高速铁路数字移动通信系统
GSM—R移动通信系统在高速铁路中的应用
GSM—R移动通信系统在高速铁路中的应用我们知道在一些专属的领域,进行通讯必须使用一些专用的通讯方式,比如飞机使用的导航系统就和我们平常用的导航系统在功能,频率上都是不同的;再说到火车,其实也是一样的,列车使用的无线电通讯系统就和我们生活中的不大一样,火车使用的就是GSM-R这样的一个通讯系统。
本文就是针对GSM-R做了一个基本的介绍,然后结合GSM-R的使用也谈了谈GSM-R在现在的高速铁路中的运用。
GSM-R;高速铁路;调度;无线通讯一、前言我们几乎都坐过火车,但是似乎都会发现,有时候我们的火车在某些路段的时候只有一条铁轨,但是从来也没有发生过撞车;我们也发现,铁路每个站都是很繁忙的,每天在铁路上运行的列车那么多,如何来保证这些列车正常的运行,可定是花费了不少的功夫的。
但其实,GSM-R移动通讯系统就是能够来很好的保证列车系统正常运行,能够保证列车与调度,列车和乘客很好交流的一个先进系统,所以我们有必要对这样的一个系统有一些了解。
二、铁路GSM-R移动通信系统的概述GSM-R就是铁路使用的专属的移动通讯系统,是一种专用的信号传输系统。
主要就是把铁路的通讯系统也民用的信号区分开来,避免民用的通讯系统对于铁路运输调度的影响。
GSM-R的运用有效的提高了铁路运输系统的调度能力,对于铁路运输的日常管理工作也是起到了不小的作用。
到了今天GSM-R更多的是体现着一种数字化传输的功能,在铁路调度中,能够很好地跟踪列车的位置,能够很好地进行列车的管理,然后GSM-R还有呼叫的功能,可以运用到列车广播系统中;对于乘坐如今火车的人来说,GSM-R还有了旅客电话的功能,能够运用GSM-R进行无线通讯有了更多的人性化。
当然还有一个功能并不能忽视,那就是在铁路系统运行的过程中发生事故,出现故障的时候GSM-R也能为搜救起到有效的作用。
这一切都是靠GSM-R移动通讯技术的数字化功能来起作用的。
当然,我们不得不承认GSM-R移动通讯技术的起源不是中国,而是西方一些发达的国家,毕竟火车也是西方列强入侵中国的时候带进中国的。
GSM-R
全球铁路专用移动通信(GSM-R)GSM-R是以全球移动通信系统为平台,针对铁路的特点,适应高速铁路发展的铁路专用数字移动通信标准。
目前,欧盟已有12个国家铁路装备或准备装备GSM-R,我国铁路已经确定GSM-R为我国铁路移动通信的发展方向,青藏铁路和大秦铁路将首先采用GSM-R系统。
移动通信是铁路运营的基础。
在高速铁路对地面信号依赖逐渐减少的情况下,列车安全运行更需要高质量的通信设施,来满足列调和列车控制、司乘人员、运营指挥中心、车站管理和线路维护人员之间的话务通信等等。
这样,一个统一标准的铁路移动通信系统在开放和统一的铁路网中具有重大作用。
1 .GSM-R的由来全球移动通信系统GSM(GLOBAL SYSTEM FOR MOBILE COMMUNICATION的英文缩写)起始于1982年,是欧洲邮电局长会议(CEPT)的一个特别工作组为泛欧洲移动通信制定的一个标准。
这个工作组的名称是GSM,开始时并不指这个通信系统。
1988年在马德拉岛的GSM全体会议上,通过了系统的基本参数。
1989年欧洲通信标准研究所(ETSI)成立,特别工作组成了ETSI的一个部分。
1992年1月20日这个工作组才得以新命名SMG(Special Mobile Group),开始了对GSM标准进行详细说明。
1992年GSM网络标准开始公开,之后应用范围不断扩大,它所代表的第2代数字移动通信的份额达到了世界市场的2/3。
上世纪90年代,欧洲铁路通信多采用电缆和模拟无线技术,存在35个不同平台,仅德国铁路就有8个模拟无线系统;存在着维修、更新成本高、与现代通信不兼容等问题。
国际铁路联盟(UIC)旨在为不间断的过境运输提供一个标准铁路通信系统,进行了统一铁路通信的研究,包括:无线频带的确定以及通信系统的选取。
1995年选定了900MHz的频段。
1997年开始在法国、德国和意大利建立了试验网,在与Tetra(Terrestrial Trunked Radio)对比和试验后,针对高速铁路的需要,决定在全球数字移动通信(GSM)平台上,开发出具有铁路的专用功能的移动通信系统GSM-R(Global System for Mobile to Railway的缩写)。
高速铁路通信系统基础知识
高速铁路通信系统基础知识
1.2 高速铁路通信系统的类型
8.应急通信系统
应急通信系统主要满足客运专线事故现场应急通信的需要,为事故 现场提供语音、图像应急救援指挥通信,并作为全路应急救援指挥通信 网的有机组成部分。应急通信系统由事故抢险现场设备和应急中心设备 构成。应急指挥中心设置接入设备,沿线结合维修机构的设置状况,配 置现场事故抢险设备。从事件现场采集到的语音、数据、图像等业务信 息先通过有线或无线方式(两种方式互为备用)传送到区间接入点,再 通过传输设备传送到应急指挥中心,建立应急指挥中心与事故现场间的 应急通信网络。
高铁通信网络是一个庞大而复杂的系统。作为高铁的神经系统,高 铁通信网络是高铁重要的关键技术,是高铁发展的重要推动力。 高铁通 信系统按照不同的功能和结构,主要分为传输与接入系统、通信电源系 统、电话交换系统、数据网系统、铁路数字移动通信系统(GSM-R)、 调度通信系统、会议电视系统、应急通信系统、同步及时钟分配系统、 综合网管系统、综合视频监控系统、电源及环境监控系统、通信线路系 统、综合布线系统等。其中,GSM-R是高铁通信系统的核心内容,是铁 路通信技术发展步入更高阶段的重要标志。
高速铁路通信系统基础知识
1.2 高速铁路通信系统的类型
2.通信电源系统
通信电源系统负责通信设备的直流电源(48 V)和 交流电源(220 V)的供电。通信电源系统由直流供电 设备(高频开关电源、蓄电池、直流配电设备)和交流 供电设备(UPS、蓄电池、交流配电设备)组成。
高速铁路通信系统基础知识
1.2 高速铁路通信系统的类型
高速铁路通信系统基础知识
1.2 高速铁路通信系统的类型
9.同步及时钟分配系统
数字同步网是现代通信网中必不可少的重要组成部分,它向基 础承载网和各种业务网等网络提供高质量、高可靠性的定时基准信 号。同步及时钟分配系统为铁路通信传输网、调度通信系统、GSMR等提供同步时钟信号,确保铁路各系统和运行计时准确,同时也为 调度员、车站值班员、行车相关人员及旅客提供统一的基准时间信 息。
2024年GSMR铁路移动通信
GSMR铁路移动通信GSM-R铁路移动通信:技术特点与发展前景引言一、GSM-R技术特点1.1专用频段GSM-R使用专用频段,避免与其他通信系统干扰,确保铁路通信的稳定性和可靠性。
在全球范围内,GSM-R主要使用900MHz频段,部分国家和地区使用1800MHz频段。
1.2安全性GSM-R采用了加密和认证机制,确保通信内容的安全。
同时,GSM-R还支持列车无线紧急呼叫功能,提高了列车运行的安全性。
1.3系统容量GSM-R系统具有较大的系统容量,可以满足铁路运营中的大量用户需求。
同时,GSM-R支持多用户同时通话,提高了通信效率。
1.4网络覆盖GSM-R系统实现了铁路线路的全覆盖,确保列车在任何位置都能进行通信。
GSM-R支持跨区切换,保证了列车在不同区域之间的通信连续性。
1.5兼容性GSM-R与其他通信系统具有较好的兼容性,可以与其他铁路通信系统(如TETRA、VHF等)进行互联互通,为铁路运营提供更多选择。
二、GSM-R发展历程与应用现状2.1发展历程GSM-R的发展始于20世纪90年代,欧洲铁路通信标准化组织(ERATO)开始研究铁路通信的标准化问题。
1993年,欧洲电信标准协会(ETSI)正式立项研究铁路通信标准。
1997年,ETSI发布了GSM-R标准。
此后,GSM-R在全球范围内得到了广泛的应用和推广。
2.2应用现状目前,GSM-R已经在全球范围内得到了广泛应用,成为铁路通信领域的事实标准。
在欧洲,GSM-R已经成为所有新建设的高速铁路线路的通信系统。
在中国,GSM-R也得到了广泛应用,成为高速铁路、普速铁路和城市轨道交通的主要通信系统。
三、GSM-R未来发展趋势3.1向LTE-R过渡随着4G移动通信技术的发展,GSM-R将逐渐向LTE-R (LongTermEvolution–Rlway)过渡。
LTE-R基于先进的4G技术,具有更高的数据传输速率、更大的系统容量和更好的性能。
目前,欧洲、中国等国家和地区已经开始进行LTE-R的研究和试验。
高速铁路数字移动通信系统
高速铁路数字移动通信系统在当今高速发展的时代,高速铁路成为了人们出行的重要选择。
而在保障高速铁路安全、高效运行的众多技术中,高速铁路数字移动通信系统扮演着至关重要的角色。
高速铁路数字移动通信系统,简单来说,就是为高速铁路量身定制的一套通信解决方案。
它就像是一条无形的信息高速公路,确保列车上的工作人员、控制系统以及乘客之间能够顺畅、快速、准确地进行信息传递。
首先,我们来了解一下为什么高速铁路需要专门的数字移动通信系统。
高速铁路的运行速度极快,这就对通信的实时性和稳定性提出了极高的要求。
传统的移动通信系统在面对高速移动的场景时,往往会出现信号中断、延迟、数据丢失等问题。
想象一下,如果列车驾驶员与调度中心之间的通信出现了故障,无法及时获取前方路况信息或者接收指令,那将会给列车的运行带来极大的安全隐患。
再者,高速铁路上还有大量的设备需要实时监控和控制,比如列车的动力系统、制动系统、车门系统等,这些设备的数据传输也必须稳定可靠。
此外,随着人们对出行体验的要求不断提高,乘客在列车上也希望能够享受到高质量的通信服务,如流畅的上网、视频通话等。
那么,高速铁路数字移动通信系统是如何实现这些功能的呢?它主要由以下几个部分组成:基站系统是其中的重要一环。
在铁路沿线,会设置一系列的基站,这些基站就像一个个接力站,确保列车在高速行驶过程中始终能够接收到稳定的信号。
基站的覆盖范围和信号强度经过精心设计和优化,以适应高速铁路的特殊需求。
核心网则负责对通信数据进行处理和传输。
它就像是一个中央大脑,管理着整个通信网络的资源分配、数据路由等工作,确保信息能够快速、准确地到达目的地。
终端设备包括列车上的车载通信设备以及工作人员和乘客使用的移动终端。
车载通信设备与列车的控制系统紧密相连,能够实时传输列车的运行状态数据,并接收来自外部的指令。
而乘客使用的移动终端则可以通过无线网络接入系统,满足他们的通信和娱乐需求。
为了保证通信的可靠性和安全性,高速铁路数字移动通信系统还采用了一系列先进的技术。
GSM-R铁路综合数字移动通信系统
隧道和地下车站覆盖
GSM-R系统采用特殊的信号传输技术,实现了隧道 和地下车站的有效覆盖,保证了在这些区域的通信 质量。
山区和荒漠覆盖
GSM-R系统具备在山区和荒漠等复杂地形 下的覆盖能力,能够满足在这些区域的通信 需求。
兼容性好
与现有通信系统兼容
GSM-R系统与现有的公众移动通信网络兼容,如GSM、GPRS等,方便用户在铁路沿线及列车上使用 手机、上网等通信服务。
GSM-R铁路综合数字移动通信系 统
目录
• 引言 • GSM-R系统的组成 • GSM-R系统的功能 • GSM-R系统的优势 • GSM-R系统的应用场景 • GSM-R系统的未来发展
01 引言ห้องสมุดไป่ตู้
目的和背景
铁路运输是全球范围内重要的交通方 式之一,保障铁路运输的安全和效率 至关重要。
GSM-R系统是为了满足铁路运输在移 动通信方面的特殊需求而设计的,旨 在提供高效、可靠的通信服务,支持 列车控制、调度、旅客信息等多种应 用。
VS
远程监控
GSM-R系统可以用于远程监控货运列车 的运行状态和货物安全,提高运输安全性 和可靠性。
06 GSM-R系统的未来发展
5G技术在GSM-R系统中的应用
5G技术将为GSM-R系统带来更高的数据传输速率、更低的延迟和更高的可靠性,提 升铁路运输的安全性和效率。
5G技术将促进铁路移动通信系统的升级,支持更高清的视频监控、更准确的定位和 更智能的调度控制。
列车控制和调度通信
列车控制指令的传输
GSM-R系统能够传输列车控制指令,如启动、停止、加速、减速等,实现对列车的远程控制。
调度指令的传输
调度员可以通过GSM-R系统向列车发送调度指令,如调整列车运行计划、优先级调整等,确保列车的有序运行。
高铁概论第7章 高速铁路通信系统
(2)站场通信 大型车站多个作业场,主场车站调度员与各个相关值班员构建 的若干个一点对多点的调度通信,简称站调。 小车站值班员与若干个站内用户之间构建一点对多点的站内通 信。
(3)站间通信 站间通信为站与站之间的点对点通信,即站间行车电话或闭塞电话。 随着信号设备的发展,区间闭塞法几乎不再用电话闭塞法,已采用 半自动闭塞和自动闭塞。 站间电话用来通报列车运行状态和相关行车业务,于是出现了站间 行车电话这一称谓。
述 调度通信体系。
干线调度通信是铁道部为统一指挥各铁路局,协调地
完成全国铁路运输计划,在铁道部与铁路局之间设置
的各种调度通信。
局线调度通信是铁路局为统一调度指挥所属主要
区段及主要站段,协调地完成全局运输计划,在铁路
局与编组站、区段站、主要大站之间设立的各种调度
通信。
区段调度通信是各调度区段为调度指挥运输生产,在调度员与所辖区段 的铁路各中间站按专业、部门设置的调度、通信系统,统称区段调度。
(3)区段调度通信网
述
铁路局下属的调度区段运输指挥中心设区段数字调度机(主系
统),与所辖区段沿线各中间站车站数字调度机(分系统),用
2M数字通道呈串联型逐站相连,并由末端车站环回,组成一个
2M自愈环。
7. 1 概 述
7.
1 概
铁路交通(轨道交通)建设投资大、工程复杂,为满足乘客对铁路交通高速、
述 安全、舒适便捷、经济等特性不断提高的服务需求,铁路通信系统需要向大
固定通信网 移动通信网
6层:决策支持与综合应用系统 5层:社会化信息服务系统 4层:办公信息系统 3层:业务管理信息系统
2层:过程控制与安全保障系统 1层:通信网络系统
移铁 动路 通综 信合 系数 统字
高速铁路通信系统
采用先进的信号处理技术和天线技术 ,优化信号覆盖范围和信号质量,同 时加强网络规划和优化,提高信号的 连续性和稳定性。
数据安全问题
数据泄露和攻击
高速铁路通信系统涉及大量的敏感信息,如列车控制指令、乘客信息等,存在 数据泄露和被攻击的风险。
解决方案
采用加密技术和安全防护措施,保障数据传输和存储的安全性。同时加强网络 安全监测和应急响应能力,及时发现和应对安全威胁。
卫星通信技术还可以提供语音、数据、图像等多种通信 服务,满足不同业务需求。
网络安全技术
01
网络安全技术是高速铁路通信系统中的重要保障措施,主要用于保护 通信系统和数据的安全。
02
网络安全技术包括防火墙、入侵检测、数据加密等,其中数据加密是 高速铁路通信系统中常用的网络安全技术。
03
网络安全技术可以防止网络攻击和数据泄露等安全问题,保障高速铁 路通信系统的正常运行。
大数据分析技术还可以对各种设备和系统的性 能进行监测和预测,及时发现潜在的问题和风 险,提高系统的安全性和可靠性。
大数据分析技术还可以优化高速铁路通信系统 的资源配置和服务质量,提高运营效率和服务 水平。
人工智能技术的应用
人工智能技术可以应用于高速铁路通 信系统的故障诊断和预测,通过分析 历史数据和实时监测数据,自动识别 和预测潜在的问题和故障。
高速铁路通信系统
目录
• 高速铁路通信系统概述 • 高速铁路通信系统的关键技术 • 高速铁路通信系统的应用场景 • 高速铁路通信系统的未来发展 • 高速铁路通信系统的挑战与解决方案
01
高速铁路通信系统概述
定义与特点
定义
高速铁路通信系统是指为高速铁 路列车提供信息传输、信号控制 、安全保障等功能的综合性通信 网络。
高速铁路通信系统(程控交换、FAS、传输、GSM-R)
利用区段数字调度设备组成局线调度通 信网络,在铁路局所在地设数字专用通 信主系统与干调Hicom372调度交换机所 属各调度区段的区段调度设备主系统之 间以2M数字中继方式相连,从而构成一 个星型的局线调度通信网络。
2011年10月21日
38
现代通信研究所
2. 网络编号
2011年10月21日
22
现代通信研究所
3. 区段数字调度通信 主要内容: 数字会议电话 数字交叉连接 数字共线
2011年10月21日
23
现代通信研究所
(1) 数字会议电话
数字交换网络只能实现两个用户间话音的 全交换(通话双方均能听到对方讲话),及 一个用户对多个用户的广播式交换(一个用 户为主持,其他用户只能听到主持讲话,而 主持只能听到其中一个人讲话),完成三个 或三个以上用户全双工会议交换由数字会议 电话完成。
2011年10月21日
34
现代通信研究所
二、 局线调度通信
铁路局的局线调度通信网络,在铁路局汇接 中心利用干调Hicom372调度交换机或另设数字 调度交换机与设在各铁路调度区段的数字专用 通信系统组成。
2011年10月21日
35
现代通信研究所
1. 组网方式
以用户线方式组网
利用干调通信网中的Hicom372调度交 换机,直接将局调用户用PCM加环路设 备进行远距离放号到所辖各调度区段。
2011年10月21日
5
现代通信研究所 调度通信按铁路运输指挥系统分干线、局线、 区段三级调度通信体系 : 干线调度通信是铁道部为统一指挥各铁路局, 协调地完成全国铁路运输计划,在铁道部与铁 路局之间设立的各种调度通信。 局线调度通信是铁路局为统一指挥所属调度区 段及主要站段,协调地完成全局运输计划,在 铁路局与编组站、区段站、主要大站之间设立 的各种调度通信。 区段调度通信是各调度区段为指挥运输生产, 在调度员与所辖区段的铁路各中间站按专业、 部门设置的调度通信系统,统称区段调度。
TBT3363-2015铁路数字移动通信系统(GSM-R)通用分组无线业
TBT33632015铁路数字移动通信系统(GSMR)通用分组无线业务随着我国铁路事业的快速发展,铁路数字移动通信系统(GSMR)作为铁路通信的重要组成部分,其作用日益凸显。
GSMR系统在保障铁路运输安全、提高运输效率、实现铁路信息化等方面发挥着关键作用。
为了更好地满足铁路通信需求,我国制定了TBT33632015铁路数字移动通信系统(GSMR)通用分组无线业务标准。
TBT33632015标准主要针对GSMR系统的通用分组无线业务(GPRS)进行规范,包括业务定义、业务功能、业务流程、业务质量等方面。
标准的制定和实施,旨在提高GSMR系统在铁路通信中的应用水平,确保铁路通信的稳定性和可靠性。
一、业务定义通用分组无线业务(GPRS)是一种基于分组交换技术的数据传输业务,能够在GSMR系统中提供高速、高效的数据传输服务。
GPRS业务支持多种数据传输速率,可根据用户需求进行灵活配置,满足不同业务场景下的通信需求。
二、业务功能1. 数据传输:GPRS业务支持多种数据传输方式,包括文件传输、电子邮件、网页浏览等,满足铁路通信中的数据传输需求。
2. 多媒体通信:GPRS业务支持多媒体通信,如语音、视频、图片等,为铁路通信提供丰富的通信手段。
3. 短消息服务:GPRS业务支持短消息服务,方便用户进行信息交流和业务通知。
4. 虚拟专用网(VPN):GPRS业务支持虚拟专用网(VPN)功能,为铁路通信提供安全、可靠的通信环境。
三、业务流程1. 用户注册:用户需在GSMR系统中进行注册,获取相应的用户标识和业务权限。
2. 业务申请:用户根据实际需求,向GSMR系统申请开通相应的GPRS业务。
3. 业务配置:系统根据用户申请,进行业务配置,包括数据传输速率、通信质量等参数的设置。
4. 业务开通:业务配置完成后,系统为用户开通相应的GPRS业务,用户即可使用相关通信服务。
5. 业务监控:系统对GPRS业务进行实时监控,确保业务正常运行。
高速铁路移动通信发展现状分析解析
高速铁路移动通信发展现状分析解析在当今快速发展的时代,高速铁路已成为人们出行的重要选择。
而与之相伴的高速铁路移动通信,也在不断演进和发展,为乘客提供更加便捷、高效和稳定的通信服务。
高速铁路移动通信面临着一系列独特的挑战。
首先,高速列车的快速移动导致频繁的小区切换,这对通信系统的无缝连接能力提出了极高要求。
当列车以数百公里的时速行驶时,在短时间内就会跨越多个基站覆盖区域,如果切换不及时或不顺畅,就会出现通信中断、信号不稳定等问题。
其次,高速列车的金属车体对信号有较强的屏蔽作用。
这意味着车内的信号强度会大幅减弱,影响通信质量。
为了克服这一障碍,需要采用特殊的天线设计和信号增强技术。
再者,高速铁路沿线的地理环境复杂多样,包括山区、隧道、桥梁等。
这些特殊地形会对信号的传播产生阻碍和干扰,进一步增加了实现稳定通信的难度。
近年来,为了应对这些挑战,高速铁路移动通信技术取得了显著的进展。
在标准和技术方面,LTER(长期演进铁路)和 5G 技术逐渐成为主流。
LTER 基于成熟的 LTE 技术,针对铁路应用进行了优化,提供了更高的可靠性和更低的延迟。
5G 技术则凭借其超高的带宽、超低的延迟和大规模连接的特性,为高速铁路移动通信带来了更多可能性。
例如,通过 5G 网络可以实现高清视频通话、实时列车监控以及智能运维等应用。
在网络覆盖方面,运营商加大了对高速铁路沿线的基站建设和优化力度。
通过合理规划基站布局、采用高增益天线和波束成形技术等手段,提高了信号覆盖的连续性和稳定性。
同时,还利用分布式天线系统和中继站等技术,解决了信号盲区和弱区的问题。
在终端设备方面,专门为高速铁路设计的手机、平板电脑等移动终端不断涌现。
这些设备具备更好的信号接收能力和抗干扰性能,能够在高速移动的环境下保持良好的通信连接。
然而,尽管取得了这些成就,高速铁路移动通信仍存在一些问题亟待解决。
一方面,不同地区和运营商之间的网络覆盖和服务质量存在差异。
数字移动通信系统GSM-R核心网.
数字移动通信系统GSM-R核心网.数字移动通信系统 GSMR 核心网在当今高度信息化的时代,铁路运输的安全和效率对于国家的经济发展和人民的出行至关重要。
数字移动通信系统 GSMR(GSM for Railway)作为专门为铁路通信设计的数字移动通信系统,其核心网在保障铁路运营的稳定、高效和安全方面发挥着关键作用。
GSMR 核心网是整个 GSMR 系统的控制和管理中心,它负责处理呼叫控制、用户数据管理、移动性管理等重要功能,以确保铁路通信的顺畅和可靠。
首先,呼叫控制是 GSMR 核心网的一项基本任务。
当铁路工作人员需要进行通信时,核心网会接收并处理呼叫请求。
它会根据用户的权限和当前网络的资源状况,为呼叫建立合适的连接路径。
无论是语音呼叫还是数据呼叫,核心网都要迅速而准确地完成路由选择和连接建立,以保障信息的及时传递。
比如,列车司机与调度员之间的紧急通话,必须在最短时间内接通,以确保列车运行的安全。
用户数据管理也是核心网的重要职责之一。
GSMR 系统中的每个用户都有相关的身份信息、权限级别和服务配置等数据,这些数据都存储在核心网的数据库中。
核心网需要对这些数据进行有效的管理和维护,确保用户信息的准确性和完整性。
同时,当用户的状态发生变化,如位置更新、权限调整等,核心网要及时更新相应的数据,以提供准确的服务。
移动性管理是 GSMR 核心网的另一个关键功能。
由于铁路运输的特点,用户(如列车上的工作人员)在移动过程中会不断跨越不同的基站覆盖区域。
核心网需要实时跟踪用户的位置变化,并在用户移动时,确保通信的连续性和稳定性。
当用户从一个基站覆盖区域移动到另一个区域时,核心网要迅速进行切换控制,使通话和数据传输不受影响。
为了实现这些功能,GSMR 核心网采用了一系列先进的技术和架构。
它通常由多个网络节点组成,包括移动交换中心(MSC)、归属位置寄存器(HLR)、拜访位置寄存器(VLR)等。
移动交换中心是核心网的核心组件之一,它负责处理呼叫的建立、释放和切换等功能。
GSM-R铁路综合数字移动通信系统
一、什么是GSM-R
铁路相对GSM公网的特殊需求:
(1)用户级别不同(高级语音呼叫,包括:组呼、群呼、 增强多优先级与强拆)
(2)功能寻址(调度) (3)基于位置的寻址(机车呼叫前方车站、后方车站) (4)高速情况下的移动通信 (5)大量特殊的数据业务需求(列控、列尾、车次号等)
4
一、什么是GSM-R
-95
-95~92
-92
26
四、GSM-R网络规划
无线覆盖——弱场解决方案 直放站+漏泄同轴电缆/天线
方案设计、网络优化时应注意:同频干扰 来自同一个基站的基站信号和直放站信号如有交叉, 则两个信号的时延差应小于15μs。
27
四、GSM-R网络规划
基站容量和频率规划 基站容量:话务模型和用户分布决定基站容量 (1)语音业务:0.015erl (2)电路域数据:列控:1信道/列车
同步操控:3-4信道/列车 (3)分组域数据:列尾、车次号、调度命令,约2 个信道。
28
四、GSM-R网络规划
3、基站容量和频率规划
频率配置 GSM-R共4MHz频率带宽:
885-889MHz (移动台发,基站收,上行) 930-934MHz (基站发,移动台收,下行)
双工收发频率间隔45MHz,相邻频道间隔为200kHz。按 等间隔频道配置的方法,共有21个载频。频道序号从999~ 1019,扣除低端999和高端1019做为隔离保护,实际可用频
BSC2 MSC2
25
四、GSM-R网络规划
无线覆盖——覆盖指标
终端种 类
列调 机车台
业务种 类
话音及 调度数
据பைடு நூலகம்
接收天线 位置
机车 顶部
高速铁路通信系统
5
第三节 铁路调度通信网
• 铁路调度通信网络结构:
5
第三节 铁路调度通信网
• 铁路调度通信网的网络结构根据铁路运输调度体制,分为干 线、局线、区段三层,铁路局集团和站段为各层网络的相切 点。调度网是根据调度业务流程和地理位置来组网。干、局 调网络是一个呈辐射形的星型网络,区段调度网络是一个呈 链状的总线型网络。
调度通信 3.干、局线
通信 3.电力调度
2.桥隧守护 电话
通道 3.红外线轴
电话 3.扳道电话
防护报警 3.站场无线
3.数据传输
4.旅客电话
会议电话 通信
3.道口电话 温检测通道 4.客运广播 电话
4.干、局线 会议电视
4.其他调度 通信
4.区间电话
4.信号控制 信息通道
5.其他控制
5.客运信息 系统
业务融合
• 有线通信基础平台作为铁路信息化的基础平台之一,将 随着通信技术的发展而趋向扁平化、集成化发展,即趋 向话音、数据、图像三网向统一的技术方向发展。
5
第二节 铁路有线通信与无线通信 • 有线通信
1.我国铁路专用有线通信网现状 2.新的铁路专用有线通信系统平台
主要构成: 光缆线路、传送网、接入网、数据网、电话网、调度网
5
第二节 铁路有线通信与无线通信
• 无线通信
• 1.我国铁路既有无线通信现状
(1)无线列车调度通信
(2)无线调度命令传送系统
(3)站场无线及各种单工通信系统
(4)各种独立单工通信系统
(5)集群移动通信系统
(6)其它机车设备
• 2.现代铁路运输对无线通信的要求
GSM_R技术在高速铁路通信系统中的应用
1 概述GSM-R通信技术起源于欧洲,目前在德国、瑞士、荷兰、意大利等国家均已商业运用。
由于GSM-R具有适应铁路运输特点的功能优势,且更符合通信信号一体化技术发展的需要,因此铁道部2000年底正式确定GSM-R为我国铁路专用通信的发展方向。
GSM-R在GSM公众移动通信系统平台上增加了铁路运输专用调度通信功能。
GSM-R通信系统包括交换机、基站、机车综合通信设备、手机等设备。
以青藏铁路为例:青藏铁路是世界上海拔最高的铁路线,绝大部分线路在高原缺氧的无人区,为满足铁路运输通信信号及调度指挥需要,采用了GSM-R移动通信系统。
早在20世纪20年代,一些国家的铁路部门开始进行机车与地面的无线通信试验;40年代,许多国家相继在列车上装置电子管无线电话,采用中、短波段;50年代,我国铁路车站值班员和编组场内线路值班员开始使用列车无线调度电话和站内无线电话,采用短波段点对点无线通信、工作频率为2 MHz和40 MHz的电子管设备;60年代,随着晶体管和集成电路的发展和应用,铁路移动通信大量采用甚高频(VHF)和超高频(UHF)频段,采取选址、双工、多用户进行组网通信,设备体积减小,重量减轻,功耗降低,可靠性增高,并能适应各种气候条件;70和80年代,全部改用150 MHz和450 MHz频段的晶体管设备,在编组场推广应用便携式150 MHz和450 MHz的站内无线电话。
铁路沿线维护作业人员也相继推广使用无线电话[1]。
养路、施工的报警无线装置也得到迅速发展和应用,并进行了山区隧道区段的列车无线调度电话试验。
微处理机与收发信机相结合,使设备信令更加完善灵活,具有频道自动搜索、用户自动存取、功率自动控制和自动监测设备故障等功能,一些国家的铁路开始使用能与有线电话网连通的列车旅客无线电话。
铁路移动通信除了应用于铁路列车调度指挥外,还广泛应用在各个铁路业务部门。
2 高速铁路GSM-R系统组成高速铁路GSM-R系统是专为铁路通信设计的综合专用数字移动通信系统,该系统满足国际铁路联盟提出的铁路专用调度通信要求,在GSM Phase2规范协议的组呼、广播呼叫、多优先级抢占的强拆业务基础上,加入基于位置寻址和功能寻址等功能,可为列车自动控制与监测信息提供数据传输通道。
高速铁路通信系统的设计与优化
高速铁路通信系统的设计与优化随着社会的发展和科技的进步,高速铁路已成为人们日常出行的重要方式之一。
高速铁路的快速、安全、舒适运行离不开高效可靠的通信系统。
通信系统就像是高速铁路的“神经中枢”,负责列车运行控制、旅客信息服务、应急指挥等关键任务。
因此,高速铁路通信系统的设计与优化至关重要。
高速铁路通信系统具有一些独特的特点和要求。
首先,它需要满足高速移动环境下的通信需求,保证信号的稳定和连续覆盖。
在时速数百公里的列车上,通信信号容易受到多普勒频移、快速衰落等因素的影响,这对通信系统的抗干扰能力和切换性能提出了很高的要求。
其次,通信系统需要具备高可靠性和低时延,以确保列车运行控制指令的准确及时传输,保障行车安全。
此外,还需要为旅客提供多样化的信息服务,如实时的列车位置、速度、到站时间等,满足旅客的出行需求。
在高速铁路通信系统的设计中,首先要考虑的是网络架构的选择。
目前,常用的网络架构包括 GSMR(铁路全球移动通信系统)和 LTER (长期演进铁路通信系统)。
GSMR 是一种基于 GSM 技术的铁路专用通信系统,在过去的高速铁路中得到了广泛应用。
它具有成熟可靠、覆盖范围广等优点,但在数据传输速率和频谱效率方面存在一定的局限性。
LTER 则是基于 LTE 技术的新一代铁路通信系统,具有更高的数据传输速率、更低的时延和更好的频谱效率,能够更好地支持高速铁路的发展需求。
在实际设计中,需要根据铁路线路的特点、运营需求和投资预算等因素,综合选择合适的网络架构。
基站布局是高速铁路通信系统设计的另一个关键环节。
为了实现信号的连续覆盖,需要在铁路沿线合理设置基站。
基站的间距、高度、发射功率等参数都需要经过精心计算和优化。
在平原地区,基站间距可以相对较大;而在山区、隧道等复杂地形环境中,则需要加密基站布置,以保证信号的强度和质量。
同时,还需要考虑基站与铁路线路的相对位置,尽量减少信号的遮挡和反射。
天线的选择和安装也对通信系统性能有着重要影响。
高速铁路中铁路数字调度通信系统的应用研究
高速铁路中铁路数字调度通信系统的应用研究随着科技的不断发展,铁路运输在安全性、便捷性和效率方面都得到了极大的提升。
高速铁路作为现代化交通工具的重要组成部分,其运行管理系统更是体现了科技的应用和创新。
铁路数字调度通信系统在高速铁路中起着至关重要的作用,本文将介绍该系统的核心技术和应用研究。
一、铁路数字调度通信系统的核心技术1.无线通信技术铁路数字调度通信系统主要依靠无线通信技术实现列车之间、列车与调度中心之间的信息传输。
目前,高速铁路通常采用的是移动通信技术,如GSM-R(全球移动通信系统-铁路)系统。
GSM-R系统具有高可靠性、覆盖范围广等特点,可以确保列车之间和列车与调度中心之间的通信畅通。
2.信号控制技术铁路数字调度通信系统还包括信号控制技术,即通过信号灯、信号机等设备实现列车的安全驶入和驶出。
这种技术通过电子信号控制,能够确保列车在行驶过程中能够获得准确的信号指示,避免发生交通事故。
3.数据传输技术数据传输技术是铁路数字调度通信系统的重要组成部分,通过局域网、广域网等方式实现调度中心与各个车站、列车之间的数据传输。
这种技术能够高效地传输各种信息,包括列车位置、速度、行驶方向等,为调度员提供了精确的车辆运行信息。
1.实时调度铁路数字调度通信系统能够实现对列车的实时监控和调度。
通过系统提供的信息,调度员可以随时了解列车的运行状态,及时做出调整和安排,确保列车的正常运行。
2.故障诊断铁路数字调度通信系统还可以帮助调度员进行故障诊断与分析。
一旦出现列车故障或者线路问题,系统能够立即发出警报并提供相关信息,让调度员能够快速作出应对措施,确保列车和乘客的安全。
3.运行优化通过铁路数字调度通信系统的运行数据分析,可以对列车的运行情况进行评估,从而提出运行优化方案。
调度员可以根据系统提供的数据,对列车的运行速度、间隔等进行调整,以提高铁路运输的效率和准时率。
4.调度决策支持铁路数字调度通信系统能够为调度员提供决策支持,为其提供全面的信息,使其能够做出更合理的调度决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速铁路数字移动通信系统
1.2 GSM-R的主要业务
2.GSM-R承载的铁路业务
(1)语音业务 语音业务提供基础语音通话功能,如调度移动通信 语音业务,除此之外还具备较高级的语音功能 。 如 : ✓①优先级与强拆。 ✓②语音组呼。 ✓③语音广播。
高速铁路数字移动通信系统
1.2 GSM-R的主要业务
高速铁路数字移动通信系统
图7-7 GSM-R的业务模型
高速铁路数字移动通信系统
1.2 GSM-R的主要业务
2.GSM-R承载的铁路业务
GSM-R面向铁路主要提供
语音 业务
数据 业务
智能 业务
高速铁路数字移动通信系统
1.2 GSM-R的主要业务
2.GSM-R承载的铁路业务
(1)语音业务 语音业务通过电路交换方式实现,属于电路域业务。电路域业务主要 针对那些对实时性要求较高又要十分准确的传递信息,具有最高或者 较高的优先级的业务,一般用于列车控制、调度语音指挥行车、铁路 应急指挥通信等重要的业务。电路交换数据传输方式配置固定单独的 信道,不共享信道,保证了数据传输的实时性和准确性,数据传输速 率最高为9.6 kbps。
1.2 GSM-R的主要业务
GSM-R以GSM为基础平台,为铁路运输提 供专用移送通信系统,随着应用范围的逐渐扩 大,其将成为铁路移动通信的发展主力。
高速铁路数字移动通信系统
1.2 GSM-R的主要业务
1.GSM-R的业务模型
GSM-R以GSM为基础平台,结合先进的语 音呼叫业务和铁路基本业务,构成信息开发平 台,通过该平台可以开发出具有对应业务需求 的铁路应用系统。
GPRS子系统由GPRS服务支持节点(SGSN)、GPRS网关支持节点 (GGSN)、分组控制单元(PCU)、域名服务器(DNS)、认证服务 器(RADIUS)等设备组成。
GGSN是连接GSM-R网络和外部分组交换网的网关,也称为GPRS 路由器。
高速铁路数字移动通信系统
1.1 GSM-R网络结构及功能
高速铁路数字移动通信系统
1.1 GSM-R网络结构及功能
7.终端子系统
终端子系统包括固定终端、移动终端等设备。其中, 固定终端包括调度终端、车站终端及其他用户电话,以及 呼叫记录和录音系统等设备;移动终端由移动设备和SIM卡 组成,包括机车综合通信设备、列控数据传输设备和便携 台等。
高速铁路数字移动通信系统
其中,MSC既是NSS的核心,也是整个GSM-R网络的核心。
高速铁路数字移动通信系统
1.1 GSM-R网络结构及功能
2.基站子系统
BSS通常由基站控制器(base station controller,BSC)和基站收 发信机(base transceiver station,BTS)组成。BSC主要提供在其覆 盖区域内的无线电资源管理与移动性管理的功能,以及无线网络的运营 与维护功能。一套BSC根据容量不同可以管理一个或上百个BTS。BTS主 要负责空中接口,能够进行语音、数据和短消息的传输,并可以完成信 号处理、无线测量预处理、切换、功率控制等基于无线接口的功能。
1.1 GSM-R网络结构及功能
图7-5 GSM-R网络结构
高速铁路数字移动通信系统
1.1 GSM-R网络结构及功能
1.网络交换子系统
NSS主要负责端到端的呼叫、用户数据管理、移动性管理和固定网络的 连接。NSS一般具有移动交换中心(MSC)、拜访位置寄存器(VLR)、归 属位置寄存器(HLR)、鉴权中心(AUC)、设备识别寄存器(EIR)、互连 功能(IWF)等功能。NSS还可以有实现语音组呼和语音广播的实体——组 呼寄存器(group call register,GCR),以及用于短消息业务的短消息服 务中心(short message service center,SMSC)。
高速铁路数字移动通信系统
1.1 GSM-R网络结构及功能
6.操作维护子系统
OSS是相对独立的子系统,为GSM-R网络提供管理和维护功能。 用于操作维护的设备被称为操作维护中心(OMC),其中,操作维护 中心-交换部分(OMC-S)负责NSS的操作维护,基站子系统操作维护 中心(OMC-R)负责BSS的操作维护,FAS网络管理系统(OMC-F) 负责FAS的操作维护,等等。OSS是操作人员与系统设备之间的中介, 它实现了系统的集中操作与维护,完成了包括移动用户管理、移动设 备管理及网络操作维护等功能。
高速铁路数字移动通信系统
图7-6 BSS的总体结构
高速铁路数字移动通信系统
1.1 GSM-R网络结构及功能
3.通用分组无线业务子系统
通用分组无线业务(GPRS)子系统主要负责为无线用户提供分组数 据承载业务,如CTC/TDCS系统互联、车地信息互通,在GSM-R中引入 GPRS使移动通信与数据网络合二为一。
高速铁路数字移动通信系统
GSM是一种起源于欧洲的移动通信技术标 准,是第二代移动通信技术,其被开发的目的 是让全球各地可以共同使用一个移动电话网络 标准。而GSM-R技术则是在成熟、通用的GSM 平台基础上专门为满足铁路应用而开发的,通 过无线通信方式实现移动话音和数据传输的一 种技术体制。
高速铁路数字移动通信系统
高速铁路数字移动通信系统
1.1 GSM-R网络结构及功能
5.固定接入交换子系统
固定接入交换(FAS)子系统主要实现GSM-R中固定用 户的接入,调度台、车站台等固定用户通过30B+D接口连接 GSM-R系统的MSC,与各级FAS之间通过传输网建立起来的 数字通道进行数字信息的传递,形成铁路调度网络系统。
2.GSM-R承载的铁路业务
(2)数据业务 数据业务可以通过电路交换方式和分组交换方式完成,因此数据业务 可以分为电路域数据业务和分组域数据业务。
4.智能网子系统
智能网(IN)子系统是在现有交换与传输的基础网络结构上,为快 速、方便、经济地提供电信新业务而设置的一种附加网络结构。在GSMR中,智能网子系统主要负责接入矩阵、功能号注册/注销与管理、功能 寻址、位置寻址、基于外部精确定位信息的位置寻址等功能。
智能网子系统主要由业务控制点(SCP)、业务交换点(SSP)、业 务管理点(SMP)等构成。