第八章 二元一次方程组复习题
初中数学数学第八章 二元一次方程组试题及答案
初中数学数学第八章 二元一次方程组试题及答案一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.已知方程组211x y x y +=⎧⎨-=-⎩,则x +2y 的值为( )A .2B .1C .-2D .33.中国象棋是中华民族的文化瑰宝,也是怡神益智的一种有益身心的活动,源远流长,趣味浓厚,千百年来长盛不衰.甲、乙制定比赛规定:胜一局得4分,平一局得1分,负一局得0分,甲共进行了9局比赛,得了12分,则甲获胜的可能种数有( ) A .2B .3C .4D .54.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( ) A .23x y =+B .32y x +=C .23y x =-D .32y x =-5.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩6.已知()11n a a n d +-=(n 为自然数),且25a =,514a =,则15a 的值为( ).A .23B .29C .44D .537.二元一次方程组2213x y ax y +=⎧⎪⎨+=⎪⎩的解也是方程36x y -=-的解,则a 等于( ) A .-3B .13-C .3D .138.已知10a b +=,6a b -=,则22a b -的值是( ) A .12B .60C .60-D .12-9.在平面直角坐标系中有三个点()1,1A -()1,1B --()0,1C ,点()0,2P 关于A 的对称点为1P ,1P 关于B 的对称点2P ,2P 关于C 的对称点为3P ,按此规律继续以A ,B ,C为对称中心重复前面操作,依次得到4P ,5P ,6P ……则点2022P 的坐标为( ) A .(0,0) B .(0,2)C .(2,-4)D .(-4,2)10.方程组22{?23x y mx y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( )A .m >1B .m <1C .m >-1D .m <-1二、填空题11.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.12.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.13.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 14.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.15.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人. 16.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 17.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.18.关于x ,y 的二元一次方程组5323x y x y a+=⎧⎨+=⎩的解是正整数,试确定整数a 的值为_________________.19.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.20.某“欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元三、解答题21.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?22.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示: 运行区间 大人票价 学生票 出发站 终点站 一等座二等座二等座泉州福州65(元) 54(元) 40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.23.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.24.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?25.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息: (说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求 a 、 b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?26.“一带一路”是对古丝绸之路的传承和提升,让中国和世界的联系更紧密,电气设备是“一带一路”沿线国家受青睐的商品。
初一数学 第八章 二元一次方程组练习题(含答案)
二元一次方程组复习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246...22222222x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?找规律专题给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个()2、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _______个。
第八章二元一次方程组复习测试题
第八章二元一次方程组复习测试题一、填空题(每空2分,共34分)1、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a .b=______。
2、已知方程()()17112-=+y x ,写出用y 表示x 的式子得___________________。
当2=x 时,=y _______ 。
3、已知,则x 与y 之间的关系式为__________________。
4、方程93=+y x 的正整数解是______________。
5、已知方程组⎩⎨⎧=+=+15231432y x y x ,不解方程组则x+y=__________。
6、若二元一次方程组⎩⎨⎧=+=-11532by ax y x 和⎩⎨⎧=+=-15y x ay cx 同解,则可通过解方程组 _________ 求得这个解。
7、已知点A(3x -6,4y +15),点B (5y ,x )关于x 轴对称,则x +y 的值是________。
8、若02)532(2=-+++-y x y x ,则x = ,y = 。
9、已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为b y a x ==,,则.______=-b a 。
10、已知等腰三角形一腰上的中线将它的周长分为6和9两部分,则它的底边长是_________。
11、已知⎩⎨⎧-==12y x 是方程组⎩⎨⎧-=-=+24155by x y ax 的解,则.________32=+b a 12、在△ABC 中,∠A -∠C=25°,∠B -∠A=10°,则∠B=________。
13、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x ,十位数字为y ,则用代数式表示原两位数为 ,根据题意得方程组⎩⎨⎧_________________________________。
第8章_二元一次方程组_复习练习__2022—2023学年人教版数学七年级下册
七年级数学人教版(下)二元一次方程组一、选择题1. 已知下列各式:①12+=y x;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( ) A.1 B.2C.3D.4 2.如果 {x =−3x =1 是方程ax+(a- 2)y=0的一组解,则a 的值( ) A .1 B .-1 C .2 D .-23. 下列方程组的解为31x y =⎧⎨=⎩的是( ) A.224x y x y -=⎧⎨+=⎩ B.253x y x y -=⎧⎨+=⎩ C.32x y x y +=⎧⎨-=⎩ D.2536x y x y -=⎧⎨+=⎩ 4.由方程组 {2x +x =1,x −4=x 可得出 x 与 x 的关系是 ( )A . 2x −x =5B . 2x +x =5C . 2x +x =−5D . 2x −x =−55.若关于 x ,x 的方程组 {2x +3x =x ,x +2x =−1 的解互为相反数,则 x 的值为 ( ) A . −1 B . 1 C . 2 D . −26.如果3x 7x x x +7 和 5x 2−4x x 2x 是同类项,那么 x +x 的值是( )A .-1B .1C .-2D .27. 一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒.则下列方程组中符合题意的是( )A. B. C. D.8. 已知关于x,y 的方程组和的解相同,则(a+b)2022的值为( )A.0B.-1C.1D.20219. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A.46383548x y x y +=⎧⎨+=⎩B.46483538y x y x +=⎧⎨+=⎩C.46485338x y x y +=⎧⎨+=⎩D.46483538x y x y +=⎧⎨+=⎩10.小明在拼图时,发现 8 个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为 3 mm 的小正方形,则每个小长方形的面积为 ( )A . 120 mm 2B . 135 mm 2C . 108 mm 2D . 96 mm 2二、填空题1.将方程 2x - y =1 变形成用含 x 的代数式表示 y ,那么 y = .2. 若关于x,y 的方程2x |n|+3y m ﹣2=0是二元一次方程,则m+n = .3.二元一次方程 4x −x =2 的正整解是 .4.已知 {x =3,x =−2是方程组 {xx +xx =2,xx +xx =−3 的解,则 x +x 的值是 . 5.已知关于x ,y 的方程组 {x +3x =4−x,x −5x =3x, 给出下列结论: ①{x =5,x =−1是方程组的解;②无论 x 取何值,x ,y 的值都不可能互为相反数;③a=1时,方程组的解也是方程 x +x =4−x 的解;④x ,y 都为自然数的解有4对.其中正确的为 .6. 若方程组是关于x,y 的二元一次方程组,则m n = . 7.某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英队在8场比赛中得到12分,若设该队胜的场数为x ,负的场数为y ,则可列方程组为 .8.新年期间,各大超市准备了各种新年礼盒.某超市推出甲、乙、丙三种礼盒,均由 x 、 x 、 x 三种糖果组成.已知每种礼盒的成本分别为盒中 x 、 x 、 x 三种糖果的成本之和,且盒子的成本忽略不计.每盒甲分别装 x 、 x 、 x 三种糖果4斤、2斤、3斤,每盒乙分别装 x 、 x 、 x 三种糖果2斤、4斤、6斤.每盒甲的成本比每盒乙低 15 ,每盒乙的利润率为25%.每盒甲比每盒乙的售价低20%.每盒丙在成本上提高50%标价后打八折销售,每盒丙的获利为每斤 x 成本的3.2倍.当销售甲、乙、丙三种礼盒的数量之比为 3:1:1 时,则销售的总利润率为 .三、计算题1. 解下列方程组:(1)3759y x x y =+⎧⎨+=⎩ (2)2334a b a b +=⎧⎨+=⎩(3) {x +14=x +23,2x −3x =1.(4){2(x−x)3−x+x4=−4①6(x+x)−4(2x−x)=16②.四、解答题1.已知关于x,y的二元一次方程组{2x−x=63x−2x=x的解满足x﹣y=2,求k的值.2. 在解关于x,y的方程组22ax bycx by+=⎧⎨-=-⎩时,一位同学把c看错而得到32xy=-⎧⎨=⎩,而这个方程组的正确的解应是42xy=⎧⎨=-⎩,求a,b,c的值.3.一个两位数,十位上的数字与个位上的数字的和是8.这个两位数加上18,和恰好为这个两位数数字对调后组成的两位数.求原来的两位数.4. A,B两地相距36千米,甲从A地步行到B地,乙从B地步行到A地,两人同时相向出发,4小时后两人相遇.6小时后甲剩余的路程是乙剩余路程的2倍,求甲、乙二人的速度.5.自新冠肺炎疫情以来,农村的蔬菜种植受到更为广泛的关注.王大伯今年承包了25亩地,分别搭建了茄子和西红柿两种蔬菜大棚,共用去了44000元.其中茄子每亩用了1700元,预计收获后可得纯利润2400元;西红柿每亩用了1800元,预计收获后可得纯利润2600元,请你帮助王大伯计算一下,今年秋天一共会获得纯利润多少元?6.某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器的产量要比第一季度增产10%,乙种机器的产量要比第一季度增产20%.该厂第一季度生产甲、乙两种机器各多少台?7.{x=−1x=1x=2是关于x、y、z的方程|xx+xx+2|+(xx+xx−1)2+|xx+xx−3|=0的一个解.试求a、b、c的值.8. 被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五省、六燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡适平.并燕、雀重一斤.问燕,雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)。
七年级初一数学第八章 二元一次方程组复习题及答案
七年级初一数学第八章二元一次方程组复习题及答案一、选择题1.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x只,树有y棵,由题意可列方程组()A.3551y xy x+=⎧⎨-=⎩B.3551y xy x-=⎧⎨=-⎩C.15355 x y yx⎧+=⎪⎨⎪=-⎩D.5315xyxy-⎧=⎪⎪⎨⎪=-⎪⎩2.若关于x,y的方程组()348217x ymx m y+=⎧⎨+-=⎩的解也是二元一次方程x-2y=1的解,则m 的值为( )A.52B.32C.12D.13.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为()A.50人,40人B.30人,60人C.40人,50人D.60人,30人4.若21xy=⎧⎨=⎩是关于x、y的方程组27ax bybx ay+=⎧⎨+=⎩的解,则(a+b)(a﹣b)的值为( )A.15 B.﹣15 C.16 D.﹣165.二元一次方程组2213x yax y+=⎧⎪⎨+=⎪⎩的解也是方程36x y-=-的解,则a等于()A.-3 B.13-C.3 D.136.规定”△”为有序实数对的运算,如果(a,b)△(c,d)=(ac+bd,ad+bc).如果对任意实数a,b都有(a,b)△(x,y)=(a,b),则(x,y)为( )A.(0,1) B.(1,0) C.(﹣1,0) D.(0,﹣1)7.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A、B、C、D表示的数分别是整数a、b、c、d,且满足2319a d,则b c+的值为()A.3-B.2-C.1-D.08.如果2x3n y m+4与-3x9y2n是同类项,那么m、n的值分别为()A .m=-2,n=3B .m=2,n=3C .m=-3,n=2D .m=3,n=29.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( )A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩10.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( )A .30284x y x y +=⎧⎨+=⎩B .302484x y x y +=⎧⎨+=⎩C .304284x y x y +=⎧⎨+=⎩D .30284x y x y +=⎧⎨+=⎩二、填空题11.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 12.若m=m =________.13.若m 1,m 2,…,m 2019是从0,1,2,这三个数中取值的一列数,m 1+m 2+…+m 2019=1525,( m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…,m 2019中,取值为2的个数为___________.14.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 15.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ . 16.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.17.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.18.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.19.解三元一次方程组经过①-③和③×4+②消去未知数z后,得到的二元一次方程组是________.20.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A、B、C三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.三、解答题21.对于数轴上的点A,给出如下定义:点A在数轴上移动,沿负方向移动a个单位长度(a是正数)后所在位置点表示的数是x,沿正方向移动2a个单位长度(a是正数)后所在位置点表示的数是y,x与y这两个数叫做“点A的a关联数”,记作G(A,a)={x,y},其中x y.例如:原点O表示0,原点O的1关联数是G(0,1)={-1,+2}(1)若点A表示-3,a=3,直接写出点A的3关联数.(2)①若点A表示-1,G(A,a)={-5,y},求y的值.②若G(A,a)={-2,7},求a的值和点A表示的数.(3)已知G(A,3)={x,y},G(B,2)={m,n},若点A、点B从原点同时同向出发,且点A的速度是点B速度的3倍.当|y-m|=6时,直接写出点A表示的数.22.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.23.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.24.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。
数学第八章 二元一次方程组知识点及练习题及答案
数学第八章 二元一次方程组知识点及练习题及答案一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=3.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ). A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩4.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .10011003x y x y +=⎧⎪⎨+=⎪⎩ C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 6.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( ) A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩7.《九章算术》是我国东汉初年编订的一部数学经典著作。
第8章二元一次方程组单元复习题2022-2023学年人教版七年级数学下册
2022-2023学年人教版七年级下册 第8章二元一次方程组单元复习题一、选择题1. 下列方程组为二元一次方程组的是( )A. {x +y =3x 2−y =8B. {2x +y =2x −y =1C. {x +y =5x −1y=6D. {x +y =62x −z =12. 已知{x =2y =1是方程x −ay =3的一个解,那么a 的值为( ) A. −1B. 1C. −3D. 33. 用代入消元法解方程组{4x +5y =7①y =2x −1②将②代入①,正确的是( )A. 4x +2x −1=7B. 4x +10x −1=7C. 4x +10x −5=7D. 4x −10x +5=74. 用加减消元解方程组{3x −4y =82x +y =3时,在下列四种说法中,计算比较简单的一种是( ) A. ①×2−②×3消去x B. ①×13−②×12消去x C. ①×14+②消去yD. ①+②×4消去y5. 已知二元一次方程组{2m −n =3m −2n =4,则m +n =( ) A. 1B. 7C. −1D. −76. 已知点P(a,b)的坐标满足二元一次方程组{5a +2b =−93a −4b =−8,则点P 所在的象限为( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 现有2022根短竹,若每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排用于制作笔管或笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x 根,用于制作笔套的短竹数为y 根,可列方程组为( )A. {x +y =20223x =5yB. {3x +5y =2022x =yC. {x +y =20225x =3yD. {x +y =2022x =y8. 一个天平的托盘中形状相同的物体质量相等,如图①、图②所示的两个天平处于平衡状态,要使图③的天平也保持平衡,则需要在它的右盘中放置( )A. 3个〇B. 4个〇C. 5个〇D. 6个〇9. 李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的A 和单价为12元的B 两种笔记本(购买本数均为正整数).你认为购买方案共有种.( )A. 2B. 3C. 4D. 510. 我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A. {x +y =10013x +3y =100B. {x +y =100x +3y =100 C. {x +y =1003x +13y =100D. {x +y =1003x +y =100二、填空题11. 已知(a −1)x +2y |a|=3是二元一次方程,则a 的值为______. 12. 已知√2x −y −6+(2y −x −3)2=0,则x +y −1的立方根为______.13. 已知{x =1y =3是关于x ,y 的二元一次方程组{2ax +y =7,x −(b −1)y =−5的解,则12a −13b 的值为______.14. 已知方程组{2x +4y =k x −y =k +3的解x ,y 之和为2,则k =______.15. 图①中的长方形和正方形纸板作侧面和底面,做成图②中竖式和横式的两种无盖有底纸盒(两个长方体形状大小一样),现在仓库有100张正方形纸板和200张长方形纸板,问竖式纸盒 只和横式纸盒 只,恰好使库存的纸板用完.16. 小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多__________道. 三、解答题17. 解下列方程组:(1){3x +4y =165x −6y =33(2){3(x +y)−4(x −y)=4x +y 2+x −y 6=118. 已知关于x ,y 的方程组{2x −y =2m +8x +y =4m +1 (1)试用含m 的式子表示方程组的解.(2)若方程组的解也是方程2x +y =−14的解,求m 的值.19. 疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒. (1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?20. 已知关于x ,y 的方程{x +y =5,4ax +5by =−22与{2x −y =1,ax −by −8=0有相同的解,求a ,b 的值.20. 工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张? (2)一共能生产多少个巧克力包装盒?22. 某运动员在一场篮球比赛中的技术统计如表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.23. “脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.。
第八章 二元一次方程组复习(培优训练)
3x 2 y 2 x y 2 x 5y 3.解方程组: 4 5 3
5(3x 2 y ) 4( 2 x y 2) 解 : 原方程组可化为 3(3x 2 y ) 4( x 5 y ) 7 x 6 y 8 即 13x 26 y 解之得 x 2 y 1
x( x y z ) 6 4 . 解方程组: y ( x y z ) 12 z ( x y z ) 18
解 : (1) (2) (3) (1) (4) 得 x 1 (2) (4) 得 y 2 (3) (4) 得 z 3 x 1 x 1 原方程组的解是 y 2 和 y 2 z 3 z 3 ( x y z ) 36
2
(1) ( 2) (3)
( 4)
x y z 6
• 某厂计划第一、二季度共生产产品420台, 结果第一季度实际完成计划的1.1倍,第二 季度超产15%,两季度实际共生产473台, 求两季度计划各生产多少台?
解:设第一季度共生产 x台,第二季度共 生产y台,由题意,得:
1.1x (1 15%) y 473, x y 420. x 200 解得: y 220
2 3
解:由方程①-②得: -x+y=-3,即 x-y=3; 由方程①+②得: 4009x+4009y=4009,即 x+y=1; ∴ x y 2 x y 3 12 33 28
Ax By 2 1、甲、乙两人同解方程 组 Cx 3 y 2, x 1 x 2 甲正确解得 ,乙抄错C,解得 , y 1 y 6 求A、B、C的值。
新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)
人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。
)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
中考数学一轮复习第八章 二元一次方程组练习题附解析
中考数学一轮复习第八章 二元一次方程组练习题附解析一、选择题1.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x ay b=⎧⎨=⎩是哪一个方程的解( )A .34x y +=B .34x y -=C .439x y -=D .439x y +=2.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩3.三元一次方程5x y z ++=的正整数解有( ) A .2组B .4组C .6组D .8组4.为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x 平方千米,林地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )A .1800250xy y x +=⎧⎪⎨-=⎪⎩ B .1800250x y x y +=⎧⎪⎨-=⎪⎩ C .1800250x y x y +=⎧⎪⎨=⋅⎪⎩ D .1800250x y y x +=⎧⎪⎨=⋅⎪⎩5.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律, A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(2,-506)6.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元7.已知方程组4520430x y z x y z -+=⎧⎨+-=⎩(xyz≠0),则x :y :z 等于( )A .2:1:3B .3:2:1C .1:2:3D .3:1:28.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173 B .888 C .957 D .69 9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A .1.B .2.C .3.D .4.10.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 二、填空题11.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满. 12. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 13.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.14.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 15.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)17.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.18.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .19.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 20.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示: 运行区间 大人票价 学生票 出发站 终点站 一等座二等座二等座泉州福州65(元) 54(元) 40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.23.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A 款瓷砖的数量比B 款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A 款瓷砖的用量比B 款瓷砖的2倍少14块,且恰好铺满地面,则B 款瓷砖的长和宽分别为_ 米(直接写出答案). 24.a 取何值时(a 为整数),方程组2420x ay x y +=⎧⎨-=⎩的解是正整数,并求这个方程组的解.25.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值,}min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组:}}1{,?{?3{39,311?4max x x ymin x x y-=++=. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩后求出,a b 的值,最后把x ay b =⎧⎨=⎩分别代入四个选项即可.【详解】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩得:31032a b b -=⎧⎨+=⎩, 解得31a b =⎧⎨=-⎩,即31x y =⎧⎨=-⎩,当31x y =⎧⎨=-⎩时,30x y +=,A 选项错误;36x y -=,B 选项错误; 4315x y -=,C 选项错误; 439x y +=,D 选项正确;【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.2.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x尺,绳子长为y尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C.【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.3.C解析:C【分析】最小的正整数是1,当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1;当x=3时,y+z=2,y分别取1,此时z分别对应1;依此类推,然后把个数加起来即可.【详解】解:当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1,有3组正整数解;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1,有2组正整数解;当x=3时,y+z=2,y分别取1,此时z分别对应1,有1组正整数解;所以正整数解的组数共:3+2+1=6(组).故选:C.【点睛】本题考查三元一次不定方程的解,解题关键是确定x、y、z的值,分类讨论.4.C解析:C【解析】设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18025% x yx y+=⎧⎨=⨯⎩.故选C解析:A 【分析】用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题. 【详解】依题意列出前面几个n A 的坐标如下表对于n A ,当n 除以4余1时,n A 的纵坐标为0,横坐标32n +; 当n 除以4余2时,n A 的纵坐标为n2,横坐标1; 当n 除以4余3时,n A 的纵坐标为0,横坐标32n --; 当n 除以4,整除时,n A 的纵坐标为2n,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为2019310082--=-,所以点2019A 的坐标为(-1008,0) . 故选:A . 【点睛】 本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.6.D解析:D 【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D . 【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.7.C解析:C 【分析】先利用加减消元法将原方程组消去z ,得出x 和y 的关系式;再利用加减消元法将原方程组消去y ,得出x 和z 的关系式;最后将::x y z 中y 与z 均用x 表示并化简即得比值. 【详解】 ∵4520430x y z x y z -+=⎧⎨+-=⎩①②∴由①×3+②×2,得2x y = 由①×4+②×5,得3x z = ∴:::2:31:2:3x y z x x x == 故选:C . 【点睛】本题考查加减消元法及方程组含参问题,利用加减消元法将多个未知数转化为同一个参数是解题关键.8.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173. 【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.9.C解析:C 【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35, 整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数, 所以y=4或8或12, 所以有3种装法, 故选C.10.B解析:B 【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可. 【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=.3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=,116x l ∴=.∴标号为①的正方形的边长116l.故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.二、填空题11..【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进解析:38 17.【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入124%32x y--中即可求出结论.【详解】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,依题意,得:()() 534115% 243115%x yx y⎧-=-⎪⎨-=-⎪⎩,解得:0.170.085 xy=⎧⎨=⎩,∴124%38 3217x y-=-.故答案为:38 17.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.14.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.15.3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.16.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程解析:8 9【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a袋,乙销售b袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.17.11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax+by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得,解得.解析:11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax +by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得4523a ba b⎧⎨⎩+=+=,解得11ab⎧⎨⎩==.当a=1,b=1时,x※y=x+y2.所以2※3=2+32=11.故答案为11.点睛:本题考查了二元一次方程组的解法和新定义,当方程组中有未知数的系数为1时,可考虑用代入消元法求解,对于新定义,要理解它所规定的运算规则,再根据这个规则去运算.18.48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得3124x yx y+=⎧⎨-=⎩,①,②①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=482cm.故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 19.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.20.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合 解析:613【解析】由题意得:227{3393a b a b ++=-+-=, 解得:a=13,b=133, 则13※b=13a+b²+13=116913619993++=, 故答案为613. 点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a 、b 的值.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)购买一等票为 195m;购买二等票为162m;(2)210;(3)180,193.【分析】(1)求出教师和家长的总人数,根据一等票和二等票两种情况求出代数式.(2)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,根据若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元,可求出解.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票,根据票的总费用不低于9000元,可列不等式求解.【详解】解:(1)购买一等票为:65•3m =195m ;购买二等票为:54•3m =162m ,(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,依题意得: 1956513650{543408820m n m n +=⨯+=,解得:10{180m n ==, 则2m =20,总人数为:10+20+180=210(人)经检验,符合题意;答:参加活动的总人数为210人.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票. ∴购买动车票的总费用=40×180+54(x ﹣180)+65(210﹣x )=﹣11x +11130. 依题意,得:﹣11x +11130≥9000… 解得:719311x ≤, ∵x 为整数,∴x 的最大值是193.【点睛】本题考查理解题意的能力,关键是根据买一等票和二等票的价格做为等量关系求出人数,然后根据实际买票的总费用列出不等式求出解.23.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15. 【解析】【分析】(1)设A 款瓷砖单价x 元,B 款单价y 元,根据“一块A 款瓷砖和一块B 款瓷砖的价格和为140元;3块A 款瓷砖价格和4块B 款瓷砖价格相等”列出二元一次方程组,求解即可; (2)设A 款买了m 块,B 款买了n 块,且m>n ,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A 款正方形瓷砖边长为a 米,B 款长为a 米,宽b 米,根据图形以及“A 款瓷砖的用量比B 款瓷砖的2倍少14块”可列出方程求出a 的值,然后由92b b-+是正整教分情况求出b 的值.【详解】解: (1)设A 款瓷砖单价x 元,B 款单价y 元, 则有14034x y x y +=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.24.当a=0时,21xy=⎧⎨=⎩;当a=-2时,42xy=⎧⎨=⎩;当a=-3时,84xy=⎧⎨=⎩【分析】先把a当作已知求出x、y的值,再根据方程组有正整数解,得到关于a的一元一次不等式组,求出m的取值范围,再找出符合条件的正整数a的值即可.【详解】解:方程组2420x ay x y +=⎧⎨-=⎩解得:8444x a y a ⎧=⎪⎪+⎨⎪=⎪+⎩∵方程组的解是正数,∴a >-4,∵方程组的解是正整数,a >-4,∴a=-3,-2,0,它的所有正整数解为:84x y =⎧⎨=⎩,42x y =⎧⎨=⎩,21x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是先把m 当作已知表示出x 、y 的值,再根据方程组有正整数解得出关于m 的不等式组,求出m 的正整数解即可.25.1{ 3x y == 或 35{?95x y =-= 【解析】分析: }1max{x x y 3-,=,需要分类讨论,当x≥-x 时,x =1y 3;当x <-x 时,-x =1y 3;因为3x +9<3x +11,所以}min{3x 93x 114y +,+=所表示的方程为3x +9=4y ,则可得到两个二元一次方程组. 详解:当x≥-x 时,x =1y 3,原方程组变形为:1{3394x y x y=+=,解得1{3x y ==. 当x <-x 时,-x =1y 3,原方程组变形为:1{3394x y x y -=+=,解得35{95x y -==. 点睛:本题考查了新定义及二次一次方程组的解法,对于新定义,要理解它所规定的运算规则,再根据这个规则,列式或列方程(组),解二元一次方程组的基本思路是消元,通过消元化二元一次方程组为一元一次方程,解一元一次方程求出其中的一个未知数,再代入原方程组中的一个方程中,求另一个未知数,消元的方法有两种:代入消元法和加减消元法,用加减消元法时,尽量消系数的最小公倍数比较小的字母.26.(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙。
第8章 二元一次方程组【过关测试】(解析版)七年级数学下册单元复习(人教版)
第8章二元一次方程组过关测试(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)1.(3分)下列各式中,是关于x ,y 的二元一次方程的是()A .23x y -=B .30x xy +-=C .2x y +D .21y x-=【答案】A .【解析】解:A 、是关于x ,y 的二元一次方程,故此选项正确;B 、不是关于x ,y 的二元一次方程,故此选项错误;C 、不是关于x ,y 的二元一次方程,故此选项错误;D 、不是关于x ,y 的二元一次方程,故此选项错误;故选:A .2.(3分)若方程||2(3)31a a x y -++=是关于x ,y 的二元一次方程,则a 的值为()A .3-B .2±C .3±D .3【答案】D .【解析】解:∵方程(a +3)x +3y |a |-2=1是关于x ,y 的二元一次方程,∴a +3≠0,|a |-2=1,解得a =3.故选:D .3.(3分)若23x y =-⎧⎨=⎩是方程25x ay +=的一个解,则a 的值是()A .1-B .1C .3-D .3【答案】D .【解析】解:将23x y =-⎧⎨=⎩代入方程2x +ay =5,得-4+3a =5,解得a =3.故选:D .4.(3分)方程237x y -=,用含y 的代数式表示x 为()A .1(72)3y x =-B .1(27)3y x =-C .1(73)2x y =-D .1(73)2x y =+【答案】D .【解析】解:∵2x -3y =7,∴2x =7+3y .∴732yx +=.∴用含y 的代数式表示x 为732yx +=.故选:D .5.(3分)在下列方程组:①531x y y x +=⎧⎨-=⎩,②231x y y x +=⎧⎨-=⎩,③123xy x y =⎧⎨+=⎩,④1111x y x y ⎧+=⎪⎨⎪+=⎩,⑤11x y =⎧⎨=⎩中,是二元一次方程组的是()A .①②③B .①②④C .①②⑤D .①②③⑤【答案】C .【解析】解:方程组531x y y x +=⎧⎨-=⎩,231x y y x +=⎧⎨-=⎩,11x y =⎧⎨=⎩中符合二元一次方程组的定义,符合题意.方程组123xy x y =⎧⎨+=⎩属于二元二次方程组,不符合题意.方程组1111x y x y ⎧+=⎪⎨⎪+=⎩中的第一个方程不是整式方程,不符合题意.故选:C .6.(3分)在下列各组数中,是方程组23823x y x y -=-⎧⎨+=⎩的解的是()A .24x y =⎧⎨=⎩B .31x y =-⎧⎨=⎩C .11x y =⎧⎨=⎩D .12x y =-⎧⎨=⎩【答案】D .【解析】解:23823x y x y -=-⎧⎨+=⎩①②,②×2,得2x +4y =6③,③-①得,7y =14,解得y =2,将y =2代入②得,x =-1,∴方程组的解为12x y =-⎧⎨=⎩,故选:D .7.(3分)已知关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,则关于m ,n 的方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩的解是()A .25m n =⎧⎨=⎩B .23m n =-⎧⎨=⎩C .52m n =⎧⎨=⎩D .32m n =⎧⎨=-⎩【答案】B .【解析】解:∵方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩可变形为1112225(3)3(2)5(3)3(2)a m b n c a m b n c ⨯++⨯-=⎧⎨⨯++⨯-=⎩,又∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,∴5(3)53(2)3m n +=⎧⎨-=⎩.解这个方程组得23m n =-⎧⎨=⎩.故选:B .8.(3分)已知二元一次方程组2521x y x y -=⎧⎨-=⎩,则x y -的值为()A .2-B .2C .6-D .6【答案】B .【解析】解:2521x y x y -=⎧⎨-=⎩①②,①+②,得3x -3y =6,两边都除以3得:x -y =2,故选:B .9.(3分)如果含有两个未知数的方程有一组解是整数,我们称这个方程有整数解.请你观察下面的四个方程:①8223x y +=;②3710x y +=;③(43)(3)2x y -+=;④1112022x y +=.其中有整数解的方程是()A .①②B .②③C .②③④D .①②③【答案】C .【解析】解:①8x +2y =23,∵x ,y 的系数为偶数,又因为它们是整数,所以乘积一定也为偶数,所以之和绝对不是奇数;②3x +7y =10,∵当x =1时,y =1,正好符合要求,所以它正确;③(4x-3)(y+3)=2,当x=1时,y=-1,符合要求,所以它有整数解;④1112022 x y+=.∵当x=4044时,y=4044,方程有解,符合要求.∴②③④这3个方程有整数解.故选:C.10.(3分)小丽去文具店买钢笔和笔记本.钢笔每支5元,笔记本每本4元.小丽带了20元钱,能买几支钢笔、几本笔记本?设买x支钢笔,y本笔记本,则下列选项正确的是() A.4520x y+=B.5420x y+C.5420x y+>D.5420x y+【答案】B.【解析】解:设买x支钢笔,y本笔记本,则5x+4y≤20,故选:B.11.(3分)一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有()A.5个B.6个C.7个D.8个【答案】D.【解析】解:设原来的两位数为10a+b,根据题意得:10910a b b a++=+,解得:1b a=+,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.12.(3分)如图,七个相同的小长方形组成一个大长方形ABCD,若21CD=,则长方形ABCD 的周长为()A.100B.102C.104D.106【答案】B.【解析】解:设小长方形的长为x ,宽为y .由图可知:5221y xx y =⎧⎨+=⎩解得.156x y =⎧⎨=⎩,所以长方形ABCD 的长为55630y =⨯=,宽为21,∴长方形ABCD 的周长为2(3021)102⨯+=,故选:B .二、填空题(共10小题,满分30分,每小题3分)13.(3分)若232135m n x y ---=是二元一次方程,则m =,n =.【答案】2;1.【解析】解:∵232135m n x y ---=是二元一次方程,∴231m -=,211n -=,解得:2m =,1n =,故答案为:2;114.(3分)若x ay b =⎧⎨=⎩是方程210x y +=的解,求634a b +-的值是.【答案】26.【解析】解:∵x ay b=⎧⎨=⎩是方程210x y +=的解,∴210a b +=,∴634a b +-3(2)4a b =+-3104=⨯-26=.故答案为:26.15.(3分)已知23x y +=,用x 含的代数式表示y 为.【答案】23y x =-+.【解析】解:方程23x y +=,解得:23y x =-+.故答案为:23y x =-+.16.(3分)方程组||(1)5(5)3a y a x yb xy --=⎧⎨+-=⎩是关于x ,y 的二元一次方程组,则b a 的值是.【答案】1-.【解析】解:由题意得:||1a =,50b -=,10a -≠,解得:1a =-,5b =,则原式5(1)1=-=-.故答案为:1-.17.(3分)若方程3x y +=,1x y -=和20x my +=有公共解,则m 的取值为.【答案】1-.【解析】解:据题意得3120x y x y x my +=⎧⎪-=⎨⎪+=⎩,解得211x y m =⎧⎪=⎨⎪=-⎩,∴m 的取值为1-.故答案为:1-.18.(3分)已知关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则关于x 、y 的方程组111222253253a x b y c a x b y c +=⎧⎨+=⎩的解是.【答案】335x y =⎧⎪⎨=⎪⎩.【解析】解:∵关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,∴关于x 、y 的方程组111222253253a x b y c a x b y c +=⎧⎨+=⎩中223513x y =⨯⎧⎨=⨯⎩,解得335x y =⎧⎪⎨=⎪⎩.故答案为:335x y =⎧⎪⎨=⎪⎩.19.(3分)解二元一次方程组23225x y x y +=⎧⎨-=⎩①②时,小华用加减消元法消去未知数x ,按照他的思路,用①-②得到的方程是.【答案】43y =-.【解析】解:解二元一次方程组23225x y x y +=⎧⎨-=⎩①②时,小华用加减消元法消去未知数x ,按照他的思路,用①-②得到的方程是:43y =-,故答案为:43y =-.20.(3分)某果园计划种植梨树和苹果树共1000株,实际上梨树种植量比计划增长10%,而苹果树种植量比计划减少5%.若设实际种植梨树x 株,苹果树y 株,列二元一次方程为.【答案】1000110%15%x y+=+-.【解析】解:设实际种植梨树x 株,苹果树y 株,列二元一次方程为:1000110%15%x y+=+-.故答案为:1000110%15%x y+=+-.21.(3分)《九章算术》中有一题,大意是:甲乙二人,不知其钱包里各有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己三分之二的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?设甲持钱数为x ,乙持钱数为y ,则可列二元一次方程组为.【答案】15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩.【解析】解:∵若乙把自己一半的钱给甲,则甲的钱数为50,∴1502x y +=;又∵若甲把自己三分之二的钱给乙,则乙的钱数也为50,∴2503x y +=.∴根据题意,可列二元一次方程组为15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩.故答案为:15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩.22.(3分)某企业组织员工去观看电影《我和我的祖国》,电影院根据座位排数的差异确定票价,共有30元,45元,60元三种票价的电影票,小武用405元共购买了10张电影票,则票价为30元的电影票的数量比票价为60元的电影票的数量多张.【答案】3.【解析】解:设购买票价为30元的电影票x 张,购买票价为60元的电影票y 张,则购买票价为45元的电影票(10)x y --张,依题意得:306045(10)405x y x y ++--=,化简得:3x y -=,∴购买票价为30元的电影票的数量比购买票价为60元的电影票的数量多3张.故答案为:3.三、解答题(共5小题,满分34分)23.(6分)解方程组528x y x y +=⎧⎨+=⎩.【答案】见解析.【解析】解:5(1)28(2)x y x y +=⎧⎨+=⎩由(2)-(1)得:3x =,把它代入(1)得:2y =,∴方程组的解为32x y =⎧⎨=⎩.24.(6分)已知方程组|2|23(3)1(1)2m x m y m x --⎧--=⎨+=-⎩是二元一次方程组,求m 的值.【答案】见解析.【解析】解:依题意,得|2|21m --=,且30m -≠、10m +≠,解得5m =.故m 的值是5.25.(6分)若11x y =⎧⎨=-⎩和35x y =⎧⎨=⎩都是关于x ,y 的二元一次方程20ax by ++=的解,试求a 与b 的值,并判断48x y =⎧⎨=⎩不是这个方程的解.【答案】见解析.【解析】解:把11x y =⎧⎨=-⎩和35x y =⎧⎨=⎩代入方程得:203520a b a b -+=⎧⎨++=⎩①②,①5⨯+②得:8120a +=,解得:32 a=-,把32a=-代入①得:3202b--+=,解得:12 b=,∴方程为3120 22x y-++=,把48xy=⎧⎨=⎩代入方程得:左边31482642022=-⨯+⨯+=-++=,右边0=,∵左边=右边,∴48xy=⎧⎨=⎩是这个方程的解.26.(6分)大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?【答案】见解析.【解析】解:设需要大型客车x辆,中型客车y辆,由题意得:5436378x y+=,则3221x y+=,当1x=时,9y=;当2x=时,152y=(不合题意);当3x=时,6y=;当4x=时,92y=(不合题意);当5x=时,3y=;当6x=时,32y=(不合题意);当7x=时,0y=;答:一共有4种符合题意的答案.27.(10分)为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和(10)a a>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若70a=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.【答案】见解析.【解析】解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:60 58y xy x=+⎧⎨=⎩,解得:100160 xy=⎧⎨=⎩,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100160100(10)(10015000)a a⨯+-=+(元),到乙商场购买装备所花的费用为:1001601000.8(8016000)a a⨯+⨯=+(元);(3)到乙商场购买比较合算,理由如下:当70a=时,到甲商场购买装备所花的费用是:10015000100701500022000a+=⨯+=(元),到乙商场购买装备所花的费用是:801600080701600021600a+=⨯+=(元),∵2200021600>,∴到乙商场购买比较合算.。
七年级数学第八章《二元一次方程组》复习题三(附解析)
七年级数学第八章《二元一次方程组》复习题三(附解析)一、单选题1.为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm,9只饭碗摆起来的高度为21cm,食堂的碗橱每格的高度为35cm,则一摞碗最多只能放()只.A.20B.18C.16D.152.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x 和分成的组数y,可列方程组为()A.7385y x y x =-⎧⎨=+⎩B.7385y x y x =+⎧⎨+=⎩C.7385x y x y +=⎧⎨-=⎩D.73 85y x y x =+⎧⎨=+⎩3.如果1,{2x y ==是二元一次方程组1,{2ax by bx ay +=+=的解,那么关于m 的方程a 2m+2016+b =2017的解为()A.-1B.1C.0D.-24.12312342345345145125x x x a x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是()A.12345x x x x x >>>>B.42135x x x x x >>>>C.31425x x x x x >>>>D.53142x x x x x >>>>5.三元一次方程x+y+z=1999的非负整数解的个数有()A.20001999个B.19992000个C.2001000个D.2001999个6.已知方程组46ax byax by-=⎧⎨+=⎩与方程组35471x yx y-=⎧⎨-=⎩的解相同,则a,b的值分别为()A.521ab⎧=-⎪⎨⎪=⎩B.521ab⎧=⎪⎨⎪=-⎩C.521ab⎧=⎪⎨⎪=⎩D.521ab⎧=-⎪⎨⎪=-⎩7.已知11xy=⎧⎨=-⎩是方程2x-ay=3的一组解,那么a的值为()A.-5B.-1C.1D.58.对于非零的两个实数a,b,规定a b am bn⊗=-,若3⊗(-5)=-15,4⊗(-7)=-28,则(-1)⊗2的值为()A.-13B.13C.2D.-29.某中学七年级某班40名同学为灾区捐款,共捐款2000元,捐款情况如下表:由于疏忽,表格中捐款40元和50元的人数忘记填写了,若设捐款40元的有x 名同学,捐款50元的有y名同学,根据题意,可得方程组()A.B.C.D.10.用加减消元法解方程组358752x yx y-=⎧⎨+=⎩将两个方程相加,得()A.3x=8B.7x=2C.10x=8D.10x=1011.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.76cm B.78cm C.80cm D.82cm12.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块,16块B.8块,24块C.20块,12块D.12块,20块13.8块相同的长方形地砖拼成面积为2400cm2的矩形ABCD(如图),则矩形ABCD 的周长为()A.200cm B.220cm C.240cm D.280cm14.如图,将正方形ABCD的一角折叠,折痕为AE,点B落在点B′处,B AD∠'比BAE∠大48︒.设BAE∠和B AD∠'的度数分别为x︒和y︒,那么x和y满足的方程组是()A.4890y xy x-=⎧⎨+=⎩B.482y xy x-=⎧⎨=⎩C.48290x yy x-=⎧⎨+=⎩D.48290y xy x-=⎧⎨+=⎩15.若关于x 、y 的方程组2{44x y a x y a +=-=的解是方程3x 2y 10+=的一个解,则a 的值为()A.2B.-2C.1D.-1二、填空题16.已知对任意a b ,关于x y ,的二元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.17.某人买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有种.18.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.19.七年级某班有48名学生,所在教室有6行8列座位,用(m,n)表示第m 行第n 列的座位,新学期准备调整座位.设某个学生原来的座位为(m,n),若调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b 为该生的位置数.若某生的位置数为9,则当m+n 取最小值时,m·n 的最大值为_______.20.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.21.如图,长方形纸片的长为6cm,宽为4cm,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是_______.22.一家快餐店销售、、A B C 三种套餐,其中A 套餐包含一荤两素,B 套餐包含两荤一素,C 套餐包含两荤两素,每份套餐中一荤的成本相同,一素的成本也相同,已知一份C 套餐的售价是一份A 套餐和一份B 套餐售价之和的2,3一天下来,店长发现A 套餐和B 套餐的销量相同,且,A B 套餐的利润和是C 套餐利润的两倍,当天的总利润率是60%.第二天店内搞活动,C 套餐的售价打五折,,A B 套餐的售价均不变,当、、A B C 三种套餐的销量相同时,总利润率为________.23.对x ,y 定义一种新运算T ,规定T (x ,y )=2ax by x y ++,(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:2(3)(2,3)22(3)a b T ⨯+⨯--=⨯+-23a b =-.已知T (1,-1)=-2,T (4,2)=1.则a b +=____________.24.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20千米,那么甲用1小时能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,则甲的速度为_______千米/时.25.若()2234x y +-与37x y +-互为相反数,则x y -=_______.26.一个两位数,个位数字与十位数字之和为12,如果交换个位数字与十位数字的位置,所得新数比原数大36,则原两位数为_________.27.若方程组237351m n m n -=⎧⎨+=⎩的解是21m n =⎧⎨=-⎩,则方程组2(1)3(2)73(1)5(2)1x y x y +--=⎧⎨++-=⎩的解是____________28.若27n x y -与2n b x y +是同类项,则b =________.29.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x 、y ,可得方程组________,这两数分别为________.30.给出如图所示的程序,已知当输入的x 为1时,输出值为1;当输入的x 值为-1时,输出值为-3,则当输入的x 值为12时,输出值为__.参考答案1.C【详解】设1个碗的高度为xcm,每加一个碗的高度增加的高度为ycm,列方程组515{821x y x y +=+=,解得52x y =⎧⎨=⎩,设可摆k 个碗,则5+2k≤35,解得:k≤15,故可放碗数为15+1=16故选C.2.A【解析】根据题意确定等量关系为:若每组7人,则余3人;若每组8人,则少5人,列方程组求解即可.详解:根据题意可得:7385y x y x =-⎧⎨=+⎩,故选:A.3.B【详解】根据二元一次方程组的解,可直接代入可得21{22a b b a +=+=,解得10a b =⎧⎨=⎩,代入可得m+2016+0=2017,解得m=1.故选B.4.C【分析】本方程组涉及5个未知数1x ,2x ,3x ,4x ,5x ,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过12345a a a a a >>>>可得1x ,2x ,3x ,4x ,5x 的大小关系.【详解】方程组中的方程按顺序两两分别相减得1412x x a a -=-,2523x x a a -=-,3134x x a a -=-,4245x x a a -=-.∵12345a a a a a >>>>∴14x x >,25x x >,31x x >,42x x >,于是有31425x x x x x >>>>.故选C.5.C【分析】先设x=0,y+z=1999,y 分别取0,1,2…,1999时,z 取1999,1998,…,0,有2000个整数解;当x=1时,y+z=1998,有1999个整数解;…当x=1999时,y+z=0,只有1组整数解,依此类推,然后把个数加起来即可得到答案.【详解】当x=0时,y+z=1999,y 分别取0,1,2…,1999时,z 取1999,1998,…,0,有2000个整数解;当x=1时,y+z=1998,有1999个整数解;当x=2时,y+z=1997,有1998个整数解;…当x=1999时,y+z=0,只有1组整数解;∴非负整数解的个数有2000+1999+1998+…+3+2+1=200020012⨯=2001000个故选:C.6.C【分析】先求出第二个方程组的解为21x y =⎧⎨=⎩,再代入方程组46ax by ax by -=⎧⎨+=⎩得出2426a b a b -=⎧⎨+=⎩,再求出方程组的解即可.【详解】解:解方程组35471x yx y-=⎧⎨-=⎩,得:21xy=⎧⎨=⎩,∵方程组46ax byax by-=⎧⎨+=⎩与方程组35471x yx y-=⎧⎨-=⎩的解相同,∴把21xy=⎧⎨=⎩代入方程组46ax byax by-=⎧⎨+=⎩,得:2426a ba b-=⎧⎨+=⎩,解得:521ab⎧=⎪⎨⎪=⎩,故选:C7.C【分析】把11xy=⎧⎨=-⎩代入方程,解关于a的一元一次方程即可求得a的值.【详解】把11xy=⎧⎨=-⎩代入方程得:2+a=3,解得:a=1,故选C.8.B【分析】根据已知规定及两式,确定出m、n的值,再利用新规定化简原式即可得到结果.【详解】根据题意得:3⊗(-5)3515m n=+=-,4⊗(-7)4728m n=+=-,∴35154728m nm n+=-⎧⎨+=-⎩,解得:3524mn=⎧⎨=-⎩,∴(-1)⊗22354813m n=--=-+=,故选:B.9.D【详解】依题意知设捐款40元的有x名同学,捐款50元的有y名同学.总数为40名,所以:x+y=40-10-8=22.则40x+50y=2000-20×10-100×8=1000.故选D10.D【解析】将两个方程相加,得:10x=10,故选D.11.A【解析】设长方体长xcm,宽ycm,桌子的高为acm,由图象建立方程组求出其解就可以得出结论.详解:设长方体长xcm,宽ycm,桌子的高为acm,由题意,得7973x a y y a x ==+-⎧⎨+-⎩,解得:2a=152,∴a=76.故选A.12.D【解析】根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y 块,而黑皮共有边数为5x 块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块,故选D.13.A【分析】设长方形地砖的长为xcm ,宽为ycm ,依据图形中所示的小长方形的长与宽之间的关系,长=3×宽,以及长方形的面积=24008cm 2,可以列出方程组,解方程组即可求得x ,y 的值,再求矩形ABCD 的周长.【详解】解:设长方形地砖的长为xcm ,宽为ycm ,根据题意得x 324008y xy =⎧⎨=÷⎩,解之得x 3010y =⎧⎨=⎩,则矩形ABCD 的周长为2×(60+40)=200cm .故选A .14.D【分析】根据由将正方形ABCD 的一角折叠,折痕为AE,∠B'AD 比∠BAE 大48°的等量关系即可列出方程组.【详解】解:.设BAE ∠和B AD ∠'的度数分别为x ︒和y ︒由题意可得:48290y x y x -=⎧⎨+=⎩故答案为D.15.A【详解】(1)−(2)得:6y=−3a,∴y=−2a ,代入(1)得:x=2a,把y=−2a ,x=2a 代入方程3x+2y=10,得:6a −a=10,即a=2.故选A.16.01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x yb x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩.故答案为:01x y =⎧⎨=-⎩.17.6【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得3202x y =-,根据x、y 都是整数取出x 与y 的对应值,得到购买方案.【详解】解:设80分的邮票购买x 张,120分的邮票购买y 张,0.8x+1.2y=16,解得3202x y =-,∵x、y 都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.18.24【分析】设草地原有青草为a,草一天长b,一只羊一天吃x,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a、b、x 的方程,解可得a、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a、b 的代数式代入即可得解.【详解】解:设草地原有青草为a,草一天长b,一只羊一天吃x,根据题意得:969620606030a b x a b x+⎧⎨+⎩ ==解得:b=103x ,a=1600x ,当有70头牛吃时,设可以吃y 天,则a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天).故答案为:24.19.30【详解】由题意得a+b=m-i+n-j=9,则m+n=9+(i+j),∵m、n、i、j 表示行数与列数,∴当i=j=1时,m+n 取最小值11,此时n=11-m,∴m•n=m(11-m),又m=1,2,3,4,5,6.则m=1时,m•n=10;m=2时,m•n=18;m=3时,m•n=24;m=4时,m•n=28;m=5时,m•n=30;m=6时,m•n=30.则m•n 的最大值是30.故答案为30.20.105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:37315(1)410420(2)x y z x y z ++=⎧⎨++=⎩3×(1)-2×(2)得:x+y+z=105,∴购买甲、乙、丙各1件,共需105元.21.16【分析】设剪去的长方形的长为a,宽为b,然后分别表示两块阴影部分的长和宽,最后求周长即可.【详解】解:设剪去的长方形的长为a,宽为b,a+b=6则左下角长方形的长为a,宽为4-b,周长为8+2a-2b右上角长方形的长为b,宽为4-a,周长为8+2b-2a所以阴影部分周长和为:8+2a-2b+8+2b-2a=16故答案为16.22.28%【分析】设荤菜的成本为m 元,素菜的成本为n 元,荤菜的利润率为x ,素菜的利润率为y ,A 套餐和B 套餐的数量为a 份,C 套餐的数量为b 份,根据,A B 套餐的利润和是C 套餐利润的两倍得到34b a =,再根据当天的总利润率是60%可求得mx +ny =0.6(m +n ),进而求出一份A 、B 、C 的售价,设、、A B C 三种套餐的销量都为t 份,根据新的售价列出总利润率的代数式,将代数式化简即可求得答案.【详解】解:设一份荤菜的成本为m 元,一份素菜的成本为n 元,一份荤菜的利润率为x ,一份素菜的利润率为y ,A 套餐和B 套餐的数量为a 份,C 套餐的数量为b 份,∵,A B 套餐的利润和是C 套餐利润的两倍,∴3(mx +ny )·a =2×2(mx +ny )·b,整理得:34b a =,∵当天的总利润率是60%,∴3(mx +ny )·a +2(mx +ny )·b =60%·[3(m +n )·a +2(m +n )·b ],整理得mx +ny =0.6(m +n ),∴一份A 套餐和一份B 套餐售价之和为3(1)3(1)3[()()] 4.8()m x n y m n mx ny m n +++=+++=+元,∵一份C 套餐的售价是一份A 套餐和一份B 套餐售价之和的2,3∴一份C 套餐的售价为2 4.8() 3.2()3m n m n ⨯+=+元,∵第二天店内搞活动,C 套餐的售价打五折,,A B 套餐的售价均不变,∴第二天的一份A 套餐和一份B 套餐售价之和为4.8()m n +元,一份C 套餐的售价为1.6()m n +元,∵、、A B C 三种套餐的销量相同,∴设、、A B C 三种套餐的销量都为t 份,则总利润率为:4.8() 1.6()13()2()t m n t m n t m n t m n ⋅++⋅+-⋅++⋅+= 6.4()15()t m n t m n ⋅+-⋅+=1.281-=0.28=28%,故答案为:28%.23.4【详解】根据题意,可知1(1)(1,1)221(1)a b T a b ⨯+⨯--==-=-⨯+-,422(4,2)12425a b a b T ++===⨯+,由此构成二元一次方程组,求得a=1,b=3,因此可知a+b=4.故答案为4.24.25【详解】本题考查了二元一次方程组的应用,此题是一个行程问题,主要考查的是追及问题,根据路程=速度×时间即可列出方程组.设甲的速度是x 千米/时,乙的速度为y 千米/时,根据如果乙先走20km,那么甲1小时就能追上乙可以列出方程x=20+y,根据乙先走1小时,甲只用15分钟就能追上乙可以列出方程0.25x=(1+0.25)y,联立列方程组求解即可.25.193-【分析】根据非负数的性质列二元一次方程组,解方程组求出x y 、的值,代入即可.【详解】解:∵()2234x y +-与37x y +-互为相反数,∴()2234x y +-+37x y +-=0,∴234=037=0x y x y +-⎧⎨+-⎩,解得,310=3x y =-⎧⎪⎨⎪⎩,1019333x y -=--=-,故答案为:193-.26.48【分析】设原来的两位数的十位数字是a,个位数字是b,根据等量关系“个位数字与十位数字之和为12”、“交换个位与十位数字,则所得新数比原数大36”列出方程组并求解即可得.【详解】设原来的两位数的十位数字是a,个位数字是b,由题意得a+b=1210a+b +36=10b+a ,解得:=4=8,则原两位数为48,故答案为:48.27.11x y =⎧⎨=⎩【分析】先观察两方程组的特点,由于两方程组的形式相同,故可用换元法把它们化为同一方程组,再令其解相同即可【详解】令x+1=m,y-2=n,∴方程组2(1-32)73(1)+x y x +-=⎧⎨+⎩)((y-2)=1可化为237351m n m n -=⎧⎨+=⎩∵方程组237351m n m n -=⎧⎨+=⎩的解是21m n =⎧⎨=-⎩∴x+1=2,y-2=-1,解得11x y =⎧⎨=⎩28.0【分析】利用同类项定义列出方程组,求出方程组的解即可得到b 的值.【详解】解:∵-7x n y 2与x 2y n+b 是同类项,∴22n n b ⎧⎨+⎩=,=解得:20n b =,=⎧⎨⎩故答案为029.2304320x y x y -=⎧⎨-=⎩35,40;【解析】解:设甲数为x ,乙数为y ,由题意,得:2304320x y x y -=⎧⎨-=⎩,解得:3540x y =⎧⎨=⎩.故答案为:2304320x y x y -=⎧⎨-=⎩,35,40.30.23【分析】把x 的值代入程序中计算,得到关于k 与b 的方程组,求出方程组的解得到k 与b 的值,即可确定出所求.【详解】根据题意得:13k b k b +=⎧⎨-+=-⎩,解得:21k b =⎧⎨=-⎩,当x=12时,kx+b=24-1=23,故答案为23。
人教版数学七年级下学期 第8章 二元一次方程组 同步单元复习试题
则方程的正整数解为
,
;
故答案为: ,
(3)根据题意得:y= ,
根据题意得:x+3=±1,x+3=±2,x+3=±4,x+3=±8, 解得:x=﹣2,﹣4,﹣1,﹣5,1,﹣7,5,﹣11
相应的 y=8,﹣8,y=4,﹣4,2,﹣2,1,﹣1;
∴它的所有整数解为
,
,
,
,,
,,
;
19.解:根据题意,得
5/6
批发价(元)
零售价(元)
黑色文化衫
25
45
白色文化衫
20
35
(1)美术社团购进黑、白文化衫各多少件?(要求列方程组解答) (2)这批文化衫手绘创作后全部售出,求美术社团这次义卖活动所获利润. 21.已知△ABC 的周长为 48cm,最长边与最短边之差为 14cm,另一边与最短边之和为 25cm, 求△ABC 各边的长.
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第 8 章 二元一次方程组
一.选择题(共 9 小题)
1.若 x|2m﹣3|+(m﹣2)y=8 是关于 x、y 的二元一次方程,则 m 的值是( )
A.1
B.任何数
C.2
D.1 或 2
2.如果
是关于 xy 的二元一次方程 mx﹣10=3y 的一个解,则 m 的值为( )
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
解得 把 x、y 的值代入方程组,
解得
答:m、n 的值为 、﹣ .
20.解:(1)设美术社团购进黑文化衫 x 件,白文化衫 y 件,
依题意,得:
,
解得:
.
答:美术社团购进黑文化衫 160 件,白文化衫 40 件. (2)(45﹣25)×160+(35﹣20)×40=3800(元). 答:美术社团这次义卖活动共获得 3800 元利润. 21.解:设该三角形的最长边为 xcm,最短边为 ycm,另一边为 zcm,
第8章二元一次方程组复习题
两地相距36千米 甲从A地出发步 例1. A、B两地相距 千米 甲从 地出发步 两地相距 千米.甲从 行到B地,乙从 地出发步行到A地.两人同时 行到 地 乙从B地出发步行到 地 两人同时 乙从 地出发步行到 出发,4小时相遇 小时相遇,6小时后 甲所余路程为乙 出发 小时相遇 小时后 ,甲所余路程为乙 所余路程的2倍 求两人的速度 求两人的速度. 所余路程的 倍,求两人的速度 千米/小时和 千米/小时 解:设甲、乙的速度分别为 千米 小时和 千米 小时 设甲 乙的速度分别为x千米 小时和y千米 小时. 依题意可得: 依题意可得
9.方程 x − 1 + (a − 2) y = 2是二元一次 方程 方程,试求a的值 的值. 方程,试求 的值
a −1
10.若点 若点P(x-y,3x+y)与点 与点Q(-1,-5)关 若点 与点 关 轴对称,则 于X轴对称 则x+y=______. 轴对称
11.已知 已知|2x+3y+5|+(3x+2y-25)2=0, 已知 则x-y=______.
2、 s 50 = t + 5 s =t−2 75 5
例3.甲、乙二人以不变的速度在环形路上 甲 跑步,如果同时同地出发 相向而行,每隔 如果同时同地出发,相向而行 每隔2 跑步 如果同时同地出发 相向而行 每隔 分钟相遇一次;如果同向而行 每隔6分钟 如果同向而行,每隔 分钟相遇一次 如果同向而行 每隔 分钟 相遇一次.已知甲比乙跑得快 已知甲比乙跑得快,甲 相遇一次 已知甲比乙跑得快 甲、乙每分 钟各跑多少圈? 钟各跑多少圈
解三元一次方程组的基本思路与解二元 一次方程组的基本思路一样, 一次方程组的基本思路一样,即
三元一次方程组
人教版数学七年级下册第8章 二元一次方程组 复习题(解析版)
第8章二元一次方程组复习题一.选择题(共25小题)1.(2019•无锡)已知方程组,则x﹣y的值为()A.B.2 C.3 D.﹣22.(2019•朝阳)关于x,y的二元一次方程组的解是,则m+n的值为()A.4 B.2 C.1 D.03.(2019•鸡西)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种4.(2019•长春)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.5.(2019•齐齐哈尔)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种6.(2019•贺州)已知方程组,则2x+6y的值是()A.﹣2 B.2 C.﹣4 D.47.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.8.(2019•天门)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种9.(2019•孝感)已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣6 D.610.(2019•荆门)已知实数x,y满足方程组则x2﹣2y2的值为()A.﹣1 B.1 C.3 D.﹣311.(2019•兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为()A.B.C.D.12.(2019•乐山)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11 B.7,53 C.7,61 D.6,5013.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.14.(2019•宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元15.(2019•巴中)已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.016.(2019•台州)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=17.(2019•舟山)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y 两,根据题意可列方程组为()A.B.C.D.18.(2019•台湾)某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?()参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A.16 B.19 C.22 D.2519.(2019•青海)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g20.(2018•朝阳)鸡兔同笼,从上面数,有20个头;从下面数,有60条腿,设鸡有x只,兔有y只,则下列方程组正确的是()A.B.C.D.21.(2018•牡丹江)如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.6522.(2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种23.(2018•吉林)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.24.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.1525.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=60二.填空题(共5小题)26.(2019•铁岭)若x,y满足方程组,则x+y=.27.(2019•常州)若是关于x、y的二元一次方程ax+y=3的解,则a=.28.(2019•眉山)已知关于x,y的方程组的解满足x+y=5,则k的值为.29.(2019•黔东南州)已知是方程组的解,则a+b的值为.30.(2019•临沂)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.三.解答题(共5小题)31.(2019•娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲2535乙3548求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?32.(2019•百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?33.(2019•呼和浩特)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.34.(2019•烟台)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?35.(2019•淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?第8章二元一次方程组复习题参考答案与试题解析一.选择题(共25小题)1.【分析】直接利用两方程相减得出x﹣y的值.【解答】解:由方程组可得:2x+y﹣(x+2y)=4﹣1=3,则x﹣y=3,故选:C.【点评】此题主要考查了解二元一次方程组,利用整体思想分析是解题关键.2.【分析】把x与y的值代入方程计算求出m与n的值,代入原式计算即可求出值.【解答】解:把代入得:,解得:,则m+n=0,故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.【分析】设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,根据方程可得三种方案;【解答】解:设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有,,,∴方案一共有3种;故选:B.【点评】本题考查二元一次方程的应用;熟练掌握二元一次方程的解法是解题的关键.4.【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案.【解答】解:设人数为x,买鸡的钱数为y,可列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.5.【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可求出结论.【解答】解:设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程.6.【分析】两式相减,得x+3y=﹣2,所以2(x+3y)=﹣4,即2x+6y=﹣4.【解答】解:两式相减,得x+3y=﹣2,∴2(x+3y)=﹣4,即2x+6y=﹣4,故选:C.【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.7.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.8.【分析】可列二元一次方程解决这个问题.【解答】解:设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴,,,.故选:B.【点评】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.9.【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+x=1,解得,∴==故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.【分析】首先解方程组,求出x、y的值,然后代入所求代数式即可.【解答】解:,①+②×2,得5x=5,解得x=1,把x=1代入②得,1+y=2,解得y=1,∴x2﹣2y2=12﹣2×12=1﹣2=﹣1.故选:A.【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y的方程组是关键.11.【分析】根据题意,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.12.【分析】设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设有x人,物价为y,可得:,解得:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.13.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.【分析】设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10﹣8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y﹣4,∴y=x+7,∴5x+3y+10﹣8x=5x+3(x+7)+10﹣8x=31.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.【分析】将代入即可求出a与b的值;【解答】解:将代入得:,∴a+b=2;故选:B.【点评】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.16.【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.17.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.18.【分析】设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意列出二元一次方程,求出其解.【解答】解:设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意得,,解得,,则总人数为7+9=16(人)故选:A.【点评】本题是二元一次方程组的应用,主要考查了列二元一次方程组解应用题,关键是读懂题意,找出等量关系,列出方程组.19.【分析】根据图可得:3块巧克力的重=2个果冻的重;1块巧克力的重+1个果冻的重=50克,由此可设出未知数,列出方程组.【解答】解:设每块巧克力的重x克,每个果冻的重y克,由题意得:,解得:.故选:C.【点评】此题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的相等关系,列出方程组.20.【分析】设鸡有x只,兔有y只,根据鸡和兔共有20个头60条腿,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设鸡有x只,兔有y只,依题意,得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.21.【分析】设小长方形的长为x,宽为y,观察图形可得出关于x、y的二元一次方程组,解之即可求出x、y的值,再利用阴影部分的面积=大矩形的面积﹣5×小矩形的面积,即可求出结论.【解答】解:设小矩形的长为x,宽为y,根据题意得:,解得:,∴S阴影=15×12﹣5xy=45.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.【分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则x=.当y=4时,x=9.当y=8时,x=4.当y=0时,x=14.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.安排女生14人,安排男生0人.共有3种方案.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.23.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.24.【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免二.填空题(共5小题)26.【分析】方程组利用加减消元法求出解得到x与y的值,代入原式计算即可求出值.【解答】解:,①+②得:4x=20,解得:x=5,把x=5代入②得:y=2,则x+y=2+5=7,故答案为:7【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.27.【分析】把代入二元一次方程ax+y=3中即可求a的值.【解答】解:把代入二元一次方程ax+y=3中,a+2=3,解得a=1.故答案是:1.【点评】本题运用了二元一次方程的解的知识点,运算准确是解决此题的关键.28.【分析】首先解方程组,利用k表示出x、y的值,然后代入x+y=5,即可得到一个关于k的方程,求得k的值.【解答】解:,②×2﹣①,得3x=9k+9,解得x=3k+3,把x=3k+3代入①,得3k+3+2y=k﹣1,解得y=﹣k﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:2【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y的方程组是关键.29.【分析】把代入方程组得:,相加可得出答案.【解答】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.【点评】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b后相加即可.30.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三.解答题(共5小题)31.【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论.【解答】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.32.【分析】(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,依题意,得:,解得:.答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,依题意,得:=,解得:a=.答:甲、丙两地相距千米.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.33.【分析】(1)设小王的实际车时间为x分钟,小张的实际行车时间为y分钟,根据两人付给滴滴快车的乘车费相同列方程求解即可;(2)根据“等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟”列二元一次方程,将其与(1)中的二元一次方程联立即可求解.【解答】解:(1)设小王的实际行车时间为x分钟,小张的实际行车时间为y分钟,由题意得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7)∴10.8+0.3x=16.5+0.3y0.3(x﹣y)=5.7∴x﹣y=19∴这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:化简得①+②得2y=36∴y=18 ③将③代入①得x=37∴小王的实际乘车时间为37分钟,小张的实际乘车时间为18分钟.【点评】本题考查了二元一次方程和二元一次方程组在实际问题中的应用,根据等量关系列方程或方程组是解题的关键.34.【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量﹣2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.35.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,求解即可;【解答】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;【点评】本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.。
第八章 二元一次方程组复习题及答案
第八章 二元一次方程组复习题及答案一、选择题1.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( )A .2B .2-C .1D .1-2.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( )A .=202a b -⎧⎨=⎩B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩3.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x ay b =⎧⎨=⎩是哪一个方程的解( )A .34x y +=B .34x y -=C .439x y -=D .439x y += 4.若关于x y ,的二元一次方程组232320x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( ) A .34-B .34C .43D .43-5.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( ) A .(0,1)B .(0,﹣1)C .(﹣1,0)D .(1,0)6.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( ) A .4种B .5种C .6种D .7种7.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x y x y =⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A .2+164322x y x y =⎧⎨+=⎩B .2+164327x y x y =⎧⎨+=⎩C .2+114322x y x y =⎧⎨+=⎩D .2+114327x y x y =⎧⎨+=⎩8.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种9.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( ) A .1种B .2种C .3种D .4种10.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只 雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为( )A .56156x y x y y x +=⎧⎨-=-⎩B .65156x y x y y x +=⎧⎨+=+⎩C .56145x y x y y x +=⎧⎨+=+⎩D .65145x y x y y x +=⎧⎨-=-⎩二、填空题11.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的12用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920,同时将餐饮区、百货区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了112,则百货区新增的摊位数量与该夜市总摊位数量之比是______.12.若m =m =________.13.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A 、B 、C 类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A 类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B 类组合含有40件棉衣,40件防寒服;一个C 类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件. 14.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)15.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人. 16.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____.17.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.18.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)19.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____.20.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___. 三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.23.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元. 24.已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值.25.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?26.善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4105x y y ++=,即()2255x y y ③++=把方程①代入③,得2351y y ⨯+=∴=-,把1y =-代入①,得4x =,∴原方程组的解为41x y =⎧⎨=-⎩请你解决以下问题:模仿小军的“整体代换法”解方程组3259419x y x y ;-=⎧⎨-=⎩(2)已知x y 、满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩①,②求224x y +与xy 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】把x 与y 的值代入方程计算即可求出a 的值. 【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=, 解得1a =. 故选C. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.C解析:C 【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,代入剩下的方程计算即可求出a 与b 的值. 【详解】联立得:312516x y x y +=⎧⎨+=⎩,解得:26 xy=⎧⎨=⎩,将26xy=⎧⎨=⎩代入得:124530a ba b-=-⎧⎨+=⎩,解得:202ab=⎧⎨=⎩,故选:C.【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.3.D解析:D【分析】将31xy=⎧⎨=⎩代入102ax byx by-=⎧⎨+=⎩后求出,a b的值,最后把x ay b=⎧⎨=⎩分别代入四个选项即可.【详解】将31xy=⎧⎨=⎩代入102ax byx by-=⎧⎨+=⎩得:31032a bb-=⎧⎨+=⎩,解得31ab=⎧⎨=-⎩,即31xy=⎧⎨=-⎩,当31xy=⎧⎨=-⎩时,30x y+=,A选项错误;36x y-=,B选项错误;4315x y-=,C选项错误;439x y+=,D选项正确;故选D【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.4.B解析:B【分析】首先解关于x的方程组,求得x,y的值,然后代入方程2x+3y=6,即可得到一个关于k 的方程,从而求解.【详解】解232320x y kx y k+=⎧⎨-=⎩得72x ky k=⎧⎨=-⎩,由题意知2×7k +3×(−2k )=6, 解得k =34. 故选:B 【点睛】此题考查了解二元一次方程组,二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.5.D解析:D 【解析】 【分析】根据新定义运算法则列出方程{ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则{ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b , ∵a ,b 是任意实数,∴x+y=1,③ 由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④ 由③④解得,x=1,y=0, ∴(x,y)为(1,0); 故选D.6.A解析:A 【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解. 【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔, 根据题意得:2330x y ,且,x y 为正整数,变形为:3023xy,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x ,即2y =时,12x =是整数,符合题意; 当3029x,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意;当30215x ,即5y =时,7.5x =不是整数,舍去; 当30218x ,即6y =时,6x =是整数,符合题意; 当30221x ,即7y =时, 4.5x =不是整数,舍去;当30224x ,即8y =时,3x =是整数,符合题意; 当30227x ,即9y =时, 1.5x =不是整数,舍去;故共有4种购买方案,故选:A . 【点睛】本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可.7.D解析:D 【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式. 【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩.故选D . 【点睛】此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.8.A解析:A 【解析】试题解析:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩.因此兑换方案有6种, 故选A .考点:二元一次方程的应用.9.B解析:B 【分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.10.C解析:C【分析】根据题意,可以列出相应的方程组,从而可以解答本题.【详解】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x+6y =1(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x+y=5y+x,故选C.【点睛】此题考查二元一次方程组应用,解题关键在于列出方程组二、填空题11.【分析】由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n和m的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式,解析:3:20【分析】由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n,再假设新增摊位数量为m,则餐饮区新增摊位数量为12m,进而根据条件得出n和m的关系,利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析即可得出答案. 【详解】解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元), 6月份的管理费为:1(1)60065012n n +⨯=(元), 再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m , 由餐饮区的摊位数量占到了夜市总摊位数量的920,可得: 91(12)5202n m n m +⨯=+,化简后可得:8m n =, 即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元), 百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元), 当百货区新增3n ,杂项区新增n 时,满足条件, 所以百货区新增的摊位数量与该夜市总摊位数量之比是3:(128)3:203:20n n n n n +==.故答案为:3:20. 【点睛】本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析是解答本题的关键. 12.201 【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201 【分析】根据能开平方的数一定是非负数,得199-x-y ≥0,x-199+y ≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m 的值. 【详解】解:由题意可得,199-x-y ≥0,x-199+y ≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m ,将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.13.14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解析:14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解】解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,6040401160050507500x y z x ++=⎧⎨+=⎩, 化简,得28022130x y z y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣160y +40y +120y ﹣7800=14600,故答案为:14600.【点睛】本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.14.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩ , 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩, 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④.【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.【分析】设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可解析:48【分析】设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可.【详解】解:设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列方程:c=d ﹣8,a=xd (x >1,且为整数),d+a=5(b+c ),b+a=c+d+24,整理可得:283727d b a b=-⎧⎨=-⎩, 当x=2时,解得b=16,d=﹣20,不符合题意,舍去;当x=3时,解得b=6,d=10,a=30,c=2,则旅行团共有6+10+30+2=48人;当x >3时,求得的b 均为负数,不符合题意.故答案为48.【点睛】本题主要考查列方程,解多元一次方程,解此题的关键在于根据题意准确列出方程.16.【分析】从6个数中找到使得关于x 、y 的二元一次方程组有整数解,且方程ax2+ax+1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组有整数解的 解析:16【分析】 从6个数中找到使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的个数后利用概率公式求解即可.解:能使得使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解的a 的值有﹣2,0,2共3个数.当a =0时,方程ax 2+ax +1=0无实数根,∴a ≠0.∵方程ax 2+ax +1=0有实数根,∴b 2﹣4ac =a 2﹣4a ≥0且a ≠0,解得:a <0或a ≥4,∴使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的值只有﹣2,共1个,∴P (使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根)=16. 故答案为16. 【点睛】 本题考查了概率公式的应用,二元一次方程组的解以及根的判别式.用到的知识点为:概率=所求情况数与总情况数之比.17.7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】由题意得,解得:或,当a=2,b=-2时,=7;当a=-2,b=2时,=3,故答案为:7或解析:7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】 由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩,当a=2,b=-2时,2a ab 1 a ab 1-+++=7; 当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3.【点睛】 本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键.18.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程 解析:89【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a 袋,乙销售b 袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%+=45(元), 甲中A 的成本为:3×6=18(元), 则甲中B 、C 的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a 袋,乙销售b 袋使总利润率为24%,则有(45a+60b )×24%=(58.5-45)a+(72-60)b ,整理得:2.7a=2.4b ,所以,a :b=8:9,故答案为89. 【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.19.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】分析:先把代入得,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案.解答:解:把代入,得,解得,c=-2.再把代入ax+by=-2,得,解得:,所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.20.14【解析】分析: (1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18解析:14 54【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∴y≠1,y≠5.∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.点睛: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.三、解答题21.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A 型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:23123417x y x y +=⎧⎨+=⎩, 解得:32x y ==⎧⎨⎩. 故答案为:1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨. (2)①依题意,得:3m+2n =21,∴m =7﹣23n . 又∵m ,n 均为非负整数,∴19m n =⎧⎨=⎩或36m n =⎧⎨=⎩或53m n ==⎧⎨⎩或70m n =⎧⎨=⎩. 答:共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车. ②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A 型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0,|21|0a b ∴--=,280a b +-=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠, PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠,FEP OPE ∴∠=∠,CEP CEF FEP ∠=∠+∠,CEP CEF OPE ∴∠=∠+∠,CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.23.(1)手动型汽车560台,自动型汽车400台;(2)577.6万元.【分析】(1)根据题意设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,根据政策出台前一个月及出台后的第一月销售量,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)由题意根据总价=单价×数量结合政府按每台汽车价格的5%给购买汽车的用户补贴,即可求出结论.【详解】解:(1)设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,依题意,得:()()960130%125%1228x y x y +=⎧⎪⎨+++=⎪⎩, 解得:560400x y =⎧⎨=⎩. 答:在政策出台前一个月,销售的手动型汽车560台,自动型汽车400台.(2)[560×(1+30%)×9+400×(1+25%)×10]×5%=577.6(万元).答:政府对这1228台汽车用户共补贴了577.6万元.。
人教版数学七年级下册第8章 二元一次方程组 复习题(解析版)
第8章二元一次方程组复习题一.选择题(共25小题)1.(2019•无锡)已知方程组,则x﹣y的值为()A.B.2 C.3 D.﹣22.(2019•朝阳)关于x,y的二元一次方程组的解是,则m+n的值为()A.4 B.2 C.1 D.03.(2019•鸡西)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种4.(2019•长春)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.5.(2019•齐齐哈尔)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种6.(2019•贺州)已知方程组,则2x+6y的值是()A.﹣2 B.2 C.﹣4 D.47.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.8.(2019•天门)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种9.(2019•孝感)已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣6 D.610.(2019•荆门)已知实数x,y满足方程组则x2﹣2y2的值为()A.﹣1 B.1 C.3 D.﹣311.(2019•兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为()A.B.C.D.12.(2019•乐山)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11 B.7,53 C.7,61 D.6,5013.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.14.(2019•宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元15.(2019•巴中)已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.016.(2019•台州)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=17.(2019•舟山)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y 两,根据题意可列方程组为()A.B.C.D.18.(2019•台湾)某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?()参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A.16 B.19 C.22 D.2519.(2019•青海)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g20.(2018•朝阳)鸡兔同笼,从上面数,有20个头;从下面数,有60条腿,设鸡有x只,兔有y只,则下列方程组正确的是()A.B.C.D.21.(2018•牡丹江)如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.6522.(2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种23.(2018•吉林)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.24.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.1525.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=60二.填空题(共5小题)26.(2019•铁岭)若x,y满足方程组,则x+y=.27.(2019•常州)若是关于x、y的二元一次方程ax+y=3的解,则a=.28.(2019•眉山)已知关于x,y的方程组的解满足x+y=5,则k的值为.29.(2019•黔东南州)已知是方程组的解,则a+b的值为.30.(2019•临沂)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.三.解答题(共5小题)31.(2019•娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲2535乙3548求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?32.(2019•百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?33.(2019•呼和浩特)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.34.(2019•烟台)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?35.(2019•淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?第8章二元一次方程组复习题参考答案与试题解析一.选择题(共25小题)1.【分析】直接利用两方程相减得出x﹣y的值.【解答】解:由方程组可得:2x+y﹣(x+2y)=4﹣1=3,则x﹣y=3,故选:C.【点评】此题主要考查了解二元一次方程组,利用整体思想分析是解题关键.2.【分析】把x与y的值代入方程计算求出m与n的值,代入原式计算即可求出值.【解答】解:把代入得:,解得:,则m+n=0,故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.【分析】设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,根据方程可得三种方案;【解答】解:设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有,,,∴方案一共有3种;故选:B.【点评】本题考查二元一次方程的应用;熟练掌握二元一次方程的解法是解题的关键.4.【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案.【解答】解:设人数为x,买鸡的钱数为y,可列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.5.【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可求出结论.【解答】解:设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程.6.【分析】两式相减,得x+3y=﹣2,所以2(x+3y)=﹣4,即2x+6y=﹣4.【解答】解:两式相减,得x+3y=﹣2,∴2(x+3y)=﹣4,即2x+6y=﹣4,故选:C.【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.7.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.8.【分析】可列二元一次方程解决这个问题.【解答】解:设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴,,,.故选:B.【点评】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.9.【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+x=1,解得,∴==故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.【分析】首先解方程组,求出x、y的值,然后代入所求代数式即可.【解答】解:,①+②×2,得5x=5,解得x=1,把x=1代入②得,1+y=2,解得y=1,∴x2﹣2y2=12﹣2×12=1﹣2=﹣1.故选:A.【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y的方程组是关键.11.【分析】根据题意,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.12.【分析】设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设有x人,物价为y,可得:,解得:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.13.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.【分析】设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10﹣8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y﹣4,∴y=x+7,∴5x+3y+10﹣8x=5x+3(x+7)+10﹣8x=31.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.【分析】将代入即可求出a与b的值;【解答】解:将代入得:,∴a+b=2;故选:B.【点评】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.16.【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.17.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.18.【分析】设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意列出二元一次方程,求出其解.【解答】解:设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意得,,解得,,则总人数为7+9=16(人)故选:A.【点评】本题是二元一次方程组的应用,主要考查了列二元一次方程组解应用题,关键是读懂题意,找出等量关系,列出方程组.19.【分析】根据图可得:3块巧克力的重=2个果冻的重;1块巧克力的重+1个果冻的重=50克,由此可设出未知数,列出方程组.【解答】解:设每块巧克力的重x克,每个果冻的重y克,由题意得:,解得:.故选:C.【点评】此题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的相等关系,列出方程组.20.【分析】设鸡有x只,兔有y只,根据鸡和兔共有20个头60条腿,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设鸡有x只,兔有y只,依题意,得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.21.【分析】设小长方形的长为x,宽为y,观察图形可得出关于x、y的二元一次方程组,解之即可求出x、y的值,再利用阴影部分的面积=大矩形的面积﹣5×小矩形的面积,即可求出结论.【解答】解:设小矩形的长为x,宽为y,根据题意得:,解得:,∴S阴影=15×12﹣5xy=45.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.【分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则x=.当y=4时,x=9.当y=8时,x=4.当y=0时,x=14.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.安排女生14人,安排男生0人.共有3种方案.故选:C.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.23.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.24.【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.二.填空题(共5小题)26.【分析】方程组利用加减消元法求出解得到x与y的值,代入原式计算即可求出值.【解答】解:,①+②得:4x=20,解得:x=5,把x=5代入②得:y=2,则x+y=2+5=7,故答案为:7【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.27.【分析】把代入二元一次方程ax+y=3中即可求a的值.【解答】解:把代入二元一次方程ax+y=3中,a+2=3,解得a=1.故答案是:1.【点评】本题运用了二元一次方程的解的知识点,运算准确是解决此题的关键.28.【分析】首先解方程组,利用k表示出x、y的值,然后代入x+y=5,即可得到一个关于k的方程,求得k的值.【解答】解:,②×2﹣①,得3x=9k+9,解得x=3k+3,把x=3k+3代入①,得3k+3+2y=k﹣1,解得y=﹣k﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:2【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y的方程组是关键.29.【分析】把代入方程组得:,相加可得出答案.【解答】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.【点评】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b后相加即可.30.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三.解答题(共5小题)31.【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论.【解答】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.32.【分析】(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,依题意,得:,解得:.答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,依题意,得:=,解得:a=.答:甲、丙两地相距千米.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.33.【分析】(1)设小王的实际车时间为x分钟,小张的实际行车时间为y分钟,根据两人付给滴滴快车的乘车费相同列方程求解即可;(2)根据“等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟”列二元一次方程,将其与(1)中的二元一次方程联立即可求解.【解答】解:(1)设小王的实际行车时间为x分钟,小张的实际行车时间为y分钟,由题意得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7)∴10.8+0.3x=16.5+0.3y0.3(x﹣y)=5.7∴x﹣y=19∴这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:化简得①+②得2y=36∴y=18 ③将③代入①得x=37∴小王的实际乘车时间为37分钟,小张的实际乘车时间为18分钟.【点评】本题考查了二元一次方程和二元一次方程组在实际问题中的应用,根据等量关系列方程或方程组是解题的关键.34.【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量﹣2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.35.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,求解即可;【解答】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;【点评】本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.。
徐州一中七年级数学下册第八章【二元一次方程组】复习题(答案解析)
1.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成.其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.49 B.64 C.81 D.1002.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.958220x yx y+=⎧⎨-=⎩B.954220x yx y+=⎧⎨-=⎩C.9516220x yx y+=⎧⎨-=⎩D.9516110x yx y+=⎧⎨-=⎩3.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5 个大桶加上1 个小桶可以盛酒3 斛,1 个大桶加上5 个小桶可以盛酒2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是()A.5253x yx y+=⎧⎨+=⎩B.5352x yx y+=⎧⎨+=⎩C.5352x yx y+=⎧⎨=+⎩D.5=+352x yx y⎧⎨+=⎩4.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x只鸡,y只兔,则列出的方程组为()A.30284x yx y+=⎧⎨+=⎩B.302484x yx y+=⎧⎨+=⎩C.304284x yx y+=⎧⎨+=⎩D.30284x yx y+=⎧⎨+=⎩5.关于x、y的方程组53x ayx y+=⎧⎨-=⎩的解是1•xy=⎧⎨=⎩,其中y的值被盖住了,不过仍能求出a,则a的值是()A.2 B.-2 C.1 D.-16.若x m﹣n﹣2y m+n﹣2=2007,是关于x,y的二元一次方程,则m,n的值分别是()7122形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.2256x yx y+=⎧⎨=⎩B.2265x yx y+=⎧⎨=⎩C.22310x yx y+=⎧⎨=⎩D.22103x yx y+=⎧⎨=⎩8.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423 x yx y+⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是()A.2114327x yx y+=⎧⎨+=⎩B.21437x yx y+=⎧⎨+=⎩C.2274311x yx y+=⎧⎨+=⎩D.2114327y xy x+=⎧⎨+=⎩9.解关于,x y的方程组()()()1328511m x n yn x my①②⎧+-+=⎪⎨-+=⎪⎩可以用①2+⨯②,消去未知数x,5 3940394010.已知关于x 、y 方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式4x ﹣3y =7成立,则m 的值为( )A .8B .0C .4D .﹣211.二元一次方程组425x y x y +=⎧⎨-=⎩的解为( )A .13x y =⎧⎨=⎩B .22x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .40x y =⎧⎨=⎩二、填空题12.写出方程35x y -=的一组解_________.13.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.14.鼠年新春佳节将至,小瑞准备去超市买些棒棒糖,送一份“甜蜜礼物”给他的好朋友.有甲、乙、丙三种类型的棒棒糖,若甲种买2包,乙种买1包,丙种买3包共23元;若甲种买1包,乙种买4包,丙种买5包共36元.则甲种买1包,乙种买2包,丙种买3包,共______元.15.已知37m m n x y +-与653x y 是同类项,则m n -=_______. 16.已知关于,x y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出以下结论:①51x y =⎧⎨=-⎩,是方程组的一个解;②当2a =-时,,x y 的值互为相反数;③当1a =时,方程组的解也是方程4x y a +=-的解;④,x y 之间的数量关系是23,x y -=其中正确的是__________ (填序号).17.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 18.2017年复兴号的成功研制生产,标志着我国高速动车组走在了世界先进前列.2019年全世界最长的高速动车组复兴号CR 400A ﹣B 正式运营,全长约440米,如图,将笔直轨道看成1个单位长度为1米的数轴,CR 400A ﹣B 停站时首尾对应的数分别为a ,b ,向右行驶219.已知,方程12230a b x y -+-+=是关于,x y 的二元一次方程,则a b +=________. 20.已知一个两位数,它的十位上的数字与个位上的数字和是3,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数是_____.21.若x a y b =⎧⎨=⎩是方程x ﹣2y=0的解,则3a ﹣6b ﹣3=_____.三、解答题22.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a ,b 的值(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量 阶梯 电量x (单位:度)电费价格一档 0<x ≤180 a 元/度二档 180<x≤350 b 元/度三档x >350 0.9元/度23.某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图2的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工竖式铁容器与横式铁容器各1个,则需要长方形铁片与正方形铁片各多少张? (2)现有长方形铁片2020张,正方形铁片1175张,如果加工成这两种铁容器,刚好铁片335已知每张铁板可做成3个长方形铁片或4个正方形铁片,也可以将一张铁板裁出1个长方形铁片和2个正方形铁片.该如何充分利用这些铁板加工成铁盒,最多可以加工成多少个铁盒?24.解方程或方程组: (1)7234(2)x x -=--;(2)2151136x x +--=;(按要求解方程并在括号里注明此步依据) 解:去分母,得____________________________.( )去括号,得_____________________________.( ) 移项,得______________________________.( ) 合并同类项,得_____________________________. 系数化为“1”,得_____________________________.(3)52253415x y x y +=⎧⎨+=⎩25.解方程组(1)()()3223553x y x y ⎧-=+⎪⎨+=-⎪⎩.(2)132321x yx y ⎧-=-⎪⎨⎪-=⎩.1.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( )A .3B .4C .2D .12.如图1、图2都是由8个一样的小长方形拼(围)成的大矩形,且图2中的阴影部分(小矩形)的面积为21cm .则小长方形的长为( )cm .A .5B .3C .7D .93.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是( )A .2018B .2019C .2020D .20214.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t =5.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( ) A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =26.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种7.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶A .5253x y ⎨+=⎩B .5352x y ⎨+=⎩C .5352x y ⎨=+⎩D .5+352x y ⎨+=⎩8.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩9.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1B .1C .13D .﹣1310.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩二、填空题12.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______.13.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .1461232815.设 a 、b 是有理数,且满足等式2322152a b b ++=-,则a+b=___________.16.已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩的解是___.17.已知方程组32223x y m x y m +=+⎧⎨+=⎩的解适合8x y +=,则m =_______.18.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.19.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________ 20.若点(2,2)A m n m n ++在y 轴的负半轴上,且点A 到x 轴的距离为6,则m n +=___________.21.对于任意有理数a ,b ,c ,d ,我们规定a b ad bc c d=-.已知x ,y 同时满足514x y=-,513yx=-,则xy =________.三、解答题22.如图,线段AB 上有一点C ,D 为线段BC 的中点,E 为线段AC 上一点,EC =4AE , AB =25(1)若AD =20,求AE 的长; (2)若DE =14,求BC 的长23.放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和卡通笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元. (1)求笔记本的单价和单独购买一支签字笔的价格;2321小工艺品,请通过运算说明.24.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元 班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了 班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本? (2)请你解释,小明为什么不可能找回68元?25.若x ,y 2(2313)0x y +-=,求2x y -的值.1.如图,正方形ABCD 由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成.其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD 的面积是( )A .49B .64C .81D .1002.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( ) A .4种B .5种C .6种D .7种3.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t =4.已知下列各式:①12+=y x ;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( )A .1B .2C .3D .45.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩6.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩7.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=8.下列各方程中,是二元一次方程的是( )253 21159.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②10.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( ) A .23- B .23 C .16- D .1611.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩二、填空题12.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了12.5%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为______.13.鼠年新春佳节将至,小瑞准备去超市买些棒棒糖,送一份“甜蜜礼物”给他的好朋友.有甲、乙、丙三种类型的棒棒糖,若甲种买2包,乙种买1包,丙种买3包共23元;若甲种买1包,乙种买4包,丙种买5包共36元.则甲种买1包,乙种买2包,丙种买3包,共______元.14.某超市促销活动,将车厘子、波罗蜜、山竹三种水果采用三种不同方式搭配成礼盒,分别是蒸蒸日上礼盒、独占鳌头礼盒、吉祥如意礼盒,将礼盒进行销售,每盒的总成本为盒中车厘子、波罗蜜、山竹三种水果成本之和,盒子成本忽略不计,蒸蒸日上每盒分别装有车厘子、波罗蜜、山竹三种水果8千克,4千克,3千克;独占鳌头每盒装有车厘子、波罗蜜、山竹三种水果3千克,8千克,6千克;蒸蒸日上每盒的总成本是每千克车厘子水果成本的1443意在成本上提高60%标价后打八折出售,获利为每千克车厘子水果成本的2.8倍,当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,则销售的总利润率为______. 15.若1m ,2m ,…,是从0,1-,2这三个数中取值的一列数,若1232020...700m m m m ++++=,()()()22212202011...13520m m m -+-++-=,则1m ,2m ,…,2020m 中为2的个数是______.16.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+ (10b )2021=________. 17.如果()2 x 2y 1x y 50-+++-=,那么x =______,y =____ 18.已知,方程12230a b x y -+-+=是关于,x y 的二元一次方程,则a b +=________.19.已知2353210x y x y +=⎧⎨+=⎩,则x +y ﹣2020=_____. 20.已知x y x x ++=,且490x y ,则5x y -的值为____________.21.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是______. 三、解答题22.对于平面直角坐标系xoy 中的点(),P a b ,若点P'的坐标为(),a kb ka b ++(其中k 为常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________;(2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标.23122 839(2)4143314312 x yx y+=⎧⎪--⎨-=⎪⎩24.解下列方程组(1)3 325 y xx y=-⎧⎨-=⎩;(2)723 9219 x yx y-=⎧⎨+=-⎩;(3)3221 27x yx y+=⎧⎨-=⎩;(4)232 491a ba b+=⎧⎨-=-⎩.25.今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 二元一次方程组复习题
一、填空题
1、关于X 的方程()()()512422+=++++-m y m x m x m ,当m __________时,是一元一次方程; 当m ___________时,它是二元一次方程。
2、已知
12
321=-
y x ,用x 表示y 的式子是___________;用y 表示x 的式子是
___________。
当1=x 时=y ___________;写出它的2组正整数解______________。
3、若方程 2x 1-m + y m n +2 =
2
1是二元一次方程,则mn= 。
4、已知⎩⎨⎧-=-=+2
513n ny x ny mx 与⎩⎨
⎧=+=-8
2463y x y x 有相同的解,则m = __ ,n = 。
5、已知212
=+-a a ,那么12
+-a a 的值是 。
6、 如果⎩
⎨⎧=-=+.232,12y x y x 那么
=-+-+3962242y
x y x _______。
7、若(x —y )2+|5x —7y-2|=0,则x=________,y=__________ 。
8、已知y =kx +b ,如果x =4时,y =15;x =7时,y =24,则k = ;b = .
9、已知⎩
⎨⎧-==12
y x 是方程155=+y ax 的一个解,则.________=a 。
10、二元一次方程4x+y=20 的正整数解是______________________。
11、从1分、2分、5分的硬币中取出5分钱,共同__________种不同的取法(不论顺序)。
12、方程组
13
562
43=+=
+y
x y
x 的解是_____________________。
13、如果二元一次方程组
的解是,那么a+b=_________。
14、方程组⎩⎨
⎧=+=++2
24)2(2y x y x x 的解是 .
15、已知6x -3y=16,并且5x +3y=6,则4x -3y 的值为 。
16、若⎩⎨
⎧-==2
1y x 是关于x 、y 的方程1=-by ax 的一个解,且3-=+b a ,则b
a 25-= 。
17、已知等腰三角形一腰上的中线将它的周长分为63和36两部分,则它的腰长是_________。
底边长为___________。
18、已知点A(-y -15,-15-2x),点B (3x ,9y )关于原点对称,则x 的值是______,y 的值是_________。
二、选择题。
1、在方程组⎩⎨⎧+==-1312z y y x 、⎩⎨⎧=-=132x y x 、⎩⎨⎧=-=+530y x y x 、⎩⎨⎧=+=321y x xy 、 ⎪⎩⎪⎨⎧=+=+
1
11
1y x y x 、
⎩⎨
⎧==1
1
y x 中,是二元一次方程组的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2、二元一次方程组⎩⎨
⎧=+=+4
2634y x y x 的解是( )
A .
B .
C .
D .
3、三个二元一次方程2x+5y —6=0,3x —2y —9=0,y=kx —9有公共解的条件是k=( ) A .4 B .3 C .2 D .1
4、如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )
A. 400 cm 2
B. 500 cm 2
C. 600 cm 2
D. 675 cm 2
↑↓
60cm
5、一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于( ) (A)0.6元 (B)0.5元 (C)0.45元 (D)0.3元
6、已知⎩⎨
⎧-=-=2
3y x 是方程组⎩⎨
⎧=-=+2
1by cx cy ax 的解,则a 、b 间的关系是( )
A 、194=-a b
B 、123=+b a
C 、194-=-a b
D 、149=+b a
⎩⎨⎧=-=23y x ⎩⎨⎧-==12y x ⎩⎨⎧-==23y x ⎩⎨⎧=-=1
2
y x
7、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。
设改变后耕地面积x 平方千米,林地地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A.⎩⎨⎧⋅==+%25180x y y x
B.⎩
⎨⎧⋅==+%25180y x y x C.⎩⎨⎧=-=+%25180y x y x D.⎩⎨⎧=-=+%25180x y y x
8、设A 、B 两镇相距x 千米,甲从A 镇、乙从B 镇同时出发,相向而行,甲、乙行驶的
速度分别为u 千米/小时、v 千米/小时,①出发后30分钟相遇;②甲到B 镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A 镇还有4千米。
求x 、u 、v 。
根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( ) A 、4+=u x B 、4+=v x C 、42=-u x D 、4=-v x 三、解答题。
1、在y=c bx ax ++2
中,当0=x 时y 的值是7-,1=x 时y 的值是9-,1-=x 时y 的值是3-,求c b a 、、的值,并求5=x 时y 的值。
3、解下列方程组
(1)
()()
344
1
26
x y x y
x y x y
⎧+--=
⎪
⎨+-
+=
⎪
⎩
⑵
⎪
⎩
⎪
⎨
⎧
-
=
+
+
=
-
+
=
+
+
2
11
4
3
4
5
z
y
x
z
y
x
z
y
x
4、甲,乙联赛中
当比赛进行到第12轮结束时,该队负3场,共积19分.
问:(1)该队胜,平各几场?(2)若每赛一场,每名参赛队员均得出场费500元,试求该队每名队员在12轮比赛结束后总收入。
4题参考答案:
解:(1)七步梯、九步梯的扶杆长分别是5米、6米;横档总长分别是3.5米、3.5米(各1分);联结点个数分别是14个、18个.
(1)设扶杆单价为x元/米,横档单价为y元/米。
依题意得:
211026(1) 5 3.511436(2)
x y
x y
++⨯=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⎧
⎨
++⨯=⋅⋅⋅⋅⋅⋅
⎩
即
28
5 3.522
x y
x y
+=
⎧
⎨
+=
⎩
,解得
3
2
x
y
=
⎧
⎨
=
⎩。
故九步梯的成本为6×3+5.4×2+1×18=46.8(元) (9/). 答:一把九步梯的成本为46.8元。