聚合物反应性加工概述

合集下载

聚合物介绍

聚合物介绍

聚合物介绍聚合物,是由许多重复单元组成的高分子化合物。

它们具有许多独特的性质和广泛的应用领域。

本文将介绍聚合物的结构、性质和应用,并探讨其在日常生活中的重要性。

聚合物的结构可以分为线性聚合物、支化聚合物和交联聚合物。

线性聚合物是由直链或分支链组成的,例如聚乙烯和聚丙烯。

支化聚合物是在线性聚合物的分子链上引入支链,如聚苯乙烯。

交联聚合物则是由三维网络结构组成的,如硅胶。

这些不同的结构赋予了聚合物不同的性质和用途。

聚合物的性质可以分为物理性质和化学性质。

物理性质包括聚合物的强度、硬度、延展性和熔点等。

聚合物的物理性质取决于其分子量和分子结构。

化学性质包括聚合物的化学稳定性、溶解性和反应性等。

聚合物的化学性质决定了其在不同环境条件下的稳定性和可加工性。

聚合物在许多领域都有广泛的应用。

在材料科学领域,聚合物被用作塑料、橡胶、纤维和涂料等材料的基础。

塑料是聚合物的一种应用,具有轻质、强度高和可塑性强的特点,广泛应用于包装、建筑和电子等领域。

橡胶是一种高弹性聚合物,用于制造轮胎、密封件和橡胶制品等。

纤维是由聚合物纺织而成的,用于制造服装、家居用品和工业材料等。

涂料是由聚合物制成的,用于保护和装饰各种表面。

在生物医学领域,聚合物也有许多应用。

例如,生物可降解聚合物被广泛应用于医疗缝合线、骨修复和药物释放系统等。

这些聚合物可以逐渐降解并被人体吸收,减少了二次手术的风险。

此外,聚合物还被用于制造人工器官、组织工程和药物输送系统等领域。

聚合物在环境保护和可持续发展方面也发挥着重要作用。

生物降解聚合物可以减少塑料污染和固体废物的产生,促进资源的循环利用。

此外,聚合物材料的轻量化和能源高效利用也有助于减少能源消耗和碳排放。

在日常生活中,我们无处不见聚合物的身影。

从塑料袋到电线电缆,从衣服到家具,聚合物产品已经渗透到我们的生活中的方方面面。

聚合物的广泛应用不仅给我们的生活带来了便利,也为我们创造了更加丰富多样的选择。

聚合物作为一种重要的高分子化合物,具有多样的结构、性质和应用。

聚合物加工原理

聚合物加工原理

聚合物流体在加工过程中的受力比较复杂,因此相对应的应变也比较复杂,其实际的应变往往是二种或多种简单应变的叠加,然而以剪切应力造成的剪切应变起主要作用。

拉伸应力造成的拉伸应变也有相当重要的作用,而静压力对流体流动性质的作用主要体现在对粘度的影响上。

聚合物流体(熔融状聚合物和聚合物溶液或悬浮液)的流变性质主要表现为粘度的变化,根据粘度与应力或应变速率的关系,可将流体分为以下两类:牛顿流体和非牛顿流体。

拉伸流动:质点速度沿着流动方向发生变化;剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化。

由边界的运动而产生的流动,如运转滚筒表面对流体的剪切摩擦而产生流动,即为拖曳流动。

而边界固定,由外压力作用于流体而产生的流动,称为压力流动。

聚合物熔体注射成型时,在流道内的流动属于压力梯度引起的压力流动。

聚合物在挤出机螺槽中的流动为另一种剪切流动,即拖曳流动。

对于小分子流体该粘度为常数,称为牛顿粘度。

而对于聚合物流体,由于大分子的长链结构和缠结,剪切力和剪切速率不成比例,流体的剪切粘度不是常数,依赖于剪切作用。

具有这种行为的流体称为非牛顿流体,非牛顿流体的粘度定义为非牛顿粘度或表观粘度。

切力变稀原因(假塑性流体)假塑性流体的粘度随剪切应力或剪切速率的增加而下降的原因与流体分子的结构有关。

对聚合物熔体来说,造成粘度下降的原因在于其中大分子彼此之间的缠结。

当缠结的大分子承受应力时,其缠结点就会被解开,同时还沿着流动的方向规则排列,因此就降低了粘度。

缠结点被解开和大分子规则排列的程度是随应力的增加而加大的。

对聚合物溶液来说,当它承受应力时,原来由溶剂化作用而被封闭在粒子或大分子盘绕空穴内的小分子就会被挤出,这样,粒子或盘绕大分子的有效直径即随应力的增加而相应地缩小,从而使流体粘度下降。

因为粘度大小与粒子或大分子的平均大小成正比,但不一定是线性关系。

切力变稠原因(膨胀性流体):当悬浮液处于静态时,体系中由固体粒子构成的空隙最小,其中流体只能勉强充满这些空间。

高分子化学与聚合反应

高分子化学与聚合反应

高分子化学与聚合反应高分子化学是研究和应用聚合反应的一门学科,主要研究有机化合物的聚合反应机理、聚合方法以及高分子材料的合成、改性和应用等方面。

聚合反应是将单体分子通过化学键连接在一起,形成高分子化合物的过程。

本文将介绍高分子化学的基础知识、聚合反应的分类和机理,以及聚合反应在高分子材料合成中的应用。

1. 高分子化学基础知识高分子化学研究的基础是有机化学和化学平衡理论。

在有机化学中,我们学习了有机化合物的结构、性质和反应机制,这些知识为理解聚合反应的基础提供了必要的背景。

化学平衡理论则揭示了反应平衡的基本原理和影响因素,对于了解聚合反应的过程和控制聚合反应的条件具有重要意义。

2. 聚合反应的分类和机理聚合反应按照反应方式可分为自由基聚合、阴离子聚合、阳离子聚合、离子共聚和缩聚反应等多种类型。

各种聚合反应的机理不同,但都遵循核心原理:单体发生反应,生成聚合物,同时伴随着副反应产生的小分子。

自由基聚合是最常见的聚合反应之一,其机理包括引发剂的引发、单体自由基的扩散、链的增长和链的终止等步骤。

阴离子聚合和阳离子聚合则是通过负离子或正离子的引发剂引发,单体主链上的阴离子或阳离子进行逐个加成,形成聚合物的过程。

离子共聚是阴离子聚合与阳离子聚合的共同进行,通过引发剂引发两种类型的单体反应,得到具有两种聚合物片段的高分子。

3. 聚合反应在高分子材料合成中的应用聚合反应是合成高分子材料的主要方法之一,可以通过合适的单体选择和反应条件控制,获得具有不同结构和性质的高分子材料。

聚合反应的应用范围非常广泛,下面列举几个常见的应用领域。

(1)聚合物合成:聚合反应可以用于合成各类高分子聚合物,如聚乙烯、聚丙烯、聚苯乙烯等。

通过调节聚合反应的条件,可以控制聚合物的分子量、分子量分布以及化学结构,从而获得具有不同性质和用途的高分子材料。

(2)高分子改性:聚合反应可以用于高分子材料的改性,通过将其他功能单体引入聚合物的结构中,赋予其新的性能和应用。

聚合物的生产工艺有哪些

聚合物的生产工艺有哪些

聚合物的生产工艺有哪些随着工业化的进程,聚合物在各个领域中扮演着愈发重要的角色,从塑料制品到纤维材料,聚合物的生产在现代社会发挥着不可或缺的作用。

而聚合物的生产工艺也在不断发展,以满足不同产品对材料性能和成本的需求。

常见的聚合物生产工艺1. 原位聚合法原位聚合法是指在反应器中,通过加入单体和引发剂等反应物,使反应物在反应器中发生聚合反应,从而生成聚合物。

这种方法生产的聚合物通常具有较高的纯度和分子量,适用于高端应用领域。

2. 溶液聚合法在溶液聚合法中,单体被溶解在适当的溶剂中,加入引发剂等反应物后在适当条件下进行反应。

这种方法的优点是反应条件易于控制,可以得到分散性好的聚合物溶液,适合进行后续加工处理。

3. 熔体聚合法熔体聚合法是将单体在高温下熔化后,在加入引发剂等反应物进行聚合反应。

这种方法具有生产效率高、生产成本低等优点,适用于大规模生产聚合物产品。

4. 悬浮聚合法悬浮聚合法是将单体悬浮于溶剂中,通过搅拌等方式使其均匀分散,并加入引发剂等反应物进行聚合反应。

这种方法生产的聚合物粒径均匀,适合用于制备颗粒状聚合物产品。

5. 流变聚合法流变聚合法是通过控制聚合物溶液在流体中的流动状态来控制聚合物的形貌和性能。

这种方法可以调控聚合物的形状、大小等特征,适合生产纳米级或特殊形状的聚合物产品。

未来发展趋势随着科学技术的不断进步,聚合物的生产工艺也在不断创新。

未来的发展趋势可能包括:更加环保的生产工艺,减少或回收废物的技术;智能化生产工艺,利用先进的控制技术提高生产效率和产品质量;定制化生产工艺,根据不同产品需求定制精确的生产工艺流程等。

总之,聚合物的生产工艺多种多样,每种方式都有其适用的场景和优势。

随着科技的不断发展,聚合物的生产工艺也会不断完善,为各个领域的需求提供更好的解决方案。

聚合物的生产有哪些过程

聚合物的生产有哪些过程

聚合物的生产有哪些过程聚合物是一种由重复单元构成的大分子化合物,其具有多种用途,包括塑料制品、纤维、涂料等。

在现代工业中,聚合物生产是一个重要的过程,它涉及到多个步骤和复杂的工艺。

下面将介绍聚合物的生产过程。

原料准备聚合物生产的第一步是准备原料。

通常情况下,聚合物的主要原料是单体,它们是一种可以在化学反应中形成聚合物链的化合物。

在原料准备阶段,需要对单体进行精确的配比和预处理,以确保反应的准确性和高效性。

聚合反应聚合反应是将单体转化为聚合物的关键步骤。

在此阶段,单体中的化学键被打破,然后形成聚合物链。

聚合反应的过程中需要加入催化剂或引发剂来促进反应的进行,并控制反应的温度、压力和时间,以实现目标产品的制备。

聚合物处理在完成聚合反应后,需要对产生的聚合物进行处理。

这包括分离未反应的单体、溶剂和催化剂残留物,以及纯化和提纯聚合物产品。

聚合物处理工艺通常包括过滤、结晶、洗涤等步骤,以确保最终产品的质量和纯度。

成型加工一旦得到纯净的聚合物产品,就需要进行成型加工,将其转化为所需的最终形态。

成型加工可以采用多种方法,例如挤出成型、注塑成型、压延成型等,根据不同的产品设计和要求来选择适合的加工技术。

检验和质量控制聚合物生产过程中,检验和质量控制是至关重要的步骤。

通过对原材料、中间产品和最终产品的检测和分析,可以确保产品符合规定的标准和质量要求。

质量控制包括物理性能测试、化学成分分析、外观检查等,以保证产品的稳定性和可靠性。

1包装和储存最后,对生产完成的聚合物产品进行包装和储存。

包装是为了保护产品免受外界环境的影响,同时方便运输和储存。

储存条件的控制也是关键的,需要避免高温、阳光直射等条件,以确保产品在有效期内保持稳定性和性能。

综上所述,聚合物生产是一个复杂而有序的过程,需要多个步骤的协同作用和精细调控。

只有在各个环节都严格按照要求进行操作,才能生产出高质量的聚合物产品,满足不同领域的需求。

2。

高分子化学第七章聚合物的化学反应

高分子化学第七章聚合物的化学反应

二、 化学因素
• 1. 几率因素
大分子链上相邻基团作无规成对反应时,往往有一 些孤立的基团残留下来,反应不能进行到底。
~~CH-CH2-CH-CH2-CH-CH2-CH-CH2-CH-CH2~~
O -CH2- O
OH
O -CH2- O
按反应的几率,羟基的最高转化率86.5%,实验
测得为85~87%。
二、 聚合物化学反应的影响因素
影响聚合物功能基反应能力的因素:
(1)物理因素 (2)化学因素
一、 物理因素
• 1. 结晶的影响(聚合物的聚集态)
对于部分结晶的聚合物,晶区分子的取向 度高,分子间作用力大,低分子试剂不易扩散 进去,反应往往只限于无定形区。无定形物处 于玻璃态时,链段被冻结,不利于低分子扩散 ,反应最好在Tg以上或使其适当溶胀后。
• CPE可用于电缆护套,耐热输送带,胶 辊,工业用胶管等。
2.聚氯乙烯的氯化(CPVC)
~CH2–CH~ + HCl Cl
~CH–CH~ + HCl Cl Cl
• 氯化聚氯乙烯的特点是耐热、耐老化 、耐化学腐蚀性好,基本性能于PVC 接近,但耐热性比PVC高。
三、聚乙烯醇的合成及其缩醛化
• 1.聚合
n CH2=CH BPO OCOCH3
-[ CH2-CH-] n
OCOCH3
控制合适条件,制备聚合度适当的产物
• 2.醇解
-[ CH2-CH-] n
CH3OH,OH–CH3COOCH3
OCOCH3
~~CH2-CH~~ OH
制备维尼纶纤维,醇解度要大于99% 悬浮聚合分散剂,醇解度大约为80%
• 3.缩醛化
化学分析。 (5)研究材料的老化和防老化

聚合物生产过程主要包括哪些工序

聚合物生产过程主要包括哪些工序

聚合物生产过程主要包括哪些工序在现代化工生产中,聚合物被广泛应用于各个领域,如塑料、橡胶、纺织品等。

聚合物的生产是一个复杂的过程,主要包括以下几个工序:1. 原料准备聚合物的生产首先需要准备原料。

原料通常是一些化学物质,如单体、催化剂、稳定剂等。

这些原料需要经过仔细的筛选和配比,确保生产过程的稳定性和产品质量。

2. 聚合反应聚合反应是聚合物生产过程的核心步骤。

在这个工序中,原料中的单体分子会发生聚合反应,形成高分子链结构。

这个过程通常需要在特定的温度、压力和催化剂存在下进行,以确保聚合物的结构和性能符合要求。

3. 放热和冷却在聚合反应过程中,由于反应释放热量,需要进行放热控制,以避免反应温度过高。

同时,完成反应后需要对产物进行冷却处理,以稳定聚合物结构并方便后续工序操作。

4. 精细处理生产出的聚合物可能含有杂质或未反应的残余物,需要经过精细处理来提纯。

这个工序通常包括溶剂萃取、过滤、结晶等步骤,以确保最终产品的纯度和质量。

5. 成型加工经过精细处理后的聚合物可以进行成型加工,以制备成各种最终产品。

成型加工通常包括挤出、注塑、压延等工艺,根据产品的形状和用途选择合适的加工方法。

6. 检测和检验生产出的聚合物产品需要经过严格的检测和检验,以确保其符合规定的质量标准。

这个工序包括对产品外观、物理性能、化学成分等方面进行检测,只有合格的产品才能出厂销售。

通过以上工序的有序进行,聚合物生产过程可以高效地实现,产出符合要求的产品,满足市场需求。

在今后的化工生产中,随着技术的不断创新和完善,聚合物生产过程也将不断优化,为社会提供更多优质的聚合物产品。

聚合物合成原理和工艺

聚合物合成原理和工艺

分子设计的关键:合成反应的机理、条件及实施方法,因 为合成反应的结果决定了分子的组成、接枝的效率及物性。 配位聚合 定向聚合的核心问题:催化剂体系的研究。
优点:制得的高聚物具有立构规整结构
Chapter 2
自由基聚合:
当前许多重要的高分子材料,如HPPE、PVC、PS、 PMMA、聚乙酸乙烯酯、聚丙烯腈、氯丁橡胶、丁苯橡 胶、丁腈橡胶及ABS树脂等都是采用自由基聚合反应而成。
要求单体的特性:单体必须是亲核性,易与质子(阳离子) 相结合而被引发。
由于阳离子聚合反应的活性中心是一个正离子,所以单体必须是亲核
性的电子给予体。 如:
①双键上带有强供电子取代基的α-烯烃;
②具有共轭效应基团的单体; ③含O、N杂原子的不饱和化合物或环状化二烯)等.
两种类型的PVC树脂其颗粒形态主要取决于分散剂、搅拌
强度,尤其是分散剂。
反应的关键控制:在反应期间,反应体系的两相分散和稳 定作用极为重要,悬浮剂的加入和搅拌是悬浮聚合中最主 要和不可缺少的条件。
可用下途径使分散体系得到稳定和保护:
(1)加入某种物质以形成珠滴的保护层(膜);
(2)增大水相介质的粘度,使珠滴间发生凝聚时的阻力增 加; (3)调整水相-单体界面间的界面张力,加强单体液滴维持 自身原有形状的能力;
(4)减少水和粘稠状珠滴的密度差,即使珠滴易于分散悬
浮。
半沉降周期t1/2(min)来评价分散剂的细度或分散液的稳定性。
将分散液倒入100ml量筒内,使其体积恰好到100ml刻度,然后静置,观察 清液-浑浊液界面下移情况,当清液界面降到50ml刻度的时间即为t1/2。
悬浮聚合工艺控制因素 :单体纯度、水油比、聚合反应温 度、聚合反应时间、聚合反应压力、聚合装置(包括聚合 釜传热、粘釜及清釜)等对聚合过程及产品质量都有影响,

聚丙烯的聚合反应原理

聚丙烯的聚合反应原理

聚丙烯的聚合反应原理
聚丙烯是一种常见的塑料,具有良好的物理性质和加工性能,广泛应用于各个领域。

它的制备主要通过聚合反应来实现。

聚丙烯的聚合反应原理主要涉及单体丙烯分子的重复连接,形成长链聚合物的过程。

首先,在聚丙烯的合成过程中,最常用的方法是采用聚合反应来实现。

聚合反应是指将单体丙烯分子中的双键破裂,使其发生加成聚合,形成长链聚合物的过程。

这个反应过程通常需要催化剂的参与,例如聚合反应中常用的Ziegler-Natta催化剂。

在聚合反应的开始阶段,催化剂通过与单体丙烯分子中的双键发生反应,破坏了双键,使得丙烯分子发生共轭加成反应。

这个过程中,丙烯分子中的碳碳双键被破坏,丙烯单体分子中的两个碳原子依次与聚合物链中的碳原子连接,逐渐形成长链聚合物。

随着反应的进行,聚丙烯的聚合物链不断延伸,单体丙烯分子不断添加到聚合物链上,形成了越来越长的链状结构。

聚合反应过程中,聚合物链的增长是通过单体分子中的双键逐渐破裂,连接到聚合物链的末端。

在聚合过程中,需要控制反应条件,包括温度、压力、催化剂的种类和用量等。

这些因素对聚合反应的速率和产物的性质都有重要影响。

合适的反应条件可以提高聚合反应的效率和产物的质量,确保所得产品符合要求。

总的来说,聚丙烯的聚合反应原理是通过催化剂的作用,将单体丙烯分子中的双键破裂,形成长链聚合物的过程。

这个过程需要严格控制反应条件,确保反应能够高效进行,并且得到优质的聚丙烯产品。

聚丙烯作为一种重要的塑料材料,其聚合反应原理的研究和应用具有重要的意义,为塑料工业的发展提供了坚实的基础。

1。

第一章聚合物的化学改性

第一章聚合物的化学改性

是在酯基的甲基上。
2.活性基团引入法 原理:首先在聚合物的主干上导入易分解的活性基团,然后 在光、热作用下分解成自由基与单体进行接枝共聚。
Br C H2 H C C H2 C
hv
BBB C H2 C C H2 C
nB
叔碳上的氢很容易氧化,生成氢过氧化基团,进而分解为自由 基,由此可利用聚对异丙基苯乙烯支取甲基丙烯酸甲酯接枝物。
PMMA-g-NR
第三节 嵌段共聚改性
一.基本原理
定义:嵌段共聚物分子链具有线型结构,是由至少两种以上 不同单体聚合而成的长链段组成。嵌段共聚可以看成是接枝 共聚的特例,其接枝点位于聚合物主链的两端。 嵌段共聚物可分为三种链段序列基本结构形式:
图2-2
放射状嵌段共聚物的链段序列结构

嵌段共聚类型
Si
O
C
2.嵌段共聚物的应用
主要应用材料可分为三类:嵌段共聚物弹性体,增韧热塑性
弹性树脂和表面活性剂。
●嵌段共聚物弹性体:嵌段共聚物热塑性弹性体主
合成大单体的主要方法有阴离子聚合、阳离子聚合、自由基 聚合等方法。
(2)大单体与小单体合成接枝共聚物技术:
主链由小单体聚合而成;
支链为相对分子质量分布均匀的大单体。
优点:
●更简单、更广泛的合成接枝共聚物;
●能合成数量繁多的接枝共聚物; ●大单体技术还可将两种性能差异较大的聚合物(如亲水和亲 油)以化学键结合。
定义:利用反应体系中的自由基夺取聚合物主链上的氢而链
转移,形成链自由基,进而引发单体进行聚合,产生接枝。
CH2
CH2
CH
CH
CH2
CH
+ R
+ RH
CH

聚合物加工原理名词解释

聚合物加工原理名词解释

1.高分子材料加工:把高分子原材料经过一定的工艺手段转变成某种高分子材料制品的过程。

2.功能高分子材料:与常规高分子材料相比具有明显不同的物理化学性质,并具有某些特殊功能的高分子材料。

3.智能高分子材料:能随着外部条件的变化,而进行相应动作的高分子。

必须具备能感应外部刺激的感应器功能、能进行实际动作的动作器功能以及得到感应器的信号后而使动作器动作的过程器功能。

4.可挤压性:聚合物通过挤压作用形变时获得形状和保持形状的能力。

5.可模塑性:聚合物在一定温度和外力作用下形变并在模具中模制成型的能力。

6.可纺性:聚合物流体在拉伸作用下形成连续细长丝条的能力。

7.可延性:无定形或部分结晶固体聚合物在一个或两个方向上受到压延或拉伸时变形的能力。

8.复合材料:是将金属材料、高分子材料、无机非金属材料等具有不同结构和性能的材料,经特殊工艺复合成一体,而制得的综合性能更优异的新型材料。

9.耗散:力学的能量损耗,即机械能转化为热能的现象。

在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能。

10.离子液体:是在室温及相邻温度范围内完全由离子组成的有机液体。

离子液体具有极性强、不挥发、不易氧化、不易燃易爆、对无机和有机化合物有良好的溶解性和对绝大部分试剂稳定等优良特性,因此被称为绿色溶剂。

11.混合的定义:混合是一种趋向于混合物均匀性的操作,是一种在整个系统的全部体积内,各组分在其基本单元没有本质变化的情况下的细化和分布的过程。

12.均一性:均一性指混得是否均匀,即分散相浓度分布是否均匀。

13.分散度:指被分散物质的破碎程度如何。

破碎程度大,粒径小,分散度就高。

14.非分散混合:通过重复地排列少组分增加其在混合物中空间分布的均匀性而不减小粒子初始尺寸的过程。

15.分散混合:将呈现出屈服点的物料混合在一起时,要将它们分散,应使结块和液滴破裂,这种混合称为分散混合。

八章聚合物的化学反应

八章聚合物的化学反应

C2H 2 CH
C2C H2C HH
C2H
H C2H
分子内“回咬”
CH2 C2H
CH2 CH2CH
CH2
CH3
CH2 + CH2 CHCH2CH2CH2CH2
CH2CH2CH CH2 +
CH2CH2CH3
(4)基团的脱除
聚氯乙烯、聚醋酸乙烯酯、聚丙烯腈等受热时, 将脱除取代基。自由基机理。
C H 2 C H C l C H 2 C H C l
第八章 聚合物的化学反应
(1) 活性阴离子聚合:依顺序加入单体。
SBS的合成: S段分子量1~1.5万,B段约
5~10万。常温下,SBS反应出B段 弹性体的性质, S段处于玻璃态微 区,起到物理交联的作用。温度升 到聚苯乙烯Tg以上,SBS具有流动 性,可以模塑。因此,SBS称作热 塑性弹性体,且无须硫化。
(3)淬灭剂 这类稳定剂能与被激发的聚合物分子作用,把激发能
转移给自身并无损害地耗散能量,使被激发的聚合物分子 回复原来的基态。
常用的有过渡金属的络合物。
6. 老化和耐候性
聚合物的老化:是指聚合物在加工、贮存及使用过程中, 其物理化学性能及力学性能发生不可逆坏变的现象。
热、光、电、高能辐射和机械应力等物理因素以及氧化、 酸碱、水等化学作用,以及生物霉菌等都可导致聚合物的老化。 因此聚合物的老化是多种因素综合的结果,并无单一的防老化 方法。
(3)根据具体聚合物材料的主要老化机理和制品的 使用环境条件添加各种稳定剂,如热、氧、光 稳定剂以及防霉剂等;
(4)采用可能的适当物理保护措施,如表面涂层等。
8. 8 反应功能高分子
功能高分子按应用功能分:
反应功能高分子:高分子试剂、高分子药 物

聚合物的化学反应(第九章)

聚合物的化学反应(第九章)
• 近年来使用有机镍和烷基铝催化加氢方法可对中段进行 控制加氢,其产物不但可似SBS一样既具橡胶弹性,亦可 像塑料一样热塑性加工,还显著地提高了热加工稳定性 和耐老化性能。
(4) 聚二烯烃的氯化和氢氯化 将未交联的橡胶用氯代烃或芳烃为溶剂 进行均相反应。
按Markownikoff规则. 氯加在三级碳原子上。
PCl 2 1) NaOH 2) HNO 3 P P P P COOH NH PO(OH) 2 CH 2S C NH 2 NH CH 2NH C NH 2 CH 2 N
螯合树脂
膦酸树脂
硫脲树脂
呱基螯合树脂
手性螯合树脂
(3)聚二烯烃的加成反应(SBS加氢反应)
• 热塑性弹性体SBS兼具橡胶和塑料的一系列优异性能,但 分子链中含有双键的聚丁二烯,易被氧化而使性能变差。
9.2 高分子的相似转变
9.2. 高分子的相似转变 9.2.1 新功能基的引入与功能基转换
在聚合物分子链上引入新功能基或进行功能基转换,是 对聚合物进行化学改性、功能化以及获取新型复杂结构的高 分子的有效手段。 (1)聚乙烯的氯化
CH2CH2 CH2CH2 Cl2 CH2CH CH2CH2 Cl Cl2 SO2 HCl CH2CH CH2CH2 SO2Cl

粘胶纤维
OH OH O CH2OH O
CH2OH O OH OH

纤维素硝酸酯
纤维素醋酸酯 纤维素醚类: 甲基、乙基、羧 甲基纤维素
O

9.2 高分子的相似转变
粘胶纤维的制造
CH2OH O OH O OH CH2ONa
20% NaOH 浸渍 1~2 h
30~45 ℃ -CS2
S
O OH O ONa

第七章 聚合物改性工艺

第七章 聚合物改性工艺

互穿聚合物网络制备
• 两种制备方法的比较: • 由于同步IPN要求两种聚合反应互不干扰、
具有大致相同的聚合温度和聚合速率,故 IPN的应用范围较窄,不适合大部分IPN结构 的制备。
互穿聚合物网络制备
(3)胶乳IPN (Latex IPNs) 胶乳IPN是指用乳液聚合法制得IPN,是目前 IPN中研究较多的一种。因为互穿网络仅限于 各个乳胶粒范围之内,所以也称微观IPN
互穿聚合物网络制备
可通过2种方法制备:(1)熔融状态或在共 同溶剂下的机械共混(机械共混IPN);(2)
模板聚合技术(化学共IPN)即把单体Ⅱ溶胀 到聚合物Ⅰ中(或在单体Ⅱ中溶解聚合物 Ⅰ)并就地聚合形成IPN。
互穿聚合物网络应用
• 阻尼材料是一种能吸收机械振动并将其转 化为热能而耗散的新型功能材料。高分子 材料在一定温度和频率范围内发生的玻璃 化转变,是阻尼作用的根本原因。但是, 阻尼材料的应用必须有一个合适的Tg。
4)光子:激发态中间体回落低能级,能使分子 断裂,由于分子密度低,作用小
5)自由基 占绝大多数,高活性
• 等离子体存在处:
宇宙中99%物质处于等离子体态。由地球 表面向外,等离子体是几乎所有可见物质 的存在形式,它与众所周知的物质三态也 就是气态、液态、固态并列称为物质的第 四态,即等离子体态。
固体 冰
液体 水
气体
水汽
等离子体
电离气体
00C
1000C
100000C
温度
1)高温等离子体:也叫聚变或热平衡等离子 体,在此类等离子体中,电子与其它粒子的温 度相等,一般在5000K以上。 Te≈Ti,Te-电子温度; Ti-离子温度
由于高温等离子体对聚合物表面的作用过 于强烈,因此在日常实际应用中很少使 用,目前投入使用的只有低温等离子体。

高分子化学-第七章 聚合物的化学反应

高分子化学-第七章 聚合物的化学反应
4
(6)可回收单体和综合利用聚合物废料
(7)有助于了解聚合物的分子结构以及结 构与性能的关系。
(8)在高分子化学反应的基础上发展了功 能高分子 (9)聚合物的化学反应和缩聚、加聚反应 密切相关。
5
二、 聚合物化学反应的分类
根据聚合度和基团(侧基和端基)的变化,聚合物的 化学反应可分成:
• (1)聚合度相似的化学反应
OCOCH3
OCOCH3
控制合适条件,制备聚合度适当的产物
26
• 2.醇解 ]n [ CH2-CH- -
OCOCH3
CH3OH,OH–CH3COOCH3
~~CH2-CH~~ OH
制备维尼纶纤维,醇解度要大于99% 悬浮聚合分散剂,醇解度大约为80%
27
• 3.缩醛化
~~CH2– CH–CH2–CH–CH2 –CH~~ OH OH OH
15
二、 化学因素
• 1. 几率因素
大分子链上相邻基团作无规成对反应时,往往有一 些孤立的基团残留下来,反应不能进行到底。 ~~CH-CH2-CH-CH2-CH-CH2-CH-CH2-CH-CH2~~ O -CH2- O OH O -CH2- O 按反应的几率,羟基的最高转化率86.5%,实验 测得为85~87%。 若反应是可逆的,只要时间足够长,可以打破几 率的限制。 16
• 2. 邻近基团效应
由于大分子链上反应基团多,邻近基团相距很 近,因此,静电和位阻效应可使聚合物链上官能 团反应能力上升或下降。
~~CH2-CH-CH2-CH-CH2-CH~~ C=O C=O C=O O-• • • • • • H-N-H • • • • • • O-
OH-
17
18
一、聚二烯烃的加成与取代

聚合物的化学反应

聚合物的化学反应

2.溶解度的影响
聚合物在反应过程中,溶解度会发生变化。

起始聚合物不溶,产物可溶。
由于聚乙烯醇的单体无法制备,要想直接从 单体来制备聚合物有很大困难 ,就想法通过其 它方法制备一高聚物后 再通过化学反应得到我 们所需要的高聚物。生产上聚乙烯醇是由单体醋 酸乙烯酯经自由基溶液聚合得到聚醋酸乙烯酯, 再由NAOH的甲醇溶液醇解为聚乙烯醇,最后在纺 丝过程中加入甲醛进行缩醛化反应得到聚乙烯醇 缩甲醛纤维(即商品名称为维纶)。
2、除了正反应外,常伴随着许多副反应。
如分子内相邻的官能团的相互环化,分子之间 的交联等。 在化学反应时,还常常产生分子链的降解、裂 解,形成氧化物。
3、产物的不均一性
大分子链中有大量的具有反应能力的官能团, 当进行化学反应时,并不能使每个分子中所有的基 团都起反应。因为试剂的扩散速度和可及程度不一 样。这样在产物中,在同一个大分子链上就包含有 未反应的和反应后的多种不同基团,形成类似共聚 物的产物。
将三醋酯纤维素皂化为乙酰基,取代度约 2.4 即得到二醋酯纤维素。以丙酮为溶剂经纺丝 做成二醋酯纤维,可用于纺织、卷烟滤嘴丝束、 薄膜等。 纤维素醚是天然纤维素经化学改性得到的最 重要的水溶性聚合物之一。 如:羧甲基纤维素(CMC) 羟乙基纤维素(HEC) 甲基纤维素 ( MC ) 等等, 主要用于分散剂、乳化剂、增稠剂等。
第一节 研究聚合物化学反应的意义
一、合成一些不能由单体直接制备的高聚物 1. 有的单体不稳定或不能聚合,其聚合物不 能用相应单体的聚合方法制备,只能通过制 备另一种高聚物,然后通过高聚物的化学反 应来合成 。 例如:聚乙烯醇 由于乙烯醇 CH2= CHOH 是不稳定的化 合物,它要重排, 转化为乙醛 CH3--CHO。

聚合物的成型加工方法

聚合物的成型加工方法
24
制件不同部位的冷却速度的不同,通常外边 冷却速度快,内部冷却速度慢,这就会导致 制件内外的结晶速率不同及结晶度不同,使 制件密度的不均一。控制冷却速度可改变聚 合物的结晶过程,以控制制品的性能。 热处理能使产品的结晶更趋于完善,不稳定 的结晶结构转变为稳定的结晶结构,微小的 晶粒转变为较大晶粒。热处理还能明显增加 晶片厚度、提高熔点,此外也有利于大分子 链的部分解取向和消除制品中的内应力。但 过高的结晶度会导致制品变脆。
聚合物成型加工介绍
陈双俊
1
聚合物的成型加工: 聚合物的成型加工:将聚合物或以聚合物 为基本成分,加入各种添加剂,在一定的 温度和压力下,将其转变为具有实用价值 的材料或制品的一种工艺过程。
2
3
4
5
聚合物的成型加工方法分类 按聚合物的成型方法原理,大致可分为: 按聚合物的成型方法原理,大致可分为: 1)、热塑化、冷却成型 1)、热塑化、 首先加热聚合物,使其处于均匀的粘流态, 即“塑化”状态,然后塑制成所需要的形状, 塑化” 并冷却定型。挤出、注射、压延、真空成型、 熔融纺丝、熔融喷涂等方法,都属于热塑化, 冷却成型。
17
18
5、层压成型 层压成型主要是热固性塑料的成型方法。此法是将浸 有热固性树脂的纸、布、木片、玻璃纤维及其它织物 等基材,裁剪成一定尺寸的层压成型材料,在模具中 叠合成层,在热和压力作用下使树脂固化而成为整体, 得到片层状塑料的成型加工方法。 6、浇铸成型 浇铸成型是将聚合物单体、预聚物、熔融的热塑性聚 合物、聚合物溶液或溶胶倒入一定形状的模具中,而 后使其固化反应,定型或溶剂挥发而硬化成为制品的 一种方法。 有机玻璃、尼龙6 有机玻璃、尼龙6、环氧树脂、不饱和聚酯、纤维素、 聚氯乙烯等都可用此法制成各种形状的制品。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n H2C CH2
H2 H2 CC
n
图 4 聚乙烯树脂的制备过程
背景介绍
成型过程 以聚乙烯树脂为原料,通过相应的成型技术技
术(如吹塑成型等)最终得到聚乙烯水壶制品。
图 5 吹塑成型示意图
背景介绍
传 统
① 单体聚合得到原料树脂








② 成型加工
背景介绍
缺点:
1 从单体聚合到加工成型,工艺流程长,花费时间多;
3. 反应挤出的缺点
尽管反应挤出技术有上述优点,但也存在一些缺点,如: ①技术难度大。不但要进行配方和工艺条件的研究,而且要针对不 同的反应设计所需的新型反应挤出机,研发资金投入大,时间长。 ②难以观察检测。物料在挤出机中始终处于动态、封闭的高温、高 压环境中,难以观察、检测物料的反应程度;物料停留时间较短, 一般只有几分钟时间,因而要求所要进行的反应必须快速完成;如 果反应时间超过2Omin,则用反应挤出技术就没有意义。 ③技术含量高。反应挤出技术涉及到聚合物材料、化学工程、聚合 反应工程、橡塑机械、聚合物成型加工、机械加工、电子等诸多学 科,需较长时间的研究和多方合作才能取得成果。
2. 反应挤出的优点
⑥螺杆挤出机既是反应器,又是制品成型设备,从而使生 产工艺过程做到了工序少、流程短、能耗低、成本低、 生产效率高。节约大部分工厂设备和占地空间;
⑦节省回收稀释液所需的能量,没有溶剂或稀释液,无废 液排出;
⑧挤出机具有技术上的优势,因为它可以作为柱塞流反应 器或者微背混式塞流反应器。
计量
混合
充模
固化
脱模
后处理
图6 反应注射成型工艺流程图
问题:在反应性基础过程中最重要的控制因素是什 么?
组份A和B反应活性是怎样选择的?
计量是否要求准确? 反应温度如何控制?
反应注射成型
突出特点: 生产效率高、能耗低
商品设计自由度大、成本低
应用: 聚氨酯(1974年 美国)
不饱和聚酯 聚碳酸酯 环氧树脂
聚合物反应性加工概述
主讲:金天翔 单位:化生材学院
内容介绍
背景介绍 聚合物反应性加工的定义 聚合物反应性加工的方法 反应性加工实例
背景介绍
脸盆
聚氯乙烯管道
PE水壶
汽车轮胎
火箭外壳 图1 聚合物材料制品
宇航服
背景介绍
传统的聚氯乙烯管道制备过程:
聚合过程
以氯乙烯为单体,通过相应的聚合技术(如本体 聚合、悬浮聚合)得到聚氯乙烯树脂;
增强反应注射成型:
定义:是指在单体中加入增强材料,即反应单体与增强材料一同通
过混合头注入模具型腔制备复合材料制品的一种加工方法
组份A 组份B 增强材料
计量
混合
充模
固化
脱模
后处理
图7 增强反应注射成型工艺流程图
增强反应注射成型
与反应性注射成型区别:
原料中加入了增强材料,为什么选择反应性注射来增强?粘度。
n H2C CHCl
H2 H CC
n
Cl
图 2 聚氯乙烯树脂的制备过程
背景介绍
⑵ 成型过程 以聚氯乙烯树脂为原料,通过相应的成型技术
技术(如注射、挤出)最终得到聚氯乙烯管道制品 。
图 3 注射成型示意图
背景介绍
聚乙烯水壶制备过程:
聚合过程
以乙烯为单体,通过相应的聚合技术(如本体聚 合)得到聚乙烯树脂;
聚丁烯-1热塑性弹性体反应挤出试验生产线
丁烯-1反应挤出聚合和聚丁烯-1热塑性弹性 体的合成( 国家863计划,编号 2006AA03Z546)
反应性共混
定义:
是指在熔融混炼过程中,通过加入反应性物质,从而改善共混体 系的相容性,提高其最终制品性能的方法。
特点:
可在很大程度上解决界面张力和两相间的粘合力,从而改善共混体 系的相容性。
通用的增容反应类型:
反应性共混
反应性加工实例
丁烯-1反应挤出聚合和聚丁烯-1热塑性弹性体的合成 ( 国家863计划,编号2006AA03Z546)
2 需进行繁杂的分离和提纯;
3 还要使用混炼机、压延机和挤出机等多种仪器和设备,耗 资大;
如何解决?!
背景介绍
如能把聚合过程和加工过程合二为一,在加工机械中 同时进行化学反应,连续生产,而且采用无溶剂的本体聚 合技术,无需进行分离和提纯,这样就可以使得工艺简单 、经济,且生产周期大大缩短。
有没有这种加工技术呢?
反应性加工方法:10-30min
聚合物反应性加工的方法
反应性注射成型 反应性挤出成型 反应性共混
反应注射成型
定义:是指将两种以上低粘度低分子量的液体单体或预聚体,在高
压下撞击、混合后立即注入密闭的模具内,使液体混合物在模具内发 生化学反应,形成具有弹性和刚性的高分子制品的加工方法。
组份A 组份B
突出特点:
聚合物产品力学强度和热稳定性高
生产效率高、能耗低
商品设计自由度大、成本低
应用: 增强聚氨酯;
汽车构件:车门、汽车挡泥板等。
反应性挤出成型
定义:是指将挤出机尤其是双螺杆挤出机作为一种连续的加工反应器
,初始物料从物料口加入后在螺杆的作用下,使输送、混合、剪切、 反应、传热、脱除挥发物、造粒或模具成塑在一个连续的过程得以实 现的一种成型方法。
综上所述,反应挤出技术具有研发投入高、技术含量高、产品 利润高的特点,虽在研发阶段困难多,但在工业应用上优势明显, 正因为如此,它才成为当前国际上的研究热点。
反应性挤出成型
应用:全世界60%以上的塑料产品是采用螺杆挤出法加工的
片材:PS、PP和ABS片材等 板材:PP、ABS和PP板材等 管材:PVC管材、交联聚乙烯管材等 薄膜 双向拉伸聚丙烯薄膜等
图6 反应性挤出机
反应性挤出成型
图7 螺杆
螺杆的主要作用? 传输 搅拌 混合、剪切
反应性挤出成型
控制因素:
反应单体活性 相容性 脱挥性 散热性
反应挤出的优点
①螺杆挤出机可根据需要设置多处加料口,根据各种化学反应 自身的规律,沿螺杆的轴向将物料按一定程序和最合适的方式 分步加入,可以控制化学反应按预定的顺序和方向进行。 ②可以精确控制反应温度,并可根据化学反应本身的特点和规 律,通过温度沿螺杆轴向的分布和分布梯度来控制反应进行的 方向、速度和程度,以减少副反应的发生。 ③螺杆挤出机的混合能力很强,提高了反应物料体系的混合均 匀程度。 ④通过调整螺杆转速和螺杆的几何结构,可以控制反应物料的 停留时间和停留时间分布。反应挤出比较适合于反应速度较快 的化学反应。 ⑤副反应较少,选择性较好。
聚合物反应性加工
聚合物加工过程中,使 不相容的共混物组份之间产生化学反应,从而实现共混改 性的方法,即共混物在成型过程中完成化学改性。
优点
工艺简便、经济 产品生产周期大大缩短 可以对原有聚合物进行改性
聚合物反应性加工的定义
传统的加工方法:8h
聚氯乙烯管道
相关文档
最新文档