高中数学易错点知识梳理,很全面
高考数学易错点及重要知识点归纳
高考数学易错点及重要知识点归纳高考数学是高中阶段各科中相对较难的一门科目,考试难度也相对较高,很容易让考生犯错,导致分数损失。
本文将总结高考数学易错点及重要知识点,并提供相应的解题技巧,希望考生能够避免犯错,取得好成绩。
一、易错点1.符号混淆这是数学中比较普遍的一个易错点,包括加减号、乘号、除号、左右括号等符号的混淆。
一旦出现符号混淆,就会直接导致答案错误或提高解题难度。
因此,考生在做题时要非常注意符号的正确使用。
2.大意误解有些考生在做题时,阅读理解出现失误,对题目的意思产生误解,从而造成答案错误。
所以一定要认真读题理解,分析问题。
尤其是碰到长篇阅读理解时,要先明确大意。
3.计算错误在数学中,很多题目难度相对较低,但往往因为一些简单的计算错误而导致错误答案。
这种错误需要我们在平时做题中多加注意和练习,对于那些需要计算的题目尤其重要。
4.公式错误在解决复杂问题时,我们往往会用到一些公式,不过使用公式时也有可能写错或理解不正确,导致答案错误。
因此,我们必须学会正确地运用公式。
5.转化错误在一些题目中,需要把题目中的信息转化为数学式子,但转化时有可能出现问题。
转化错误的解题方法很难想,因此,要认真仔细看题,并多加练习。
二、重要知识点1.根式根式是数学中常见的一类表达式,在高考数学中也经常出现。
根式的运算和化简需要考生细心认真对待。
2.平面几何平面几何中涉及到的知识点非常多,包括图形的基本性质、相邻角、对顶角、内角和、外角和、周长与面积等等。
考生需要熟记这些知识点,并掌握相应的解题技巧。
3.立体几何立体几何是高考数学中比较难的部分,需要考生掌握图形的三维空间形态,涉及到的知识点包括图形的表面积、体积、棱长、斜高等。
4.导数导数是高中数学中非常重要的一个概念,在高考数学中占有很大的分值和比重。
考生需要明确掌握导数的定义、运算法则等知识点,能够熟练地运用这些知识解决问题。
5.函数函数在高考数学中出现得非常频繁,考生需要掌握函数的概念、性质和运算法则,将它们应用到相应的问题中,解题思路要清晰、技巧到位。
高一数学常见易错点整理
高一数学常见易错点整理一、基础知识错误在高一数学学习的初期,学生常常会犯一些基础知识错误。
比如,对于数的性质、大小关系、运算规则等方面的理解可能不够准确。
这种错误容易导致后续计算和解题过程中出现问题。
为了提高学生的基础知识水平,以下是一些常见易错点的整理:1.1 负数的运算规则高一学生常常容易混淆负数的运算规则,例如,两个负数相乘是否为正数、两个负数相加是否为负数等。
正确理解负数的运算规则对于高一学生来说非常重要。
1.2 百分数和小数之间的转化百分数和小数之间的转化是高一数学中的重要知识点。
学生需要掌握百分数和小数之间的转换方法,以及在实际问题中的应用。
1.3 幂和指数的运算规则幂和指数的运算规则是高一数学中的基础内容,但也是学生容易出错的地方。
学生需要熟练掌握幂和指数的运算规则,尤其是在复合运算中的应用。
二、代数运算错误代数运算是高一数学中的关键内容,学生在进行代数运算时常常会犯一些易错点。
以下是一些常见的代数运算错误及解决方法:2.1 符号取反错误在运算过程中,学生常常容易忽略符号的取反操作,导致最终结果错误。
在进行代数运算时,学生需要注意各项前面的符号取反操作。
2.2 未合并同类项学生在进行多项式的运算时,常常忘记合并同类项,导致结果不正确。
学生需要注意同类项的特点,合并同类项后再进行运算。
2.3 未注意运算顺序学生在进行多项式的运算时,常常忽略运算顺序,直接进行加减乘除运算,导致结果错误。
学生需要根据运算法则正确确定运算顺序,并注意运算的优先级。
三、方程解题错误方程解题是高一数学中的重要内容,学生在方程解题中常常会犯一些易错点。
以下是一些常见的方程解题错误及解决方法:3.1 忘记检查解的合法性学生在解方程时,常常忘记检查解的合法性,直接将解代入方程,导致出现错误。
学生需要在解方程后,将解代入原方程检验是否满足,以确保解的正确性。
3.2 漏解或多解学生在解方程时,常常漏解或多解的情况。
学生需要仔细分析方程的特点,注意解的个数,并在解题过程中进行验证。
高中数学易错点和考点归纳(最新)
高中数学易错点和考点归纳(一)先解决几个最值得关注的问题。
1.中考题型和难度比例。
6道选择24分,12道填空48分,7道大题78分。
难度比例是8:1:1就是120分基础题,15分中档题,15分拔高题。
15拔高题是填空18题,24题和25题第三问。
(满分120分的比例一样,分值会有差距)2. 关于今年数学难不难。
大家不要传说今年中考会很难,途听道说,信了,你就输了。
数姐见证了这么多年中考,还真没有见到那一年特别难!就算难,大家一起难,谁怕谁啊,是不?再说了,难也就那15分难,就算我一点都不会做,步骤分我还不能拿点啊。
3.关于粗心的解决办法。
习惯于依赖知识点,看到题马上就用知识点去写,忽略了问题问什么,题目条件是什么。
粗心基本是看到题目非常熟悉,想都不想就做,导致错误。
解释:看到题目感觉很熟悉很简单,想都不想就开始算,结果一不小心方向就错了,没有弄清楚问题是什么,忽略了题目条件表述和你以前熟悉的题型上细微的差别,导致做错。
这是过于想当然造成的,中了命题人的陷阱。
四条建议:一、慢慢读题,至少两遍。
二、验算工整,防止计算错误,也方便检查。
三、回头检查,主要是检查没有把握的题目。
四、深挖根源。
对粗心的相关知识点要梳理。
(二)重头戏来了,命题陷阱!我列举出了中考绝大多数易错点,本来想在后面贴上一些例题,考虑到时间太紧,文件太大学生看不完,就用文字表述。
一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。
以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
高中数学易错点盘点
高中数学易错点盘点考试临近,对于考点知识都清楚了?结合练习整理一下自己解题时的易错点以便考试时能做到尽可能少错。
以下是我整理的易错点供同学们参考,重要的是找出自身的易错点。
1. 集合中元素的特征认识不明元素具有确定性,无序性,互异性三种性质。
要看清楚集合的描述对象,到底是数集,还是点集,是求x范围呢,还是求y的范围。
2. 遗忘空集A包含于B时求集合A,容易遗漏A可以为空集的情况。
比如A 为(x-1)的平方>0,x=1时A为空集,也属于B.求子集或真子集个数时容易漏掉空集。
3. 忽视集合中元素的互异性一般检验的时候要检查元素是否互异。
4. 充分必要条件颠倒致误必要不充分和充分不必要的区别——:比如p可以推出q,而q 推不出p,就是充分不必要条件,p不可以推出q,而q却可以推出p,就是必要不充分。
还容易错的是语序错误,例如,“p的充分条件是q”等价于“q 是p的充分条件”,q推出p,很多学生一看到充分条件就“前推后”,导致错误,要注意题目的措辞。
5. 对含有量词的命题否定不当比如说“至少有一个”的否定是“一个都没有”,“至少有两个”的否定是“至多有一个”,“至多有三个”的否定是“至少有四个”。
诸如此类。
6. 求函数定义域忽视细节致误根号内≥0,真数大于零,分母不为零,比较容易出错的是忽视分母。
7. 函数单调性的判断错误这个就得注意函数的符号,比如f(-x)的单调性与原函数相反。
8. 函数奇偶性判定中常见的两种错误判定主要注意:1,定义域必须关于原点对称,2,注意奇偶函数的判断,化简要小心负号。
9. 求解函数值域时忽视自变量的取值范围总之有关函数的题,不管是要你求什么,第一步先看定义域,这个是关键。
如果用了换元法求函数值域,一定要先求出“新元”的范围。
10. 抽象函数中推理不严谨致误注意赋值法的运用,一般赋0,±1,-x,1/x等。
11. 函数,方程和不等式的转换不熟练二次函数令y为0→方程→看题目要求是什么→要么方程大于小于0,要么△=b的平方-4ac大于等于小于0种种。
高中数学易错知识点汇总
高中数学易错知识点汇总1.由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A。
解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
2.集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3.命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
4.对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A的必要条件;如果B⇒A成立,则A是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
5.命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假(概括为一真即真);命题p∧q 真⇔p真且q真,命题p∧q假⇔p假或q假(概括为一假即假);綈p真⇔p假,綈p假⇔p真(概括为一真一假)。
求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
6.在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
7.判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
8.如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。
高中数学易错题大汇总及其解析
【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。
而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。
本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。
二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。
解析:首先利用已知条件列方程,得到三元一次方程组。
然后利用切线的斜率性质,得到关于a和b的关系式。
最后代入已知条件解方程组即可求得a、b、c的值。
(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。
解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。
2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。
解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。
(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。
解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。
3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。
解析:利用向量的夹角公式求出a与b的夹角。
(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。
解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。
高中数学易错知识点总结 直线与方程
高中数学易错知识点总结直线与方程易错点1:忽略90°倾斜角的特殊情形例1:求经过点A(m,3)和B(1,2)的直线的斜率,并指出倾斜角α的取值范围。
错误解法】根据斜率公式,直线AB的斜率k为:k = (3-2)/(m-1)①当m>1时,k>0,因此直线的倾斜角α的取值范围是0°<α<90°;②当m<1时,k<0,因此直线的倾斜角α的取值范围是90°<α<180°。
错误原因分析】当问题所给的对象不能进行统一研究时,就需要对研究对象进行分类讨论,然后对每一类分别研究,得出每一类结果,最终解决整个问题。
本题的讨论分两个层次:第一个层次是讨论斜率是否存在;第二个层次是讨论斜率的正、负。
也可以分为m=1,m>1,m<1三种情况进行讨论。
参考答案】详见试题解析。
易错点2:忽略斜率不存在的特殊情形例2:已知直线l1经过点A(3,a)和B(a-2,3-a),直线l2经过点C(2,3)和D(-1,a-5),若l1⊥l2,求a的值。
错误解法】由l1⊥l2⇔k1·k2=-1,所以a=0.k2 = (3-a-3)/(a-2+1) = (a-6)/(a-1),k1不存在。
错误原因分析】只有在两条直线斜率都存在的情况下,才有l1⊥l2⇔k1·k2=-1,还有一条直线斜率为0,另一条直线斜率不存在的情况也要考虑。
试题解析】由题意知l2的斜率一定存在,则l2的斜率可能为0,下面对a进行讨论。
当k2=0时,a=5,此时k1不存在;当k2≠0时,由k1·k2=-1可得a=4或a=-2.因此,a的取值为4、-2或5.2.由两条直线平行或垂直求参数的值:在解这类问题时,需要先考虑斜率不存在的可能性,是否需要分情况讨论;解题后,需要检验答案的正确性,看是否出现增解或漏解。
3.两条直线的位置关系可以通过斜截式或一般式来表示。
高一数学易错点知识点汇总
高一数学易错点知识点汇总高一是学生们迈进高中阶段的关键时期,也是他们开始接触更加深入的数学知识的时候。
在这一阶段,许多学生常常会遇到一些容易出错的数学知识点。
本文将针对高一数学中一些易错点进行汇总和解析,帮助同学们更好地掌握这些知识。
1. 函数的运算和性质函数是数学中的重要概念,也是后续学习的基础。
在高一数学中,经常会涉及到函数的运算和性质。
一些易错点包括:- 误将函数的加减法运算与数的加减法运算混淆。
函数的加减法是指两个函数相加或相减,而不是直接对函数中的数进行加减运算。
- 对函数的复合运算不够熟练。
函数的复合运算是指将一个函数的输出作为另一个函数的输入进行运算。
需要注意的是,函数的复合运算遵循从右往左的顺序。
- 混淆函数的定义域和值域。
函数的定义域是指输入的自变量的取值范围,而函数的值域是指函数在定义域上所有可能的输出值的集合。
2. 平面向量和向量运算平面向量作为一种重要的数学工具,在高一数学中也扮演着重要的角色。
以下是一些易错点:- 误将向量的模与方向混淆。
向量的模是指向量的长度,而向量的方向是指向量所指的方向。
- 对向量的运算规则不够熟悉。
向量的运算包括向量的加法、减法和数量乘法。
需要注意的是,向量加法和减法满足交换律和结合律,而数量乘法满足分配律。
- 混淆向量的共线和平行。
向量的共线是指两个向量在同一直线上,而向量的平行是指两个向量的方向相同或相反。
3. 三角函数三角函数是高中数学中的重要内容,对于学习高等数学和物理等学科都有重要作用。
但学生常常会出现以下易错点:- 未正确掌握三角函数的定义和基本性质。
例如,正弦函数和余弦函数的定义是以单位圆上的点坐标确定的。
- 在使用三角函数解题时,未正确将角度转化为弧度制或度数制。
需要注意的是,三角函数的定义不同于角度制和弧度制的转换。
- 对于三角函数的图像不够熟悉。
需要特别注意各个三角函数的周期、对称性以及在不同象限的取值范围。
4. 排列与组合排列与组合是离散数学中的内容,也是高一数学中的重点。
高中数学易错知识点梳理
高中数学易错知识点梳理一、集合、简易逻辑、函数1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x |,y},且A=B,则x+y=2. 研究集合,首先必须弄清代表元素,才能理解集合的意义.(1)已知“集合M={y |y=x 2 ,x ∈R},N={y |y=x 2+1,x ∈R},求M ∩N”;与“集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x ∈R}求M ∩N ”的区别.(2)已知集合{}{}A B ==圆,直线,则A B 中的元素个数是____个.你注意空集了吗?(3)设()f x 的定义域A 是无限集,则下列集合中必为无限集的有①{|(),}y y f x x A =∈ ②{(,)|(),}x y y f x x A =∈③{|()0,}x f x x A ≥∈ ④{|()2,}x f x x A =∈ ⑤{|()}x y f x =3. 集合 A 、B ,∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;求集合的子集B A ⊆时是否忘记A =∅.例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了2a =的情况了吗?4. (C U A)∩( C U B) = C U (A ∪B) , (C U A)∪( C U B) = C U (A ∩B); ,A B B B A A B B A B =⇔⊆=⇔⊆ ,对于含有n 个元素的有限集合M , 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n如满足条件}4,3,2,1{}1{⊂⊆M 的集合M 共有多少个?(特别注意∅)5. 解集合问题的基本工具是韦恩图.某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?6. 两集合之间的关系.},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==7. 命题的四种形式及其相互关系;全称命题和存在命题. (1)原命题与逆否命题同真同假;逆命题与否命题同真同假. (2)“命题的否定”与“否命题”的区别:____________________ 练习:(1)命题“异面直线,a b 不垂直,则过a 的任一平面与b 都不垂直”,求出该命题的否命题. (2)命题“2,3x Q x ∃∈=使成立”,求该命题的否定.(3)若存在..[13]a ∈,,使不等式2(2)20ax a x +-->,求x 的取值范围.8、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯一性,映射与函数的关系如何?例如:函数()x f y =与直线a x =的交点的个数有 个 9、函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+或f (2a-x )=f (x ),那么函数()x f y =的图象关于直线a x =对称.②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称; 函数()x f y =与函数()x f y --=的图象关于坐标原点对称.③若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数.④若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数.⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的.⑥函数()y f x a =-+与函数()y f x b =+的图象关于直线2a bx -=对称 例如:(1)函数()x f y =满足()()11f x f x +=-+则关于直线 对称(2)函数()1y f x =+与()1y f x =-+关于直线 对称 (3)函数2log 1y ax =-(0a ≠)的图象关于直线2x =对称,则a=(4)函数sin 3y x =的图象可由1cos3y x =-的图象按向量a = (a最小)平移得到.10、求一个函数的解析式,你标注了该函数的定义域了吗? 例如:(1)若(sin )cos2f x x =,则()f x = (2)若3311()f x x x x+=+,则()f x = 11、求函数的定义域的常见类型记住了吗?复合函数的定义域弄清了吗? 例如:(1)函数y=)3lg()4(--x x x 的定义域是 ;(2)函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域.(3)函数(2)x f 的定义域是(0,1],求2(log )f x 的定义域.函数)(x f 的定义域是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域12、你知道求函数值域的常用方法有哪些吗,含参的二次函数的值域、最值要记得讨论. 例如(1)已知函数()x f y =的值域是[b a ,],则函数()1y f x =-的值域是(2)函数y x =的值域是(3)函数y x =+的值域是(4)函数2121x x y -=+的值域是13、 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称...........这个必要非充分条件了吗? 在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;例如:(1)函数()2(0)f x x x =≥的奇偶性是(2)函数()x f y =是R 上的奇函数,且0x >时,()12xf x =+,则()f x 的表达式为14、根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调性的一种重要方法.在求函数的单调区间或求解不等式时,你知道函数的定义域要优先考虑吗?例如:(1)函数212log (23)y x x =--的单调减区间为(2)若函数212log (3)y x ax a =-+在区间[)2,+∞上是减函数,则实数a 的取值范围是(3)若定义在R 上的偶函数()f x 在区间[)0,+∞上是单调增函数,则不等式()1f ()lg f x <的解集为15、你知道钩型函数()0>+=a xax y 的单调区间吗?(该函数在(]a -∞-,和[)+∞,a 上单调递增;在[)0,a -和(]a ,0上单调递减)这可是一个应用广泛的函数!例如:函数2y =的值域为 2y =的值域为16、幂函数与指数函数有何区别? 例如:(1)若幂函数()()()223233f x xαααα--=-+是()0,+∞上的单调减函数,则α=(2)若关于x 的方程4210x xa a +++=有解,则实数a 的取值范围是17、对数的换底公式及它的变形,你掌握了吗?(b b abb a n ac c a n log log ,log log log ==)你还记得对数恒等式吗?(b aba =log )例如:(1)x 、y 、z ()0,∈+∞且346x y z ==,则3x 、4y 、6z 的大小关系可按从小到大的顺序排列为(2)若集合111log 2,23n A n n N ⎧⎫⎪⎪=-≤≤-∈⎨⎬⎪⎪⎩⎭,则A 的子集有 个 18、求解对数函数问题时,注意真数与底数的限制条件! 例如:(1)方程122log (2)x x -=+的解的个数是(2)不等式(1)(1)log (21)log (1)a a x x --->-成立的充要条件是19、“实系数一元二次方程02=++c bx ax 有实数解”转化为“042≥-=∆ac b ”,你是否注意到必须0≠a ;当a=0时,“方程有解”不能转化为042≥-=∆ac b .若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?已知函数()()22lg 111y a x a x ⎡⎤=-+++⎣⎦(1)若函数的定义域为R ,求a 的取值范围是(2)若函数的值域为R ,求a 的取值范围是二.三角1. 三角公式记住了吗?两角和与差的公式________________; 二倍角公式:_________________解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次, 2. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是 否为单调函数?你注意到正弦函数、余弦函数的有界性了吗? 3. 在三角中,你知道1等于什么吗?(221sin cos x x =+tan cot tansincos 0142x x ππ=⋅====这些统称为1的代换)常数 “1”的种种代换有着广泛的应用.诱导公试:奇变偶不变,符号看象限 4. 在三角的恒等变形中,要特别注意角的各种变换.(如,)(αβαβ-+=,)(αβαβ+-=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβα222等)5. 你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来) 6. 你还记得三角化简的通性通法吗?(切化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次);你还记得降幂公式吗?cos 2x=(1+cos2x)/2;sin 2x=(1-cos2x)/27. 你还记得某些特殊角的三角函数值吗?会求吗?41518sin ,42615cos 75sin ,42675cos 15sin -=︒+=︒=︒-=︒=︒ 练习: (1)tan (0)ba aθ=≠是cos 2sin 2a b a θθ+=的 条件.解析:sin tan sin cos sin sin cos sin cos 1cos 2sin 2cos 2sin 222b b a b a b a aa b a b aθθθθθθθθθθθθθ=⇔=⇔=⇔=-⇔=⇔+=反之,若cos 2sin 2a b a θθ+=成立,则未必有tan ,b a θ=取0,2a πθ==-即可,故为充分不必要条件易错原因:未考虑tan θ不存在的情况(2)已知34sin,cos ,2525θθ==-则θ角的终边在 解析:因为34sin ,cos ,2525θθ==-故2θ是第二象限角,即22()22k k k Z πθπππ+<<+∈,故424()k k k Z ππθππ+<<+∈,在第三或第四象限以上的结果是错误的,正确的如下: 由34sin ,cos ,2525θθ==-知322()42k k k Z πθπππ+<<+∈ 所以3424()2k k k Z ππθππ+<<+∈,故在第四象限 易错原因:角度的存在区间范围过大8. 你还记得在弧度制下弧长公式和扇形面积公式吗?(lr S r l 21,==扇形α) 9. 辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a,b 的符号确定,θ角的值由ab=θtan 确定)在求最值、化简时起着重要作用. 10. 三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值时的x 值的集合吗?(别忘了k ∈Z )三角函数性质要记牢.函数y=++⋅)sin(ϕωx A k 的图象及性质:振幅|A|,周期T=ωπ2, 若x=x 0为此函数的对称轴,则x 0是使y 取到最值的点,反之亦然,使y 取到最值的x 的集合为 , 当0,0>>A ω时函数的增区间为 ,减区间为 ;当0<ω时要利用诱导公式将ω变为大于零后再用上面的结论.五点作图法:令ϕω+x 依次为ππππ2,23,,2求出x 与y ,依点()y x ,作图 练习:如图,摩天轮的半径为40m ,点O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处,(1)试确定在时刻min t 时点P 距地面的高度;(2)摩天轮转动的一圈内,有多长时间点P 距地面超过70m ?11.三角函数图像变换:(1)将函数为()y f x = 的图像向右平移4π个单位后,再作关于x 轴的对称变换,得到函数cos 2y x =的图像,则()f x =(2)()2sin()2cos 6f x x x π=+-的图像按向量m平移得到()g x 的图像,若()g x 是偶函数,求||m最小的向量m12.有关斜三角形的几个结论:在Rt ABC ∆中,222,,AC AD AB BC BD BA CD AD BD ===内切圆半径2a b cr +-=(S 为ABC ∆的面积)在ABC ∆中,①sin()sin ,cos()cos ,A B C A B C +=+=-tan tan tan tan an tan A B C A t B C ++=sin cos ,cos sin 2222A B C A B C++== ②正弦定理③余弦定理④面积公式111sin sin sin 222S ab C bc A ac B === ⑤内切圆半径2sr a b c=++13.在ABC ∆中,判断下列命题的正误(1)A B >的充要条件是cos 2cos 2A B <(2) tan tan tan 0A B C ++>,则ABC ∆是锐角三角形(3)若ABC ∆是锐角三角形,则cos sin A B <三、数列1.等差数列中的重要性质:(1)若q p n m +=+,则q p n m a a a a +=+;(2)仍成等差数列数列}{ka },{a },{n 2n 12b a n +-;仍成等差数列n 23n n 2n n S S , S S , S --数列;(3)若{n a },{n b }是等差数列,,n n S T 分别为它们的前n 项和,则2121m m m m a S b T --=; (4)在等差数列中,求S n 的最大(小)值,其中一个思路是找出最后一正项(负项)k a ,那么max(min)()n k S S =B练习:①在等差数列{n a }中,若9418,240,30n n S S a -===,则n =②{n a },{n b }都是等差数列,前n 项和分别为,n n S T ,且2132n n S n T n -=+,则99ab = ③若{n a }的首项为14,前n 和为n S ,点1(,)n n a a +在直线20x y --=上,那n S 最大时,n =2.等比数列中的重要性质:(1)若q p n m +=+,则q p n m a a a a ⋅=⋅; (2)k S ,k k S S -2,k k S S 23-成等比数列;(3)若{n a }是等差数列,则{n ab }是等比数列,若{n a }是等比数列且0n a >,则{log n a b }是等差数列;(4)类比等差数列而得的有关结论练习:①若{n a }是等比数列,4738512,124a a a a =-+= ,公比q 为整数,则10a =②已知数列{n x }满足31212313521n n x x x x x x x x n ====++++- ,并且128n x x x +++= ,那么1x =③等差数列{n a }满足12212nn a a na b n+++=+++ ,则{n b }也是等差数列,类比等比数列{n A }满足 3.等差数列的通项,前n 项和公式的再认识:①1(1)n a a n d An B =+-=+是关于n 的一次函数, ②1()2n n n a a S n a +== 中, ③2n S An Bn =+ 等比数列呢? 练习:等比数列{n a }中,前n 项和123n n S r -=⨯+,则r = 4.你知道 “错位相减” 求和吗?(如:求1{(21)33}n n --⋅-的前n 项和)你知道 “裂项相消” 求和吗?(如:求1{}(2)n n +的前n 项和)5.由递推关系求通项的常见方法: 练习:①{n a }中,112,21n n a a a +==-,则n a =②{n a }中,1112,22n n n a a a ++==+,则n a = (注:关系式中的2换成3呢)③{n a }满足123,2a a ==且21212n n n a a a n n++=-+-,则n a =④{n a }满足11a =且212n n n a a a +=+,则n a = ⑤{n a }满足12a =且1121()2n n a a a a +=+++ ,则n a = ,n s = 6.善于捕捉利用分项求和与放缩法使所得数列为等差等比数列再求和的机会 练习:①正项数列{n a }中,111,21n n a a a +=<+,求证:12111111112n n a a a +++>-+++ 分析:1111112112(1)121n n n n n n a a a a a a +++<+⇒+<+⇒>++ 231211111111()()()111122222n n n a a a +++>++++=-+++ ②已知{n a }中111,(2,)(1)!n a a n n N n +==≥∈-,求证:1233n a a a a ++++< 分析:11111(3)(1)!123(2)(1)(2)(1)21n a n n n n n n n n ==<=-≥------- 12311111111133223211n a a a a n n n ++++≤++-+-++-=-<---四、不等式1、同向不等式能相减,相除吗?2、不等式的解集的规范书写格式是什么?(一般要写成集合的表达式)3、分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,奇穿偶回) 4、解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.) 5、含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论)6、利用重要不等式ab b a 2≥+ 以及变式22⎪⎭⎫⎝⎛+≤b a ab 等求函数的最值时,你是否注意到a ,b +∈R (或a ,b 非负),且“等号成立”时的条件,积ab 或和a +b 其中之一应是定值?(一正二定三相等)7、) R b , (a , ba 2ab 2222+∈+≥≥+≥+ab b a b a (当且仅当c b a ==时,取等号); a 、b 、c ∈R ,ca bc ab c b a ++≥++222(当且仅当c b a ==时,取等号);8、在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底10<<a 或1>a )讨论完之后,要写出:综上所述,原不等式的解集是…….9、解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.” 10、对于不等式恒成立问题,常用的处理方式?(转化为最值问题)五、向量1.两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意λ=是向量平行的充分不必要条件.(定义及坐标表示)2.向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式:||2=·,cos ||||a ba b θ∙==3.利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况,要注意:(1)0,(,],0,,022a b a b a b a b a b πππ∙<⇔<>∈∙=⇔<>=∙> ,[0,)2a b π⇔<>∈(2)0<∙是向量和向量夹角为钝角的必要而非充分条件.4.向量的运算要和实数运算有区别:(1)如两边不能约去一个向量,即a b a c ∙=∙推不出b c = ,(2)向量的乘法不满足结合律,即c b a c b a )()(∙≠∙,(3)两向量不能相除.5.你还记得向量基本定理的几何意义吗?它的实质就是平面内的任何向量都可以用平面内任意不共线的两个向量线性表示,它的系数的含义与求法你清楚吗?6.几个重要结论:(1)已知,OA OB 不共线,OP OA OB λμ=+,则A ,P ,B 三点共线的充要条件是1λμ+=;(2)向量中点公式:若C 是AB 的中点,则1()2OC OA OB =+;(3)向量重心公式:在ABC 中,0OA OB OC ++=⇔O 是ABC 的重心.例:设F 为抛物线24y x =的焦点,A ,B ,C 为该抛物线上三点,若0FA FB FC ++= ,则||||||FA FB FC ++=__________.7.向量等式OC OA OB λμ=+的常见变形方法:(1)两边同时平方;(2)两边同时乘以一个向量;(3)合并成两个新向量间的线性关系.8.一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量.例1.ABC 内接于以O 为圆心,1为半径的圆,且3450OA OB OC ++=,求数量积,,OA OB OB OC OC OA .例2.平面四边形ABCD 中,313,5,5,cos ,5AB AD AC DAC ===∠=12cos 13BAC ∠=,设AC xAB yAD =+ ,求,x y 的值.例3.如图,设点O 在ABC 内部,且有230OA OB OC ++=,则:A O C A B C S S =____.六、导数1.导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形. 2.几个重要函数的导数:①0'=C ,(C 为常数) ②()'1(xx αααα-=为常数)③'()ln (0x x a a a a =>且1)a ≠ ④'1(log )(0ln a x a x a=>且1)a ≠ ⑤'()x x e e = ⑥'1(ln )x x=⑦'(sin )cos x x = ⑧'(cos )sin x x =-导数的四运算法则 ①()()()()()'''f x g x f x g x ±=±②()()''Cf x Cf x =⎡⎤⎣⎦(C 为常数)③()()()()()()()'''f x g x f x g x f x g x ⋅=⋅+⋅④()()()()()()()()'''2(0)f x f x g x f x g x g x g x g x ⎡⎤⋅-⋅=≠⎢⎥⎣⎦3. 利用导数可以证明或判断函数的单调性,注意当'()0f x ≥或'()0f x ≤,带上等号.例.已知20,a b =≠ 且关于x 的函数3211()32f x x a x a bx =+⋅+⋅在R 上有极值,则a 与b的夹角的范围为4.0()0f x '=是函数f(x)在x 0处取得极值的必要非充分条件,f(x)在x 0处取得极值的充分必要条件是什么? 5.求函数极值的方法: (1)先找定义域,求导数()x f ';(2)求方程()x f'=0的根n x x x ,,,21 找出定义域的分界点;(3)列表,根据单调性求出极值.已知()f x 在0x 处的极值为A ,相当于给出了两个条件:①函数在此点导数值为零,②函数在此点的值为定值.6. 利用导数求最值的步骤:(1)求函数在给定区间上的极值;(2)比较区间端点所对的函数值与极值的大小,确定最大值与最小值. 7.含有参数的函数求最值的方法:看导数为0的点与定义域之间的关系. 8.利用导数证明不等式()()f x g x >的步骤:(1)作差()()()F x f x g x =-;(2)判断函数()F x 在定义域上的单调性并求它的最小值; (3)判断最小值0A ≥;(4)结论:()0F x A >≥,则()()f x g x >. 9.利用导数判断方程的解的情况..已知函数()f x 在1x =处的导数为1,则当0x →时(1)(1)2f x f x+-趋近于解析:由定义得当0x →时,'(1)(1)1(1)(1)11(1)2222f x f f x f f x x +-+∆-=⋅=⋅=∆易错原因:不会利用导数的定义来解题.例2.函数32()f x x ax bx c =+++,其中,,a b c R ∈,当230a b -<时,()f x 在R 上的增减性是解析:'2()32f x x ax b =++,则24(3)0a b ∆=-<在R 上'()0f x >,故是增函数. 易错原因:不善于利用导函数的""∆来判别单调性.例3.若函数3'21()(1)53f x x f x x =--⋅++,则'(1)f -= 解析:设321()53f x x ax x =-++,则'2()21f x x ax =-+.故'(1)22f a -=+.由22a a =+知2a =-.有'(1)f -=-2.易错原因:不会运用待定系数法解题.例4.3()f x x x =-,则当(0,2)x ∈时,()f x 的值域为解析:'2()31f x x =-,令'()0f x x >⇒>,()f x ∴在区间2⎤⎥⎣⎦上单调增,在区间⎡⎢⎣⎦上单调减,()f x ∴的值域为⎡⎤⎢⎥⎣⎦. 易错原因:求导之后判别单调区间时概念模糊.七.概率:1.古典概型和几何概型的区别.例如:(1)任意取实数x ∈[1,100],恰好落在[50,100] (2)任意取整数x ∈[1,100],恰好落在[50,100]2事件中有一个发生的概率,利用对立事件的概率. (1)若A 、B 互斥,则P (A+B )=P (A )+P (B ); (2)若A 、B 对立,则()1()P A P A =-.3.概率题的解题步骤: (1)记事件(2)交代总共结果数与A 事件中结果数(几何概率即D,d ) (3)计算 (4)作答例如.1、在等腰直角三角形ABC 中,(1)在斜边AB 上任取一点M ,求AM 小于AC 的概率;(2)过顶点C 在ACB ∠内任作一条射线CM ,与线段AB 交于点M ,求AM AC <的概率.2.已知在矩形ABCD 中,AB=5,AC=7,在矩形内任取一点P ,求090APB ∠>的概率.八、统计:1.抽样方法主要有简单随机抽样(抽签法、随机数表法)常常用于总体数目较少时,主要特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,主要特征是均衡分成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要使用于总体中有明显差异。
高中数学最易混淆知识点
高中数学最易混淆知识点在高中数学中,学生们经常会遇到一些易混淆的知识点。
这些知识点可能在数学考试中产生错解或者笔误,给成绩带来不利影响。
以下是我总结的高中数学中最易混淆的知识点。
一、平方与二次方平方和二次方是经常被高中学生混淆的概念。
平方是一个数自己与自己相乘的结果,而二次方是一个数乘以自己两次的结果。
例如,2的平方是4,2的二次方是4。
一个常见的错误就是把平方和二次方的符号混淆,例如将一个负数的平方写成一个正数的二次方。
二、代数式和方程式代数式和方程式也是高中数学中常见的混淆点。
代数式只包含变量、常数和运算符号,而方程式则包含一个等号。
代数式是一个数学表达式,它没有等号,而方程则是等式,包含等号。
举例来说,2x - 3是一个代数式,但2x - 3 = 0是一个方程式。
三、整式和分式整式和分式也是混淆的常见概念。
整式是系数与变量幂次的乘积的和,而分式则是一个整数除以另一个整数。
整式一般包含加法、减法和乘法,但不包含除法。
而分式则包含对数学运算中除法的运用,分子和分母之间的符号是除号。
举例来说,2x^2 + 3x是一个整式,但(2x + 3)/(x - 1)是一个分式。
四、函数和方程函数和方程也常常被高中学生混淆。
一个函数是一个集合,它的输入是一个或多个变量,它的输出是一个或多个结果。
一个方程是两个或多个表达式之间的相等关系。
虽然函数可以被描述为一个方程,但这不是它的本质。
函数与方程不同之处在于其定义域和值域的范围。
函数通常用f(x)表示,而方程则用x表示。
五、复合函数和逆函数复合函数和逆函数也是易混淆的概念。
复合函数指的是将一个函数的输出作为另一个函数的输入。
逆函数是一个与给定函数相对应的反函数。
虽然这些概念都涉及到函数的性质和函数之间的关系,但它们的定义和运用是不同的。
复合函数通常用符号f(g(x))表示,而逆函数则用x的倒数表示。
六、直线和平面直线和平面也是高中数学中常见的混淆点。
直线是由无数个连续的点组成的轨迹,它只有一个维度。
高二数学中常见的错题整理与总结
高二数学中常见的错题整理与总结在高二数学学习的过程中,我们常常会遇到各种各样的题目,有些题目容易出错,而这些错题常常会给我们带来不少困扰。
为了帮助同学们更好地掌握数学知识,下面将对高二数学中常见的错题进行整理与总结。
一、函数与方程1. 错题:求函数的定义域时未考虑到分母为零的情况。
解析:在求函数的定义域时,我们需要注意到分母不能为零的情况。
例如对于函数$f(x) = \frac{1}{x}$,我们需要考虑$x \neq 0$的限制条件。
2. 错题:未正确运用反函数的概念。
解析:在解题过程中,有时我们需要运用到函数的反函数。
反函数是指将函数的自变量和因变量对调得到的新函数。
我们应该熟练掌握反函数的相关性质和运算法则,灵活运用。
3. 错题:未正确运用函数复合的定义。
解析:函数复合是指将一个函数的输出作为另一个函数的输入。
在运用函数复合的时候,我们需要仔细审题,注意变量的替换和运算的顺序。
二、几何1. 错题:未正确运用正弦定理和余弦定理。
解析:正弦定理和余弦定理是几何学中非常重要的定理,它们可以用来求解三角形的边长和角度。
在应用这两个定理时,我们需要注意各个边和角之间的对应关系,正确设置等式并解方程,避免混淆。
2. 错题:误将两条直线的交点记错。
解析:在求解几何问题时,有时我们需要找到两条直线的交点。
这时我们需要仔细观察题目中直线的方程,运用代数方法求解交点的坐标,注意计算过程的准确性。
三、概率与统计1. 错题:在计算概率时未正确列出样本空间。
解析:计算概率时,我们需要先确定样本空间,即所有可能的结果组成的集合。
未正确列出样本空间会导致后续计算的错误。
2. 错题:未正确理解独立事件和互斥事件的概念。
解析:独立事件是指一个事件发生与否不会影响另一个事件的发生与否,互斥事件是指两个事件不能同时发生。
在解题时,我们需要明确这两个概念,根据题目的要求判断事件之间的关系,正确计算概率。
四、导数与微分1. 错题:计算导数时未正确应用基本求导公式。
高中数学易错点总结
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法
11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
50.三种圆锥曲线的定义、图形、标准方程、几何性质,、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
七.立体几何
56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
(完整版)高中数学易错重点知识点梳理
高中数学知识易错点梳理一、集合、简易逻辑、函数1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x |,y},且A=B,则x+y=2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。
已知集合M={y |y=x 2 ,x ∈R},N={y |y=x 2+1,x ∈R},求M ∩N ;与集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x∈R}求M ∩N 的区别。
3. 集合 A 、B ,∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;求集合的子集B A ⊆时是否忘记∅. 例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了a =2的情况了吗?4. 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n如满足条件}4,3,2,1{}1{⊂⊆M 的集合M 共有多少个5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 6. 两集合之间的关系。
},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==7. (C U A)∩( C U B) = C U (A ∪B) (C U A)∪( C U B) = C U (A ∩B);B B A = A B ⊆⇒; 8、可以判断真假的语句叫做命题. 逻辑连接词有“或”、“且”和“非”. p 、q 形式的复合命题的真值表:9、否 原命题与逆否命题同真同假;逆命题与否命题同真同假.10、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯一性,哪几种对应能够成映射? 11、函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+或f (2a-x )=f (x ),那么函数()x f y =的图象关于直线a x =对称.②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称; 函数()x f y =与函数()x f y --=的图象关于坐标原点对称.③若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数.④若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数.⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的.12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 13、求函数的定义域的常见类型记住了吗?函数y=2)3lg()4(--x x x 的定义域是 ;复合函数的定义域弄清了吗?函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域. 函数)(x f 的定义域是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域14、含参的二次函数的值域、最值要记得讨论。
2024年高考数学数列易错知识点总结
2024年高考数学数列易错知识点总结在2024年高考中,数学数列是一个常见的考点,也是一道容易出错的题型。
为了帮助考生顺利应对数列相关的考试题目,下面总结了一些常见的易错知识点。
一、等差数列的通项公式:等差数列是指数列中任意两项之间的差相等的数列。
它的通项公式为:$a_n = a_1 + (n-1)d$。
对于等差数列来说,考生容易犯的错误有:1. 弄混公差和公比。
公差指的是等差数列中任意两项之间的差,公比指的是等比数列中任意两项之间的比值。
考生在计算等差数列的时候,应该注意区分这两个概念。
2. 弄混首项和通项。
首项指的是数列中的第一项,通项指的是数列中第n项的表达式。
在计算等差数列的时候,考生应该注意首项和通项的区别。
3. 对于计算等差数列的题目,考生有时会直接套用公式,而忽略对问题的分析和推理。
在解题过程中,不应只关注于公式的使用,还应注重思考问题的本质,并结合实际情况进行合理的推理和分析。
二、等差数列的前n项和公式:等差数列的前n项和公式为:$S_n = \\frac{n}{2}(a_1 +a_n)$。
在计算等差数列前n项和的过程中,考生容易犯的错误有:1. 弄混首项和末项。
求前n项和的公式中,首项$a_1$和末项$a_n$都是需要用到的。
考生容易弄混这两个项,在计算过程中应该注意清楚。
2. 计算公式时漏写除以2。
前n项和的公式是$\\frac{n}{2}(a_1 + a_n)$,但考生在计算的时候经常漏写除以2的操作,导致结果错误。
3. 求前n项和时,考生有时对问题的理解不准确。
在一些应用题中,需要根据题目给出的条件和要求来求解前n项和。
考生如果对问题的理解不准确,很容易在计算过程中出错。
三、等比数列的通项公式:等比数列是指数列中任意两项之间的比值相等的数列。
它的通项公式为:$a_n = a_1 \\times q^{(n-1)}$。
对于等比数列来说,考生容易犯的错误有:1. 弄混公比和公差。
高中数学易混易错知识点大全
高中数学易错、易混、易忘备忘录1.在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况2.求解与函数有关的问题易忽略定义域优先的原则 3 根据定义证明函数的奇偶性时,易忽略检验函数定义域是否关于原点对称 4 求反函数时,易忽略求反函数的定义域 5 单调区间不能用集合或不等式表示. 6 用基本不等式求最值时,易忽略验证“一正二定三等”这一条件7 你知道函数(0,0)b y ax a b x=+>>的单调区间吗?(该函数在(,)-∞+∞和上单调递增;在[和(0上单调递减)这可是一个应用广泛的函数!(其在第一象限的图像就象“√”,特命名为:对勾函数) 是奇函数,图像关于原点对称. 8 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀 9 用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0 尤其是直线与圆锥曲线相交时更易忽略 10 等差数列中的重要性质:若m+n=p+q ,则m n p q a a a a +=+;(反之不成立)等比数列中的重要性质:若m+n=p+q,则m n p a a a a = (反之不成立) 11 用等比数列求和公式求和时,易忽略公比q=1的情况12 已知n S 求n a 时, 易忽略n =1的情况13 等差数列的一个性质:设n S 是数列{n a }的前n 项和, {n a }为等差数列的充要条件是:2n S an bn =+(a, b 为常数)其公差是2a14 你知道怎样的数列求和时要用“错位相减”法吗?(若n n n c a b =其中{n a }是等差数列,{n b }是等比数列,求{n c }的前n 项的和) 15 你还记得裂项求和吗?(如111(1)1n n n n =-++) 16 在解三角问题时,你注意到正切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?17 你还记得三角化简的通性通法吗?( 异角化同角,异名化同名,高次化低次)18 你还记得在弧度制下弧长公式和扇形面积公式吗?1(||,2l r S lr α==扇形) 19 在三角中,你知道1等于什么吗?(这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用20 0与实数0有区别,0的模为数0,它不是没有方向,而是方向不定 0可以看成与任意向量平行,但与任意向量都不垂直 21 0a =,则0a b ⋅=,但0a b ⋅=不能得到0a =或b = a b ⊥有0a b ⋅= 22 a b =时,有a c b c ⋅=⋅ 反之a c b c ⋅=⋅不能推出a b = 23一般地()()a b c a b c ⋅⋅≠⋅⋅ 24 使用正弦定理时易忘比值还等于2R ::sin :sin :sin a b c A B C = 25 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o11a b ⇒<,a<b<o1a b ⇒> 26 分式不等式的一般解题思路是什么?(移项通分、零点分段) 27 解指对数不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零 ) 28 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是…… 29常用放缩技巧:211111111(1)(1)1n n n n n n n n n-=<<=-++-- k k k k k k k k k +-=+-<<++=-+1112111130用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况31直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,2πππ 32 函数的图象的平移、方程的平移以及点的平移公式易混:33sin sin()3x x x y x y x πππ→-=−−−−−−→=-沿轴向右平移① 22sin 2sin ,sin 2y y y y x y x y x →-=−−−−−→-==+沿轴向上平移②即 212sin sin 2x x x y x y x →=−−−−−−−→=沿轴缩短到原来的③ 1221sin sin 2x x x y x y x →=−−−−−−−→=沿轴伸长到原来的倍④ 2121sin 2sin ,sin 2y y y y x y x y x →=−−−−−−−→==沿轴缩短到原来的⑤即 1221sin sin ,2sin 2y y y y x y x y x →=−−−−−−−→==沿轴伸长到原来的倍⑥即 33 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清) 34 直线在坐标轴上的截距可正,可负,也可为0 35 处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式 一般来说,前者更简捷 36处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系 37 在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形 38 还记得圆锥曲线方程中的a,b,c,p ,ca a c 2,的意义吗? 39 离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少?40 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制 (求交点,弦长,中点,斜率,对称,存在性问题都在下进行) 41 椭圆中,注意焦点、中心、短轴端点所组成的直角三角形 (a ,b ,c ) 42 通径是抛物线的所有焦点弦中最短的弦 (通径是过焦点,且垂直于x 轴的弦) 43 你知道椭圆、双曲线标准方程中a ,b ,c 之间关系的差异吗?45作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见 46 求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法) 47 求多面体体积的常规方法是什么?(割补法、等积变换法) 48 两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o ≤α≤90°二面角的平面角的取值范围:0°≤α≤180° 49 二项式()na b +展开式的通项公式中a与b的顺序不变 50 二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为rn C 51 二项式系数最大项与展开式中系数最大项易混 二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组112r r r r T T T T +++≥⎧⎨≥⎩来确定r 52 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合 53 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法或看为若干个恰好 54 二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项)事件A 发生k 次的概率:()(1)k k n k n n P k C p p -=-其中k=0,1,2,3,…,n,且0<p<1,p+q=1 55 常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= x x )'(ln = xx a a log 1)'(log = x x e e =)'( a a a x x ln )'(= 2();u u v uv uv u v uv v v '''-⎛⎫'''=+= ⎪⎝⎭,(())u x f u x f u '''=⋅高中数学重要基础知识记忆检查一、幂函数、指数函数和对数函数1、由n 个元素组成的集合,其非空真子集个数为 。
高中数学80个易错题汇总
高中数学易错点梳理一、集合与简易逻辑易错点1 对集合表示方法理解存在偏差【问题】1: 已知A = {x | x > 0}, B = {y y > 1},求A B 。
错解:A B =Φ剖析:概念模糊,未能真正理解集合的本质。
正确结果:A B =B【问题】2: 已知A = {y | y =x + 2}, B = {(x, y) | x 2 +y 2 = 4} ,求A B 。
错解: A B = {(0, 2), (-2, 0)}正确答案:A B =Φ剖析:审题不慎,忽视代表元素,误认为A 为点集。
反思:对集合表示法部分学生只从形式上“掌握”,对其本质的理解存在误区,常见的错误是不理解集合的表示法,忽视集合的代表元素。
易错点2 在解含参数集合问题时忽视空集【问题】: 已知A = {x | 2a <x <a 2}, B = {x | -2 <x < 1} ,且A ⊆B ,求a 的取值范围。
错解:[-1,0)剖析:忽视A =∅的情况。
正确答案:[-1,2]反思:由于空集是一个特殊的集合,它是任何集合的子集,因此对于集合A ⊆B 就有可能忽视了A =∅,导致解题结果错误。
尤其是在解含参数的集合问题时,更应注意到当参数在某个范围内取值时,所给的集合可能是空集的情况。
考生由于思维定式的原因,往往会在解题中遗忘了这个集合,导致答案错误或答案不全面。
易错点3 在解含参数问题时忽视元素的互异性【问题】: 已知1∈{ a + 2 , (a +1)2 , a2 + 3a +3 },求实数a 的值。
错解:a =-2, -1, 0剖析:忽视元素的互异性,其实当a =-2 时,(a +1)2 = a2 + 3a + 3 =1;当a =-1时,a + 2 = a2 + 3a + 3 =1;均不符合题意。
正确答案:a = 0反思:集合中的元素具有确定性、互异性、无序性,集合元素的三性中的互异性对解题的影响最大,特别是含参数的集合,实际上就隐含着对字母参数的一些要求。