⎭⎫-π2,α上有一个零点,在⎝⎛⎭⎫α,π2上有一个零点0. 当x ≥π2时,e x >1,cos x ≤1,e x -cos x >0,f (x )>0,此时f (x )无零点.综上,f (x )在⎝⎛⎭⎫-π2,+∞上仅有2个零点.。
基本初等函数练习题与答案
5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.
x
|
x
1
,y
|
y
0,
且y
1
2x
1
0,
x
1
;
y
1
8 2 x 1
0, 且y
1
2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3
2log2 3
log2
1 8
2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)
log a
(1
1 a
)
②
log a
(1
a)
log a
(1
1 a
)
③ a1a
压轴题09 基本初等函数、函数与方程(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题09基本初等函数、函数与方程题型/考向一:基本初等函数的图像与性质题型/考向二:函数的零点题型/考向三:函数模型及其应用○热○点○题○型一基本初等函数的图像与性质1.指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分0<a <1,a >1两种情况,着重关注两个函数图象的异同.2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.一、单选题1.若125()3a -=,121log 5b =,3log 7c =,则a ,b ,c 的大小关系为()A .a b c >>B .b c a>>C .c a b>>D .c b a>>2.已知函数()2121x f x =-+,则()A .()f x 是偶函数且是增函数B .()f x 是偶函数且是减函数C .()f x 是奇函数且是增函数D .()f x 是奇函数且是减函数【答案】CA.y =B .21y x =C .lg y x =D .332x xy --=4.已知函数()1,0,2x f x x ⎧≥⎪=⎨⎛⎫-<⎪⎪⎝⎭⎩若()()6f a f a <-,则实数a 的取值范围是()A .()3,-+∞B .(),3-∞-C .()3,+∞D .(),3-∞【答案】D【详解】由解析式易知:()f x 在R 上递增,又()()6f a f a <-,所以6a a <-,则3a <.故选:D5.函数()2eln 2x f x x=的图象大致是()A .B .C .D .A .1,2⎛⎫-∞- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭7.已知实数1a ≠,函数()2,0,a x f x x -≥=⎨<⎩若(1)(1)f a f a -=-,则a 的值为()A .12B .12-C .14D .14-8.函数⎣⎦的部分图象大致是()A .B .C .D .【答案】C【详解】对于函数()()()ln 1ln 1f x x x x =+--⎡⎤⎣⎦,有1010x x +>⎧⎨->⎩,可得11x -<<,所以,函数()f x 的定义域为()1,1-,()1,1x ∀∈-,()()()()()()ln 1ln 1ln 1ln 1f x x x x x x x f x -=---+=+--=⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()f x 为偶函数,排除AB 选项;当01x <<时,110x x +>->,则()()ln 1ln 1x x +>-,此时()()()ln 1ln 10f x x x x =+-->⎡⎤⎣⎦,排除D 选项.故选:C.二、填空题9.已知函数()2()e e x x f x x -=-⋅,若实数m 满足))2(1)f f m f -≤,则实数m的取值范围是____________.【答案】ln3-##1ln311.已知,,1x y a ∈>R ,若2x y a a a +=,且x y +的最大值为3,则函数()()212log 2f x x ax a =-++的最小值为______故当4x =时,()2432x --+取得最大值32,则()f x 的取到最小值为5-.故答案为:5-.12.幂函数y=xa ,当a 取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=xa ,y=xb 的图象三等分,即有BM =MN =NA ,那么ab =______.○热○点○题○型二函数的零点判断函数零点个数的方法:(1)利用零点存在定理判断.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.一、单选题1.函数()243xf x x =+-的零点所在的区间是()A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【详解】 函数()243x f x x =+-的图象是连续不间断的,根据增函数加增函数为增函数的结论知()f x 在定义域R 上为增函数,412204f ⎛⎫=-< ⎪⎝⎭,12102f ⎛⎫=-> ⎪⎝⎭,故函数()243x f x x =+-的零点所在区间是11,42⎛⎫⎪⎝⎭.故选:C.()a 的值是()A .0B .1C .2D .3【答案】B 【详解】依题意,因为函数()2cos 1f x a x x =--有且只有1个零点,所以()2cos 10f x a x x =--=有且仅有一个解,即2cos 1a x x =+有且仅有一个解,转化为cos y a x =与21y x =+有且仅有一个交点,当0a =时,cos 0y a x ==与21y x =+没有交点,所以0a ≠;当a<0时,因为[]cos 1,1x ∈-,所以[]cos ,y a x a a =∈-,当0x =时,21y x =+有最小值1,cos y a x =有最小值a<0,此时cos 0y a x ==与21y x =+没有交点,由于cos 0y a x ==与21y x =+都是偶函数,若在除去0x =之外有交点,则交点必为偶数个,不符合题意,所以a<0不符合题意;当0a >时,因为[]cos 1,1x ∈-,所以[]cos ,y a x a a =∈-,又因为211y x =+≥,所以当且仅当1a =时,此时0x =有唯一的交点.故选:B.3.已知()0,2πθ∈,若函数()()2sin cos sin 2f x x x x θ=-+在π0,4⎛⎫⎪⎝⎭上无零点,则θ的值可能为()A .π6B .π4C .11π12D .6π54.若函数2()1,0f x x x -⎧≤=⎨+>⎩,则函数()()2g x f x =-的零点的个数是()A .1B .2C .3D .4【答案】B【详解】由题意函数22,0()1,0x x f x x x -⎧≤=⎨+>⎩,则函数()()2g x f x =-的零点个数即()2f x =的解的个数,当0x >时,令212+=x ,即1x =,符合题意;当0x ≤时,令22x -=,得=1x -,符合题意,故()()2g x f x =-的零点有2个,故选:B.5.已知函数()2ln 1212x x x f x mx mx x +>⎧⎪=⎨-+≤⎪⎩,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是()A .71,4⎛⎤⎥⎝⎦B .(]1,2C .41,3⎛⎤ ⎥⎝⎦D .[]1,36.是定义在R 上的奇函数,当1,1x ∈-时,f x x =,11f x f x +=-,令()()lg g x f x x =-,则函数()g x 的零点个数为()A .4B .5C .6D .7【答案】B【详解】由()()11f x f x +=-可得,()f x 的图象关于1x =对称,又由()()11f x f x +=-可得()()2()f x f x f x +=-=-,所以()4(2)()f x f x f x +=-+=,所以()f x 以4为周期,所以作出()f x 的图象如下,()()lg g x f x x =-的零点个数即为方程()lg f x x =也即()f x 的图象与lg y x =图象的交点个数,因为lg 91,lg101<=,所以数形结合可得()f x 的图象与lg y x =图象的交点个数为故选:B.7.已知函数41,0141,02x x x x ⎧+-≤⎪=⎨⎛⎫->⎪ ⎪⎝⎭⎩,关于的方程有6个不等实数根,则实数t 的取值范围是()A .7,5⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭B.7,5⎡⎫⎛⎫-∞--+∞⎪⎢ ⎪⎪⎝⎭⎣⎭ C .7,52⎛-- ⎝⎦D .7,522⎛⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【答案】D【详解】作出函数()f x 的图象如图所示,∴函数()f x 的图象与函数()y c c =∈R 的图象最多三个交点,且()f x c =有3个实数根时,13c -<<,()()()22110f x t f x t ∴+-+-=有6个不等实数根等价于一元二次方程()22110x t x t +-+-=在()1,3-上有两个不同的实数根,是()A .6B .5C .4D .3二、多选题9.已知偶函数()f x 满足()()()126f x f x f -+=,()11e f -=+,且当[)0,6x ∈时,()e 1x f x a -=+,则下列说法正确的有()A .2e a =B .()f x 在[]18,24上为增函数C .()320231ef -=-D .()f x 在[]2023,0-上共有169个零点【答案】ABD【详解】因为函数()f x 为偶函数,所以()()111e f f -==+,又当[)0,6x ∈时,()e 1x f x a -=+,故()11e 11e f a -=+=+,解得2e a =,故A 选项正确.因为()()()126f x f x f -+=,令6x =-,得()()()666f f f --=,故()60f =.由()()120f x f x -+=得()()12f x f x +=,即函数()f x 具有周期性且周期为12.当[)0,6x ∈时,()2e 1xf x -=+单调递减,故当(]6,0x ∈-时,函数()f x 单调递增,所以当(]18,24x ∈时,函数()f x 单调递增.又()()1860f f ==,且当(]18,24x ∈时,函数()0f x >恒成立,所以()f x 在[]18,24上为增函数,故B 选项正确.()()()()()32023121687755e 1f f f f f -=⨯+==-==+,故C 选项错误.因为当[)0,6x ∈时,()2e 1xf x -=+单调递减,所以当06x ≤<时,()420<e 1e 1f x -+<≤+,又()f x 为偶函数,所以60x -<≤时,()0f x >,又()60f -=,所以函数()f x 在[)6,6-上有且仅有一个零点,因为()f x 的周期为12,2023121687=⨯+,所以(]2016,0-上有168个零点,再考虑[]2023,2016--等价于[]7,0-这个区间,有1个零点,故最终有169个零点,故D 选项正确.故选:ABD .10.定义在R 上的偶函数()f x 满足()()22f x f x -=+,且当[]0,2x ∈时,()2e 1,01,44,1 2.x x f x x x x ⎧-≤≤=⎨-+<≤⎩若关于x 的不等式()m x f x ≤的整数解有且仅有9个,则实数m的取值可以是()A .e 16-B .e 17-C .e 18-D .e 19-三、填空题11.已知函数()131,0ln ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若函数()()()2221g x f x af x a =-+-⎡⎤⎣⎦恰有4个不同的零点,则a 的取值范围是__________.【答案】()[)1,01,2- 【详解】令()()()22210g x f x af x a =-+-=⎡⎤⎣⎦,得()1f x a =-或()1f x a =+,画出()f x 的大致图象.设()f x t =,由图可知,当0t <或2t >时,()t f x =有且仅有1个实根;当0=t 或12t ≤≤时,()t f x =有2个实根;当01t <<时,()t f x =有3个实根.则()g x 恰有4个不同的零点等价于10,011a a -<⎧⎨<+<⎩或10,112a a -=⎧⎨≤+≤⎩或011,12a a <-<⎧⎨+>⎩或112,112,a a ≤-≤⎧⎨≤+≤⎩解得10a -<<或12a ≤<.故答案为:()[)1,01,2-12.已知函数11,02()2(2),28x x f x f x x ⎧--≤≤=⎨-<≤⎩,若方程()f x kx =恰好有四个实根,则实数k 的取值范围是___.设()g x kx =,若方程()f x kx =恰好有四个实根,则函数()f x 与()g x 的图象有且只有四个公共点,由图得,(1,1),(3,2),(5,4),(A D B C 则2481,,,357OA OB OC OD k k k k ====,则<<<OB OC OA OD k k k k ,○热○点○题○型三函数模型及其应用应用函数模型解决实际问题的一般程序和解题关键:(1)一般程序:――→读题文字语言⇒――→建模数学语言⇒――→求解数学应用⇒――→反馈检验作答(2)解题关键:解答这类问题的关键是确切地写出相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.一、单选题1.垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而变成公共资源的一系列活动的总称.已知某种垃圾的分解率ν与时间t (月)满足函数关系式t v a b =⋅(其中a ,b 为非零常数).若经过6个月,这种垃圾的分解率为5%,经过12个月,这种垃圾的分解率为10%,那么这种垃圾完全分解(分解率为100%)至少需要经过()(参考数据lg 20.3≈)A .20个月B .40个月C .28个月D .32个月m /s )可以表示为31log 2100Qv =,其中Q 表示鲑鱼的耗氧量的单位数.当一条鲑鱼以3ln2m /s ln3的速度游动时,其耗氧量是静止时耗氧量的倍数为()A .83B .8C .32D .643.0C 表示生物体内碳14的初始质量,经过t 年后碳14剩余质量01()2hC t C ⎛⎫= ⎪⎝⎭(0t >,h为碳14半衰期).现测得一古墓内某生物体内碳14含量为00.4C ,据此推算该生物是距今约多少年前的生物(参考数据lg 20.301≈).正确选项是()A .1.36hB .1.34hC .1.32hD .1.30h“ChatGTP ”的人工智能聊天程序进入中国,迅速以其极高的智能化水平引起国内关注.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的,在神经网络优化中,指数衰减的学习率模型为00G GL L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.2以下(不含0.2)所需的训练迭代轮数至少为()(参考数据:1g20.3010≈)A .72B .74C .76D .78血氧饱和度低于90%时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:0()e KtS t S =描述血氧饱和度()S t 随给氧时间t (单位:时)的变化规律,其中0S 为初始血氧饱和度,K 为参数.已知060%S =,给氧1小时后,血氧饱和度为80%.若使得血氧饱和度达到90%,则至少还需要给氧时间(单位:时)为()(精确到0.1,参考数据:ln 2069ln 3110≈≈.,.)A .0.3B .0.5C .0.7D .0.9故选:B6.某企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg /L )与时间t (单位:h )之间的关系为0e ktM M -=(其中0,M k 是正常数).已知在处理过程中,该设备每小时可以清理池中残留污染物10%,则过滤一半的污染物需要的时间最接近()(参考数据:lg20.30≈,lg30.48≈)A .6小时B .8小时C .10小时D .12小时媒质传递热量逐渐冷却时所遵循的规律.统计学家发现网络热搜度也遵循这样的规律,即随着时间的推移,热搜度会逐渐降低.假设事件的初始热搜度为()000N N >,经过t (天)时间之后的热搜度变为()0etN t N α-=,其中α为冷却系数.若设某事件的冷却系数0.3α=,则该事件的热搜度降到初始的50%以下需要的天数t 至少为().(ln 20.693≈,t 取整数)A .7B .6C .4D .3族整体利益和两岸同胞切身利益,解放军组织多种战机巡航台湾.已知海面上的大气压强是760mmHg ,大气压强P (单位:mmHg )和高度h (单位:m )之间的关系为760e hk P -=(e为自然对数的底数,k 是常数),根据实验知500m 高空处的大气压强是700mmHg ,则当歼20战机巡航高度为1000m ,歼16D 战机的巡航高度为1500m 时,歼20战机所受的大气压强是歼16D 战机所受的大气压强的()倍.A .0.67B .0.92C .1.09D .1.5【答案】C二、多选题9.如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =,关于下列说法正确的是()A .浮萍每月的增长率为3B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积超过280m D .若浮萍蔓延到2224m 2m 8m 、、所经过的时间分别是123t t t 、、,则2132t t t =+【答案】CD【详解】由图可知,函数过点()1,3,将其代入解析式,=3a ,故3t y =,A 选项,取前3个月的浮萍面积,分别为32m ,92m ,272m ,故增长率逐月增大,A 错误;从前3个月浮萍面积可看出,每月增加的面积不相等,B 错误;第4个月的浮萍面积为812m ,超过了802m ,C 正确;令132t =,234t =,338t =,解得:132333log 2,log 4,log 8t t t ===,1333332log 2log 8log 162log 42t t t +=+===,D 正确.故选:CD10.泊松分布适合于描述单位时间(或空间)内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,显微镜下单位分区内的细菌分布数等等.其概率函数为()e !kP X k k λλλ-==,参数λ是单位时间(或单位面积)内随机事件的平均发生次数.现采用某种紫外线照射大肠杆菌,大肠杆菌的基因组平均产生3个嘧啶二体.设大肠杆菌的基因组产生的嘧啶二体个数为Y ,()P Y k =表示经该种紫外线照射后产生k 个嘧啶二体的概率.已知Y 服从泊松分布,记为()Y Pois λ~,当产生的嘧啶二体个数不小于1时,大肠杆菌就会死亡,下列说法正确的有()(参考数据:3e 0.049-=⋅⋅⋅,恒等式0e !inxi x i ==∑)A .大肠杆菌a 经该种紫外线照射后,存活的概率约为5%B .设()()f k P Y k λ==,则,(1)()0,()f k f k k λ∀∈+->∈N NC .如果()X pois λ~,那么(!)X E X λ=,X 的标准差σλ=D .大肠杆菌a 经该种紫外线照射后,其基因组产生的嘧啶二体个数的数学期望为3公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,下列结论正确的是()A .甲同学从家出发到乙同学家走了60minB .甲从家到公园的时间是30minC .甲从家到公园的速度比从公园到乙同学家的速度快D .当0≤x ≤30时,y 与x 的关系式为y =115x 【答案】BD【详解】在A 中,甲在公园休息的时间是10min ,所以只走了50min ,A 错误;由题中图象知,B 正确;甲从家到公园所用的时间比从公园到乙同学家所用的时间长,而距离相等,所以甲从家到公园的速度比从公园到乙同学家的速度慢,C 错误;当0≤x ≤30时,设y =kx (k ≠0),则2=30k ,解得115k =,D 正确.故选:BD地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是()A .地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B .八级地震释放的能量约为七级地震释放的能量的6.3倍C .八级地震释放的能量约为六级地震释放的能量的1000倍D .记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为an ,则数列{an }是等比数列【答案】ACD【详解】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+,解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,。
高考数学初等函数Ⅰ及函数与方程含解析
板块命题点专练(四) 基本初等函数(Ⅰ)及函数与方程命题点一 基本初等函数(Ⅰ)1.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:选B ∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a+1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +bab<1,∴ab <a +b <0. 2.(2017·全国卷Ⅰ)设x ,y ,z 为正数,且2x=3y=5z,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z解析:选D 设2x=3y=5z=k >1, ∴x =log 2k ,y =log 3k ,z =log 5k . ∵2x -3y =2log 2k -3log 3k =2log k 2-3log k 3=2log k 3-3log k 2log k 2·log k 3=log k 32-log k 23log k 2·log k 3=log k98log k 2·log k 3>0, ∴2x >3y ;∵3y -5z =3log 3k -5log 5k =3log k 3-5log k 5=3log k 5-5log k 3log k 3·log k 5=log k 53-log k 35log k 3·log k 5=log k125243log k 3·log k 5<0, ∴3y <5z ;∵2x -5z =2log 2k -5log 5k =2log k 2-5log k 5=2log k 5-5log k 2log k 2·log k 5=log k 52-log k 25log k 2·log k 5=log k 2532log k 2·log k 5<0, ∴5z >2x .∴5z >2x >3y .3.(2018·天津高考)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:选D 因为c =log 1213=log 23>log 2e =a ,所以c >a . 因为b =ln 2=1log 2e<1<log 2e =a ,所以a >b . 所以c >a >b .4.(2016·浙江高考)已知函数f (x )满足:f (x )≥|x |且f (x )≥2x,x ∈R.( ) A .若f (a )≤|b |,则a ≤b B .若f (a )≤2b,则a ≤b C .若f (a )≥|b |,则a ≥b D .若f (a )≥2b ,则a ≥b解析:选 B ∵f (x )≥|x |,∴f (a )≥|a |.若f (a )≤|b |,则|a |≤|b |,A 项错误.若f (a )≥|b |且f (a )≥|a |,无法推出a ≥b ,故C 项错误.∵f (x )≥2x ,∴f (a )≥2a .若f (a )≤2b,则2b ≥2a ,故b ≥a ,B 项正确.若f (a )≥2b 且f (a )≥2a,无法推出a ≥b ,故D 项错误.故选B.5.(2018·江苏高考)函数f (x )=log 2x -1的定义域为________.解析:由log 2x -1≥0,即log 2x ≥log 22,解得x ≥2,所以函数f (x )=log 2x -1的定义域为{x |x ≥2}.答案:{x |x ≥2}6.(2017·江苏高考)已知函数f (x )=x 3-2x +e x-1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x-1e x ,得f (-x )=-x 3+2x +1e x -e x=-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0,所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12. 答案:⎣⎢⎡⎦⎥⎤-1,127.(2015·浙江高考)设函数f (x )=x 2+ax +b (a ,b ∈R).(1)当b =a 24+1时,求函数f (x )在[-1,1]上的最小值g (a )的表达式; (2)已知函数f (x )在[-1,1]上存在零点,0≤b -2a ≤1,求b 的取值范围. 解:(1)当b =a 24+1时,f (x )=⎝ ⎛⎭⎪⎫x +a 22+1,故对称轴为直线x =-a2.当a ≤-2时,g (a )=f (1)=a 24+a +2.当-2<a ≤2时,g (a )=f ⎝ ⎛⎭⎪⎫-a 2=1.当a >2时,g (a )=f (-1)=a 24-a +2.综上,g (a )=⎩⎪⎨⎪⎧a 24+a +2,a ≤-2,1,-2<a ≤2,a 24-a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则⎩⎪⎨⎪⎧s +t =-a ,st =b ,由于0≤b -2a ≤1,因此-2t t +2≤s ≤1-2t t +2(-1≤t ≤1).当0≤t ≤1时,-2t 2t +2≤st ≤t -2t2t +2.由于-23≤-2t 2t +2≤0和-13≤t -2t2t +2≤9-45,所以-23≤ b ≤9-4 5.当-1≤t <0时,t -2t 2t +2≤st ≤-2t2t +2,由于-2≤-2t 2t +2<0和-3≤t -2t2t +2<0,所以-3≤b <0.故b 的取值范围是[-3,9-4 5 ].8.(2016·浙江高考)已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q .(1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围. (2)①求F (x )的最小值m (a );②求F (x )在区间[0,6]上的最大值M (a ). 解:(1)由于a ≥3,故当x ≤1时,x 2-2ax +4a -2-2|x -1|=x 2+2(a -1)(2-x )>0;当x >1时,x 2-2ax +4a -2-2|x -1|=(x -2)(x -2a ).所以使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围为[2,2a ]. (2)①设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2, 则f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2, 所以由F (x )的定义知m (a )=min{f (1),g (a )},即m (a )=⎩⎨⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.②当0≤x ≤2时,F (x )=f (x ), 此时M (a )=max{f (0),f (2)}=2. 当2≤x ≤6时,F (x )=g (x ),此时M (a )=max{g (2),g (6)}=max{2,34-8a }, 当a ≥4时,34-8a ≤2; 当3≤a <4时,34-8a >2,故M (a )=⎩⎪⎨⎪⎧34-8a ,3≤a <4,2,a ≥4.命题点二 函数与方程1.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)解析:选C 令h (x )=-x -a ,则g (x )=f (x )-h (x ).在同一坐标系中画出y =f (x ),y =h (x )的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y =h (x )的图象,可知当直线y =-x -a 过点(0,1)时,有2个交点,此时1=-0-a ,a =-1.当y =-x -a 在y =-x +1上方,即a <-1时,仅有1个交点,不符合题意.当y=-x -a 在y =-x +1下方,即a >-1时,有2个交点,符合题意.综上,a 的取值范围是[-1,+∞).2.(2018·浙江高考)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.解析:当λ=2时,f (x )=⎩⎪⎨⎪⎧x -4,x ≥2,x 2-4x +3,x <2,其图象如图①所示.由图知f (x )<0的解集为(1,4).f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ恰有2个零点有两种情况:①二次函数有两个零点,一次函数无零点; ②二次函数与一次函数各有一个零点.在同一平面直角坐标系中画出y =x -4与y =x 2-4x +3的图象如图②所示,平移直线x =λ,可得λ∈(1,3]∪(4,+∞).答案:(1,4) (1,3]∪(4,+∞)3.(2018·天津高考)已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是________.解析:法一:作出函数f (x )的大致图象如图所示.l 1是过原点且与抛物线y =-x 2+2ax -2a 相切的直线,l 2是过原点且与抛物线y =x 2+2ax +a 相切的直线.由图可知,当直线y =ax 在l 1,l 2之间(不含直线l 1,l 2)变动时,符合题意.由⎩⎪⎨⎪⎧y =ax ,y =-x 2+2ax -2a ,消去y ,整理得x 2-ax +2a =0.由Δ=a 2-8a =0,得a =8(a =0舍去).由⎩⎪⎨⎪⎧y =ax ,y =x 2+2ax +a ,消去y ,整理得x 2+ax +a =0.由Δ=a 2-4a =0,得a =4(a =0舍去). 综上可得a 的取值范围是(4,8).法二:当x ≤0时,由x 2+2ax +a =ax ,得a =-x 2-ax ;当x>0时,由-x 2+2ax -2a =ax ,得2a =-x 2+ax .令g (x )=⎩⎪⎨⎪⎧-x 2-ax ,x ≤0,-x 2+ax ,x >0.作出直线y =a ,y =2a ,函数g (x )的图象如图所示,g (x )的最大值为-a 24+a 22=a 24,由图象可知,若f (x )=ax 恰有2个互异的实数解,则a <a 24<2a ,解得4<a <8. 答案:(4,8)命题点三 函数模型及其应用1.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D 因为lg 3361=361×lg 3≈361×0.48≈173, 所以M ≈10173,则M N ≈101731080=1093. 2.(2015·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油解析:选D 根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D对.。
基本初等函数(Ⅰ)及函数与方程部分高考命题热点
基本初等函数(Ⅰ)及函数与方程部分高考命题热点1.(2014·山东高考)已知实数x ,y 满足a x <a y(0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 32.(2014·安微高考)设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C. c <b <aD .a <c <b3.(2014·浙江高考)在同一直角坐标系中,函数f (x )=x a(x ≥0),g (x )=log a x 的图象可能是( )4.(2013·浙江高考)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =05. (2014·安微高考)⎝ ⎛⎭⎪⎫168134-+log 354+log 345=________.6.(2014·重庆高考)函数f (x )=log 2x ·log2(2x )的最小值为________.7.(2014·湖南高考)若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________.8.(2014·天津高考)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.1.(2014·湖北高考)已知f (x ) 是定义在 R 上的奇函数,当x ≥0时, f (x )=x 2-3x .则函数g (x )=f (x )-x +3 的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}2.(2014·北京高考)已知函数f (x )=6x-log 2x ,在下列区间中,包含 f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)3.(2014·江苏高考)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.1.(2014·湖南高考)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q2B.p +q +-12C.pqD.p +q+-12.(2014·陕西高考)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A. y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD. y =14x 3+12x 2-2x答 案命题点一1.选D 因为0<a <1,a x<a y,所以x >y ,采用赋值法判断,A 中,当x =1,y =0时,12<1,A 不成立.B 中,当x =0,y =-1时,ln 1< ln 2,B 不成立.C 中,当x =0,y =-π时,sin x =sin y =0,C 不成立.D 中,因为函数y =x 3在R 上是增函数,故选D.2.选B 因为2>a =log 37>1,b =21.1>2,c =0.83.1<1,所以c <a <b .3.选D 当a >1时,函数f (x )=x a(x >0)单调递增,函数g (x )=log a x 单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当0<a <1时,函数f (x )=x a(x >0)单调递增,函数g (x )=log a x 单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知B 错,因此选D.4.选A 由f (0)=f (4)知二次函数f (x )=ax 2+bx +c 对称轴为x =2,即-b2a =2.所以4a +b =0,又f (0)>f (1)且f (0),f (1)在对称轴同侧,故函数f (x )在(-∞,2]上单调递减,则抛物线开口方向朝上,知a >0,故选A.5.解析:原式=⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫23434-+log 3⎝ ⎛⎭⎪⎫54×45 =⎝ ⎛⎭⎪⎫23-3=278.答案:2786.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =12时等号成立,因此函数f (x )的最小值为-14. 答案:-147.解析:函数f (x )=ln(e 3x+1)+ax 为偶函数, 故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x+1)+ax ,化简得ln 1+e 3xe 3x +e6x =2ax =lne 2ax,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0, 解得a =-32.答案:-328.解析:画出函数f (x )=|x 2+3x |的大致图象,如图,令g (x )=a |x -1|,则函数f (x )的图象与函数g (x )的图象有且仅有4个不同的交点,显然a >0.联立⎩⎪⎨⎪⎧y =-x 2-3x ,y =a-x 消去y ,得x 2+(3-a )x +a =0,由Δ>0,解得a <1或a >9;联立⎩⎪⎨⎪⎧y =x 2+3x ,y =a-x 消去y ,得x 2+(3+a )x -a =0,由Δ>0,解得a >-1或a <-9.综上,实数a 的取值范围为(0,1)∪(9,+∞). 答案:(0,1)∪(9,+∞) 命题点二1.选D 当x ≥0时,函数g (x )的零点即方程f (x )=x -3的根,由x 2-3x =x -3,解得x =1或3;当x <0时,由f (x )是奇函数得-f (x )=f (-x )=x 2-3(-x ),即f (x )=-x 2-3x .由f (x )=x -3得x =-2-7(正根舍去).2.选C 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).3.解析:函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.答案:⎝ ⎛⎭⎪⎫0,12 命题点三1.选D 设年平均增长率为x ,原生产总值为a ,则(1+p )(1+q )a =a (1+x )2, 解得x =+p +q -1.2.选A 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y =-x ,在(2,0)处的切线方程为y =3x -6,以此对选项进行检验.A 选项,y =12x 3-12x 2-x ,显然过两个定点,又y ′=32x 2-x -1,则y ′|x =0=-1,y ′|x =2=3,故条件都满足,又B ,C ,D 选项可验证曲线在(0,0)或(2,0)处不与直线y =-x ,y =3x -6相切,故选A.。
高中数学二轮讲义:专题1 第2讲 基本初等函数、函数与方程(教师版)
专题一第2讲基本初等函数、函数与方程【要点提炼】考点一基本初等函数的图象与性质1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y =x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【热点突破】【典例】1 (1)已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( )A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值【答案】 C【解析】画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图象,它们交于A,B两点.由“规定”,在A,B两侧,|f(x)|≥g(x),故h(x)=|f(x)|;在A,B之间,|f(x)|<g(x),故h(x)=-g(x).综上可知,y=h(x)的图象是图中的实线部分,因此h(x)有最小值-1,无最大值.(2)已知函数f(x)=e x+2(x<0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,1e B .(-∞,e)C.⎝ ⎛⎭⎪⎫-1e ,eD.⎝⎛⎭⎪⎫-e ,1e 【答案】 B【解析】 由题意知,方程f(-x)-g(x)=0在(0,+∞)上有解, 即e -x+2-ln(x +a)-2=0在(0,+∞)上有解,即函数y =e -x与y =ln(x +a)的图象在(0,+∞)上有交点. 函数y =ln(x +a)可以看作由y =ln x 左右平移得到, 当a =0时,两函数有交点,当a<0时,向右平移,两函数总有交点,当a>0时,向左平移,由图可知,将函数y =ln x 的图象向左平移到过点(0,1)时,两函数的图象在(0,+∞)上不再有交点,把(0,1)代入y =ln(x +a),得1=ln a ,即a =e ,∴a<e.【方法总结】 (1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a 的值不确定时,要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1时,两函数在定义域内都为减函数.(2)基本初等函数的图象和性质是统一的,在解题中可相互转化. 【拓展训练】1 (1)函数f(x)=ln(x 2+2)-ex -1的大致图象可能是( )【答案】 A【解析】 当x →+∞时,f(x)→-∞,故排除D ;函数f(x)的定义域为R ,且在R 上连续,故排除B ;f(0)=ln 2-e -1,由于ln 2>ln e =12,e -1<12,所以f(0)=ln 2-e -1>0,故排除C.(2)已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-12的解集是( ) A .(-∞,-1) B .(-∞,-1] C .(1,+∞) D .[1,+∞)【答案】 A【解析】 当x>0时,f(x)=1-2-x>0. 又f(x)是定义在R 上的奇函数,所以f(x)<-12的解集和f(x)>12的解集关于原点对称,由1-2-x >12得2-x <12=2-1,即x>1,则f(x)<-12的解集是(-∞,-1).故选A.【要点提炼】考点二 函数的零点 判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.考向1 函数零点的判断【典例】2 (1)(2020·长沙调研)已知函数f(x)=⎩⎪⎨⎪⎧xe x,x ≤0,2-|x -1|,x>0,若函数g(x)=f(x)-m 有两个不同的零点x 1,x 2,则x 1+x 2等于( )A .2B .2或2+1eC .2或3D .2或3或2+1e【答案】 D【解析】 当x ≤0时, f ′(x)=(x +1)e x, 当x<-1时,f ′(x)<0,故f(x)在(-∞,-1)上单调递减, 当-1<x ≤0时,f ′(x)>0, 故f(x)在(-1,0]上单调递增,所以x ≤0时,f(x)的最小值为f(-1)=-1e.又当x ≥1时,f(x)=3-x ,当0<x<1时,f(x)=x +1.作出f(x)的图象,如图所示.因为g(x)=f(x)-m 有两个不同的零点,所以方程f(x)=m 有两个不同的根,等价于直线y =m 与f(x)的图象有两个不同的交点,且交点的横坐标分别为x 1,x 2,由图可知1<m<2或m =0或m =-1e .若1<m<2,则x 1+x 2=2; 若m =0,则x 1+x 2=3;若m =-1e ,则x 1+x 2=-1+3+1e =2+1e.(2)设函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,都有f(x +2)=f(2-x),当x ∈[-2,0]时,f(x)=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程f(x)-log 8(x +2)=0在区间(-2,6)上根的个数为( )A .1B .2C .3D .4 【答案】 C【解析】 对于任意的x ∈R ,都有f(2+x)=f(2-x), ∴f(x +4)=f[2+(x +2)]=f[2-(x +2)]=f(-x)=f(x), ∴函数f(x)是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f(x)=⎝⎛⎭⎪⎫22x-1,且函数f(x)是定义在R 上的偶函数, 且f(6)=1,则函数y =f(x)与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f(x)与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f(x)-log 8(x +2)=0在区间(-2,6)上有3个根.【特点突破】考向2 求参数的值或取值范围 【典例】3 (1)已知关于x 的方程9-|x -2|-4·3-|x -2|-a =0有实数根,则实数a 的取值范围是________. 【答案】 [-3,0) 【解析】 设t =3-|x -2|(0<t ≤1),由题意知a =t 2-4t 在(0,1]上有解,又t 2-4t =(t -2)2-4(0<t ≤1), ∴-3≤t 2-4t<0,∴实数a 的取值范围是[-3,0).(2)已知函数f(x)=⎩⎪⎨⎪⎧x +3,x>a ,x 2+6x +3,x ≤a ,若函数g(x)=f(x)-2x 恰有2个不同的零点,则实数a 的取值范围为____________________. 【答案】 [-3,-1)∪[3,+∞)【解析】 由题意得g(x)=⎩⎪⎨⎪⎧x +3-2x ,x>a ,x 2+6x +3-2x ,x ≤a ,即g(x)=⎩⎪⎨⎪⎧3-x ,x>a ,x 2+4x +3,x ≤a ,如图所示,因为g(x)恰有两个不同的零点, 即g(x)的图象与x 轴有两个交点.若当x ≤a 时,g(x)=x 2+4x +3有两个零点, 则令x 2+4x +3=0,解得x =-3或x =-1, 则当x>a 时,g(x)=3-x 没有零点,所以a ≥3. 若当x ≤a 时,g(x)=x 2+4x +3有一个零点, 则当x>a 时,g(x)=3-x 必有一个零点, 即-3≤a<-1,综上所述,a ∈[-3,-1)∪[3,+∞).【方法总结】 利用函数零点的情况求参数值(或取值范围)的三种方法【拓展训练】2 (1)已知偶函数y =f(x)(x ∈R )满足f(x)=x 2-3x(x ≥0),若函数g(x)=⎩⎪⎨⎪⎧log 2x ,x>0,-1x,x<0,则y =f(x)-g(x)的零点个数为( )A .1B .3C .2D .4 【答案】 B【解析】 作出函数f(x)与g(x)的图象如图,由图象可知两个函数有3个不同的交点,所以函数y =f(x)-g(x)有3个零点.(2)(多选)已知函数f(x)=⎩⎪⎨⎪⎧x +2a ,x<0,x 2-ax ,x ≥0,若关于x 的方程f(f(x))=0有8个不同的实根,则a 的值可能为( ) A .-6 B .8 C .9 D .12 【答案】 CD【解析】 当a ≤0时,f(x)仅有一个零点x =0,故f(f(x))=0有8个不同的实根不可能成立.当a>0时,f(x)的图象如图所示,当f(f(x))=0时,f 1(x)=-2a ,f 2(x)=0,f 3(x)=a.又f(f(x))=0有8个不同的实根,故f 1(x)=-2a 有三个根,f 2(x)=0有三个根,f 3(x)=a 有两个根,又x 2-ax =⎝ ⎛⎭⎪⎫x -a 22-a24,所以-2a>-a24且a<2a ,解得a>8且a>0,综上可知,a>8. 专题训练一、单项选择题1.(2020·全国Ⅰ)设alog 34=2,则4-a等于( ) A.116 B.19 C.18 D.16 【答案】 B【解析】 方法一 因为alog 34=2, 所以log 34a=2, 所以4a=32=9, 所以4-a=14a =19.方法二 因为alog 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4log 94-=14log 94-=9-1=19.2.函数f(x)=ln x +2x -6的零点一定位于区间( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5) 【答案】 B【解析】 函数f(x)=ln x +2x -6在其定义域上连续且单调, f(2)=ln 2+2×2-6=ln 2-2<0, f(3)=ln 3+2×3-6=ln 3>0,故函数f(x)=ln x +2x -6的零点在区间(2,3)上.3.在同一直角坐标系中,函数f(x)=2-ax 和g(x)=log a (x +2)(a>0且a ≠1)的大致图象可能为( )【答案】 A【解析】 由题意知,当a>0时,函数f(x)=2-ax 为减函数.若0<a<1,则函数f(x)=2-ax 的零点x 0=2a ∈(2,+∞),且函数g(x)=log a (x +2)在(-2,+∞)上为减函数;若a>1,则函数f(x)=2-ax 的零点x 0=2a ∈(0,2),且函数g(x)=log a (x +2)在(-2,+∞)上为增函数.故A 正确.4.(2020·广东省揭阳三中模拟)已知a ,b ,c 满足4a =6,b =12log 4,c 3=35,则( )A .a<b<cB .b<c<aC .c<a<bD .c<b<a【答案】 B【解析】 4a =6>4,a>1,b =12log 4=-2,c 3=35<1,0<c<1,故a>c>b.5.(2020·全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病典例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e-0.23t -53,其中K 为最大确诊病典例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A .60 B .63 C .66 D .69 【答案】 C【解析】 因为I(t)=K1+e-0.23t -53,所以当I(t *)=0.95K 时,*0.23531et K ⎛⎫-- ⎪⎝⎭+=0.95K ,即*0.235311et ⎛⎫-- ⎪⎝⎭+=0.95,即1+*0.2353et ⎛⎫-- ⎪⎝⎭=10.95, 即*0.2353et ⎛⎫-- ⎪⎝⎭=10.95-1, ∴*0.2353et ⎛⎫- ⎪⎝⎭=19,∴0.23(t *-53)=ln 19, ∴t *=ln 190.23+53≈30.23+53≈66.6.(2020·泉州模拟)若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( )A .1<a<2B .0<a<2,a ≠1C .0<a<1D .a ≥2【答案】 A【解析】 令u(x)=x 2-ax +1,函数y =log a (x 2-ax +1)有最小值,∴a>1,且u(x)min >0,∴Δ=a 2-4<0,∴1<a<2,∴a 的取值范围是1<a<2.7.(2020·太原质检)已知函数f(x)=⎩⎪⎨⎪⎧e x,x>0,-2x 2+4x +1,x ≤0(e 为自然对数的底数),若函数g(x)=f(x)+kx 恰好有两个零点,则实数k 等于( ) A .-2e B .e C .-e D .2e 【答案】 C【解析】 g(x)=f(x)+kx =0,即f(x)=-kx ,如图所示,画出函数y =f(x)和y =-kx 的图象,-2x 2+4x +1=-kx ,即2x 2-(4+k)x -1=0, 设方程的两根为x 1,x 2,则Δ=(4+k)2+8>0,且x 1x 2=-12,故g(x)在x<0时有且仅有一个零点, y =-kx 与y =f(x)在x>0时相切.当x>0时,设切点为(x 0,-kx 0),f(x)=e x, f ′(x)=e x,f ′(x 0)=0e x =-k ,0e x =-kx 0,解得x 0=1,k =-e.8.已知函数f(x)=⎩⎪⎨⎪⎧a ,x =0,⎝ ⎛⎭⎪⎫1e |x|+1,x ≠0,若关于x 的方程2f 2(x)-(2a +3)f(x)+3a =0有五个不同的解,则a 的取值范围是( )A .(1,2)B.⎣⎢⎡⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,2 【答案】 D【解析】 作出f(x)=⎝ ⎛⎭⎪⎫1e |x|+1,x ≠0的图象如图所示.设t =f(x),则原方程化为2t 2-(2a +3)t +3a =0, 解得t 1=a ,t 2=32.由图象可知,若关于x 的方程2f 2(x)-(2a +3)f(x)+3a =0有五个不同的实数解,只有当直线y =a 与函数y =f(x)的图象有三个不同的交点时才满足条件, 所以1<a<2.又方程2t 2-(2a +3)t +3a =0有两个不相等的实数根, 所以Δ=(2a +3)2-4×2×3a =(2a -3)2>0, 解得a ≠32,综上,得1<a<2,且a ≠32.二、多项选择题9.(2020·临沂模拟)若10a=4,10b=25,则( ) A .a +b =2 B .b -a =1 C .ab>8lg 22 D .b -a>lg 6【答案】 ACD【解析】 由10a=4,10b=25,得a =lg 4,b =lg 25,则a +b =lg 4+lg 25=lg 100=2,故A 正确;b -a =lg 25-lg 4=lg 254>lg 6且lg 254<1,故B 错误,D 正确;ab =lg 4·lg25=4lg 2·lg 5>4lg 2·lg 4=8lg 22,故C 正确.10.已知函数f(x)=log a (x +1),g(x)=log a (1-x),a>0,a ≠1,则( ) A .函数f(x)+g(x)的定义域为(-1,1) B .函数f(x)+g(x)的图象关于y 轴对称 C .函数f(x)+g(x)在定义域上有最小值0 D .函数f(x)-g(x)在区间(0,1)上是减函数 【答案】 AB【解析】 ∵f(x)=log a (x +1),g(x)=log a (1-x),a>0,a ≠1,∴f(x)+g(x)=log a (x +1)+log a (1-x),由x +1>0且1-x>0得-1<x<1,故A 对;由f(-x)+g(-x)=log a (-x +1)+log a (1+x)=f(x)+g(x),得函数f(x)+g(x)是偶函数,其图象关于y 轴对称,B 对;∵-1<x<1,∴f(x)+g(x)=log a (1-x 2),∵y =1-x 2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a (1-0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值,故C 错;∵f(x)-g(x)=log a (x +1)-log a (1-x),当0<a<1时,f(x)=log a (x +1)在(0,1)上单调递减,g(x)=log a (1-x)在(0,1)上单调递增,函数f(x)-g(x)在(0,1)上单调递减;当a>1时,f(x)=log a (x +1)在(0,1)上单调递增,g(x)=log a (1-x)在(0,1)上单调递减,函数f(x)-g(x)在(0,1)上单调递增,故D 错.11.(2020·淄博模拟)已知函数y =f(x)是R 上的奇函数,对于任意x ∈R ,都有f(x +4)=f(x)+f(2)成立.当x ∈[0,2)时,f(x)=2x-1.给出下列结论,其中正确的是( ) A .f(2)=0B .点(4,0)是函数y =f(x)图象的一个对称中心C .函数y =f(x)在区间[-6,-2]上单调递增D .函数y =f(x)在区间[-6,6]上有3个零点 【答案】 AB【解析】 对于A ,因为f(x)为奇函数且对任意x ∈R ,都有f(x +4)=f(x)+f(2),令x =-2,则f(2)=f(-2)+f(2)=0,故A 正确;对于B ,由A 知,f(2)=0,则f(x +4)=f(x),则4为f(x)的一个周期,因为f(x)的图象关于原点(0,0)成中心对称,则(4,0)是函数f(x)图象的一个对称中心,故B 正确;对于C ,因为f(-6)=0,f(-5)=f(-5+4)=f(-1)=-f(1)=-1,-6<-5,而f(-6)>f(-5),所以f(x)在区间[-6,-2]上不是单调递增的,故C 错误;对于D ,因为f(0)=0,f(2)=0,所以f(-2)=0,又4为f(x)的一个周期,所以f(4)=0,f(6)=0,f(-4)=0,f(-6)=0,所以函数y =f(x)在区间[-6,6]上有7个零点,故D 错误. 12.对于函数f(x)=⎩⎪⎨⎪⎧sin πx ,x ∈[0,2],12f x -2,x ∈2,+∞,则下列结论正确的是( )A .任取x 1,x 2∈[2,+∞),都有|f(x 1)-f(x 2)|≤1B .函数y =f(x)在[4,5]上单调递增C .函数y =f(x)-ln(x -1)有3个零点D .若关于x 的方程f(x)=m(m<0)恰有3个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=132【答案】 ACD【解析】 f(x)=⎩⎪⎨⎪⎧sin πx ,x ∈[0,2],12f x -2,x ∈2,+∞的图象如图所示,当x ∈[2,+∞)时,f(x)的最大值为12,最小值为-12,∴任取x 1,x 2∈[2,+∞ ),都有|f(x 1)-f(x 2)|≤ 1恒成立,故A 正确;函数y =f(x)在[4,5]上的单调性和在[0,1]上的单调性相同,则函数y =f(x)在[4,5]上不单调,故B 错误;作出y =ln(x -1)的图象,结合图象,易知y =ln(x -1)的图象与f(x)的图象有3个交点,∴函数y =f(x)-ln(x -1)有3个零点,故C 正确;若关于x 的方程f(x)=m(m<0)恰有3个不同的实根x 1,x 2,x 3,不妨设x 1<x 2<x 3,则x 1+x 2=3,x 3=72,∴x 1+x 2+x 3=132,故D 正确.三、填空题13.(2019·全国Ⅱ)已知f(x)是奇函数,且当x<0时,f(x)=-e ax.若f(ln 2)=8,则a =________. 【答案】 -3【解析】 当x>0时,-x<0,f(-x)=-e -ax.因为函数f(x)为奇函数,所以当x>0时,f(x)=-f(-x)=e-ax,所以f(ln 2)=e-aln 2=⎝ ⎛⎭⎪⎫12a=8,所以a =-3. 14.已知函数f(x)=|lg x|,若f(a)=f(b)(a ≠b),则函数g(x)=⎩⎪⎨⎪⎧x 2+22x +5,x ≤0,ax 2+2bx,x>0的最小值为________.【答案】 2 2【解析】 因为|lg a|=|lg b|,所以不妨令a<b , 则有-lg a =lg b ,所以ab =1,b =1a(0<a<1),所以g(x)=⎩⎪⎨⎪⎧x +22+3,x ≤0,ax +2ax ,x>0,当x ≤0时,g(x)=(x +2)2+3≥3,取等号时x =-2; 当x>0时,g(x)=ax +2ax≥2ax ·2ax=22,当且仅当x =2a时,等号成立, 综上可知,g(x)min =2 2.15.定义在R 上的奇函数f(x),当x ≥0时,f(x)=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1,1-|x -3|,x ∈[1,+∞,则函数F(x)=f(x)-1π的所有零点之和为________.【答案】11-2π【解析】 由题意知,当x<0时, f(x)=⎩⎪⎨⎪⎧-2x 1-x ,x ∈-1,0,|x +3|-1,x ∈-∞,-1],作出函数f(x)的图象如图所示,设函数y =f(x)的图象与y =1π交点的横坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+x 2=-6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令-2x 1-x =1π,解得x 3=11-2π,所以函数F(x)=f(x)-1π的所有零点之和为11-2π.16.对于函数f(x)与g(x),若存在λ∈{x ∈R |f(x)=0},μ∈{x ∈R |g(x)=0},使得|λ-μ|≤1,则称函数f(x)与g(x)互为“零点密切函数”,现已知函数f(x)=ex -2+x -3与g(x)=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________. 【答案】 [3,4]【解析】 由题意知,函数f(x)的零点为x =2, 设g(x)的零点为μ,满足|2-μ|≤1, 因为|2-μ|≤1,所以1≤μ≤3. 方法一 因为函数g(x)的图象开口向上, 所以要使g(x)的至少一个零点落在区间[1,3]上,则需满足g(1)g(3)≤0,或⎩⎪⎨⎪⎧g 1>0,g 3>0,Δ≥0,1<a +12<3,解得103≤a ≤4,或3≤a<103,得3≤a ≤4.故实数a 的取值范围为[3,4].方法二 因为g(μ)=μ2-a μ-μ+4=0, a =μ2-μ+4μ=μ+4μ-1,因为1≤μ≤3,所以3≤a ≤4. 故实数a 的取值范围为[3,4].。
基本初等函数、函数与方程
热点二 函数的零点与方程
考法1 确定函数零点个数或其存在范围
【例 2-1】 (1)函数 f(x)=log2x-1x的零点所在的区间为(
)
A.0,12 C.(1,2)
B.12,1 D.(2,3)
(2)(2018·全国Ⅲ卷)函数 f(x)=cos3x+π6在[0,π]的零点个数为________.
象如图所示,g(x)的最大值为-a42+a22=a42,由图象可知,若 f(x)
=ax 恰有 2 个互异的实数解,则 a<a42<2a,解得 4<a<8.
答案 (4,8)
探究提高 1.求解本题的关键在于转化为研究函数g(x)的图象与y=a(x≤0),y= 2a(x>0)的交点个数问题:常见的错误是误认为y=2a,y=a是两条直线,忽视x的限 制条件. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思 想或数形结合思想,构建关于参数的方程或不等式求解.
由图可知两函数图象有2个交点,则f(x)的零点个数为2. 答案 2
考法2 根据函数的零点求参数的取值或范围
【例 2-2】 (2018·天津卷)已知 a>0,函数 f(x)=x-2+x22+ax2+ax-a,2xa≤,0x, >0.若关于 x 的方程 f(x)
=ax 恰有 2 个互异的实数解,则 a 的取值范围是________.
2.指数函数与对数函数的图象和性质 指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)的图象和性质,分0<a<1, a>1两种情况,当a>1时,两函数在定义域内都为增函数,当0<a<1时,两函数在定义 域内都为减函数.
基本初等函数、函数与方程及函数的应用(题型归纳)
基本初等函数、函数与方程及函数的应用【考情分析】1.考查特点:基本初等函数作为高考的命题热点,多考查指数式与对数式的运算、利用函数的性质比较大小,难度中等;函数的应用问题多体现在函数零点与方程根的综合问题上,题目有时较难,而与实际应用问题结合考查的指数、对数函数模型也是近几年考查的热点,难度中等.2.关键能力:逻辑思维能力、运算求解能力、数学建模能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学建模、数学运算.【题型一】基本初等函数的图象与性质【典例分析】【例1】(2021•焦作一模)若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则函数log ||a y x =的图象大致是()A .B .C .D .【答案】B【解析】若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则1a >,故函数log ||a y x =的图象大致是:故选:B .【例2】(2021·陕西西安市·西安中学高三模拟)若1(,1)x e -∈,ln a x =,ln 1()2xb =,ln 2xc =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .b c a>>【答案】D【解析】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22xx -=,则ln 11()22x <<,ln 1212x<<,即1122c b <<<<,综上得:b c a >>故选:D【例3】(2021·湖南长沙长郡中学高三模拟)若函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,则实数m 的取值范围为()A .[)3,0-B .[)1,0-C .[)0,1D .[)3,-+∞【答案】A【解析】因函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,当且仅当f (x )在(-∞,1]有一个零点,x≤1时,()03x f x m =⇔=-,即函数3x y =-在(-∞,1]上的图象与直线y =m 有一个公共点,在同一坐标系内作出直线y =m 和函数3(1)x y x =-≤的图象,如图:而3x y =-在(-∞,1]上单调递减,且有330x -≤-<,则直线y =m 和函数3(1)x y x =-≤的图象有一个公共点,30m -≤<.故选:A【提分秘籍】1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)=ln(x 2-3x+2)的单调区间,易只考虑t=x 2-3x+2与函数y=ln t 的单调性,而忽视t>0的限制条件.3.指数、对数、幂函数值的大小比较问题的解题策略:(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性进行比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.【变式演练】1.【多选】(2021·山东省实验中学高三模拟)已知函数()2121x x f x -=+,则下列说法正确的是()A .()f x 为奇函数B .()f x 为减函数C .()f x 有且只有一个零点D .()f x 的值域为[)1,1-【答案】AC【解析】()2121x x f x -=+ ,x ∈R ,2121x=-+2112()()2112x xx xf x f x ----∴-===-++,故()f x 为奇函数,又()21212121x x xf x -==-++ ,()f x ∴在R 上单调递增,20x> ,211x ∴+>,20221x∴<<+,22021x∴-<-<+,1()1f x ∴-<<,即函数值域为()1,1-令()21021x x f x -==+,即21x =,解得0x =,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选:AC2.(2021·山东潍坊市·高二一模(理))设函数()322xxf x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是【答案】(),1-∞-【解析】函数的定义域为R ,()()322xx f x x f x --=--=-,所以函数是奇函数,并由解析式可知函数是增函数原不等式可化为()()213f x f -<-,∴213x -<-,解得1x <-,∴x 的取值范围是(),1-∞-.【题型二】函数与方程【典例分析】【例4】(2021·宁夏中卫市·高三其他模拟)函数3()9x f x e x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】由x e 为增函数,3x 为增函数,故3()9x f x e x =+-为增函数,由(1)80f e =-<,2(2)10f e =->,根据零点存在性定理可得0(1,2)x ∃∈使得0()0f x =,故选:B.【例5】(2021·北京高三一模)已知函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,则常数t 的一个取值为______.【答案】2(不唯一).【解析】由220x x +=可得0x =或2x =-由ln 0x =可得1x =因为函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,所以1e t >≥,故答案为:2(不唯一)【提分秘籍】1.判断函数零点个数的方法直接法直接求零点,令f(x)=0,则方程解的个数即为函数零点的个数定理法利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点数形结合法对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.【变式演练】1.(2021·湖北十堰市高三模拟)函数()()()23log 111f x x x x =+->-的零点所在的大致区间是()A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】易知()f x 在()1,+∞上是连续增函数,因为()22log 330f =-<,()33202f =->,所以()f x 的零点所在的大致区间是()2,3.故选:B2.(2021·天津高三二模)设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩,若1a =,则()f x 的最小值为______;若()f x 恰有2个零点,则实数a 的取值范围是__________.【答案】1-112a ≤<或2a ≥【解析】当1a =时,()()211()4(1)(2)1x x f x x x x ⎧-<⎪=⎨--≥⎪⎩,1x <,()211xf x =-<,1≥x ,()()()234124112f x x x x ⎛⎫=--=--≥- ⎪⎝⎭所以()f x 的最小值为1-.设()f x 的零点为1x 、2x ,若()1,1x ∈-∞,[)21x ∈+∞,,则20012a a a a->⎧⎪>⎨⎪<≤⎩,得112a ≤<若[)12,1,x x ∈+∞,则0201a a a >⎧⎪-≤⎨⎪≥⎩,得2a ≥,综上:112a ≤<或2a ≥.故答案为:1-;112a ≤<或2a ≥.【题型三】函数的实际应用【典例分析】1.(2021·北京高三二模)20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用地震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是标准地震的振幅,2008年5月12日,我国四川汶川发生了地震,速报震级为里氏7.8级,修订后的震级为里氏8.0级,则修订后的震级与速报震级的最大振幅之比为()A .0.210-B .0.210C .40lg39D .4039【答案】B【解析】由0lg lg M A A =-,可得01AM gA =,即10M A A =,010M A A =⋅,当8M =时,地震的最大振幅为81010A A =⋅,当7.8M =时,地震的最大振幅为7.82010A A =⋅,所以,修订后的震级与速报震级的最大振幅之比是887.80.2017.82010101010A A A A -⋅===⋅.故选:B.2.为加强环境保护,治理空气污染,某环保部门对辖区内一工厂产生的废气进行了监测,发现该厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(mg /L)P 与时间(h)t 的关系为0ktP P e -=.如果在前5个小时消除了10%的污染物,那么污染物减少19%需要花的时间为()A .7小时B .10小时C .15小时D .18小时【答案】B【解析】因为前5个小时消除了10%的污染物,所以()50010.1kP P P e -=-=,解得ln 0.95k =-,所以ln 0.950tP P e =,设污染物减少19%所用的时间为t ,则()0010.190.81P P -=()()ln 0.92ln 0.955500000.90.9t t t P P e P eP ====,所以25t=,解得10t =,故选:B 3.(2021·山东滕州一中高三模拟)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是A .9:40B .9:30C .9:20D .9:10【答案】9:30【解析】根据函数的图象,可得函数的图象过点(10,1),代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102t t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.故选:B.【提分秘籍】1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.【变式演练】(2020·湖北黄冈市·黄冈中学高三模拟)“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间内最大限度激发一个人的潜能,使成绩在原来的基础上有不同程度的提高,以便在高考中取得令人满意的成绩,特别对于成绩在中等偏下的学生来讲,其增加分数的空间尤其大.现有某班主任老师根据历年成绩在中等偏下的学生经历“百日冲刺”之后的成绩变化,构造了一个经过时间()30100t t ≤≤(单位:天),增加总分数()f t (单位:分)的函数模型:()()1lg 1kPf t t =++,k 为增分转化系数,P 为“百日冲刺”前的最后一次模考总分,且()1606f P =.现有某学生在高考前100天的最后一次模考总分为400分,依据此模型估计此学生在高考中可能取得的总分约为()(lg 61 1.79≈)A .440分B .460分C .480分D .500分【答案】B【解析】由题意得:()1601lg 61 2.796kP kP f P ===+, 2.790.4656k ∴≈=;∴()0.465400186186100621lg1011lg100lg1.013f ⨯==≈=+++,∴该学生在高考中可能取得的总分约为40062462460+=≈分.故选:B.1.(2021·江苏金陵中学高三模拟)函数()2ln 1xf x x =+-的零点所在的区间为().A .31,2⎛⎫⎪⎝⎭B .3,22⎛⎫⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,1311112ln 21ln 21ln 2ln 0222222f e ⎛⎫=-<--=-<-=⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.2.(2021·山东潍坊一中高三模拟)若函数()1af x x x =+-在(0,2)上有两个不同的零点,则a 的取值范围是()A .1[2,]4-B .1(2,)4-C .1[0,]4D .1(0,)4【答案】D【解析】函数()1a f x x x=+-在(0,2)上有两个不同的零点等价于方程10ax x +-=在(0,2)上有两个不同的解,即2a x x =-+在(0,2)上有两个不同的解.此问题等价于y a =与2(02)y x x x =-+<<有两个不同的交点.由下图可得104a <<.故选:D.3.(2021·长沙市·湖南师大附中高三三模)已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A4.(2021·辽宁本溪高级中学高三模拟高三模拟)设函数2ln(1)ln(1)()1x x f x x +--=-,则函数的图象可能是()A .B .C .D .【答案】D【解析】2ln(1)ln(1)()1x x f x x +--=-,定义域为()1,1-,且()()f x f x -=-,故函数为奇函数,图象关于原点对称,故排除A,B,C ,故选:D.5.(2021·新安县第一高级中学高三模拟)被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍()A .2B .99C .101D .9999【答案】C【解析】当99S N =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭,由228000log 102000log 1S N ⎛⎫=+⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999S N =,所以999910199=,即信噪比变为原来的101倍.故选:C .6.(2021·浙江温州市·瑞安中学高三模拟)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是()A .2B .3C .4D .5【答案】B【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点,故选:B.7.(2021·珠海市第二中学高三模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,22-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】A【解析】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,)(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.(2021·浙江杭州高级中学高三模拟)已知函数22log ,0,()44,0.x x f x x x x ⎧>=⎨--+<⎩若函数()()g x f x m =-有四个不同的零点1234,,,x x x x ,则1234x x x x 的取值范围是()A .(0,4)B .(4,8)C .(0,8)D .(0,)+∞【答案】A【解析】函数()g x 有四个不同的零点等价于函数()f x 的图象与直线y m =有四个不同的交点.画出()f x 的大致图象,如图所示.由图可知(4,8)m ∈.不妨设1234x x x x <<<,则12420x x -<<-<<,且124x x +=-.所以214x x =--,所以()()212111424(0,4)x x x x x =--=-++∈,则3401x x <<<,因为2324log log x x =,所以2324log log x x -=,所以12324log log x x -=,所以341x x ⋅=,所以123412(0,4)x x x x x x ⋅⋅⋅=∈⋅.故选:A9.(2021·天津南开中学高三模拟)若函数()1x f x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为()A .2B .1C .0D .1-【答案】BCD【解析】函数()1x f x e =-的导数为()x f x e '=;所以过原点的切线的斜率为1k =;则过原点的切线的方程为:y x =;所以当1a 时,函数()1x f x e =-与()g x ax =的图象恰有一个公共点;故选BCD10.(2021·广东佛山市·高三模拟)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是()A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称【答案】AD【解析】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确;()()12()ln 1ln 1ln ln(111x xxx x e f x e e e e +=+--==+--,令211xy e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确.故选:AD11.(2021·福建厦门市高三模拟)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .3a =B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为31532时【答案】AD【解析】由函数图象可知()4(01)112t at t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,当1t =时,4y =,即11()42a-=,解得3a =,∴()34(01)112t t t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,故A 正确,药物刚好起效的时间,当40.125t =,即132t =,药物刚好失效的时间31()0.1252t -=,解得6t =,故药物有效时长为131653232-=小时,药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为140.58⨯=微克,故C 错误,故选:AD .12.(2021·辽宁省实验中学高三模拟)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则()A .a b c +=B .b c a+=C .b a c=D .2b c a+=【答案】AD【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =;方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =;方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =.根据选项,可得A ,D 成立.故选AD .13.(2021·山东淄博实验中学高三模拟)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.【答案】3或13【解析】令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1,a a ⎡⎤⎢⎥⎣⎦,又函数y =(t +1)2-2在1,a a ⎡⎤⎢⎥⎣⎦上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈1a a ⎡⎤⎢⎥⎣⎦,,又函数y =(t +1)2-2在1a a ⎡⎤⎢⎥⎣⎦,上单调递增,则y max =211a ⎛⎫+ ⎪⎝⎭-2=14,解得a =13(负值舍去).综上,a =3或a =13.14.(2021·北京高三一模)已知函数22,1,()log ,1,x x f x x x ⎧<=⎨-⎩则(0)f =________;()f x 的值域为_______.【答案】1(),2-∞【解析】0(0)2=1=f ;当1x <时,()()20,2=∈xf x ,当1x ≤时,()2log 0=-≤f x x ,所以()f x 的值域为(),2-∞故答案为:1;(),2-∞.15.(2021·重庆南开中学高三模拟)已知定义域为[4,4]-的函数()f x 的部分图像如图所示,且()()0f x f x --=,函数(lg )1f a ≤,则实数a 的取值范围为______.【答案】1,1010⎡⎤⎢⎥⎣⎦【解析】由题意知()()f x f x -=,且函数()f x 的定义域为[4,4]-,所以()f x 是偶函数.由图知()11f =,且函数()f x 在[0,4]上为增函数,则不等式(lg )1f a ≤等价于(|lg |)(1)f a f ≤,即|lg |1a ≤,所以1lg 1a -≤≤,解得11010a ≤≤.故实数a 的取值范围为1,1010⎡⎤⎢⎥⎣⎦.故答案为:1,1010⎡⎤⎢⎥⎣⎦16.(2021·湖南长沙市·长沙一中高三其他模拟)设函数()222,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.【答案】41,3⎛⎤ ⎥⎝⎦【解析】作出函数()f x 图像如下互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==不妨设123x x x <<,则23,x x 关于1x =对称,所以232x x +=根据图像可得1213x -<≤-所以123413x x x <++≤,所以123x x x ++的取值范围为41,3⎛⎤ ⎥⎝⎦。
高考数学二轮复习专题补偿练2基本初等函数、函数与方程理
补偿练二 基本初等函数、函数与方程(建议用时:40分钟)一、选择题 1.函数f (x )=3x21-x+lg(3x +1)的定义域是( ).A.⎝ ⎛⎭⎪⎫-13,+∞B.⎝ ⎛⎭⎪⎫-13,1C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 解析 由题意知⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1.答案 B2.若奇函数f (x )在(0,+∞)上的解析式是f (x )=x (1-x ),则在(-∞,0)上,f (x )的解析式是( ).A .f (x )=-x (1-x )B .f (x )=x (1+x )C .f (x )=-x (1+x )D .f (x )=x (1-x )解析 当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=-x (1+x ), 又f (-x )=-f (x ), ∴f (x )=x (1+x ). 答案 B3.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f ⎝⎛⎭⎪⎫1f的值为 ( ).A.1516 B .-2716 C.89 D .18 解析 f (2)=4,1f=14, ∴f ⎝⎛⎭⎪⎫1f =f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516. 答案 A4.已知a =log 23.6,b =log 43.2,c =log 43.6,则( ).A .a >b >cB .a >c >bC .b >a >cD .c >a >b解析 a =log 23.6=log 43.62=log 412.96,又∵y =log 4x 在(0,+∞)是增函数,而3.2<3.6<12.96∴a >c >b . 答案 B5.已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,则log 2f (2)的值为( ).A.12 B .-12C .2D .-2解析 设幂函数f (x )=x α, 则f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=22,解得α=12,所以f (x )=x .∴log 2f (2)=log 22=12.答案 A 6.函数f (x )=e1-x2的部分图象大致是( ).解析 因函数f (x )为偶函数,所以图象关于y 轴对称,排除A ,B ,又因为e 1-x2>0,所以排除D. 答案 C7.函数f (x )=lg x -1x的零点所在的区间是( ).A .(3,4)B .(2,3)C .(1,2)D .(0,1)解析 因为f (2)=lg 2-12<0,f (3)=lg 3-13>0,且f (x )在(0,+∞)上单调递增,所以函数的零点在区间(2,3)上.答案 B8.已知函数f (x )=x -ln |x |x2,则函数y =f (x )的大致图象为 ( ).解析 因为函数f (x )为非奇非偶函数, 所以排除B 、C.又f (-1)=-1<0,排除D. 答案 A 二、填空题9.若函数f (x )为奇函数,当x ≥0时,f (x )=x 2+x ,则f (-2)的值______.解析 由题意知f (-2)=-f (2)=-(22+2)=-6. 答案 -610.定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =______(用a ,b ,c 作答).解析 log 30.3<0<0.33<1=30<30.3, 即有c <b <a依题意得:(a *b )*c =b *c =c . 答案 c11.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转______年时,年平均利润最大,最大值是______万元.解析 由题意知每台机器运转x 年的年平均利润为y x=18-(x +25x),而x >0,故yx≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元. 答案 5 812.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,x 2-x ,x >0,若函数g (x )=f (x )-m 有三个不同的零点,则实数m的取值范围是________.解析 由g (x )=f (x )-m =0得f (x )=m ,作出函数y =f (x )的图象, 当x >0时,f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14≥-14,所以要使函数g (x )=f (x )-m 有三个不同的零点, 则-14<m <0,即m ∈⎝ ⎛⎭⎪⎫-14,0.答案 ⎝⎛⎭⎪⎫-14,013.已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )的一条对称轴;②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,(f (x 2)-f (x 1))·(x 2-x 1)<0,则f (2 011),f (2 012),f (2 013)从大到小的顺序为____________. 解析 由f (x +2)=-f (x )得f (x +4)=f (x ),所以周期是4.所以f (2 011)=f (3),f (2 012)=f (0),f (2 013)=f (1),又直线x =1是函数f (x )的一条对称轴. 所以f (2 012)=f (0)=f (2).由(f (x 2)-f (x 1))·(x 2-x 1)<0可知当1≤x 1<x 2≤3时,函数单调递减;所以f (1)>f (2)>f (3),故f (2 013)>f (2 012)>f (2 011).答案 f (2 013)>f (2 012)>f (2 011)14.已知定义在R 上的函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0成中心对称,对任意实数x 都有f (x )=-1f ⎝ ⎛⎭⎪⎫x +32,且f (-1)=1,f (0)=-2,则f (0)+f (1)+…+f (2016)=________.解析 由函数关于点⎝ ⎛⎭⎪⎫-34,0对称可知,f (x )+f ⎝ ⎛⎭⎪⎫-32-x =0,所以f (1)+f ⎝ ⎛⎭⎪⎫-52=0,又f (x )=-1f ⎝ ⎛⎭⎪⎫x +32,所以f ⎝ ⎛⎭⎪⎫-52=-1f -=-1,所以f (1)=1,因为f (x )=-1f ⎝ ⎛⎭⎪⎫x +32,所以f (x )=-1f ⎝ ⎛⎭⎪⎫x +32=-1-1f x +=f (x +3),即f (x )是以3为周期的函数,故f(3)=f(0)=-2,f(2)=f(-1)=1,所以f(0)+f(1)+f(2)+…+(2 016)=f(0)+[f(1)+f(2)+f(3)]×672=f(0)=-2.答案-215.设函数y=f(x)是定义在R上的奇函数,且满足f(x-2)=-f(x),对一切x∈R都成立,又当x∈[-1,1]时,f(x)=x3,则下列四个命题:①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3],f(x)=(2-x)3;③函数y=f(x)的图象关于x=1对称;④函数y =f(x)的图象关于(2,0)对称,其中正确命题的序号是________.解析∵y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x),∵f(x-2)=-f(x)对一切x∈R都成立,∴f(x-4)=f(x),∴函数y=f(x)是以4为周期的周期函数,故①正确;当x∈[1,3],x-2∈[-1,1],f(x-2)=(x-2)3=-f(x),∴f(x)=(2-x)3,故②正确;∵f(x-2)=-f(x),∴f(1+x)=f(1-x),∴函数y=f(x)的图象关于x=1对称,故③正确;∵当x∈[1,3]时,f(x)=(2-x)3,∴f(2)=0,∵f(x-2)=-f(x),∴f(-x-2)=-f(-x)=f(x)=-f(x-2),∴f(x+2)=-f(x-2),∴函数y=f(x)的图象关于(2,0)对称,故④正确.答案①②③④。
2020届数学(理)高考二轮专题复习课件:第二部分 专题六 第2讲 基本初等函数、函数与方程 (数理化网)
于( )
A.1
B.2
C.3
D.4
解析:(1)当 x>1 时,f(x)=ln(x-1)=0,得 x=2. 当 x≤1 时,2x-1-1=0,得 x=1. 所以 f(x)有两个零点 x=1 与 x=2. (2)因为 f(2)=ln 2-1<0,f(3)=ln 3-23>0, 又 f(x)=ln x-2x在(0,+∞)上是增函数, 所以 x0∈(2,3),从而 g(x0)=2. 答案:(1)C (2)B
答案:①130 ②15
从近年高考命题看,基本初等函数着重于分段函数、 幂函数、指数函数、对数函数的图象性质;以基本初等 函数为载体考查函数与方程,以及函数简单的实际应用, 突出数形结合与转化思想方法的考查.题目以中档难度 为主,大多以选择题、填空题的形式呈现.考查的数学 核心素养主要有数学运算、直观想象、数学建模.
(RM+1r)2+Mr22=(R+r)MR31.
设
α
=
r R
.
由
于
α
的值很小,因此在近似计算中
3α(3+1+3αα4)+2α5≈3α3,则 r 的近似值为(
)
A. MM21R
B. 2MM21R
3 C.R
解析:由 α=Rr 得 r=αR, 代入(RM+1r)2+Mr22=(R+r)MR31, 整理得3α(3+1+3αα4)+2α5=MM21. 又因为3α(3+1+3αα4)+2α5≈3α3,所以 3α3≈MM21,所以 α≈
热点 1 基本初等函数的图象与性质(自主演练) 1.指数函数 y=ax(a>0,a≠1)与对数函数 y=logax(a >0,a≠1)的图象和性质,分 0<a<1,a>1 两种情况, 当 a>1 时,两函数在定义域内都为增函数,当 0<a<1 时,两函数在定义域内都为减函数. 2.同底的指数函数 y=ax 与对数函数 y=logax(a>0, 且 a≠1)的图象关于直线 y=x 对称.
高考数学一轮复习 第2章 函数与基本初等函数 第8讲 函数与方程课时作业(含解析)新人教B版-新人教
第8讲 函数与方程课时作业1.(2019·某某质检)函数f (x )=ln x -1x -1的零点的个数是() A .0 B .1 C .2 D .3答案 C解析 在同一平面直角坐标系中作出函数y =1x -1与y =ln x 的图象(图略),由图象可知有两个交点.2.(2019·某某模拟)函数f (x )=ln x -2x的零点所在的大致区间是()A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)答案 B解析 因为f ′(x )=1x +2x2>0(x >0),所以f (x )在(0,+∞)上单调递增,又f (3)=ln 3-23>0,f (2)=ln 2-1<0,所以f (2)·f (3)<0,所以函数f (x )唯一的零点在区间(2,3)内.故选B .3.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为()A .12,0 B .-2,0 C .12 D .0答案 D解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f (x )的零点只有0.4.函数f (x )=1-x log 2x 的零点所在的区间是()A .⎝ ⎛⎭⎪⎫14,12 B .⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,3)答案 C解析 因为y =1x与y =log 2x 的图象只有一个交点,所以f (x )只有一个零点.又因为f (1)=1,f (2)=-1,所以函数f (x )=1-x log 2x 的零点所在的区间是(1,2).故选C .5.函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为() A .2 B .3 C .4 D .5答案 D解析 f (x )=x cos2x =0⇒x =0或cos2x =0,又cos2x =0在[0,2π]上的根有π4,3π4,5π4,7π4,共4个,故原函数有5个零点. 6.若x 0是方程⎝ ⎛⎭⎪⎫12x =x 13 的解,则x 0属于区间()A .⎝ ⎛⎭⎪⎫23,1B .⎝ ⎛⎭⎪⎫12,23C .⎝ ⎛⎭⎪⎫13,12 D .⎝ ⎛⎭⎪⎫0,13 答案 C解析 令g (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 13 ,则g (0)=1>f (0)=0,g ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1212 <f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1213 ,g ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1213>f ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1313 ,所以由图象关系可得13<x 0<12.7.(2019·某某模拟)f (x )=3x-log 2(-x )的零点的个数是() A .0 B .1 C .2 D .3答案 B解析 f (x )的定义域为(-∞,0),且f (x )在(-∞,0)上单调递增,f (-1)=13>0,f (-2)=-89<0,所以函数f (x )=3x-log 2(-x )有且仅有1个零点,故选B .8.已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2019-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是()A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d答案 D解析 f (x )=2019-(x -a )(x -b )=-x 2+(a +b )x -ab +2019,又f (a )=f (b )=2019,c ,d 为函数f (x )的零点,且a >b ,c >d ,所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D .9.(2019·某某某某模拟)已知x 0是f (x )=⎝ ⎛⎭⎪⎫12x +1x的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则()A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0答案 C解析 如图,在同一平面直角坐标系内作出函数y =⎝ ⎛⎭⎪⎫12x,y =-1x 的图象,由图象可知,当x ∈(-∞,x 0)时,⎝ ⎛⎭⎪⎫12x >-1x ,当x ∈(x 0,0)时,⎝ ⎛⎭⎪⎫12x <-1x ,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0,故选C .10.(2019·某某质检)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是()A .1B .2C .3D .4答案 B解析 作出函数f (x )与g (x )的图象如图所示,发现有两个不同的交点,故选B .11.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值X 围是()A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)答案 C解析 画出函数f (x )的图象,再画出直线y =-x 并上下移动,可以发现当直线y =-x 过点A 时,直线y =-x 与函数f (x )的图象有两个交点,并且向下无限移动,都可以保证直线y =-x 与函数f (x )的图象有两个交点,即方程f (x )=-x -a 有两个解,也就是函数g (x )有两个零点,此时满足-a ≤1,即a ≥-1,故选C .12.(2019·某某正定模拟)已知f (x )为偶函数且f (x +2)=f (x ),若当x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的解的个数是()A .0B .2C .4D .6答案C解析 画出函数f (x )和y =log 3|x |的图象(如图所示),由图象可知方程f (x )=log 3|x |的解有4个.故选C .13.已知函数y =f (x )的图象是连续曲线,且有如下的对应值表:x 1 2 3 4 5 6 y124.435-7414.5-56.7-123.6则函数y =f (x )在区间[1,6]上的零点至少有________个. 答案 3解析 由零点存在性定理及题中的对应值表可知,函数f (x )在区间(2,3),(3,4),(4,5)内均有零点,所以y =f (x )在[1,6]上至少有3个零点.14.已知f (x )=⎩⎪⎨⎪⎧x ln x ,x >0,x 2-x -2,x ≤0,则其零点为________.答案 1,-1解析 当x >0时,由f (x )=0,即x ln x =0得ln x =0,解得x =1;当x ≤0时,由f (x )=0,即x 2-x -2=0,也就是(x +1)(x -2)=0,解得x =-1或x =2.因为x ≤0,所以x =-1.综上,函数的零点为1,-1.15.(2019·某某模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值X 围是________. 答案 (0,1)解析 函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转化为y =f (x )和y =m 的图象有3个交点.画出函数y =f (x )的图象,由图可知要使函数y =f (x )和y =m 的图象有3个交点,m 应满足0<m <1,所以实数m 的取值X 围是(0,1).16.已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,则m 的取值X 围是________.答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,只需4m -m 2<m ,解得m >3或m <0,又m >0,所以m >3.17.(2019·某某模拟)函数f (x )的定义域为实数集R ,且f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,-1≤x <0,log 2(x +1),0≤x <3,对任意的x ∈R 都有f (x +2)=f (x -2).若在区间[-5,3]上函数g (x )=f (x )-mx +m 恰好有三个不同的零点,某某数m 的取值X 围.解 因为对任意的x ∈R 都有f (x +2)=f (x -2),所以函数f (x )的周期为4.由在区间[-5,3]上函数g (x )=f (x )-mx +m 有三个不同的零点,知函数f (x )与函数h (x )=mx -m 的图象在[-5,3]上有三个不同的交点.在同一平面直角坐标系内作出函数f (x )与h (x )在区间[-5,3]上的图象,如图所示.由图可知1-0-1-1≤m <1-0-5-1,即-12≤m <-16.。
第2讲 基本初等函数、函数与方程
有且仅有两个零点,则a的取值范围是
()
A.0<a<1
B.a>1
C.1<a<2
D.a>2
返回
解析:令f(x)=0得logax=x-2, 分别作出函数y=logax和y=x-2的图象. (1)当a>1时,函数y=logax和y=x-2的图象 如图①所示. 由图象可知函数y=logax和y=x-2的图象有两个交点, 所以f(x)=logax-x+2有两个零点,符合题意. (2)当0<a<1时,函数y=logax和y=x-2的图象如图②所示. 由图象可知y=logax和y=x-2的图象有一个 交点, 所以f(x)=logax-x+2有一个零点,不符合 题意. 综上,a的取值范围为a>1.
且g(3)<0,g(4)>0,所以g(3)g(4)<0,g(x)=2x+log2x-17在
(0,+∞)上存在唯一的零点,所以3<a<4,故a>b2=4] (1)D (2)B
返回
解题方略
基本初等函数的图象与性质的应用技巧 (1)对数函数与指数函数的单调性都取决于其底数的取 值,当底数a的值不确定时,要注意分a>1和0<a<1两种情况 讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1 时,两函数在定义域内都为减函数; (2)由指数函数、对数函数与其他函数复合而成的函 数,其性质的研究往往通过换元法转化为两个基本初等函数 的有关性质,然后根据复合函数的性质与相关函数的性质之 间的关系进行判断; (3)对于幂函数y=xα的性质要注意α>0和α<0两种情况的 不同.
则函数g(x)=f(x)-1的所有
零点之和等于
()
A.4
B.2
C.1
新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)
第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。
第二章 函数的概念与基本初等函数1-3节有答案
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ①得f (x )+2f (-x )=2-x ,②①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a -7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52(3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数、函数与方程
答案
1.B
2.C
3.-3
4.D
5.A
6.D
7.解析:选C .函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1,故选C .
8.A 9.D
10.解析:选D .根据题意可知,实数x 1,x 2,x 3分别是函数y =e -x 与y =ln(x +1)、y =lg x 、y =ln x 图象交点的横坐标.在同一直角坐标系中作出函数y =e -x 、y =ln(x +1)、y =lg x 、y =ln x 的图象如图所示,由图知,x 1<x 3<x 2,故选D .
11.B
12.由f (-x )=f (x ),得f (x )的图象关于y 轴对称.由f (x )=f (2-x ),得f (x )的图象关于直线x =1对称.当x ∈[0,1]时,f (x )=x 3,所以f (x )在[-1,2]上的图象如图.
令g (x )=|cos πx |-f (x )=0,得|cos πx |=f (x ),两函数y =f (x )与y =|cos πx |的图象在-12,32上的交点有5个.
13.
选C .当x >0时,f (x )=ln x -x +1,f ′(x )=1x -1=1-x x
,所以x ∈(0,1)时f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max =f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =e x 的大致图象如图所示,观察到函数y =f (x )与y =e x 的图象有两个交点,所以函数g (x )=f (x )-e x (e 为自然对数的底数)有2个零点.
14.(log 32,1)
15.当x ≤0时,f (x )=e x (x +1),则f ′(x )=e x (x +1)+e x =e x (x +2),
由f ′(x )>0,得函数f (x )的单调递增区间为(-2,0],由f ′(x )<0,得函数f (x )的单调递减区间为(-∞,-2),且易知x <-1时,f (x )<0,f (0)=1.由以上分析,可作出分段函数f (x )的图象,如图所示.要使函数g (x )=f (x )-b 有三个零点,则方程f (x )-b =0,即f (x )=b 有三个不同的实数根,也就是函数y =f (x )的图象与直线y =b 有三个不同的公共点,结合图象可知,实数b 的取值范围是(0,1],故选D .
16.解析:选D .令F (x )=f (x )-g (x )=0,得f (x )=g (x ),在同一平面直角坐标系中分别画出函数f (x )=1+1x -2
与g (x )=1-sin πx 的图象,如图所示,又f (x ),g (x )的图象都关于点(2,1)对称,结合图象可知f (x )与g (x )的图象在[-2,6]上共有8个交点,交点的横坐标即F (x )=f (x )-g (x )的零点,且这些交点关于直线x =2成对出现,由对称性可得所有零点之和为4×2×2=16,故选D .。