大体积混凝土结构裂缝成因及预防措施
大体积混凝土结构裂缝产生的原因及其预防措施
防 范 于 未 然的 作 用。
【 关键词 】 大体积混凝土; ; 防措施 裂缝 预
O 引 言 . 混凝 土因其取材 广泛 、 价格 低廉 、 压强度 高 、 浇筑成各 种形 抗 可 状, 并且耐火性好 、 不易风化 、 护费用低 . 养 成为 当今世 界建筑结构 中 使用最广泛的建筑材料。混凝 土最主要的缺点是抗拉能力差 , 容易开 裂 大量 的工程实践和理论分析表 明. 几乎所有 的混凝土构件均是带 裂缝工作 的 , 只是有些裂缝很细 , 甚至 肉眼看不见 (0 5 m , < . m ) 一般对 0 结 构的使 用无 大的危害 , 可允许其存 在 : 有些裂缝在使 用荷载或外界 物理 、 化学因素的作用下 , 不断产生 和扩展 , 引起混凝 土碳 化 、 保护层 剥落、 钢筋腐蚀 , 使混凝土 的强度 和剐度受到削弱 . 耐久性 降低 , 严重 时甚至发生垮塌事故 , 危害结构 的正常使用 . 必须加以控制 。 尤其对于 大体积混凝土而言 . 由于混凝土的体积大 . 聚集的水化热大 . 在混凝土 内外散热不均匀 以及受到内外 约束 的情况时 . 混凝土 内部会产生较大 的温度应力 . 导致裂缝产生 , 为结构埋下 了严重的质量隐患 。 国现行 我 公路 、 铁路 、 建筑 、 水利等部 门设计规范均采用限制构件裂缝宽度的办 法来保 障混凝土结构的正常使用
121 日 照 ..
光照到的部分, 温度 明显高于其它部位 . 温度梯 度呈非线形分布 。 由于受到 自身约束作用 . 导致局部拉应力较大 . 出现裂缝 。 1. . 2骤然降温 2 突降大雨 、 冷空气侵袭 、 落等可导致结 构外表面温度突然下降 . 日 但 因内部温度变化相对较慢而产生温度梯度 1- . 3水化热 2 出现在施工过程 中. 大体积混凝土 ( 厚度超过 20米 ) . 浇筑 之后 由 于水泥水化放热 . 内部温度很高 . 致使 内外温差太大 . 致使表面出现裂 缝。 施工 中应根据实际情况 , 尽量选择水化热低的水 泥品种 , 限制水泥 单位用量 , 减少骨料 人模 温度 , 降低 内外温差 , 并缓慢 降温 , 必要时可 采用循环冷却系统进行 内部散热 . 或采用薄层连续浇筑 以加快散热 1. . 4蒸汽养护或冬季施工时施工措施不当 . 2 混凝土骤冷骤热 . 内 外温度不均 . 易出现裂缝 1 . 3混裂缝是最常见的 1大体 积混凝土常见裂缝的种类及预防措施 . 塑性收缩和缩水收缩( 干缩 ) 是发生混凝土体积 实 际上 . 大体积混凝土结构 裂缝 的成因复杂而繁 多 . 甚至多种 因 在混凝土收缩种类中 . 另外还有 自生收缩和炭化收缩 素相互影 响. 但每一条裂缝均有其产生 的一种或几种主要原 因 混凝 变形 的主要原因 . 1 . 塑 性 收 缩 .1 3 土裂缝 的种类 , 就其产生的原因 , 大致可划分如下几种 : 发生在施工过程中 、 混凝土浇筑后 4 5小时左右 . ~ 此时水泥水化反 11 .荷载 引起的裂缝及预防措施 分子链逐渐形成 , 出现泌水和水分急剧蒸 发, 混凝土失水收缩 , 大体积混凝土在常规静 、 动荷 载及次应力下产生 的裂缝称荷载裂 应激烈 . 同时骨料因 自重下沉 . 因此 时混凝土尚未硬化 . 称为塑性收缩。塑性收 缝. 归纳起来 主要有直接应力裂缝 、 次应力裂缝两种 。 可达 1 %左右 在骨料下沉过程 中若受到钢筋阻挡 . 直 接应力裂缝是指外荷载引起 的直接应力产生的裂缝 。 裂缝产生 缩所产生量级很大. 便形成沿钢筋方向的裂缝 。 在构件竖向变截面处如 T 箱梁腹板 与顶 梁、 的原 因有 : 底板交接处 . 因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。 111设计计算 阶段 .. 1. -2缩水收缩( 3 干缩 ) 结构 计算 时不计算或部分漏算 : 计算模型不合理 ; 结构受力假设 混凝土结硬以后 . 随着表层水分逐步蒸发 . 湿度逐步降低 , 混凝土 与实际受 力不符 ; 荷载少算或漏算 ; 内力与配筋计算错误 ; 结构安全 系 称为缩水收缩( 干缩 ) 因混凝土表层水分损失快 , 。 内部损失 数不够 结构设计时不考虑施工的可能性 : 设计断面不足 : 筋设置偏 体 积减小 . 钢 因此产生表面收缩大 、 内部 收缩小 的不均匀收缩 , 表面收缩变形受 少或布置错误 ; 结构刚度不足 ; 构造处理不 当; 设计图纸交代不 清等 。 慢. 到内部 混凝土的约束 . 致使表 面混 凝土承受拉力 . 当表 面混凝土承受 11 .. 工 阶 段 2施 便 不加限制地堆放施工机具 、 材料 : 了解预制结构结构受力特点 , 拉力超过其抗拉强度时 . 产生收缩裂缝 不 1 . 基 础 变形 引起 的裂 缝 及 预 防 措 施 4地 随意翻身、 吊、 起 运输 、 安装 ; 不按设计 图纸施工 , 自更改结构施工顺 擅 由于基础竖 向不均匀沉降或水平方 向位移 . 使结构 中产生 附加应 序. 改变结 构受力模式 ; 不对结构做机器振动下 的疲劳强度验算等。 力. 超出混凝土结构的抗拉能力 . 导致结构开裂 。 基础不均匀沉降的主 113使用阶段 ._ 实际作用荷载超 出设计载荷 如桥梁 中超 出设计载荷的重型车辆 要 原 因有 : () 1地质勘察精度不够 、 试验 资料不准。 在没有充分掌握地质情况 过桥; 受车辆 、 船舶的接触 、 撞击 ; 生大风 、 发 大雪 、 地震 、 爆炸等 。厂房 施工 , 这是造成地基不 均匀沉降 的主要原因。 中过大的吊车动力荷载作用于 吊车梁上 。 以及高层建筑结构在使用 时 就设计 、 () 2 地基地质差异太大 受到突发其来 的荷载作用 , 地震 撞击等等( 例如美国的 9 1 事件 ) ・1 。 () 3结构荷载差异太大。 在地质情况 比较一致条件下 , 各部分 基础 次应 力裂缝是指 由外荷载引起 的次生应力产生裂缝 裂缝产生 的 荷载差 异太大时 . 有可能引起不均匀沉降 。 原因有 : () 4 结构基础类型差别大。 在设 计外荷 载作用下 . 由于结构物的实际工作状态 同常规计算有 15 .钢筋锈蚀引起的裂缝及预防措施 出入或计算不 考虑. 从而在某些部位引起 次应 力导致结 构开裂 例如 由于混凝土质量较差或保护层厚 度不足 . 混凝 土保 护层受 二氧化 两铰拱桥拱脚设计时常采用布置 “ ” x 形钢筋 、 同时削减该处断 面尺寸 碳侵蚀炭化至钢筋表 面, 钢筋周围混凝土碱 度降低 , 由于氯 化物 使 或 的办法 没计铰 . 理论计算 该处不会存在 弯矩 , 但实际该铰仍然 能够抗 介入 . 钢筋周围氯离子含量较高 . 均可引起钢筋 表面氧化膜破 坏 , 钢筋 以至出现 裂缝而导致钢筋锈蚀 中铁离子与侵入到混凝土中的氧气和水分发生锈 蚀反应 . 锈蚀 物氢 其 1 . 2温度变化引起的裂缝及预 防措施  ̄倍 从 混 凝土具有热胀 冷缩 性质 .当外部环境或 结构内部温度发生 变 氧化铁 体积比原来增长约 2 4 . 而对周 围混凝 土产生膨胀应力 , 剥离 , 沿钢筋纵 向产生裂缝 , 并有锈迹渗 到混 化, 混凝土将发生变形 , 若变 形遭到约束 , 则在 结构内将产生应力 , 当 导致保 护层混凝土开裂 、 由于锈蚀 . 使得钢筋有效 断面面积减小 , 钢筋与混凝土握裹 磁力超 过混凝 土抗拉强度时 即产生温度裂缝 大体积混凝土 由于其 体 凝土表面 力削弱 . 结构承载力下降 , 并将 诱发其它形式 的裂缝 , 加剧钢筋锈蚀 , 积大 . 温度作用 面也较大 . 故在温度作 用下这种现象更为明显。 在某 些 高层结 构和大跨径桥梁 中. 温度应力可以达到甚 至超 出活载应 力。温 导致结构破坏
大体积混凝土裂缝成因及控制措施
大体积混凝土裂缝成因及控制措施水利建设工程中大体积混凝土结构比较多,混凝土重力坝、大型船闸、混凝土挡墙等建筑物,虽然设计时都分成好多块,但每一块都仍然有几百方,甚至上千方混凝土。
工程实践证明,大体积混凝土施工难度较大,混凝土产生裂缝的机率较多,稍有差错,将会造成无法估量的损失。
为了提高工程质量,降低不必要的经济损失,我们一定要减少和控制裂缝的的出现。
从裂缝的形成过程可以看到,混凝土特别是大体积混凝土之所以开裂,主要是混凝土所承受的拉应力大于混凝土本身的抗拉强度的结果。
因此为了控制大体积混凝土裂缝,就必须从提高混凝土本身抗拉强度性能和降低拉应力(特别是温度应力)这两方面综合考虑。
抗拉强度主要决定于混凝土的强度等级及组成材料,要保证抗拉强度关键在于原材料的优选和配合比的优化(混凝土强度等级设计已经确定),由于混凝土选用地材,从经济角度来考虑,原材料优化的空间相对较小,所以降低拉应力是控制混凝土裂缝的有效途径。
而降低拉应力主要通过减少温度应力和沉缩应力来控制温度裂缝和沉缩裂缝。
一、温度裂缝1、温度裂缝产生的主要原因:一是由于混凝土结构内外温差较大引起的。
在混凝土结构硬化期间,水泥释放大量的水化热,如果散热不及时,内部温度就会不断上升,使混凝土表面和内部温差变大。
混凝土内部膨胀高于外部,此时混凝土表面将受到很大的拉应力,而混凝土的早期抗拉强度很低,因而出现温度裂缝。
这种温度应力一般在表面处较大,离开表面就很快减弱,因此裂缝只在接近表面的范围内发生,表面层以下结构仍保持完整。
二是由于结构温差较大,受到外界的约束引起的,当大体积混凝土浇筑在约束地基(例如桩基)上时,又没有采取特殊措施降低、放松或取消约束,或根本无法消除约束,则易发生深度、甚至是贯穿的温度裂缝。
2、温度裂缝形成的过程:一般(认为)分为三个时期:一是初期裂缝—就是在混凝土浇筑的升温期。
由于水化热,混凝土浇筑后2~3天内温度急剧上升,内热外冷引起的“约束力”超过混凝土抗拉强度引起裂缝。
大体积混凝土温度裂缝产生原因和防治措施
大体积混凝土温度裂缝产生原因和防治措施在现代建筑工程中,大体积混凝土的应用越来越广泛。
然而,大体积混凝土在施工过程中容易出现温度裂缝,这不仅会影响混凝土结构的外观,还可能降低其承载能力和耐久性,给工程质量带来隐患。
因此,深入了解大体积混凝土温度裂缝产生的原因,并采取有效的防治措施,具有重要的现实意义。
一、大体积混凝土温度裂缝产生的原因1、水泥水化热的影响水泥在水化过程中会释放出大量的热量,这是大体积混凝土内部温度升高的主要原因。
由于混凝土的导热性能较差,热量在内部积聚不易散发,导致混凝土内部温度迅速上升,而表面温度相对较低,形成较大的内外温差,从而产生温度应力。
当温度应力超过混凝土的抗拉强度时,就会产生裂缝。
2、混凝土的收缩变形混凝土在硬化过程中会发生收缩,包括自收缩、干燥收缩和碳化收缩等。
大体积混凝土由于体积较大,表面水分蒸发较快,内部水分不易散失,导致表面收缩较大,内部收缩较小,从而产生拉应力,引起裂缝。
3、外界气温变化的影响在混凝土施工过程中,外界气温的变化对混凝土的温度有着直接的影响。
特别是在混凝土浇筑初期,混凝土的强度较低,当外界气温骤降时,混凝土表面的温度迅速下降,而内部温度变化相对较小,从而产生较大的温度梯度,引起温度裂缝。
4、约束条件的影响大体积混凝土在浇筑过程中,通常会受到基础、钢筋、模板等的约束。
当混凝土因温度变化而产生膨胀或收缩时,由于受到约束而无法自由变形,从而产生约束应力。
当约束应力超过混凝土的抗拉强度时,就会产生裂缝。
5、施工工艺的影响施工工艺不当也是导致大体积混凝土温度裂缝产生的原因之一。
例如,混凝土的搅拌、运输、浇筑、振捣等环节控制不当,可能会导致混凝土的均匀性和密实性差,从而影响混凝土的强度和抗裂性能。
此外,混凝土的养护措施不到位,如养护时间不足、养护温度和湿度控制不当等,也会增加裂缝产生的风险。
二、大体积混凝土温度裂缝的防治措施1、优化混凝土配合比(1)选用低水化热的水泥品种,如粉煤灰水泥、矿渣水泥等,以减少水泥水化热的产生。
大体积混凝土裂缝产生原因及控制措施
大体积混凝土裂缝产生原因及控制措施大体积混凝土造粒的裂缝是指混凝土某一部分中的裂缝,该部分的尺寸比一般的钢筋混凝土结构大得多。
这样的混凝土结构由于自重和重载等的压力,受到了较大的拉应力,容易产生裂纹,影响其使用寿命和结构性能。
本文将探讨大体积混凝土裂缝的产生原因及控制措施。
一、产生原因:1. 温度变化:混凝土构造物受季节变化和日夜变化的影响,会发生温度变化。
由于温度的变化会导致混凝土膨胀和收缩,因此在膨胀和收缩的过程中,如果其能力和约束力不匹配,就会产生应力,从而产生裂缝。
2. 湿度变化:混凝土中水的变化也是裂缝的一个重要原因。
如果混凝土湿度变化过大,会导致水的蒸发和吸收。
水分的吸收会造成混凝土的膨胀,而水的蒸发会使混凝土干缩。
如果混凝土不能够吸收或释放水分,就容易产生裂缝。
3. 材料的反应:如果混凝土中的一些化学受潮或自发燃烧,会在混凝土中产生碱性物质的反应,从而导致混凝土的膨胀和收缩,产生裂缝。
4. 应力集中:混凝土制造和施工过程中涉及到的应力分布是不均匀的,某些区域容易出现应力集中。
应力集中区域因受到超负荷应力而破裂成裂缝。
5. 其他原因:混凝土中存在的空气孔隙,坍落度不合适,水灰比偏高或者混凝土受到的外力等都可能导致裂缝的产生。
二、控制措施:1. 选用合适的混凝土比例和材料:首先,为了避免混凝土的裂缝,应该选择合适的混凝土比例和材料,确保混凝土的坍落度、水灰比和密实度达到最佳水平。
2. 加强混凝土的质量控制:加强混凝土的质量控制,确保混凝土的制作和浇筑过程中不出现任何失误。
结实,未受到外力损害的混凝土在日常使用中容易受到外力的损害而破裂。
3. 选择正确的施工方法:为了避免因施工不当而造成混凝土裂缝,应该根据所建造的混凝土结构采用合适的施工方法,在施工过程中控制混凝土软化或者干缩时间,以确保结构体的完整性。
4. 控制场地温度和湿度:为了控制混凝土结构中水分和温度的变化,在施工过程中需要控制场地的温度和湿度。
大体积混凝土结构裂缝产生的原因及控制措施
水泥 的水化热 随龄期的增长 而增长 ,大部 分发生 在 3 d龄 期之 前 , 3d一般 可 以放 出 2 8 / 2 g左右 的热 量 , 以放 J 7d可
出 2 1l 6 g左右的热量 , J , 如果 以水泥用 量 3 0 vm 来计算 , 5 k ̄
水 利 工 程 大体 积 混 凝 土 指 的 是 最 小 断 面 尺 寸 大 于
1n 以上 的混凝 土结 构 , 普通 钢筋 混凝 土相 比, 有 结 l 与 具 构厚 。 体形 大 、 混凝 土数 量 多 、 程 条件 复 杂 和施 工技 术 工 要求 高的特点 。
1 裂缝产生的原因
【 关键词 】 大体积
混凝 土 裂缝
控制
水利 工程 大体 积混 凝 土结构 在施 工期 间 ,外界 气温 的变 化 对 防止 大 体 积混 凝 土 裂 缝 的产 生 起 着很 大 的影
响 。混 凝土 内部 的温度是 由浇筑 温度 、 水泥水化 热 的绝热 温 升和结 构 的散热 温度 等各种 温度 叠加 之 和组成 。浇筑 温 度与 外界气 温有 着直 接关 系 , 界 气温 愈高 , 外 混凝 土 的 浇筑 温度 也就会 愈 高 :如果 外 界温 度降 低则 又会增 加大 体积混 凝土 的内外 温度梯度 。如果外 界温度 的下降过 快 , 会造成 很大 的温度应 力 . 极其容易 引发 混凝土 的开裂 。另
使用期 间 , 旦 出现很难补 救 。 一
件、 钢筋等 ) 在混凝土 中产生 拉应力 , 得混凝土开裂 。 将 使
( )外 界 气 温 湿 度 变 化 的影 响 。 3
4 2
大体积混凝土温度裂缝防治措施
大体积混凝土温度裂缝防治措施一、背景介绍在混凝土的浇筑过程中,由于温度的变化,往往会出现温度裂缝。
对于大体积混凝土结构来说,这种情况更加常见。
温度裂缝不仅影响美观,还会降低混凝土的强度和耐久性。
因此,在大体积混凝土结构中,必须采取有效的措施来防止温度裂缝的发生。
二、原因分析1. 混凝土浇筑时内部水分蒸发导致收缩;2. 大体积混凝土结构自身重量压力;3. 气温变化引起的热胀冷缩。
三、预防措施1. 控制水分含量:在混凝土浇筑前应进行充分的调配和搅拌,确保混合物均匀。
同时,应控制好水灰比和砂率等参数,以避免过多的水分蒸发导致收缩。
2. 合理设置伸缩缝:在大体积混凝土结构中设置伸缩缝是必要的措施之一。
通过设置伸缩缝,可以使混凝土结构在温度变化时有一定的伸缩空间,从而避免温度裂缝的发生。
3. 控制浇筑温度:在大体积混凝土结构的浇筑过程中,应控制好混凝土的温度。
一般来说,混凝土的浇筑温度应控制在20℃~30℃之间。
如果温度过高,则会导致混凝土内部产生较大的热胀冷缩变形,从而引起温度裂缝。
4. 采用降温剂:在大体积混凝土结构中,可以采用降温剂来控制混凝土的温度。
降温剂可以有效地降低混凝土内部的温度,从而避免因热胀冷缩引起的裂缝。
5. 加强养护:在大体积混凝土结构浇筑完成后,必须进行充分的养护。
养护时间应不少于28天,并且要保持适宜的湿润环境,以确保混凝土内部完全干燥和固化。
四、治理措施1. 填补温度裂缝:如果出现了温度裂缝,必须及时进行治理。
一般来说,可以采用填补的方式来修复温度裂缝。
填补材料应选择与原混凝土相同的材料,并且要充分保证填补材料与原混凝土的粘结性。
2. 加固结构:在大体积混凝土结构中,如果出现了较大的温度裂缝,可能会影响结构的安全性。
这时,可以采用加固措施来增强结构的承载能力。
加固方法可以根据具体情况选择,比如设置加筋板、加固梁柱等。
五、总结针对大体积混凝土结构中出现的温度裂缝问题,必须从预防和治理两个方面来进行措施。
简述大体积混凝土结构产生裂缝的主要原因及浇筑方案
简述大体积混凝土结构产生裂缝的主要原因及浇筑方案摘要:一、大体积混凝土结构裂缝产生的主要原因1.温度变化2.收缩变形3.应力集中4.施工不当二、浇筑方案1.选择合适的浇筑时间2.合理设计混凝土配合比3.浇筑过程中的温度控制4.施工后的养护措施正文:在大体积混凝土结构的建设过程中,裂缝问题是工程师们最为关注的问题之一。
裂缝的出现不仅影响结构的美观,更重要的是可能导致结构性能的下降,甚至引发安全隐患。
本文将对大体积混凝土结构裂缝产生的主要原因进行分析,并提出相应的浇筑方案,以期为混凝土结构施工提供参考。
一、大体积混凝土结构裂缝产生的主要原因1.温度变化:混凝土在浇筑、硬化、养护过程中,由于温度变化引起的膨胀和收缩,可能导致结构内部产生应力集中,从而引发裂缝。
2.收缩变形:混凝土在硬化过程中,水分蒸发导致体积收缩,若收缩变形受到约束,将产生裂缝。
3.应力集中:混凝土结构在承受荷载过程中,可能由于局部构造原因,如钢筋配置不均、转角处过度圆滑等,导致应力集中,从而引发裂缝。
4.施工不当:混凝土浇筑、养护过程中,施工措施不当也可能导致裂缝产生,如浇筑速度过快、养护不到位等。
二、浇筑方案1.选择合适的浇筑时间:避免在高温、干燥、大风等恶劣天气条件下进行混凝土浇筑,以减小温度变化和收缩变形对结构的影响。
2.合理设计混凝土配合比:根据工程特点和环境条件,优化混凝土配合比,确保混凝土的抗裂性能。
3.浇筑过程中的温度控制:采用预冷措施,如降低混凝土入模温度、使用冷却水等,以降低混凝土温度应力。
4.施工后的养护措施:及时对混凝土结构进行养护,确保混凝土充分湿润,以减小收缩裂缝的产生。
综上所述,要预防大体积混凝土结构的裂缝问题,需从多方面入手。
通过合理选择浇筑时间、设计混凝土配合比、控制浇筑过程中的温度以及加强施工后的养护措施,可以降低裂缝产生的风险。
大体积混凝土结构裂缝控制措施(全文)
大体积混凝土结构裂缝控制措施(全文)正文:一.前言大体积混凝土结构裂缝控制是建筑工程中一个重要的技术问题。
本文旨在介绍大体积混凝土结构裂缝控制的措施。
二.裂缝形成原因1. 混凝土收缩:混凝土在硬化过程中会发生收缩,导致裂缝的形成。
2. 温度变化:混凝土在受到温度变化时会发生膨胀或收缩,导致裂缝的形成。
3. 荷载作用:混凝土结构在承受荷载时会发生变形,若超过极限值,会引起裂缝的形成。
三.裂缝控制措施1. 控制混凝土配合比:合理控制混凝土的水灰比、骨料含量等,以减少混凝土收缩引起的裂缝。
2. 使用抗裂剂:在混凝土中加入适量的抗裂剂,能够有效减少混凝土收缩引起的裂缝。
3. 控制温度变化:采取隔热、保温等措施,以降低混凝土受到温度变化的影响。
4. 加强结构设计:合理设计结构的受力形式和构造,以减小荷载作用引起的变形和裂缝。
5. 定期检测维护:对大体积混凝土结构进行定期检测和维护,及时发现和修复裂缝,以防止裂缝的扩大和影响结构的安全性。
四.附件本文档涉及的附件包括:1. 大体积混凝土结构设计图纸;2.抗裂剂使用手册;3. 混凝土配合比试验报告。
五.法律名词及注释1. 混凝土收缩:指混凝土在硬化过程中,由于体积变化而引起的收缩现象。
2. 水灰比:指混凝土中水的含量与水泥含量的比值,反映混凝土的流动性和强度。
3. 适量:指根据混凝土的使用要求,加入的抗裂剂的合理用量。
正文:一.引言本文档旨在提供大体积混凝土结构裂缝控制的全面解决方案。
包括裂缝形成原因及相应的控制措施等内容,以期提高混凝土结构的稳定性和可靠性。
二.裂缝形成原因混凝土结构裂缝的形成原因主要包括以下几点:1. 混凝土收缩:混凝土在硬化过程中会产生收缩,造成内部应力增大,引发裂缝。
2. 温度变化:混凝土结构在受到温度变化时,会出现体积膨胀或收缩,从而导致裂缝的发生。
3. 荷载作用:混凝土结构在承受荷载时,会发生变形,若超过结构的承载能力,就会出现裂缝。
浅析大体积混凝土结构裂缝的产生原因和控制措施
的比热最 大 , 但它 的重 量在 每立方米 混凝 土中 占一小部分 ,因此降低 混凝土出机温 度 , 有效的办法是 降低石子的温 度 ,可对骨料进行喷 其 水预冷( 用地下水冲洗) 或 。采用拌合水 中加冰屑或地下 水 , 将骨料 或 用水冲洗 等 ,降低混凝 土的入模温 度。运输混凝土和浇筑时要加盖防 日晒 ,减少辐射热 ,以降低混凝土搅拌和浇筑温度 。浇筑时可分层 , 厚度控制 在3 c 0m,以加快热 量的散发 ,并使 温度分 布较均匀 ,及时 抽走泌水 ,同时便于振捣密实 ,以提高弹性模量 。
可泵性 ,降低混凝土 的水化热 。掺加粉煤 灰后 ,还 改善 了混凝 土的后 期 强度 , 但早期抗拉强度及早期极 限拉 伸值 均有 少量降低。因此 ,对 早期抗裂要求较 高的工程 ,粉煤灰掺 入量应 减少 一些 ,以防 止表面出 现细微裂缝 。 ( 掺 入减水剂,缓凝 剂等 ,降低水灰 比,降低水化热 。 3) ( 4)采用粒径较 大 ,级配 良好 的石子和 中粗砂 。大积 混凝土
应力也较小 。随着混凝土龄期 的增长 ,弹性模量随之增高 ,对混凝土
内部温降收缩的约束也就愈 大,以致 产生很 大的拉应 力 ,当混凝 土的 抗 拉强度不足以抵抗这种拉 应力时 ,便开始出现 温度裂缝 。
( )约束条件与温 度裂缝的关 系。约束条件是指 各种结构物在 2 变形时受到约束而阻碍其变形 ,约 束种类 分外约束和内约束两 类。外 约束指结构物的边界条件如 支座或其它 外界因素对结构变形 的约束 ; 内约束是指较大断面结 构中 ,由于 内部非 均匀的温 度及收缩 ,各质点 变形不均 匀而产生的相互约 束。大体 积混凝 土由于温度 变化会产 生变 形 ,而这种变形 又受到约束 ,便产生 了应 力 ,应 力超过 允许值便 可能 产生裂缝 . ( )外界气温变化 的影响 。大体 积混凝土在施 工阶段 ,受 外界 I { 气温变化 的影 响是显而 易见的。因为外界气 温愈 高 ,混凝 土的浇筑温 度也愈高 ,若气温骤 降 , 使混凝 土内外温度梯度增大 ,这对大体积 也 混凝土是极为不 利的。混凝 土内部温 度是 水泥水化 热的温升 、浇筑温 度和结构物 的散热温 降等各种温度的叠加 ;而温度应力则是由温差所 引起的变形造成 的,温 差愈大,温度 应力也就 愈大。所 以 , 制大体 控 积混凝土体 内外温差就显得更为重要 。
大体积混凝土裂缝产生原因及控制措施
大体积混凝土裂缝产生原因及控制措施大体积混凝土结构在使用过程中,常常出现裂缝现象,这不仅影响了建筑物的外观,更重要的是可能影响结构的安全性和耐久性。
了解大体积混凝土裂缝产生的原因,并采取相应的控制措施显得尤为重要。
1. 原材料问题混凝土质量的差异可能导致混凝土中存在空鼓等问题,这会在使用过程中引发裂缝。
材料中含有过多的气孔和流动性差也会增加混凝土的收缩性,从而加剧了混凝土裂缝的产生。
2. 温度变化混凝土在硬化过程中会发生收缩,而环境温度的变化也会对混凝土产生影响。
当混凝土中的收缩和环境温度的变化不匹配时,就会导致混凝土内部的应力过大,从而引发裂缝。
3. 设计缺陷如果在混凝土结构的设计和施工中,存在设计缺陷或者施工质量不合格的情况,也有可能导致混凝土结构内部出现裂缝。
4. 荷载变化混凝土结构在使用过程中,受到荷载的作用,比如温度荷载、湿度荷载、机械荷载等,这些荷载的变化都有可能引发混凝土结构内部的应力变化,从而导致裂缝的产生。
5. 施工工艺混凝土结构的施工工艺不当也是混凝土裂缝产生的一个重要原因。
比如浇筑过程中的振捣不足、养护不到位等都可能导致混凝土结构内部的空鼓和裂缝。
以上就是大体积混凝土裂缝产生的一些主要原因,深入了解这些原因,才能更好地采取相应的控制措施。
1. 选材在混凝土的选材过程中,应该选择质量好、掺合比适宜的原材料。
并且要求混凝土的含水量和流动性要符合设计要求,这样有利于减少混凝土中的空鼓和气孔,从而减少裂缝的产生。
2. 设计优化在混凝土结构的设计阶段,应该充分考虑混凝土的收缩性和环境温度变化对混凝土结构的影响,从而在设计阶段就采取相应的措施来减少混凝土结构内部的应力集中,减少裂缝的产生。
4. 预留伸缩缝在混凝土结构设计中,应该根据结构的实际情况,合理设置伸缩缝。
伸缩缝的设置可以有效地减少混凝土结构内部因为温度变化和应力变化而引发的裂缝。
5. 养护混凝土在硬化过程中,需要进行适当的养护。
大体积混凝土裂缝产生原因及其预防控制措施
大体积混凝土裂缝产生原因及其预防控制措施一、大体积混凝土裂缝类型及裂缝产生原因分析大体积混凝土结构裂缝主要包括干燥收缩裂缝、塑性收缩裂缝、自身收缩裂缝、安定性裂缝、温差裂缝、碳化收缩裂缝等。
1.收缩裂缝。
影响混凝土收缩的主要因素主要是混凝土中的用水量、水泥用量及水泥品种。
混凝土中的用水量和水泥用量越高,混凝土收缩就越大。
水泥品种对干缩量及收缩量也有很大的影响,一般中低热水泥和粉煤灰水泥的收缩量较小。
自身收缩是混凝土收缩的一个主要来源。
自身收缩主要发生在混凝土拌合后的初期。
塑性收缩也是大体积混凝土收缩一个主要来源。
出现裂缝以后,混凝土体内的水分蒸发进一步加快,于是裂缝迅速扩展。
所以在这种情况下混凝土浇筑后需要及早覆盖养生。
2.温差裂缝。
混凝土内部和外部的温差过大会产生裂缝。
温差裂缝产生的主要原因是水泥水化热引起的混凝土内部和混凝土表面的温差过大。
特别是大体积混凝土更易发生此类裂缝。
温差的产生主要有三种情况:第一种是在混凝土浇筑初期,这一阶段产生大量的水化热,形成内外温差并导致混凝土开裂,这种裂缝一般产生在混凝土浇筑后的第3天(升温阶段)。
另一种是在拆模前后,这时混凝土表面温度下降很快,从而导致裂缝产生。
第三种情况是当混凝土内部温度高达峰值后,热量逐渐散发而达到使用温度或最低温度,它们与最高温度的差值即内部温差。
这三种温差都会产生裂缝,但最严重的是水化热引起的内外温差。
3.安定性裂缝。
安定性裂缝表现为龟裂,主要是由于水泥安定性不合格而引起。
二、裂缝的防治措施1.设计措施。
(1)精心设计混凝土配合比。
在保证混凝土具有良好工作性的情况下,应尽可能降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出“高强、高韧性、中弹、低热和高抗拉值”的抗裂混凝土。
(2)增配构造筋,提高抗裂性能。
应采用小直径、小间距的配筋方式,全截面的配筋率应在0.3%~0.5%。
大体积混凝土结构裂缝成因及预防措施
现代建筑中我们时常会涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等。
它主要的特点就是体积大:混凝土浇注量大于100平方米;长、宽、高任意一边不小于1米。
大体积混凝土水泥水化热释放比较集中,内部温升比较快。
混凝土内外温差较大时,会使混凝土产生温度裂缝。
其他因素也会导致大体积混凝土出现裂缝,影响结构安全和正常使用。
所以必须从根本上分析它,来保证施工的质量。
下面就大体积混凝土结构裂缝成因及预防措施简要论述如下1. 大体积混凝土结构裂缝的概念混凝土结构在建设和使用过程中出现不同程度、不同形式的裂缝,这是一个相当普遍的现象。
大体积混凝土结构出现裂缝更普遍。
在全国调查的高层建筑地下结构中,底板出现裂缝的现象占调查总数的20%左右,地下室的外墙混凝土出现裂缝的现象占调查总数的80%左右。
所以,混凝土结构的裂缝是建筑工程长期困扰的一个技术难题,一直未能很好地解决。
国内外工程技术界都认为,规定钢筋混凝土结构的最大裂缝宽度主要是为了保证钢筋不产生锈蚀。
不同的规范中有关允许最大裂缝宽度的规定虽不完全一致,但基本相同。
如在正常的空气环境中裂缝允许宽度为0.3~0.4mm;在轻微腐蚀介质中,裂缝允许宽度为0.2~0.3mm;在严重腐蚀介质中,裂缝允许宽度为0.1~0.2mm。
但对建筑物的抗裂缝要求过严,必将付出巨大的经济代价。
科学的要求是将其有害程度控制在允许范围之内。
根据国内外的调查资料,工程实践中结构物的裂缝原因,属于由变形变化(温度、湿度、地基变形)引起的约占80%以上,属于荷载引起的约占20%左右。
在大体积混凝土工程施上中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。
因此,控制混凝土浇筑块体因水化热引起的温升、混凝土浇筑块体的内外温差及降温速度,防止混凝土出现有害的温度裂缝(包括混凝土收缩)是其施工技术的关键问题。
2. 大体积混凝土裂缝的原因大体积混凝土结构裂缝的发生是由多种因素引起的。
大体积混凝土裂缝原因及控制措施
大体积混凝土裂缝原因及控制措施大体积砼产生裂缝的原因是由于砼内部水化热作用产生的温度与砼表面温度存在着温差,势必产生温度应力,而温度应力与温差成正比,当这种温度应力超过砼抗拉强度时就会产生裂缝。
因此,防止砼出现裂缝的关键就是控制砼内部与表面的温差。
砼因温度应力而产生的裂缝分为两个阶段:第一阶段是因水泥水化热使砼内部温度升高,而在升温阶段砼内外温差过大,造成裂缝;第二阶段是砼内部温度达到最高后,砼因表面散热(或缩水)过快而产生较大的温降差,造成裂缝。
砼内部因水化热而温度增大达到最大值的时间为砼浇筑后第三天。
这些裂缝大致可分为两种:1、表面裂缝:大体积混凝土浇筑后,水泥产生大量水化热,使混凝土的温度上升,但由于混凝土内部和表面的散热条件不同,因而中心温度高表面温度低,形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当这个拉应力超过混凝土的抗拉强度时,混凝土表面就会产生裂缝。
2、贯穿裂缝:大体积混凝土浇筑初期,混凝土处于升温阶段,弹性模量很小,由变形所引起的应力很小,故温度应力一般可忽略不计,但是过了数日,混凝土逐渐降温,这时温差引起的变形加上混凝土多余水分蒸发时引起的体积收缩变形引起拉应力,当该拉应力超过;混凝土抗拉强度时,混凝土整个截面应会产生贯穿裂缝。
从影响结构安全的角度讲表面裂缝的危害性较小,而贯穿裂缝则会影响结构的正常使用,所以应采取措施避免表面裂缝,并坚决控制贯穿裂缝的开展。
裂缝给工程带来不同程度的危害,因此如何进一步控制温度变形裂缝的开展,是该工程大体积混凝土构件施工中的一个重要课题。
由于大体积混凝土施工的条件比较复杂,施工情况各异,再加上混凝土原材料的材质各向异性较大,且混凝土由各种非均质材料组成,它的破坏很复杂,在施工过程中控制温度变形裂缝,是涉及材料组成和物理力学性能及施工工艺等学科的综合性问题。
要采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝的展开。
3、大体积混凝土裂缝产生的规律根据大体积砼因水化热升温和降温阶段砼内部的应力变化,表面裂缝和收缩裂缝的内在联系及产生的原因,大体积混凝土裂缝产生的规律有以下几点:(1)温差和收缩越大,越容易开裂,裂缝越宽、越密。
大体积混凝土裂缝产生原因及措施分析
大体积混凝土裂缝产生原因及措施分析大体积混凝土裂缝是指在混凝土结构中出现的较宽较长的裂缝。
这些裂缝不仅影响美观,还可能降低结构的承载能力和耐久性,因此必须及时采取措施进行修复。
大体积混凝土裂缝产生的原因很多,主要可以归结为以下几个方面:1. 强度问题:如果混凝土配比设计不合理,材料的强度不足以承受荷载,就会导致混凝土出现裂缝。
2. 温度变化:混凝土在硬化过程中会发生体积变化,当温度变化较大时,会引起热应力或冷却收缩应力,导致混凝土裂缝的产生。
3. 施工质量问题:施工过程中,如果混凝土浇筑不均匀、养护不当或者震捣不充分,就会导致混凝土中存在缺陷,进一步引发裂缝。
4. 荷载变化:当混凝土结构承受荷载时,如果荷载过大或者荷载作用频繁,就会导致混凝土出现裂缝。
针对大体积混凝土裂缝问题,可以采取以下措施:1. 在混凝土配比设计时,应根据工程要求确定合适的配方,并确保混凝土的强度、流动性等性能满足要求。
2. 进行合理的温度控制,可以通过采用防护措施,如使用遮阳网、覆盖保温材料等防止混凝土过早脱水和快速冷却,从而减少温度应力的产生。
3. 在施工过程中,要加强对混凝土的养护,保持适当的湿度和温度,防止混凝土过早脱水和干缩,同时还要确保混凝土的均匀浇注和有效震捣。
4. 如果施工中出现了不可避免的荷载变化,可以通过在混凝土中添加合适的密封、抗裂剂等措施来提高混凝土的抗裂性能。
针对大体积混凝土裂缝产生的原因,可以通过优化混凝土配比、合理控制温度、加强施工质量管理以及选择合适的措施进行修复等方式来减少或避免裂缝的产生。
在混凝土结构设计和施工过程中,还应加强监测和检验,及时发现和处理裂缝问题,确保结构的安全和持久性。
大体积混凝土的裂缝控制(三篇)
大体积混凝土的裂缝控制大体积混凝土结构是指在施工过程中需要使用大量混凝土,如桥梁、大型建筑、水电站等。
由于大体积混凝土结构体积大、自重大,材料特性和环境条件的影响也更加复杂,在施工和使用过程中容易出现裂缝问题。
因此,正确的裂缝控制对于确保大体积混凝土结构的安全和可靠性非常重要。
一、裂缝形成的原因1. 温度变形温度变形是大体积混凝土结构产生裂缝的主要原因。
在凝固过程中,混凝土发生体积收缩,当收缩约束受阻时,就会出现温度变形。
此外,温度变化引起的混凝土体积伸缩也可能导致裂缝的产生。
2. 负荷变形负荷变形是指混凝土结构在受到外部荷载作用时发生变形,如弯曲、扭转、剪切等。
当负荷超过混凝土的承载能力时,就会产生裂缝。
3. 混凝土收缩混凝土收缩是指混凝土在水化反应过程中,水分蒸发使混凝土发生体积收缩。
这种收缩变形会导致混凝土内部产生应力,进而引起裂缝的形成。
4. 不均匀收缩不均匀收缩是指混凝土不同部位发生收缩的程度不一致,从而产生内部应力,进而引起裂缝。
5. 震动和震动变形大体积混凝土结构在振动或地震作用下,会产生动态变形,引起内部应力增大,从而产生裂缝。
二、裂缝控制方法1. 设计和施工合理的结构设计和施工方法是控制裂缝产生的首要措施。
在结构设计过程中,应通过合理的受力分析和结构布置,减少混凝土体积变形和应力集中,从而减少裂缝的产生。
在施工过程中,应严格按照设计要求和施工规范进行操作,如控制混凝土浇筑温度、采取适当的养护措施等。
2. 增加混凝土延性延性是指材料在受力后能够发生可逆变形的能力。
增加混凝土的延性可以通过增加掺合料、添加增塑剂等方式来实现。
延性的提高可以减少混凝土内部应力和应力集中,从而减少裂缝的产生。
3. 加强混凝土的抗温度变形能力可以通过选用低热水泥、混凝土铺装还未减少温度变形。
同时,在混凝土铺装过程中,辅以合理的浇筑和养护措施,减少温度梯度,提高混凝土的抗温度变形能力。
4. 增加混凝土的抗裂性能可以通过控制混凝土的水胶比、使用适量的细骨料和粗骨料、使用聚丙烯纤维增加混凝土的抗裂性能。
大体积混凝土结构温度裂缝成因及预防
灰水泥等 。 ( 2)在满足设计强度要求 的条件下 ,尽可能减少水 泥的 用量 ,以减少水泥 的水化热 。根据试验 ,每立方米混凝土减少 1 k 水 泥 ,其水化热将使混凝土 的温度相应 降低 1℃。 0g ( 在混凝土中掺加超细矿物粉 ( 3) 如粉煤灰 、 超细矿渣等 ) 代替部分水泥 ,减少水泥用量 。 ( 在混凝土 中掺入高效减水剂 ,提高混凝土强度 ,以减 4)
一
3 防止 大体 积混凝 土温 度裂缝 的主要措 施
为 了有效 地控 制大体 积混凝 土结构 温度裂缝 的出现 和发
展 ,必须从控制混凝土 的水化升温 、延缓降温速率 、改善约束
条件等方 面全面考虑 ,结 合实 际采取切实有效 的措施。 31 减 少 水 泥 用 量 。 降低 水 泥 水 化热 . () 1 合理选择混凝土的配合 比, 尽量选用水化热低和安定 性好的水 泥 ,如矿渣硅酸盐水泥 、火山灰质硅酸盐水泥 、粉煤
1 引言
高层 、 超高层建筑 以及高耸结构建筑物 、 大型设备的基础 , 都是截面尺寸较大 、较厚 的钢筋混凝土底板 ,属于大体积混凝
土结构。 混凝土是一种多元 、多相 、非匀质水泥基 复合材料 。} 凝 昆 土又是弹性模量较高而抗拉强度较低 的材料 ,在受 约束条件下 只要发生少许收缩 ,产生的拉应力往往会大于该龄期混凝土 的 抗拉强度 ,导致混凝土发生裂缝 。大体积混凝 土由于截 面尺寸 较大 ,在混凝土硬化期 间水泥水化过程 中所释放的水化热所产
科学之友
Fi do S i c m tus rn f c neA ae r e e
21 0 00年 3月 《 9) 0
大 体 积 混凝 土 结构 温 度裂 缝成 因及 预 防
刘 文 化 。 刘艳 玲
大体积混凝土产生裂缝的原因及预防措施
大体积混凝土产生裂缝的原因及预防措施混凝土结构物实体最小尺寸不小于1米的混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土称为大体积混凝土。
类似这种混凝土结构在现代建筑中时常涉及到,如高层楼房基础、大型设备基础、水利大坝等。
这种混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。
所以必须从根本上分析它,来保证施工质量。
标签:大体积混凝土裂缝;原因;预防措施1、大体积混凝土产生裂缝的原因1.1水泥水化热水泥在水化过程中要产生大量的热量,是大体积砼内部热量的主要来源。
由于大体积砼截面厚度大,水化热聚集在结构内部不易散失,使砼内部的温度升高。
当砼的内部与表面温差过大时,就会产生温度应力和温度变形。
温度应力与温差成正比,温差越大,温度应力也越大。
当砼的抗拉强度不足以抵抗该温度应力时,便开始产生温度裂缝。
这是大体积砼容易产生温度裂缝的主要原因。
1.2约束条件大体积钢筋砼与地基浇筑在一起,当早期温度上升时产生的膨胀变形受到下部地基的约束而形成压应力。
由于砼的弹性模量小,徐变和应力松弛度大,使砼与地基连接不牢固,因而压应力较小。
但当温度下降时,产生较大的拉应力,若超过砼的抗拉强度,砼就会出现垂直裂缝。
1.3外界气温变化大体积砼在施工期间,外界气温的变化对大体积砼的开裂有重大影响。
砼内部温度是由浇筑温度、水泥水化热的绝热温度和砼的散热温度三者的叠加。
外界温度越高,砼的浇筑温度也越高。
外界温度下降,尤其是骤降,大大增加外层砼与砼内部的温度梯度,产生温差应力,造成大体积砼出现裂缝。
因此控制砼表面温度与外界气温温差,也是防止裂缝的重要一环。
1.4砼的收缩变形混凝土的拌合水中,只有约20%的水分是水泥水化所必需的,其余80%要被蒸发。
砼中多余水分的蒸发是引起砼体积收缩的主要原因之一。
这种收缩变形不受约束条件的影响,若存在约束,就会产生收缩应力而出现裂缝。
2、控制大体积混凝土裂缝的预防措施2.1技术措施大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素,为了有效地控制有害裂缝的出现和发展,必须从控制混凝土的水化升温、延缓降温速率、减小混凝土收缩、提高混凝土的极限拉伸强度、改善约束条件和设计构造等方面全面考虑。
大体积混凝土结构裂缝机理及防治措施
与沉 陷情况有关。一般沿与地面垂直或呈 3。 ̄ 5 0 4 。角方向发
展。 大的沉陷裂缝 , 较 往往有一定的错位 , 裂缝宽度往往与沉降 大体积混凝土施工在现代建筑中时常涉及 到 , 如高层建筑 基础、 大型设备基础 、 混凝土坝等 。它们 主要 的特点 就是体积
大 , 凝土 浇筑 量在 10 混 0 m 以上 , 、 、 任意 一边 均 大于 长 宽 高
31 .2掺增强材料 .
在混凝土中掺人增强材料 ,可 以提高混凝土 的抗拉强度 。 如在混凝土 中掺入有机纤维 、 无机纤维 、 金属纤维 , 可明显提高
混凝土 的抗拉强度。 31 配温度筋 .3 .
③结构材料 越薄( 温度 梯度越大 , 承受均匀 温度收缩 的层
厚越小 )越容易开裂 ; ,
雪
渔措
摘 要 : 大体积混凝土结构的裂缝影响结构的安全及外观。 究其成因并采取有效 的防治措施 , 防大体积结构裂缝的产生、 研 对预 控制其发展是非常
重要的。
关键词 : 大体积混凝土 ; ; 裂缝 防治措施
中图分类号 : U 5 . T 75 7 文献标识码 : B 文章编号 :0 7 7 5 (0 0 — 0 6 0 1 0 - 3 92 1 )3 0 7 — 2 1
抗拉强度极 限时 , 混凝 土表面就会产生裂缝 , 这种裂缝多发 生 在混凝土施工中后期 。
大体积混凝 土水泥水化热释放集 中, 内部温 升较 快。在混
凝土 内外温差较 大时 ,温度应力大于混凝土 的抗拉强度时 , 会
使混凝土产生温度裂缝 。除温度应力外 , 他因素也会 导致 大 其 体积混凝土出现裂缝 , 如地基 的不均匀沉降 、 荷载分布不均等。 混凝土结构裂缝 的出现会影响结构安全和正常使用 , 所以
大体积混凝土裂缝产生的原因与防治措施探讨
大体积混凝土裂缝产生的原因与防治措施探讨本文结合工程施工实践, 重点对大体积混凝土裂缝成因及防治措施进行了探讨, 并从原材料、施工和养护三个方面阐述了防治砼裂缝的一般方法。
1 裂缝产生原因砼产生裂缝, 主要是因为非受力变形引起的, 分为混凝土体积收缩引起的裂缝和温度应力引起的裂缝。
本文重点讨论温度裂缝。
温度裂缝主要是由于混凝土结构内外温差过大造成的。
1.1 混凝土产生温差的主要情形(1) 浇筑初期, 混凝土内部产生的大量水化热难以散发, 导致其内部温度迅速上升, 但其表面温度还是环境温度, 由此产生内外温差。
当这种温差在混凝土初凝时产生的拉应力超过混凝土自身的抗拉强度时, 就会形成裂缝。
(2) 拆模前后, 混凝土表面温度很快降低, 这种温度陡降也会产生裂缝。
(3) 当混凝土内部温度达到最高后, 热量逐渐散发, 达到最低温度或使用温度时, 也会形成温差, 产生裂缝。
1.2 施工中造成裂缝的原因(1) 原材料方面:水泥等级或品种选用不当、水泥存放时间长、因受潮产生凝结、非正常膨胀、水化热过高;粗细骨料级配不良、含泥量大、骨料表面含碱;掺合料比例过大、细度未达标;外加剂掺量选择不当、与水泥或掺合料的相容性不好;水泥用量和用水量过大、砂率和水灰比选择不当。
(2) 施工控制方面:原材料、外掺合料、外加剂称量不准;搅拌时间过长或不足、振捣或插入不当、拌合物不均匀、任意加水;运输停置时间长;连续浇筑时间过长、浇筑顺序不当、入模速度过快、摊铺分层过厚, 振捣不及时、过振或漏振、施工缝处理不当;养护不到位、未及时覆盖保湿或保温、早期失水补充不及时等。
(3) 设计方面:存在结构断面突变、钢筋配置过少或过多、未充分考虑混凝土的收缩变形、混凝土强度等级过高、荷载收缩等因素。
2 大体积砼裂缝的主要防治措施大体积砼裂缝的防治主要应从原材料、施工、设计三个方面采取措施。
2.1 原材料方面2.1.1 合理选择水泥水化热是产生大体积混凝土的温差的主要原因, 为减小温差, 就应该选择早期水化热低和安定性好的水泥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加强原材料的检验、试验工作。施工中严格按照方案及交底的要求指导施工,明确分工,责任到人。加强计量监测工作,定时检查并做好详细记录,认真对待浇筑过程中可能出现的冷缝,并采取措施加以杜绝。在变截面施工前,一定要加强预测,并保证预测的科学性。同时在实施过程中,要切实落实施工方案。
台设计时,在承台中间设置了垫20@2肋水平抗缩钢筋网片。采用“水平分层间隙”施工方法,分两层进行浇筑,间隙时间7d以上,分层厚度各1.5m,抗缩钢筋网设置在下层1.5m的上表面。在工期允许的情况下,这种施工方法可降低内部最高温升、减少人力、材料及机械设备的投入。
2. 选择适当外加剂
可根据设计要求,混凝土中掺加一定用量外加剂,如防水剂、膨胀剂、减水剂、缓凝剂等外加剂。外加剂中糖钙能提高混凝土的和易性,使用水量减少20%左右,水灰比可控制在0.55以下,初凝延长到5h左右。
3. 选择优化配合比
选用良好级配的骨料,严格控制砂石质量,降低水灰比,并在混凝土中掺加粉煤灰和外加剂等,以降低水泥用量,减少水化热,以降低混凝土温升,从而可以降低混凝土所受的拉应力。
温度裂缝的走向通常无一定规律。大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接近平行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显:冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细,而冷缩裂缝的粗细变化不太明显。此种裂缝的出现会引起钢筋的锈蚀,混凝土的碳化,降低混凝土的抗冻融、抗疲劳及抗渗能力等。
5. 裂缝的防治措施
5.1 设计措施
1. 精心设计混凝土配合比。在保证混凝土具有良好工作性的情况下,应尽可能地降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出高强、高韧性、中弹、低热和高极拉值的抗裂混凝土。
在大体积混凝土工程施上中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。因此,控制混凝土浇筑块体因水化热引起的温升、混凝土浇筑块体的内外温差及降温速度,防止混凝土出现有害的温度裂缝(包括混凝土收缩)是其施工技术的关键问题。
3. 大体积混凝土裂缝的原因
大体积混凝土结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素有几种:一是结构型裂缝,由外荷载引起的。二是材料型裂缝,主要由温度应力和混凝土的收缩引起的。
7. 改进施工技术
施工时加强插筋位置的振捣、抹压、养护。由于钢筋是热的良导体,易产生大的温度梯度,这是裂缝产生的一个主要环节。同时加强初凝前的抹压,以消除初期裂缝,并加强早期养护,提高混凝土抗拉强度。
8. 加强混凝土浇筑后的养护
混凝土浇筑后,应尽快回填土--土是混凝土最好的养护材料之一。目前这是混凝土保温保湿养护的最有效方法,对预防裂缝是非常有益的。如采用蓄水法保温养护,在混凝土施工期间可通入冷却循环水,以便加快承台内部热量的散发。如采用内散外蓄综合养护措施,可有效降低混凝土的温升值,且可大大缩短养护周期,对于超厚大体积混凝土施工尤其适用。
4.3 沉陷裂缝
沉陷裂缝的产生是由于结构
地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致。或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致。特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。此类裂缝多为深进或贯穿性裂缝,其走向与沉陷情况有关。一般沿与地面垂直或呈30~45°角方向发展。较大的沉陷裂缝,往往有一定的错位,裂缝宽度往往与沉降量成正比关系。裂缝宽度受温度变化的影响较小。地基变形稳定之后,沉陷裂缝也基本趋于稳定。
10. 加强混凝土的测温工作
为及时掌握混凝土内部温升与表面温度的变化值,在承台内埋没若干个测温点,采用L形布置,每个测温点埋设温管2根01根管底埋置于承台混凝土的中心位置,测量混凝土中心的最高温升,另一根管底距承台上表面100 mm,测量混凝土的表面温度,测温管均露出混凝土表面100 mm。用100的红色水银温度计测温,以方便读数。第l-5d每2h测温1次,第6d后每4h测温1次,测至温度稳定为止。从已有施工经验的测温情况看,混凝土内部温升的高峰值一般在3.5d内产生,3d内温度可上升到或接近最大温升,内外温差值在20℃左右,控制在规范规定范围内,未发现异常现象。
5. 严格控制混凝土入模温度
大体积混凝土最好选在春秋季施工,以降低入模温度,既是在夏季施工最好采取有效措施降低入模温度,再者浇筑混凝土时最好不要让混凝土在太阳下直接爆晒。施工过程中应对碎石洒水降温,保证水泥库通风良好,自来水预可先放入地下蓄水池中降温。
6. 加适当预埋件
在混凝土易裂缝部位埋设应力应变传感片,直接测试拉应力,以便更直接控制混凝土(调节保温保湿养护条件,保证温度梯度),确保混凝土不出现裂缝。在基础面筋上加设铁丝网或小直径钢筋网,以提高混凝土表面抗裂性(中间温度筋可去掉)。如3.0m厚承
1. 大体积混凝土简述
现代建筑中时常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等。
它主要的特点就是体积大:混凝土浇注量大于100平方米;长、宽、高任意一边不小于1米。
大体积混凝土水泥水化热释放比较集中,内部温升比较快。混凝土内外温差较大时,会使混凝土产生温度裂缝。其他因素也会导致大体积混凝土出现裂缝,影响结构安全和正常使用。所以必须从根本上分析它,来保证施工的质量。
的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。
干缩裂缝多为表面性的平行线状或网状浅细裂缝,宽度多在0.05~0.2mm之间,大体积混凝土中平面部位多见,较薄的梁板中多沿其短向分布。
2. 大体积混凝土结构裂缝的概念
混凝土结构在建设和使用过程中出现不同程度、不同形式的裂缝,这是一个相当普遍的现象。大体积混凝土结构出现裂缝更普遍。在全国调查的高层建筑地下结构中,底板出现裂缝的现象占调查总数的20%左右,地下室的外墙混凝土出现裂缝的现象占调查总数的80%左右。所以,混凝土结构的裂缝是建筑工程长期困扰的一个技术难题,一直未能很好地解决。
干缩裂缝通常会影响混凝土的抗渗性,引起钢筋的锈蚀影响混凝土的耐久性,在水压力的作用下会产生水力劈裂影响混凝土的承载力等等。
混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。
4.2 塑性收缩裂缝
混凝土塑性收缩裂缝形成过程与混凝土的泌水有关。
泌水是指混凝土浇筑捣实后尚未凝结硬化之前,从外表看在混凝土的浇筑面上山现一层清水或者从模扳缝中渗出部分水的一种现象。这是因为水在混凝土拌合物各组分中密度最小。当混凝土成型后的静止过程中,部分密度较大的固体颗粒向下沉积,而水则只能向上浮动,一部分水泌出到混凝土的外表面,称为外泌水。另一部分被截留在钢筋及粗骨料的下面形成水囊,水分蒸发后产生孔隙及界面裂缝,从而降低了钢筋与混凝土之间的粘结强度以及水泥石与骨料之间的界面强度,致使混凝土的抗冻、抗渗和抗腐蚀能力减弱,抗压抗折强度降低,这部分水称为内泌水。只有当水泥水化产生的胶结强度足以阻止固体颗粒相对运动或者各种固体颗粒经过迁移已达到紧密堆积状态时,沉积相对停止,泌水才告结束。泌水使混凝土的体积缩小,促成了混凝土塑性裂缝的产生。
国内外工程技术界都认为,规定钢筋混凝土结构的最大裂缝宽度主要是为了保证钢筋不产生锈蚀。不同的规范中有关允许最大裂缝宽度的规定虽不完全一致,但基本相同。如在正常的空气环境中裂缝允许宽度为0.3~0.4mm;在轻微腐蚀介质中,裂缝允许宽度为0.2~0.3mm;在严重腐蚀介质中,裂缝允许宽度为0.1~0.2mm。但对建筑物的抗裂缝要求过严,必将付出巨大的经济代价。科学的要求是将其有害程度控制在允许范围之内。根据国内外的调查资料,工程实践中结构物的裂缝原因,属于由变形变化(温度、湿度、地基变形)引起的约占80%以上,属于荷载引起的约占20%左右。
4. 采用切实可行的施工工艺
根据泵送大体积混凝土的特点,采用“分段定点,一个坡度,薄层浇筑,循序推进,一次到顶”的方法。这种自然流淌形成斜坡混凝土的方法,能较好地适应泵送工艺,避免混凝土输送管道经常拆除、冲洗和接长,从而提高泵送效率,简化混凝土的泌水处理,保证上下层混凝土浇筑间隔不超过初凝时间。根据混凝土泵送时自然形成一个坡度的实际情况,在每个浇筑带的前后布置两道振动器,第一道布置在混凝土出料口,主要解决上部混凝土的振实;由于底层钢筋间距较密,第二道布置在混凝土坡脚处,以确保下部混凝土密实。随着浇筑的推进,振动器也相应跟上,以确保整个高度上混凝土的质量。由于大体积泵送混凝土表面水泥浆较厚,故浇筑结束后须在初凝前用铁滚筒碾压数遍,打磨压实,以闭合混凝土的收水裂缝。
5. 在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,保留时间一般不小于60天。如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。
5.2 施工措施
1. 严格控制骨料级配和合泥量
选用10.40mm连续级配碎石(其中10.30mm级配含量65%左右),细度模数2.80-3.00的中砂(通过0.315n凹筛孔的砂不少于15%,砂率控制在40%-45%)。砂、石含泥量控制在1%以内,并不得混有有机质等杂物,杜绝使用海砂。
混凝土塑性收缩裂缝不仅会影响混凝土构件的外观质量,更重要的是会造成混凝土防水性能下降、钢筋容易锈蚀等不良后果,影响混凝土结构的使用年限,关于这一点应在设计和施工过程中给予充分的重视。
塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连贯状态。常发生在混凝土板或比表面积较大的墙面上,较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm。从外观分为无规则网络状和稍有规则的斜纹状或反映出混凝土布筋情况和混凝土构件截面变化等规则的形状,深度一般3~10cm。它与塑性沉降裂缝相比,贯穿整个混凝土板的裂缝是极少的,而且塑性收缩裂缝通常延伸不到混凝土板的边缘。影响混凝土塑性收缩开裂的主要因素有水灰比、混凝土的凝结时间、环境温度、风速、相对湿度等等。