ansys_workbench_15.0_网格划分

合集下载

ansys workbench meshing网格划分总结

ansys workbench meshing网格划分总结

Base point and delta创建出的点重合时看不到大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。

六面体(梯形)在中心质量差,四面体在边界层处质量差,边界层处用棱柱网格prism。

棱锥为四面体和六面体之间的过渡棱柱由四面体网格被拉伸时生成3DSweep扫掠网格划:只有单一的源面和目标面,膨胀层可生成纯六面体或棱柱网格Multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)—-mapped mesh type映射网格类型:包括hexa、hexa/prism—-free mesh type自由网格类型:包括not allowed、tetra、hexa dominant、hexa core(六面体核心)——src/trg selection源面/目标面选择,包括automatic、manual source手动源面选择patch conforming:考虑一些小细节(四面体),包括CFD的膨胀层或边界层识别patch independent:忽略一些小细节,如倒角,小孔等(四面体),包括CFD的膨胀层或边界层识别——max element size 最大网格尺寸——approx number of elements大约网格数量mesh based defeaturing 清除网格特征-—defeaturing tolerance 设置某一数值时,程序会根据大小和角度过滤掉几何边Use advanced size function 高级尺寸功能——curvature['kɜːvətʃə]曲率:有曲率变化的地方网格自动加密,如螺钉孔,作用于边和面.——proximity[prɒk’sɪmɪtɪ]邻近:窄薄处、狭长的几何体处网格自动加密,如薄壁,但花费时间较多,网格数量增加较多,配合min size使用。

控制面网格尺寸可起到相同细化效果.hex dominant六面体主导:先生成四边形主导的网格,然后再得到六面体再按需要填充棱锥和四面体单元。

Ansys_workbench网格划分相关

Ansys_workbench网格划分相关

Ansys_workbench网格划分相关Mesh 网格划分方法—四面体(Patch Conforming和Patch Independent)、扫掠、自动、多区、CFX划分1.四面体网格优点—适用于任意体、快速自动生成、关键区域使用曲度和近似尺寸功能细化网格、可使用边界层膨胀细化实体边界。

缺点—在近似网格密度下,单元和节点数高于六面体网格、不可能使网格在一个方向排列、由于几何和单元性能的非均质性,不适用于薄实体或环形体常用参数—最小和最大尺寸、面和体的尺寸、Advanced尺寸功能、增长比(Growth—对CFD逐渐变化,避免突变)、平滑(smooth—有助于获得更加均匀尺寸的网格)、统计学(Statistics)、Mesh MetricsPathch Conforming—默认考虑几何面和体生成表面网格,会考虑小的边和面,然后基于TGRID Tetra算法由表面网格生成体网格。

作用—多体部件可混合使用Patch Conforming四面体和扫掠方法共同生成网格,可联合Pinch Control 功能有助于移除短边,基于最小尺寸具有内在网格缺陷Patch Independent—基于ICEM CFD T etra算法,先生成体网格并映射到表面产生表面网格。

如果没有载荷或命名,就不考虑面和边界(顶点和边),此法容许质量差的CAD几何。

作用—可修补碎面、短边、差的面差数,如果面上没有载荷或者命名,就不考虑面和边了,直接将网格跟其它面作一体划。

如果有命名则要单独划分该区域网格体膨胀—直接选择要膨胀的面,就可使面向内径向生成边界层面膨胀—选择要膨胀的面,在选择面的边,就可以向面内膨胀2.扫掠网格体须是可扫掠的、膨胀可产生纯六面体或棱柱网格,手动设置源和目标面,通常一对一,薄壁模型(Src/Trg选择Manual Thin)可自动划分多个面,在厚度方向上划分多个单元。

3.自动化分网格—应该划分成四面体,其与扫掠取决于体是否可扫掠,同一部件的体有一致网格,可程序化控制膨胀4.多区扫掠网格划分—基于ICEM CFD六面体模块,多区划分完后,可给多区添加膨胀5.CFX网格—使用四面体和棱柱网格对循环对称或旋转对称几何划分网格,不考虑网格尺寸或没有网格应用尺寸可使用CFX网格全局网格控制1.Physics Preference 物理设置包括力学(Mechanical)、CFD、电磁(Electromagnetic)、显示(Explicit)分析2.结构分析—使用哪个高阶单元划分较为粗糙的网格。

ansys_workbench_15.0_网格划分讲解

ansys_workbench_15.0_网格划分讲解

Advanced Contact & Fasteners
基于网格相关度控 制网格密度的方法 ,设置的单元尺寸 对于网格密度有着 重要的影响!
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
Advanced Sizing Functions (ASF) -该项功能用于控制接近表面区域和具有高曲 率区域的网格生长和分布 高级尺寸函数有五个选项: -关闭高级尺寸函数(off) -Proximity and Curvature -Curvature -Proximity -Fixed
Training Manual
Advanced Contact & Fasteners
1. Meshing网格划分概述
Training Manual
Advanced Contact & Fasteners
Workbench中的Meshing应用程序的目标是提供通用的网 格划分格局。网格划分工具可以在任何分析类型中使用:
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Curvature尺寸控制函数
-该函数基于模型中的曲率信息控制网格,主要 作用于模型中的孔,洞和缺陷处。 该函数有5个控制参数: Curvature Normal Angle-曲率法向角度 Min Size-总体最小尺寸 Max Face –面上最大尺寸 Max Size-总体最大尺寸 Growth Rate-网格生长率

AnsysWorkbench划分网格

AnsysWorkbench划分网格

Ansys Workbench 划分网格(张栋zd0561@)1、对于三维几何体(对于三维几何体(3D 3D 3D))有几种不同的网格化分方法。

如图1下部所示。

图1网格划分的种类1.1、Automatic(自动划分法)1.2、Tetrahedron(四面体划分法)它包括两种划分方法:Patch Conforming(A W 自带功能),Patch Independent(依靠ICEM CFD Tetra Algorithm 软件包来实现)。

步骤:Mesh(右键)——Insert——Method(操作区上方)Meshcontrl——Method(左下角)Scope——GeometryMethod——Tetrahedrons(四面体网格)Algorithm——Patch Conforming(补充:Patch Independent该算法是基于Icem CFD Tetra的,Tetra部分具有膨胀应用,其对CAD许多面的修补均有用,包括碎面、短边、较差的面参数等。

在没有载荷或命名选项的情况下,面和边无需考虑。

)图2四面体网格分两类图3四面体划分法的参数设置1.3、Hex Dominant(六面体主导法)1.4、Sweep(扫掠划分法)1.5、MultiZone(多区划分法)2、对于面体或者壳二维几何对于面体或壳二维(2D),A W有一下:Quad Dominant(四边形单元主导)Triangles(三角形单元)Uniform Quad/Tri(均匀四面体/三角形单元)Uniform Quad(均匀四边形单元)3、网格参数设置下图为缺省设置(Defaults)下的物理环境(Physics Preferance)图4网格参数设置图5Mechanical默认网格上图中的关键数据:物理优先项、关联中心缺省值、平滑度、过渡、跨越角中心、实体单元默认中节点。

图6缺省参数设置上图中,虽然Relevance Center是在尺寸参数控制选项里设置的,但由于Relevance需要与其配合使用,故在此介绍。

ansysworkbench中划分网格的几种方法

ansysworkbench中划分网格的几种方法

v1.0可编辑可修改
转自宋博士的博客
如何在ANSYS WORKBEN中划分网格经常有朋友问到这个问题。

我整理了一下,先给
出第一个入门篇,说明最基本的划分思路。

以后再对某些专题问题进行细致阐述。

ANSYSWORKBENCH提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法
的特点。

1.创建一个网格划分系统。

2.创建一个变截面轴。

先把一个直径为20mm的圆拉伸30mm成为一个圆柱体
再以上述圆柱体的右端面为基础,创建一个直径为26mm的圆,拉伸30mm得到第二个圆柱体。

v1.0可编辑可修改。

ansysworkbenchmeshing网格划分总结

ansysworkbenchmeshing网格划分总结

ansysworkbenchmeshing⽹格划分总结a n s y s w o r kb e nc hm e s h i n g⽹格划分总结标准化⽂件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KIIBase point and delta创建出的点重合时看不到⼤部分可划分为四⾯体⽹格,但六⾯体⽹格仍是⾸选,四⾯体⽹格是最后的选择,使⽤复杂结构。

六⾯体(梯形)在中⼼质量差,四⾯体在边界层处质量差,边界层处⽤棱柱⽹格prism。

棱锥为四⾯体和六⾯体之间的过渡棱柱由四⾯体⽹格被拉伸时⽣成3DSweep扫掠⽹格划:只有单⼀的源⾯和⽬标⾯,膨胀层可⽣成纯六⾯体或棱柱⽹格Multizone多域扫掠⽹格:对象是多个简单的规则体组成时(六⾯体)——mapped mesh type映射⽹格类型:包括hexa、hexa/prism——free mesh type⾃由⽹格类型:包括not allowed、tetra、hexa dominant、hexa core(六⾯体核⼼)——src/trg selection源⾯/⽬标⾯选择,包括automatic、manual source⼿动源⾯选择patch conforming:考虑⼀些⼩细节(四⾯体),包括CFD的膨胀层或边界层识别patch independent:忽略⼀些⼩细节,如倒⾓,⼩孔等(四⾯体),包括CFD 的膨胀层或边界层识别——max element size 最⼤⽹格尺⼨——approx number of elements⼤约⽹格数量mesh based defeaturing 清除⽹格特征——defeaturing tolerance 设置某⼀数值时,程序会根据⼤⼩和⾓度过滤掉⼏何边Use advanced size function ⾼级尺⼨功能——curvature['k??v?t??]曲率:有曲率变化的地⽅⽹格⾃动加密,如螺钉孔,作⽤于边和⾯。

Ansys15.0workbench网格划分教程

Ansys15.0workbench网格划分教程

第3章Workbench网格划分3.1 网格划分平台ANSYS Workbench中提供ANSYS Meshing应用程序(网格划分平台)的目标是提供通用的网格划分格局。

网格划分工具可以在任何分析类型中使用。

●FEA仿真:包括结构动力学分析、显示动力学分析(AUTODYN、ANSYS LS/DYNA)、电磁场分析等。

●CFD分析:包括ANSYS CFX、ANSYS FLUENT等。

3.1.1 网格划分特点在ANSYS Workbench中进行网格划分,具有以下特点:●ANSYS网格划分的应用程序采用的是Divide & Conquer(分解克服)方法。

●几何体的各部件可以使用不同的网格划分方法,亦即不同部件的体网格可以不匹配或不一致。

●所有网格数据需要写入共同的中心数据库。

●3D和2D几何拥有各种不同的网格划分方法。

ANSYS Workbench 15.0从入门到精通ANSYS Workbench中提供的网格划分法可以在几何体的不同部位运用不同的方法。

1.对于三维几何体对于三维几何体(3D)有如图3-1所示的几种不同的网格划分方法。

图3-1 3D几何体的网格划分法(1)自动划分法(Automatic)自动设置四面体或扫掠网格划分,如果体是可扫掠的,则体将被扫掠划分网格,否则将使用Tetrahedrons下的Patch Conforming网格划分器划分网格。

同一部件的体具有一致的网格单元。

(2)四面体划分法(Tetrahedrons)四面体划分法包括Patch Conforming划分法(Workbench自带功能)及Patch Independent划分法(依靠ICEM CFD Tetra Algorithm软件包实现)。

四面体划分法的参数设置如图3-2所示。

图3-2 四面体划分法的参数设置Patch Independent网格划分时可能会忽略面及其边界,若在面上施加了边界条件,便不能忽略。

ANSYSWorkbenchMesh网格划分(自己总结)

ANSYSWorkbenchMesh网格划分(自己总结)

ANSYSWorkbenchMesh网格划分(自己总结)Workbench Mesh网格划分分析步骤网格划分工具平台就是为ANSYS软件的不同物理场和求解器提供相应的网格文件,Workbench中集成了很多网格划分软件/应用程序,有ICEM CFD,TGrid,CFX,GAMBIT,ANSYS Prep/Post等。

网格文件有两类:①有限元分析的结构网格:结构动力学分析,电磁场仿真,显示动力学分析;②计算流体力学分析的网格:用于ANSYS CFX,ANSYS FLUENT,Polyflow;这两类网格的具体要求如下:结构网格:①细化网格来捕捉关心部位的梯度,例如温度、应变能、应力能、位移等;②大部分可划分为四面体网格,但六面体单元仍然是首选;③有些显示有限元求解器需要六面体网格;④结构网格的四面体单元通常是二阶的;CFD网格:①细化网格来捕捉关心的梯度,例如速度、压力、温度等;②于是流体分析,网格的质量和平滑度对结果的精确度至关重要,这导致较大的网格数量,经常数百万的单元;③大部分可划分为四面体网格,但六面体单元仍然是首选,流体分析中,同样的求解精度,六面体节点数少于四面体网格的一半。

④CFD网格的四面体单元通常是一阶的一般而言,针对不同分析类型有不同的网格划分要求:①结构分析:使用高阶单元划分较为粗糙的网格;②CFD:好的,平滑过渡的网格,边界层转化;③显示动力学分析:需要均匀尺寸的网格;物理选项实体单元默认中结点关联中心缺省值Coarse Coarse Medium Coarse 平滑度过渡 Mechanical CFD Electromagnetic Explicit Kept Dropped Kept Dropped Medium Medium Medium Fine Fast Slow Fast Slow 注:上面的几项分别对应Advanced中的Element Midside Nodes,以及Sizeing中的Relevance Center,Smoothing,Transition。

ANSYSworkbench网格划分初学者整理by-syy

ANSYSworkbench网格划分初学者整理by-syy

ANSYSworkbench⽹格划分初学者整理by-syy1workbench⽹格划分主要是这⼀栏mesh control的功能。

有的教材书列举了⼀些例⼦,按照它的步骤来可以得出它得出的答案,但是有时候知其然不知其所以然。

所以,笔者作为初学者,把⾃⼰犯的错,以及做得例⼦进⾏了详细解说。

明⽩了软件每个选项的意思和作⽤,然后再去看书上⼀些例⼦,就会发现可以信⼿拈来了。

1.1映射⾯⽹格划分通过局部⽹格控制【mesh control】,设置参数得到如下划分。

不符合预期要求,⽽且,正反两平⾯⽹格划分不同!如果不进⾏局部控制,结果是这样的:且正反⾯⽹格相同。

要使正反⾯都相同必须两⾯都设置局部控制:其中sides、corners、ends的设置将决定该⾯上⽹格的划分。

如下设置三点side:其余四点为end得到:正反⼀样。

另⼀种设置⽅式:⼀个side,内陷的那个是corner,其余五个是end得到结果:这些点的设置是什么意思?1.2Sizing通过选择“体”(注意直接选容易选成了⾯),然后开始body sizing中的sphere of influence上图根据实际实体⼤⼩设置sphere radius(半径)和element size很重要。

Element size如果⼤了,则body sizing设置与否都⽆作⽤。

这个的意思是,将包括在球体内的实体以element size⼤⼩来细分。

结果:1.3建⽴局部坐标这个累死了。

到处找资料也没有说得清楚的!!⾸先,教程是这样说的:Apply那⾥怎么选中这个局部坐标系的原点?⼀定要记得先选geometry selection!!然后取点局部坐标系有什么⽤呢?在⽹格细分⾥这么⽤:虽然结果奇奇怪怪的,但⾄少也说明了,在这两个地⽅,⽹格确实分的很细!其实不⽤建⽴局部坐标也可以。

在geometry那⼀栏不要选中整个体,选择某个点,得到vertax sizing就可以设置了!1.4⽹格偏置Bias type的功能从以下两张对⽐图就可以看出来!上图⽤了参数2的偏置,下图没⽤,特别注意behivor:hard的作⽤。

ANSYS Workbench局部网格划分方法介绍

ANSYS Workbench局部网格划分方法介绍

ANSYS Workbench局部网格划分方法介绍网格是计算机辅助工程(CAE)模拟过程中不可分割的一部分。

网格直接影响到求解精度、求解收敛性和求解速度。

此外,建立网格模型所花费的时间往往是取得 CAE 解决方案所耗费时间中的一个重要部分。

因此,一个越好的自动化网格工具,越能得到好的解决方案。

本文重点介绍ANSYS Workbench局部网格划分方法。

1.ANSYSMesh模块创建将workbench界面左侧工具栏中的“Mesh”拖入至右侧空白区域松开鼠标创建一个网格划分模块,然后右击“Mesh”模块下的“Geometry”导入几何文件,如图1所示。

图1 ANSYS Mesh模块创建2.ANSYS Mesh网格划分方法右击“Mesh”后,插入网格划分方法,如图2所示。

图2插入网格划分方法ANSYS Mesh网格划分方法包括自动划分、四面体、六面体主导、扫略和多区五种网格划分方法,如图3所示。

图3 网格划分方法其中扫略的网格划分方法适用于规则的几何体(源面和目标面拓扑结构一致),可生成高质量的六面体单元或六面体与棱柱体组合单元;六面体为主导的网格划分方法适用于形状较为复杂的体,体表面以六面体划分,内部不能使用六面体划分的区域用四面体填充;四面体的网格划分方法适用于形状特别复杂的体;多区的网格划分方法,程序自动把复杂的几何体切割若干规则的几何体,然后再使用扫略划分方法。

图4列出了采用不同网格划分方法的得到的有限元模型。

(a)自动网格划分(b)四面体网格划分(c)六面体主导网格划分(d)多区网格划分图4采用不同网格划分方法得到的有限元模型3.可消除细小特征的网格划分方法导入至Workbench的几何模型在某一面上存在细小特征(9个圆圈),如图5所示。

若直接进行网格划分,会在圆圈附近加密网格,,这样会使网格数量大大增加,从而延长计算时间。

通常的做法是在ANSYS几何处理模块(Spaceclaim或DesignModeler)中将这些圆圈事先删除,然后再进行网格划分。

Ansys15.0workbench网格划分教程(修订)

Ansys15.0workbench网格划分教程(修订)

第3章Workbench网格划分3.1 网格划分平台ANSYS Workbench中提供ANSYS Meshing应用程序(网格划分平台)的目标是提供通用的网格划分格局。

网格划分工具可以在任何分析类型中使用。

●FEA仿真:包括结构动力学分析、显示动力学分析(AUTODYN、ANSYS LS/DYNA)、电磁场分析等。

●CFD分析:包括ANSYS CFX、ANSYS FLUENT等。

3.1.1 网格划分特点在ANSYS Workbench中进行网格划分,具有以下特点:●ANSYS网格划分的应用程序采用的是Divide & Conquer(分解克服)方法。

●几何体的各部件可以使用不同的网格划分方法,亦即不同部件的体网格可以不匹配或不一致。

●所有网格数据需要写入共同的中心数据库。

●3D和2D几何拥有各种不同的网格划分方法。

ANSYS Workbench 15.0从入门到精通ANSYS Workbench中提供的网格划分法可以在几何体的不同部位运用不同的方法。

1.对于三维几何体对于三维几何体(3D)有如图3-1所示的几种不同的网格划分方法。

图3-1 3D几何体的网格划分法(1)自动划分法(Automatic)自动设置四面体或扫掠网格划分,如果体是可扫掠的,则体将被扫掠划分网格,否则将使用Tetrahedrons下的Patch Conforming网格划分器划分网格。

同一部件的体具有一致的网格单元。

(2)四面体划分法(Tetrahedrons)四面体划分法包括Patch Conforming划分法(Workbench自带功能)及Patch Independent划分法(依靠ICEM CFD Tetra Algorithm软件包实现)。

四面体划分法的参数设置如图3-2所示。

图3-2 四面体划分法的参数设置Patch Independent网格划分时可能会忽略面及其边界,若在面上施加了边界条件,便不能忽略。

ANSYS Workbench 模型导入与网格划分-文档资料

ANSYS Workbench 模型导入与网格划分-文档资料
• 在计算数据变化梯度较大的部位(如应力集 中处、几何形状、厚度变化位置),为了较 好地反映数据变化规律,需要采用比较密 集的网格。而在计算数据变化梯度较小的 部位,为减小模型规模,则应划分相对稀
22
网格划分基础
2.网格划分原则
(2)网格疏密
• 划分疏密不同的网格主要用于应力分析(包 括静应力和动应力),而计算固有特性时则 趋于采用较均匀的钢格形式。这是由于固 有频率和振型主要取决于结构质量分布和 刚度分布,不存在类似应力集中的现象。 同样,在结构温度场计算中也趋于采用均 匀网格。
16
网格划分基础
1.网格类型及单元阶次
三维网格
17
网格划分基础
1.网格类型及单元阶次
18
网格划分基础
2.网格划分原则
• (1)网格数量
• (2)网格疏密
• (3)单元形状及评价
• (4)单元阶次
• (5)网格质量
• (6)网格分界面和分界点
• (7)位移协调性
• (8)细节处理
• 网格划分没有定式,只能根据经验划分网格,宽广的有限元知
识和丰富的经验是保证划分良好网格的前提。
19
网格划分基础
2.网格划分原则
(1)网格数量
20
网格划分基础
1.网格划分原则
(1)网格数量
• a.在静力分析时,假如仅仅是计算结构的变形,网格数目可 以少一些。假如需要计算应力,则在精度要求相同的情况下 应取相对较多的网格。
• b.在响应计算中,计算应力响应所取的网格数应比计算位移 响应多。
ANSYS Workbench
模型导入与网格划分
主讲:吴淑芳
2014年11月
1
主要内容

ANSYS 15.0几何建模与网格划分实战指南

ANSYS 15.0几何建模与网格划分实战指南
11.6 三维圆柱绕流建模 与网格划分
11 前处理综合实 例
11.7 小结
11 前处理综合实例
01
11.1.1 几何建模
02
11.1.2 网格划分(Automatic网 格划分方法)
03
11.1.3 网格划分(MultiZone网 格划分方法)
04
11.1.4 网格划分(Sweep方法和 Te t r a h e d r o n s 方 法 划 分 网 格 )
06
Part One
6 参数化建模
6 参数化建模
6.1 参数
6.1.1 尺寸参考 6.1.2 提取参数 6.1.3 参数管理器 6.1.4 驱动/附属参数 6.1.5 辅助变量
6.4 小结
6.2 实例6-1:水流冲击桥墩的参数化 建模
6.3 实例6-2:酱油瓶的参数化建模
07
Part One
7 ANSYS网格划分及Meshing软件
3.5.2 尺 寸编辑
3.5 尺寸定义
3 草图建模
3.6.1 修改 草图
1
3.6.2 草图 复制
2
3.6 草图处理
3.7.1 几 何接口
1
3 草图建模
3.7 几何模型的关联
3.7.2 关联 CAD模型
2
3.7.3 导入 CAD文件
3
3.7.4 导 入定位
4
04
Part One
4 3D几何建模
4 3D几何建模
3.10 实例3-2:S 型管草图绘制
3.11 实例3-3:卧式 分离器草图绘制
3.12 实例3-4: 叶轮草图绘制
3 草图建模
3.13 小结
3.2.1 新平面 创建

ansys workbench meshing网格划分总结

ansys workbench meshing网格划分总结

大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。

六面体(梯形)在中心质量差,四面体在边界层处质量差,边界层处用棱柱网格prism。

棱锥为四面体和六面体之间的过渡棱柱由四面体网格被拉伸时生成3DSweep扫掠网格划:只有单一的源面和目标面,膨胀层可生成纯六面体或棱柱网格Multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)——mapped mesh type映射网格类型:包括hexa、hexa/prism——free mesh type自由网格类型:包括not allowed、tetra、hexa dominant、hexa core(六面体核心)——src/trg selection源面/目标面选择,包括automatic、manual source手动源面选择patch conforming:考虑一些小细节(四面体),包括CFD的膨胀层或边界层识别patch independent:忽略一些小细节,如倒角,小孔等(四面体),包括CFD 的膨胀层或边界层识别——max element size 最大网格尺寸——approx number of elements大约网格数量mesh based defeaturing 清除网格特征——defeaturing tolerance 设置某一数值时,程序会根据大小和角度过滤掉几何边Use advanced size function 高级尺寸功能——curvature['kɜːvətʃə]曲率:有曲率变化的地方网格自动加密,如螺钉孔,作用于边和面。

——proximity[prɒk'sɪmɪtɪ]邻近:窄薄处、狭长的几何体处网格自动加密,如薄壁,但花费时间较多,网格数量增加较多,配合min size使用。

控制面网格尺寸可起到相同细化效果。

hex dominant六面体主导:先生成四边形主导的网格,然后再得到六面体再按需要填充棱锥和四面体单元。

ansys workbench meshing网格划分总结

ansys workbench meshing网格划分总结

Base point and delta创建出的点重合时看不到大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。

六面体(梯形)在中心质量差,四面体在边界层处质量差,边界层处用棱柱网格prism。

棱锥为四面体和六面体之间的过渡棱柱由四面体网格被拉伸时生成3DSweep扫掠网格划:只有单一的源面和目标面,膨胀层可生成纯六面体或棱柱网格Multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)——mapped mesh type映射网格类型:包括hexa、hexa/prism——free mesh type自由网格类型:包括not allowed、tetra、hexa dominant、hexa core(六面体核心)——src/trg selection源面/目标面选择,包括automatic、manual source手动源面选择patch conforming:考虑一些小细节(四面体),包括CFD的膨胀层或边界层识别patch independent:忽略一些小细节,如倒角,小孔等(四面体),包括CFD的膨胀层或边界层识别——max element size 最大网格尺寸——approx number of elements大约网格数量mesh based defeaturing 清除网格特征——defeaturing tolerance 设置某一数值时,程序会根据大小和角度过滤掉几何边Use advanced size function 高级尺寸功能——curvature['kɜːvətʃə]曲率:有曲率变化的地方网格自动加密,如螺钉孔,作用于边和面。

——proximity[prɒk'sɪmɪtɪ]邻近:窄薄处、狭长的几何体处网格自动加密,如薄壁,但花费时间较多,网格数量增加较多,配合min size使用。

控制面网格尺寸可起到相同细化效果。

ansysworkbenchmeshing网格划分总结

ansysworkbenchmeshing网格划分总结

a n s y s w o r kb e nc hm e s h i n g网格划分总结(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除Base point and delta创建出的点重合时看不到大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。

六面体(梯形)在中心质量差,四面体在边界层处质量差,边界层处用棱柱网格prism。

棱锥为四面体和六面体之间的过渡棱柱由四面体网格被拉伸时生成3DSweep扫掠网格划:只有单一的源面和目标面,膨胀层可生成纯六面体或棱柱网格Multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)——mapped mesh type映射网格类型:包括hexa、hexa/prism——free mesh type自由网格类型:包括not allowed、tetra、hexa dominant、hexa core(六面体核心)——src/trg selection源面/目标面选择,包括automatic、manual source手动源面选择patch conforming:考虑一些小细节(四面体),包括CFD的膨胀层或边界层识别patch independent:忽略一些小细节,如倒角,小孔等(四面体),包括CFD 的膨胀层或边界层识别——max element size 最大网格尺寸——approx number of elements大约网格数量mesh based defeaturing 清除网格特征——defeaturing tolerance 设置某一数值时,程序会根据大小和角度过滤掉几何边Use advanced size function 高级尺寸功能——curvature['kɜːvətʃə]曲率:有曲率变化的地方网格自动加密,如螺钉孔,作用于边和面。

AnsysWorkbench网格控制之——全局网格控制(上)

AnsysWorkbench网格控制之——全局网格控制(上)

AnsysWorkbench网格控制之——全局网格控制(上)在使用ANSYS Workbench进行网格划分时,全局网格控制可以使用默认的设置,但要进行高质量的网格划分,还需要用户了解全局控制的常用设置,尤其是对于复杂的零部件。

网格全局控制的设置包含了6个组别,分别是Display(显示)、Defaults(缺省设置)、Sizing(尺寸控制)、Inflation(膨胀控制)、Advanced(高级控制)、Defeaturing(损伤设置)、Statistics(网格信息)等信息,如下图所示。

全局网格设置1 显示组显示组可以用于直观地显示网格质量显示组设置网格质量显示2 缺省设置组缺省设置包括Physics Preference物理场选择、Rwlevance关联度、Element MIdside Nodes网格中节点。

缺省设置组2.1 Physics Preference物理环境选择划分网格目标的物理环境包括结构分析(Mechanical)、电磁分析(Electromagnetics)、流体分析(CFD)、显示动力学分析(Explicit)等物理场选择不同物理场下默认设置如下图不同的物理环境的默认设置2.2 Rwlevance关联度Rwlevance数值越小网格越粗疏,即可拖到也可输入值,从-100至100代表网格由疏到密。

虽然Relevance Center是在尺寸参数控制选项里设置的,但由于Relevance需要与其配合使用,故在此一起介绍。

Relevance Center 是在Rwlevance数值基础上再次区分粗、中、精。

如下图。

Relevance Center与在Rwlevance关系2.3 Element MIdside Nodes网格中节点用于设置网格的中节点,dropped为无中节点,kept为有中节点。

中节点设置如果为缺省值Proguam Controlled则由程序默认控制,以下为实体、壳、梁的网格单元默认值实体、壳、梁的默认单元3 Sizing尺寸控制组尺寸控制组3.1 Size Function尺寸功能尺寸功能Adaptive关闭尺寸功能,只能设置最基本参数Curvature 曲率,可以控制曲面处网格的变化,使转角处网格细化Proximity近似,控制狭窄处网格层数P&C近似和曲率,即可以控制曲面处网格的变化,也可控制狭窄处网格层数uniform控制网格尺寸最大与最小值尺寸控制效果3.2 Relevance Center相关中心,见2.23.3 Element Size单元尺寸(略)3.4 Initial size Seed初始尺寸种子初始尺寸种子设置Initial Size Seed初始尺寸种子用来控制每一部件的初始网格种子,此时已定义单元的尺寸会被忽略,它包含Active Assembly、Full Assembly、Part 三个选项。

(完整word版)ansys15.0-fluent操作步骤

(完整word版)ansys15.0-fluent操作步骤

Fluent 操作步骤1.模型建立:用SolidWorks建模,保存成x_t格式(exercise1),用于稍后导入fluent.2.网格划分:打开ansys15.0中的workbench15。

0软件,在component systems中双击或者拖mesh到projectschematic;导入文件:在geometry右键import geometry /browse /exercise1;定义初始条件:在mesh右键edit,进入mesh—meshing[ansys icem cfd],定义流体inlet、outlet、wall等初始条件.点击,选择流体进口面右键create named selection,把selection更改成inlet;同理,定义出口面为outlet;未定义的实体表面默认为wall。

开始划分网格:,单击中的mesh把default /Physics Preference下可选项更改成CFD,同时把solver preference下可选项更改成fluent,然后点击进行网格划分,保存文件save project,关闭。

此时在workbench中出现两个对号,表示网格划分完成。

3.打开fluent软件,设置参数求解,如图:出现界面:应先update,再edit。

单击edit,如图。

设置参数,单击OK.出现界面,部分界面如图:在solution setup下Generate,单击check检查网格。

单击models,单击viscous-laminar,单击edit进行设置,在model下选择K-epsilon,其他条件一般默认。

单击materials,单击fluid,单击create/edit对流体属性进行设置;单击solid,单击create/edit对固体属性进行设置.单击cell zone conditons(内部区域条件),设置type下的类型。

单击boundary conditions,对inlet、outlet、wall进行设置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模和分析的物理系统; -自适应结果:适应用户程序的开发系统 ——CAD neutral meshing netral solver
neutral -集成了行业最好的网格划分源程序: ICEM CFD;TGrid;GAMBIT;CFX等
Training Manual
Advanced Contact & Fasteners
Advanced Contact & Fasteners
基于网格相关度控 制网格密度的方法 ,设置的单元尺寸 对于网格密度有着 重要的影响!
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
Advanced Sizing Functions (ASF) -该项功能用于控制接近表面区域和具有高曲 率区域的网格生长和分布 高级尺寸函数有五个选项: -关闭高级尺寸函数(off) -Proximity and Curvature
3.网格控制-总体尺寸控制-高级尺寸函数
Proximity尺寸控制函数
-该函数基于模型边缘特征控制网格,主要作用于 模型中的所有边缘,该函数有6个控制参数: Proximity Accuracy-临近边缘精度参数; Num Cells Across Gap-间隙截面单元数量; Proximity Min Size-边缘最小尺寸; Max Face –面上最大尺寸; Max Size-总体最大尺寸; Growth Rate-网格生长率;
1.Meshing网格划分概述
网格划分目的: • 在节点处建立方程 – 求解域被划分成有限个离散的单元。 网格划分的基本要求: • 网格划分效率与求解精度 —对于模型中应力集中处和几何特征细 节处需要进行网格细化。 网格划分质量: —网格划分质量直接影响到求解的精度 和求解的稳定性。
Training Manual
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
将高级尺寸函数选项设置为Off,则 程序在网格划分过程中,不使用高 级尺寸函数,而是通过Element Size,Initial Size Seed,Smoothing ,Transition和Span Angle Center这 五个参数共同控制总体尺寸。
网格修补选项只有一个三角表 面网格划分器设置选项。对于三 角表面网格划分器,存在两个选 项:程序控制和高级前缘,程序 控制选项为默认选项。
-如果选择程序控制选项,则程序根据模型表面形状,来确定是否 使用三角剖分法(Delaunay)或高级前缘(advancing front)算 法;
-如果选择高级前缘算法,则程序优先使用高级前缘算法,如果网 格划分过程中失败,则自动转换为三角剖分算法。
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
将高级尺寸函数选项设置为Fixed, 激活该选项后,导致没有局部网格 细化,局部网格尺寸必须有其他网 格控制参数来设定,对于这个选项 ,一共有4个控制,其中只有最大面 尺寸起到主导控制作用。
-刚体行为(Rigid Body Behavior)
-网格扭曲(Mesh Morphing)
3、网格控制-网格信息统计
Training Manual
Advanced Contact & Fasteners
查看网格划分的质量,提供详尽的质量度量列表,如表所示,ANSYS ,可以查看网格度量图表,能够直观地在该图表下进行各种选项控制,
高级选项控制包括以下7个选 项:
-形状检查(Shape Checking);
-单元中间节点位置选项
(Element Midside Nodes) -直线侧边单元选项(Straignt Sided Element) -网格重分次数(Number of Retries)
-对于装配体是否打开额外的网格重分(Extra Retries For Assembly)
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
曲率尺寸函数网格划分算法,基于 五个参数控制网格密度,单元以模型中 的孔洞为起始处,起始处的网格大小由 曲率法向角度和最小尺寸共同控制,并 且最小尺寸占主导,即当最小尺寸小于 曲率法向角度的单元尺寸时,单元大小 由曲率法向决定,否则由单元最小尺寸 控制;单元按照生长率参数向外扩展, 模型最外侧的单元尺寸由最大尺寸和生 长率共同控制。
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-其它控制参数
Element Size-该参数用于控制网格划分 过程中最大单元尺寸; Initial Size Seed(初始尺寸种子) -控制每一个部件的初始网格种子; -如果定义单元尺寸则被忽略; -Active Assembly:基于这个设置,初始 种子放入未抑制部件。网格可以改变 -Full Assembly:基于这个设置,初始种 子放入所有装配部件,不管抑制部件的 数量。由于抑制部件网格不改变。 -Part:基于这个设置,初始种子在网格 划分时放入个别特殊部件。由于抑制部 件网格不改变。
3、网格控制-网格信息统计
Training Manual
Advanced Contact & Fasteners
(1)单元质量【Element Quality】:除了线单元和点单元以 外,基于给定单元的体积与边长的比值计算模型中的单元质量 因子,该选项提供一个综合的质量度量标准,范围为0~1,1 代表完美的正方体或正方形,0 代表单元体积为零或负值。
Training Manual
Advanced Contact & Fasteners
3.网格控制-选择物理环境
Training Manual
Advanced Contact & Fasteners
划分流体模型网格
划分固体模型网格
3.网格控制-总体尺寸控制-网格相关度
Training Manual
网格划分 (Mesh)
1. Meshing网格划分概述
-参数化:参数驱动系统,可以基于优化设计 模块,研究网格对求解精度的影响;
-稳定性:模型通过系统参数进行更新; -高度自动化:仅需要有限的输入信息即可完
成基本的分析类型; -灵活性:能够对结果网格添加控制和影响(
完全控制建模/分析); -物理相关:根据物理环境的不同,系统自动
Training Manual
Advanced Contact & Fasteners
3.网格控制l
Advanced Contact & Fasteners
边缘特征尺寸控制函数,使用6个参数 控制模型网格,该参数以模型的边缘作
为网格划分初始处,初始处的网格尺寸 由Num Cells Across Gap和Proximity Min Size,控制规律与曲率尺寸函数控 制原理相同。
Automatic 根据几何模型复杂程度联合使用四面 体划分方法和扫描方法实现。
Training Manual
Advanced Contact & Fasteners
Training Manual
Advanced Contact & Fasteners
2.单元
3.网格控制
1、Physics Based Settings -设置网格划分的物理环境 2、Global Mesh Sizing Controls -Relevance and Relevance Center (网格相关度和相关度中心) -Advanced Size Functions (高级尺寸函数) -Smoothing and Transition (网格平滑和过渡) -Span Angle Center (跨度角中心) 3、Inflation(膨胀率) 4、Patch Confirming Options(网格修补选项) 5、Advanced(网格高级选项) 6、Defeaturing(模型修正) 7、Statistics(网格信息统计)
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
同时激活Proximity和Curvature函数,用户 激活该选项后,程序同时考虑模型中的空洞和 边缘控制,激活后主要有8个控制参数。网格 尺寸从模型的边缘和模型中的空洞开始计算, 这些初始单元尺寸由曲率法向角度,间隙截面 单元数量,总体单元最小尺寸,边缘最小尺寸 同控制。
-高级前缘算法比三角剖分算法能够为几何模型提供更光滑的过渡 !
3.网格控制-网格修补选项
Training Manual
Advanced Contact & Fasteners
Program Controlled
advancing front
3.网格控制-高级选项
Training Manual
Advanced Contact & Fasteners
1. Meshing网格划分概述
Training Manual
Advanced Contact & Fasteners
Workbench中的Meshing应用程序的目标是提供通用的网 格划分格局。网格划分工具可以在任何分析类型中使用:
相关文档
最新文档