九年级数学下册试题及详细答案

合集下载

仁爱版九年级下册《数学》期末考试卷及答案【可打印】

仁爱版九年级下册《数学》期末考试卷及答案【可打印】

仁爱版九年级下册《数学》期末考试卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方,则这个数是()。

A. 1B. 0C. 1D. 1或12. 已知函数y=2x3,当x=2时,y的值是()。

A. 1B. 1C. 5D. 53. 下列哪个数是实数?()A. √1B. 3+4iC. πD. i4. 已知三角形ABC中,∠A=60°,∠B=70°,则∠C的度数是()。

A. 50°B. 60°C. 70°D. 80°5. 下列哪个数是分数?()A. 0.5B. √2C. πD. i6. 已知正方形的对角线长为10cm,则它的面积是()。

A. 25cm²B. 50cm²C. 100cm²D. 50√2cm²7. 下列哪个数是无理数?()A. 0.333B. √3C. 2/3D. 1.4148. 已知圆的半径为5cm,则它的面积是()。

A. 25πcm²B. 50πcm²C. 100πcm²D. 25cm²9. 下列哪个数是正数?()A. 3B. 0C. √1D. 1/210. 已知函数y=x²2x+1,当x=1时,y的值是()。

A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)1. 一个数的平方根是±3,则这个数是__________。

2. 已知函数y=3x+2,当x=0时,y的值是__________。

3. 下列哪个数是有理数?__________(填选项)A. 0.5B. √2C. πD. i4. 已知正方形的边长为6cm,则它的周长是__________。

5. 下列哪个数是负数?__________(填选项)A. 3B. 0C. √1D. 1/2三、解答题(每题10分,共30分)1. 已知函数y=2x3,求当x=4时,y的值。

九年级数学下册第二十七章《相似》测试题-人教版(含答案)

九年级数学下册第二十七章《相似》测试题-人教版(含答案)

九年级数学下册第二十七章《相似》测试题-人教版(含答案)一、选择题:本题共10小题,每小题5分,共50分.1.如图,四边形ABCD 和四边形EFGH 相似,则下列角的度数正确的是( )A.81D ∠=︒B.83F ∠=︒C.78G ∠=︒D.91H ∠=︒2.若线段a b c d ,,,成比例,且5cm 2.5cm 8cm a b c ===,,,则d 等于( ) A.2 cmB.4 cmC.5 cmD.6 cm3.已知ABC A B C '''∽,AD 和A D ''是它们的对应中线,若10AD =,6A D ''=,则ABC 与A B C '''的周长比是( )A.3:5B.9:25C.5:3D.25:94.如图,小明为了测量大楼MN 的高度,在离N 点20 m 的A 处放了一个平面镜,小明沿射线NA 的方向后退1.5 m 到C 点,此时从镜子中恰好看到楼顶的M 点,已知小明的眼睛(点B )到地面的高度BC 是1.6 m ,则大楼MN 的高度(精确到0.1 m )约是( )A.18.75 mB.18.8 mC.21.3 mD.19 m5.如图,直线123////l l l ,直线AC 分别交直线1l 、2l 、3l 于点A 、B 、C ,直线DF 分别交直线1l 、2l 、3l 于点D 、E 、F ,直线AC 、DF 交于点P ,则下列结论错误的是( )A.AB DEBC EF= B.PA PDPC PF= C.PA PEPB PF= D.PB ACPE DF=6.如图,下列四个选项中的结论不一定成立的是( )A.COD AOB∽ B.AOC BOD∽ C.DCA BAC∽ D.PCA PBD∽7.如图,在ABC中,ABC C∠=∠,将ABC绕点B逆时针旋转得到DBE,点E在AC上,若3ED=,1EC=,则EB=( )A.3B.32C.312+D.28.如图,点A在第一象限内,AB x⊥轴于点B,以点O为位似中心,把AB缩小为原来的1 2得到A B''(AB与A B''在点O的两侧).若把点O向上平移2个单位长度,得到点O',再以点O'为位似中心,把AB缩小为原来的12得到A B''''(AB与A B''''在点O'的两侧),则A'与A''之间的距离为( )A.2B.2.5C.3D.49.如图,直线////a b c,ABC的边AB被这组平行线截成四等份,ABC的面积为32,则图中阴影四边形DFIG 的面积是( )A.12B.16C.20D.2410.将三角形纸片ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ',折痕为EF .已知6AB AC ==,8BC =,若以点B ',F ,C 为顶点的三角形与ABC 相似,那么BF 的长度是( )A.247B.4C.127或2 D.4或247二、填空题:本题共5小题,每小题5分,共25分.11.如图,在平面直角坐标系中,已知(1,0)A ,(3,0)D ,ABC 与DEF 位似,原点O 是位似中心.若 1.3AB =,则DE =______________.12.如图,在ABC 中,AB AC ≠,D 、E 分别为边AB 、AC 上的点,3AC AD =,3AB AE =,点F 为BC 边上一点,添加一个条件:_____________,可以使得FDB 与ADE 相似.(只需写出一个)13.如图,在Rt ABC 中,904ACB AB ∠=︒=,,点D 、E 分别在边AB 、AC 上,且2,3DB AD AE EC ==,连接BE 、CD ,相交于点O ,则ABO 面积的最大值为________.14.如图,在ABC 中,点D 为AC 边上一点,且12CD AD =,过点D 作//DE BC 交AB 于点E ,连接CE ,过点D 作//DF CE 交AB 于点F .若15AB =,则EF =________.15.如图,在平面直角坐标系中,点A 、B 的坐标分别为()()4,00,4-,,点()3C n ,在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_______________.三、解答题:本题共2小题,第一小题10分,第二小题15分,共25分.16.如图,为了测量一栋楼的高度OE ,小明同学先在操场上的A 处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E ,再将镜子放到C 处,后退到D 处,恰好再次在镜子中看到楼的顶部E (O ,A ,B ,C ,D 在同一条直线上),测得2AC =m, 2.1BD = m ,小明的眼睛距地面的高度BF ,DG 为1.6 m ,试确定楼的高度OE .17.回答下列问题:问题背景 如图(1),已知ABC ADE ∽,求证:ABD ACE ∽;尝试应用 如图(2),在ABC 和ADE 中,90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒,AC 与DE 相交于点F .点D 在BC 边上,3AD BD =DFCF的值; 拓展创新 如图(3),点D 是ABC 内一点,30BAD CBD ∠=∠=︒,90BDC ∠=︒,4AB =,23AC =AD 的长.参考答案1.答案:A 解析:四边形ABCD 和四边形EFGH 相似,78B F ∴∠=∠=︒,118A E ∠=∠=︒,83C G ∠=∠=︒,360781188381D H ∴∠=∠=︒-︒-︒-︒=︒.故选A.2.答案:B 解析:线段a b c d ,,,成比例,a cb d∴=,5cm a =, 2.5cm b =,8cm c =,582.5d∴=,4cm d ∴=,故选B.3.答案:C 解析:ABC A B C '''∽,AD 和A D ''是它们的对应中线,10AD =,6A D ''=,ABC ∴与A B C '''的周长比:10:65:3AD A D ===''.故选C.4.答案:C解析:BC CA ⊥,MN AN ⊥,90C MNA ∴∠=∠=︒.BAC MAN ∠=∠,BCA MNA ∴∽,BC AC MN AN ∴=,即1.6 1.520MN =, 1.620 1.521.3MN ∴=⨯÷≈(m ),即大楼MN 的高度约为21.3 m.故选C. 5.答案:C解析:123////l l l ,AB DE BC EF ∴=,A 中结论正确,不符合题意;PA PDPC PF=,B 中结论正确,不符合题意;PA PD PB PE =,C 中结论错误,符合题意;PB PC PA PE PF PD ==,PB AC PE DF∴=,D 中结论正确,不符合题意.故选C. 6.答案:C解析:OCD OAB ∠=∠,COD AOB ∠=∠, COD AOB ∴∽.ACO BDO ∠=∠,AOC BOD ∠=∠,AOC BOD ∴∽.180PCA ACD ∠+∠=︒,180ACD ABD ∠+∠=︒, PCA PBD ∴∠=∠,又P P ∠=∠,PCA PBD ∴∽.故选C.7.答案:A解析:由旋转可得ABC DBE ≌,BC BE ∴=,3DE AC ==,C BEC ∴∠=∠.又ABC C ∠=∠,ABC BEC ∴∠=∠,又C C ∠=∠,ABC BEC ∴∽,EC BCBC AC∴=,即2BC CE CA =⋅,BC ∴=,BE ∴.故选A.8.答案:C解析:如图,连接A A ''',由题意易知A B ''和A B ''''都与AB 平行,且在同一条直线上,////A A AB OO ''''∴.由题意知,OA B OAB ''∽△△,12OA A B OA AB '''∴==,23OA AA ∴='.//A A OO '''',AO O AA A ''''∴∽△△,23OO OA A A AA '∴=='''',2OO '=,3A A '''∴=.9.答案:B 解析:直线////a b c ,ABC 的边AB 被这组平行线截成四等份,14AD AB ∴=,34AF AB =,ADG ABC ∽,AFI ABC ∽,211()416ADG ABCS S∴==,239()416AFI ABCS S==.ABC 的面积为32,1216ADGABCS S ∴==,91816AFIABCSS ==,18216AFIADGS SS∴=-=-=阴影.故选B.10.答案:D 解析:ABC 沿EF 折叠后点B 和'B 重合,BF B F '∴=.设(0)BF x x =>,则8CF x =-.要使B FC '与ABC 相似,只需B FC C '∠=∠或FB C C '∠=∠.当B FC C '∠=∠时,B FC ABC '∽,B F CF AB BC ∴=',6AB =,8BC =,868x x -∴=,解得247x =,即247BF =;当FB C C ∠'=∠时,FB C ABC '∽,FB FC AB AC ∴=',即866x x-=,解得4x =,即4BF =,故4BF =或247.故选D. 11.答案:3.9 解析:(1,0)A ,(3,0)D ,1OA ∴=,3OD =.ABC 与DEF 位似,//AB DE ∴,ABO DEO ∴∽,AB OA DE OD ∴=,即1.313DE =,解得 3.9DE =.12.答案:A BDF ∠=∠(或A BFD ∠=∠或ADE BFD ∠=∠或ADE BDF ∠=∠或//DF AC 或BD BF AE ED =或BD BFDE AE=) 解析:3AC AD =,3AB AE =,13AD AE AC AB ∴==,又A A ∠=∠,ADE ACB ∴∽,AED B ∴∠=∠. 故要使FDB 与ADE 相似,只需再添加一角相等,或夹角的两边成比例即可. 13.答案:83解析:本题考查平行线分线段成比例、三角形面积公式.如图,过点D 作//DF AE 交BE 于点F ,则21.,2,33DF BD EC DF EC DO AE BA AE ===∴=∴=222,,,33ADO ADC BDO OC DO DC S S S ∴=∴==22,90,33.BDC ABO ABC S S S ACB ︒∴=∠=∴点C 在以AB 为直径的圆上,设圆心为G ,当CG AB ⊥时,ABC 的面积最大,最大面积为1424,2⨯⨯=此时ABO 面积的最大值为284.33⨯=14.答案:103解析://,AD AEDE BC AC AB∴=. 12,23CD AD AD AC =∴=,即23AE AB =. 15,10AB AE =∴=.//,AF AD DF CE AE AC ∴=,即2103AF =,解得203AF =, 则20101033EF AE AF =-=-=.故答案为103. 15.答案:2.8解析:本题考查平面直角坐标系中点的坐标特征、相似三角形的判定与性质如图,过点C 作CD y ⊥轴于点D ,设AC 交y 轴于点E ,//CD x ∴轴, CAO ACD∠∠∴=,又DEC OEA ∠∠=,DEC OEA ∴~,2,BCA CAO BCD ACD ∠∠∠∠=∴=,BD DE ∴=,设BD DE x ==,则42OE x =-DC DE OA OE ∴=即3442xx=-,解得 1.2x =, 242 1.6, 1.2 1.6 2.8OE x n OD DE OE ∴=+=∴==+=+=.16.答案:如图,设E 关于O 的对称点为M ,延长GC 与FA ,易知GC 、FA 的延长线相交于点M ,连接GF 并延长,交OE 于点H .易知//GF AC ,MAC MFG ∴∽, AC MA MOFG MF MH∴==, AC OE OE OEBD MH MO OH OE BF ∴===++, 21.62.1OE OE ∴=+, 32OE ∴=.答:楼的高度OE 为32 m. 17.答案:问题背景 证明:ABC ADE ∽,AB ACAD AE∴=,BAC DAE ∠=∠, AB ADAC AE∴=,BAD CAE ∠=∠, ABD ACE ∴∽.尝试应用连接CE ,设BD t =,则AD =. 易得ADE ABC ∽,AB ACAD AE∴=, AB ADAC AE∴=. 又BAC DAE ∠=∠, BAD CAE ∴∠=∠, ACE ABD ∴∽,CE AC BD AB ∴=,CE ∴=,3ADCE∴==.ADE ABC ∠=∠,ABC ACE ∠=∠,30ACE ADE ∴∠=∠=.又AFD EFC ∠=∠, ADF ECF ∴∽,3DF ADCF CE∴==. 拓展创新 AD.解法提示:过点D 作AD 的垂线交AB 于点M ,连接CM . 易证ADB MDC ∽,AB ADCM MD∴==30DMC DAB ∠=∠=,CM ∴=,90AMC AMD DMC AMD DAB ∠=∠+∠=∠+∠=,AM ∴=,cos AD AM MAD ∴=⋅∠。

数学初三下册试题及答案

数学初三下册试题及答案

数学初三下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. √(-1)C. √(0)D. √(1/2)2. 一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不对3. 已知一个等腰三角形的两边长分别为3cm和4cm,那么这个三角形的周长是:A. 10cmB. 11cmC. 14cmD. 无法确定4. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 一个数的立方等于-8,那么这个数是:B. -2C. 2或-2D. 以上都不对6. 已知一个圆的半径为5cm,那么这个圆的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π cm²7. 一个等差数列的前三项依次为2,5,8,那么这个数列的公差是:A. 1B. 2C. 3D. 48. 一个直角三角形的两条直角边长分别为3cm和4cm,那么这个三角形的斜边长是:A. 5cmB. 6cmC. 7cmD. 8cm9. 函数y=x²-4x+3的最大值是:A. 0B. 1C. 2D. 310. 一个数的绝对值是5,那么这个数是:B. -5C. 5或-5D. 以上都不对二、填空题(每题3分,共30分)1. 计算:(2+3)×(2-3) = __________。

2. 一个数的相反数是-8,那么这个数是 __________。

3. 一个数的倒数是1/2,那么这个数是 __________。

4. 一个数的平方等于16,那么这个数是 __________。

5. 一个数的立方等于27,那么这个数是 __________。

6. 计算:√(9) = __________。

7. 计算:(-3)³ = __________。

8. 计算:(-2)×(-4) = __________。

九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)

九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)

九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)一、单选题1.二次函数y=(x-3)2+1的最小值是( )A .3B .-3C .1D .-12.将二次函数 2(1)y x =- 的图象向左平移1个单位长度, 再向上平移2个单位后, 所得图象 的函数解析式是( )A .2(2)2y x =-+B .2(2)2y x =--C .22y x =-D .22y x =+3.抛物线y=2(x-1)2-2的对称轴是( ) A .直线 1x =- B .直线 1x = C .直线 2x = D .直线 2x =- 4.已知二次函数 223y x x =-++ ,当x≥2时,y 的取值范围是( )A .y≥3B .y≤3C .y >3D .y <35.如果抛物线 ()22y a x =+ 开口向下,那么 a 的取值范围为( )A .2a >B .2a <C .2a >-D .2a <-6.二次函数y=x 2-2x+2的图象顶点在第( )象限.A .一B .二C .三D .四7.在下列函数中,其图象与x 轴没有交点的是( )A .y=2xB .y=﹣3x+1C .y=x 2D .y= 1x8.如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()20A -,和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a b c->;②241b ac -=;③14a =;④21cb =-.其中正确的有( )A .1个B .2个C .3个D .4个9.函数 2y ax 3ax 1(a 0)=++> 的图象上有三个点分别为 ()1A 3y -, , ()2B 1y -, ,31C y 2⎛⎫ ⎪⎝⎭, ,则 1y , 2y , 3y 的大小关系为( ) A .123y y y <<B .213y y y <<C .321y y y <<D .1y , 2y , 3y 的大小不确定10.已知a ,b 是抛物线y =(x ﹣c )(x ﹣c ﹣d )﹣3与x 轴交点的横坐标,a <b ,则|a ﹣c|+|c ﹣b|化简的结果是( )A .b ﹣aB .a ﹣bC .a+b ﹣2cD .2c ﹣a ﹣b二、填空题11.二次函数 ()2223y x =-+- 的对称轴是直线 .12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度 ()m y 与水平距离 ()m x 之间的关系为 ()215312y x =--+ ,由此可知铅球推出的距离是 m . 13.二次函数()223y mx mx m =+--的图象如图所示,则m 的取值范围是 .14.如图,在△ABC 中,AB=AC=10,点D 是边BC 上一动点(不与B ,C 重合),△ADE=△B=α,DE 交AC 于点E ,且cosα= 45.下列结论: ①△ADE△△ACD ; ②当BD=6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8; ④0<CE≤6.4.其中正确的结论是 .(把你认为正确结论的序号都填上)三、解答题15.如图,在△ABC 中,△B=90°,AB=12,BC=24,动点P 从点A 开始沿边AB 向终点B 以每秒2个单位长度的速度移动,动点Q 从点B 开始沿边BC 以每秒4个单位长度的速度向终点C 移动,如果点P 、Q 分别从点A 、B 同时出发,那么△PBQ 的面积S 随出发时间t (s )如何变化?写出函数关系式及t 的取值范围.16.在一块等腰直角三角形铁皮上截一块矩形铁皮,如图,已有的铁皮是等腰直角三角形ABC,它的底边AB长20厘米.要截得的矩形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,设EF的长为x厘米,矩形EFGD的面积为y平方厘米,试写出y关于x的函数解析式及定义域,并求当EF的长为4厘米时所截得的矩形的面积,17.在平面直角坐标系中,二次函数的图象经过A(-2,0),B(4,0),C(1,3)三点.求这个二次函数的解析式.18.如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1。

九年级数学(下)期末测试卷含答案解析

九年级数学(下)期末测试卷含答案解析

九年级数学(下)期末测试卷(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知513ba=,则a ba b-+的值是()A.23B.32C.94D.492.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B. C. D.3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且12AEEB=,若△AEF的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.184.在Rt△ABC中,∠C=90°,若sinA=35,则co sB的值是()A.45B.35C.34D.435.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=32,则t的值是()A.1 B.1.5 C.2 D.36.反比例函数y=-x3的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( ) A. x 1>x 2 B. x 1=x 2 C. x 1<x 2 D. 不确定7.已知长方形的面积为20cm 2,设该长方形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的函数图象大致是( )8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为( )。

A .5. 3米 B. 4.8米 C. 4.0米 D.2.7米9.如图,在矩形ABCD 中,E 、F 分别是DC 、BC 边上的点,且∠AEF=90°则下列结论正确的是( )。

A 、△ABF ∽△AEF B 、△ABF ∽△CEF C 、△CEF ∽△DAE D 、△DAE ∽△BAF10.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE ,EF ⊥B E ,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ).A .1组B .2组C .3组D .4组二、填空题(每小题3分,共30分)11.若与成反比例,且图象经过点,则________.(用含的代数式表示)12.在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A= .13.如图,点在的边上,请你添加一个条件,使得∽,这个条件可以是______________.14.若,则=________.15.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式.16.已知四条线段a=0.5 m,b=25 cm,c=0.2 m,d=10 cm,则这四条线段________成比例线段.(填“是”或“不是”)17.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角α=︒,则飞机A到控制点B的距离约为_________________。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

九年级数学下册 各单元综合测试题及答案4套

九年级数学下册 各单元综合测试题及答案4套

人教版九年级数学下册第二十六章综合测试卷02一、选择题(30分)1.已知反比例函数ky x=的图象经过点2,3(),那么下列四个点中,也在这个函数图象上的是()A .()6,1-B .()1,6C .()2,3-D .()3,2-2.已知矩形的面积为220 cm ,设该矩形的一边长为 cm y ,另一边的长为 cm x ,则y 与x 之间的函数图象大致是()A B C D3.已知点(),P a m ,(),Q b n 都在反比例函数2y x=-的图象上,且0a b <<,则下列结论一定正确的是()A .0m n +<B .0m n +>C .m n <D .m n>4.如图,ABC △的三个顶点分别为(1,2)A ,(4,2)B ,(4,4)C .若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是()A .14k ≤≤B .48k ≤≤C .216k ≤≤D .816k ≤≤5.在同一平面直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象没有公共点,则()A .120k k +<B .120k k +>C .120k k <D .120k k >6.如果点()12,A y -,()21,B y -,()32,C y 都在反比例函数(0)ky k x=>的图象上,那么1y ,2y ,3y 的大小关系是()A .132y y y <<B .213y y y <<C .123y y y <<D .321y y y <<7.反比例函数3(0)y x x=-<的图象如图所示,则矩形OAPB 的面积是()A .3B .3-C .32D .32-8.如图,在同一平面直角坐标系中,一次函数1y kx b =+(k ,b 是常数,且0k ≠)与反比例函数2c y x=(c 是常数,且0c ≠)的图象相交于(3,2)A --,(2,3)B 两点,则不等式12y y >的解集是()A .32x -<<B .3x -<或2x >C .30x -<<或2x >D .02x <<9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B .若点C 是x 轴上任意一点,连接AC ,BC ,则ABC △的面积为()A .3B .4C .5D .610.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图象上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为1,2,OAC △与ABD △的面积之和为32,则k 的值为()A .4B .3C .2D .32二、填空题(24分)11.在ABC △的三个顶点(2,3)A -,(4,5)B --,(3,2)C -中,可能在反比例函数(0)ky k x=>的图象上的点是_________.12.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的解析式为_________.13.如图,已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点A ,过A 点作AB x ⊥轴,垂足为B ,若AOB △的面积为1,则k =_________.14.已知一次函数y ax b =+与反比例函数ky x=的图象相交于(4,2)A ,(2,)B m -两点,则一次函数的解析式为_________.15.若点(,2)A m -在反比例函数4y x=的图象上,则当函数值2y -≥时,自变量x 的取值范围是_______.16.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x =>及22(0)ky x x=>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2.则12k k -=_______.17.如图,反比例函数ky x=的图象经过ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的面积为6,则k =_______.18.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是_______.三、解答题(8+8+10+10+10=46分)19.如图,在平面直角坐标系中有三点(1,2),(3,1),(2,1)--,其中有两点同时在反比例函数ky x=的图象上,将这两点分别记为A ,B ,另一点记为C .(1)求出k 的值.(2)求直线AB 对应的一次函数的解析式.(3)设点C 关于直线AB 的对称点为O ,P 是x 轴上的一个动点,直接写出PC PD +的最小值(不必说明理由).20.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点。

2023年人教版九年级数学(下册)期末试题(附答案)

2023年人教版九年级数学(下册)期末试题(附答案)

2023年人教版九年级数学(下册)期末试题(附答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15C .﹣5D .52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.已知12a b +=,则代数式223a b +﹣的值是( ) A .2 B .-2 C .-4 D .132- 7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式:a 3-a =___________3.若实数a ,b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =__________.4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图,四边形ABCD 的对角线相交于点O ,AO=CO ,请添加一个条件_________(只添一个即可),使四边形ABCD 是平行四边形.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、B6、B7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、(1)(1)a a a -+3、-12或14、3x <-或1x >.5、BO=DO .6、 1三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、3x3、详略.4、(1)略;(2)45°;(3)略.5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣53.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m=2+1.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、B5、A6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x (x ﹣1)(x ﹣2).3、x 1≥-且x 0≠4、10.5、x ≤1.6、三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)4.95、(1)30;(2)①补图见解析;②120;③70人.6、(1)35元/盒;(2)20%.。

数学九年级下试题及答案

数学九年级下试题及答案

数学九年级下试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 0.33333(无限循环)C. √2D. 0.5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是答案:A4. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -3答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 以下哪个是二次方程?A. x + 2 = 0B. x^2 + 3x + 2 = 0C. x^3 - 4 = 0D. 2x - 1 = 0答案:B7. 一个数的立方根是2,这个数是:A. 8B. -8C. 4D. -4答案:A8. 如果一个二次方程ax^2 + bx + c = 0的判别式Δ = 0,那么这个方程:A. 有一个实数解B. 有两个相同的实数解C. 没有实数解D. 有无穷多个解答案:B9. 以下哪个是等腰三角形的特征?A. 至少有两个边相等B. 至少有一个角是直角C. 至少有一个角是钝角D. 至少有一个角是锐角答案:A10. 一个数的绝对值是5,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的相反数是-5,这个数是______。

答案:512. 如果一个数的平方是25,那么这个数是______或______。

答案:5 或 -513. 一个数的立方是-27,这个数是______。

答案:-314. 一个三角形的内角和等于______度。

答案:18015. 如果一个直角三角形的斜边长是13,一条直角边长是5,那么另一条直角边长是______。

答案:12三、解答题(每题10分,共50分)16. 解方程:2x - 5 = 7x + 3。

初三下册数学试题及答案

初三下册数学试题及答案

初三下册数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax + bB. y = ax^2 + bx + cC. y = ax^2 + bxD. y = a(x + b)^2 + c答案:B2. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个等腰三角形的两边长分别为3和4,那么第三边的长度是:A. 3B. 4C. 7D. 无法确定答案:B4. 如果一个角的正弦值是0.5,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:C5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 一个数的立方是27,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:A7. 一个直角三角形的两条直角边长分别是6和8,那么斜边的长度是:A. 10B. 12C. 14D. 16答案:A8. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. -2D. -1/2答案:A10. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4或-4D. 以上都不对答案:C二、填空题(每题4分,共20分)1. 一个数的平方是16,这个数是______。

答案:±42. 一个等腰三角形的顶角是120°,那么它的底角是______。

答案:30°3. 一个圆的周长是31.4厘米,那么它的直径是______。

答案:10厘米4. 一个数的立方是64,这个数是______。

答案:45. 一个直角三角形的斜边长是13,一条直角边长是5,那么另一条直角边的长度是______。

答案:12三、解答题(每题10分,共50分)1. 已知一个二次函数的顶点坐标是(2, 3),且过点(1, 5),求这个二次函数的解析式。

人教版九年级数学下册全册单元测试题及答案

人教版九年级数学下册全册单元测试题及答案

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第二十六章 反比例函数全章测试一、填空题 1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大. 则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 二、选择题7.下列函数中,是反比例函数的是( ).(A)32x y =(B 32x y =(C)xy 32=(D)x y -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变(C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大,则k 满足( ). (A)k >1 (B)1<k <2 (C)k >2 (D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524(B)不小于3m 3524(C)不大于3m 3724 (D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。

九年级数学下册《第二十九章-投影》练习题附答案解析-人教版

九年级数学下册《第二十九章-投影》练习题附答案解析-人教版

九年级数学下册《第二十九章投影》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.小明在操场上练习双杠时,则发现两横杠在地上的影子().A.相交B.平行C.垂直D.无法确定2.身高1.6米的小明同学利用相似三角形测量学校旗杆的高度,上午10点,小明在阳光下的影长为1米,此时测得旗杆的影长为9米,则学校旗杆的高度是()A.9米B.10米C.13.4米D.14.4米3.如图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),可判断形成该影子的光线为()A.该影子实际不可能存在B.可能是太阳光线也可能是灯光光线C.太阳光线D.灯光光线4.在下列四幅图形中能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A.A B.B C.C D.D5.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A .B .C .D . 6.如果在同一盏路灯下,小明与小强的影子一样长,下列说法正确的是( )A .小明比小强的个子高B .小强比小明的个子高C .两个人的个子一样高D .无法判断谁的个子高7.下列物体的影子中不正确的是( )A .B .C .D .8.正方形在太阳光下的投影不可能是( ).A .正方形B .一条线段C .矩形D .三角形9.如图,在平面直角坐标系中点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B C .13 D .310.如图,树AB 在路灯O 的照射下形成投影AC ,已知树的高度3m AB =,树影4m AC =,树AB 与路灯O 的水平距离6m AP =,则路灯高PO 的长是( )A .2mB .4.5mC .7.5mD .12m11.如图,在直角坐标系中点P (2,2)是一个光源.木杆AB 两端的坐标分别为(0,1),(3,1).则木杆AB 在x 轴上的投影长为( )A .3B .4C .5D .612.当投影线由物体的左方射到右方时,则如图所示几何体的正投影是( )A .B .C .D .13.当棱长为20的正方体的某个面平行于投影面时,则这个面的正投影的面积为()A.20 B.300 C.400 D.60014.下列关于投影与视图的说法正确的是()A.平行投影中的光线是聚成一点的B.线段的正投影还是线段C.三视图都是大小相同的圆的几何体是球D.正三棱柱的俯视图是正三角形15.下列投影是正投影的是( )A.①B.②C.③D.都不是16.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形B.矩形C.线段D.梯形17.下列四幅图,表示两棵树在同一时刻阳光下的影子是()A.B.C.D.18.几何体在平面P的正投影,取决于()①几何体形状;②投影面与几何体的位置关系;③投影面P的大小.A.①②B.①③C.②③D.①②③二、解答题19.①操作方法:选一名学生为观测者,在他和旗杆之间的地面上直立一根高度已知的标杆,观测者前后调整自己的位置,使旗杆顶部、标杆顶部与眼睛恰好在同一直线上时,则分别测出,以及,然后测出即可求出旗杆的高度.②点拨:如图,过点A作AN⊥DC于N,交EF于M.△_____∽△_____∴()()=()(),代入测量数据即可求出旗杆CD的高度.20.如图,在安装路灯AB的路面CD比种植树木的地面PQ高 1.2mCP=,身高1.8m的红英MN站在距离C点15米的路面上.在路灯的照射下,路基CP留在地面上的影长EP为0.4米(1)画出红英MN在地面的影子NF;(2)若红英留在路面上的影长NF为3m,求路灯AB的高度.21.如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,则测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).22.如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60°,他们向南走50m到达D点,测得古亭B位于北偏东45°,求古亭与古柳之间的距离AB 1.41 1.73,结果精确到1m).23.分别画出下列几个几何体从正面和上面看的正投影.24.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24︒.求斜坡上相邻两树间的坡面距离(结果保留小数点后一位).三、填空题25.如图所示是两棵小树在同一时刻的影子,可以断定这是_______投影.(填“平行投影”或“中心投影”)26.如图,在ABC 中8cm,16cm AB AC ==,点P 从A 出发,以2cm/s 的速度向B 运动,同时点Q 从C 出发,以3cm/s 的速度向A 运动,当其中一个动点到达端点时,则另一个动点也随之停止运动,设运动的时间为t .(1)用含t 的代数式表示:AQ =_______;(2)当以A ,P ,Q 为顶点的三角形与ABC 相似时,则运动时间t =________27.对于一个物体(例如一个正方体)在三个投影面内进行正投影①在正面内得到的由前向后观察物体的视图,叫____.②在水平面内得到的由上向下观察物体的视图,叫做____.③在水平面内得到的由左向右观察物体的视图,叫做____.28.如图,把一根直的细铁丝(记为线段AB )放在三个不同位置;三种情形下铁丝的正投影各是什么形状?(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有交点).通过观察,我们可以发现:(1)当线段AB平行于投影面α时,则它的正投影是线段A1B1,线段与它的投影的大小关系为AB_____A1B1;(2)当线段AB倾斜于投影面α时,则它的正投影是线段A2B2,线段与它的投影的大小关系为AB______A2B2;(3)当线段AB垂直于投影面α时,则它的正投影是一个________.参考答案与解析1.【答案】B【分析】根据平行投影的特点即可求解.【详解】解:依题意得两横杠在地上的影子平行.故选:B.2.【答案】D【分析】同一时刻,物体的实际高度与影长成比例,据此列方程即可解答.【详解】∵同一时刻的物高与影长成正比例∴1.6∶1=旗杆的高度∶9.∴旗杆的高度为14.4米.故选D.3.【答案】D【分析】根据平行投影和中心投影的特点分析判断即可.【详解】解:若影子是由太阳光照射形成的,则两条直线一定平行;若影子是由灯光照射形成的,则两条直线一定相交.据此可判断形成该影子的光线为灯光光线.故选:D.4.【答案】D【分析】由太阳光是平行光线,可知同一时刻下,影子的朝向一致,由此进行求解即可.【详解】解:太阳光是平行光线,因此同一时刻下,影子的朝向是一致的.故选:D.5.【答案】D【分析】因为中心投影物体的高和影长成比例,正确的区分中心投影和平行投影,依次分析选项即可找到符合题意的选项【详解】因为正方形的对角线互相垂直,且一条对角线垂直地面,光源与对角线组成的平面垂直于地面,则有影子的对角线仍然互相垂直,且由于光源在平板的的上方,则上方的边长影子会更长一些故选D6.【答案】D【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】解:在同一路灯下由于小明与小强位置不确定,虽然影子一样长,但无法判断谁的个子高.故选:D.7.【答案】B8.【答案】D【分析】同一时刻,平行物体的投影仍旧平行.则正方形在太阳光下的投影得到的应是平行四边形或是特殊的平行四边形或线段.【详解】A项:正方形是特殊的平行四边形,符合要求;B项:线段,符合要求;C项:矩形是特殊的平行四边形,符合要求;D项:三角形不是平行四边形,不是特殊的平行四边形,不是线段,不符合要求.故选D9.【答案】C【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解.【详解】∵P 点坐标为(1,1)则OP 与x 轴正方向的夹角为45°又∵OP AB ∥则∠BAO =45°,OAB 为等腰直角形∴OA =OB设OC =x ,则OB =2OC =2x则OB =OA =3x ∴tan 133OC x OAP OA x ∠===. 【点睛】本题考查了等腰三角形的性质、平行线的性质、勾股定理和锐角三角函数的求解,根据P 点坐标推出特殊角是解题的关键.10.【答案】C【分析】根据相似三角形的判定与性质直接求解即可. 【详解】解:根据题意可知AB PO ∥C C ∴∠=∠ CAB CPO ∠=∠CAB CPO ∴∆∆∽AB PO AC PC ∴=,即3446PO =+,解得30157.542PO ===m∴路灯高PO 的长是7.5m故选:【答案】C .11.【答案】D【分析】利用中心投影,延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D ,如图,证明△PAB ∽△PA ′B ′,然后利用相似比可求出A 'B '的长.【详解】解:延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D ,如图∵P(2,2),A(0,1),B(3,1).∴PD=1,PE=2,AB=3∵AB//A′B′∴△PAB∽△PA′B′∴AB PDA B PE''=,即312A B=''∴A′B′=6故选:D.12.【答案】A【详解】试题解析:从左边看第一层一个小正方形,第二层一个小正方形.故选A.13.【答案】C【分析】根据平行投影性质可知该正方体的正投影是边长为20的正方形,计算可得.【详解】解:根据题意知,该正方体的正投影是边长为20的正方形∴正投影的面积为2020400⨯=故选C.14.【答案】C【分析】根据排除法判断即可;【详解】平行投影中的光线是是平行的,而不是聚成一点的,故A错误;线段的正投影不一定是线段,比如光线平行于线段时,则正投影是一点,故B错误;三视图都是大小相同的圆的几何体是球,故C正确;正三棱柱的俯视图不一定是正三角形,要看它如何放置,如水平放置,它是矩形,故D错误;故答案选C.15.【答案】C【分析】平行投影法分为正投影和斜投影,正投影是平行光垂直于屏幕的投影.【详解】根据题意:①是点光源的投影,是错误的;②是斜投影,故错误;③是正投影,故正确.故选C.16.【答案】D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意B.将矩形木框与地面平行放置时,则形成的影子为矩形,故该选项不符合题意C.将矩形木框立起与地面垂直放置时,则形成的影子为线段D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等∴得到投影不可能是梯形,故该选项符合题意故选:D.17.【答案】B【分析】根据平行投影的意义和性质,得出影子与实物的位置和大小关系得出答案.【详解】解:太阳光和影子,同一时刻,杆高和影长成正比例,且影子的位置在物体的统一方向上可知,选项B中的图形比较符合题意;故选:B.18.【答案】A【详解】试题分析:对于①,同一个方向球体和长方体的正投影的形状是不同的,故①与题意相符;对于②,保持平行光线和投影面的位置不变,转动长方体的位置,投影的形状会改变,故②与题意相符;对于③,投影面的大小和投影的形状无关,故③与题意不符.故选A.19.【答案】①观测者的脚到旗杆底端的距离,观测者的脚到标杆底端的距离,标杆的高,②AME,ANC,AM AN=EM CN20.【答案】(1)见解析(2)9米【分析】(1)根据相似即可画出影子NF;(2)如图,设AB=x m,CB=y m.构建方程组解决问题即可.(1)解:如图所示:(2)解:设AB x = CB y = ∵AB PC BC EP= AB BF MN NF = ∴ 1.20.41.81533x y x y ⎧=⎪⎪⎨⎪=⎪-+⎩∴解得93x y =⎧⎨=⎩ 经检验93x y =⎧⎨=⎩是分式方程的解 ∴9AB =答:灯AB 的高度为9米.21.【答案】货轮从A 到B 航行的距离约为30.6海里.【分析】过B 作BD ⊥AC 于D ,在Rt △BCD 中利用正弦函数求得BD =15.32海里,再在Rt △ABD 中利用含30度角的直角三角形的性质即可求解.【详解】解:过B 作BD ⊥AC 于D由题意可知∠ABE =30°,∠BAC =30°,则∠C =180°-30°-30°-70°=50°在Rt △BCD 中∠C =50°,BC =20(海里)∴BD = BC sin50°≈20×0.766=15.32(海里)在Rt △ABD 中∠BAD =30°,BD =15.32(海里)∴AB =2BD =30.64≈30.6(海里)答:货轮从A 到B 航行的距离约为30.6海里.22.【答案】古亭与古柳之间的距离AB 的长约为137m【分析】过点B 作AD 的垂线,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案.【详解】解:如图,过点B 作AD 的垂线,交DA 延长线于点C由题意得:50m,60,45AD BAC D =∠=︒∠=︒设m AC x =,则(50)m CD AC AD x =+=+在Rt BCD 中tan (50)m BC CD D x =⋅=+在Rt ABC △中tan m BC AC BAC =⋅∠=与2m cos AC AB x BAC==∠则50x +=解得25x =则250137(m)AB x ==≈答:古亭与古柳之间的距离AB 的长约为137m .23.【答案】见解析 【分析】根据投影的概念逐个求解即可.【详解】解:从正面正投影依次为:从上面正投影依次为:【点睛】本题主要考查投影视图,解决本题的关键是要熟练掌握正投影的定义.24.【答案】6.0m【分析】根据题意画出图形,再根据三角函数可得AB =AC ÷cos24°,再代入数计算即可.【详解】解:如图:由题意得:AC =5.5米,∠A =24°AB =AC ÷cos24°=5.5÷0.914≈6.0(米).答:斜坡上两树间的坡面距离是6.0米.25.【答案】中心【分析】根据光线的平行和相交即可判断是平行投影和中心投影.【详解】解:因为影子的顶点和大树的顶点的连线不平行所以它们的光线应该是点光源.所以是中心投影.故答案为:中心.26.【答案】163t -##316-+t 167秒或4秒 【分析】(1)根据路程=速度⨯时间,即可表示出AQ 的长度.(2)此题应分两种情况讨论.①当APQ ABC ∽时;②当APQ ACB ∽时.利用相似三角形的性质求解即可.【详解】解:(1)由题意可知:163=-AQ t(2)连接PQ∵∠PAQ =∠BAC∴当AP AQ AB AC =时,则APQ ABC ∽,即2163816t t -=,解得167t =; 当AP AQ AC AB =时,则APQ ACB ∽,即2163168t t -=,解得t=4. ∴运动时间为167秒或4秒.故答案为:163t167秒或4秒27.【答案】主视图俯视图左视图28.【答案】= > 点A3(B3)。

数学九年级下试题及答案

数学九年级下试题及答案

数学九年级下试题及答案第一部分:选择题1. 一个多边形的内角和等于多少?A. 90度B. 180度C. 360度D. 720度2. 下列几个数中,哪个是无理数?A. 2B. 3C. -4D. √53. 已知一个立方体的边长为3cm,求其体积。

A. 9cm³B. 18cm³C. 27cm³D. 36cm³4. 已知两条直线垂直交叉,其中一条直线斜率为2,那么另一条直线的斜率为多少?A. -2B. 0C. 1/2D. -1/25. 小明有24支铅笔,其中1/3支是红色的,剩下的都是黑色的。

那么红色铅笔有几支?A. 8支B. 12支C. 16支D. 24支6. 在一个三角形中,若两边的边长分别为3cm和4cm,那么第三条边的边长范围是多少?A. (1, 7)B. (1, 6)C. (1, 5)D. (1, 4)7. 若两条直线互相平行,那么它们的斜率分别是多少?A. 相等B. 互为相反数C. 乘积为-1D. 无法确定8. 已知甲、乙、丙三人合作承包工程,甲、乙合作完成工程需30天,乙、丙合作完成工程需20天,甲、丙合作完成工程需36天。

那么甲、乙、丙三人一起合作完成工程需要多少天?A. 5B. 8C. 10D. 129. 在直角坐标系中,一个点的坐标为(2, 3),那么这个点在第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 某公司去年的利润是200万元,今年的利润是去年利润的120%。

今年的利润是多少?A. 240万元B. 220万元C. 2400万元D. 2200万元第二部分:解答题1. 计算以下各式的值:(2x-1)(x+3)-2x(x-5)解答:首先用分配律展开括号,得到2x²+6x-x-3-2x²+10x。

合并同类项,得到8x-3。

2. 在一个平面直角坐标系中,已知三点A(1,1),B(4,5),C(6,3),判断三角形ABC的形状。

2023年人教版九年级数学(下册)期末试卷及答案(完整)

2023年人教版九年级数学(下册)期末试卷及答案(完整)

2023年人教版九年级数学(下册)期末试卷及答案(完整)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,46.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A.B.C.D.8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.12B.920C.25D.13二、填空题(本大题共6小题,每小题3分,共18分)1.方程3122xx x=++的解是___________.2.分解因式:ab 2﹣4ab+4a=________.3.33x x -=-,则x 的取值范围是__________. 4.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为__________.5.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将DAE 绕点D 逆时针旋转90°,得到DCM .若AE=1,则FM 的长为__________.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根.(1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.3.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.5.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.6.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y 件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、B5、B6、A7、B8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、3 22、a(b﹣2)2.3、3x≤4、(4,3)5、2.56三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)k>﹣3;(2)取k=﹣2, x1=0,x2=2.3、(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)4、(1)略;(2)112.5°.5、(1)2、45、20;(2)72;(3)1 66、(1)1502y x=-+(2)当x为10时,超市每天销售这种玩具可获利润2250元(3)当x为20时w最大,最大值是2400元。

人教版数学九年级下册第28章测试题(含答案)

人教版数学九年级下册第28章测试题(含答案)

人教版数学九年级下册第28章测试题(含答案)28.1《锐角三角函数》一、选择题1.2cos60°=()A.1B.C.D.2.在菱形ABCD中,BD为对角线,AB=BD,则sin∠BAD=()A. B. C. D.3.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,下列线段的比值等于cosA的值的有()个(1)(2)(3)(4).A.1B.2C.3D.44.tan45°sin45°﹣2sin30°cos45°+tan30°=()A. B. C. D.5.计算的值是()A. B. C. D.6.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.7.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.8.计算sin60°+cos45°的值等于()A. B. C. D.9.sin60°的值等于()A. B. C. D.10.在△ABC中,若三边BC、CA、AB满足 BC∶CA∶AB=5∶12∶13,则sinA的值是( )A. B. C. D.11.tan30°的值为()A. B. C. D.12.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定二、填空题13.计算;sin30°•tan30°+cos60°•tan60°= .14.已知在△ABC中,AB=AC=4,BC=6,那么cosB=____________.15.△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C= .16.在△ABC中,∠B=45°,cosA=,则∠C的度数是________.17.计算:=18.△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.三、计算题19.计算:20.计算:四、解答题21.先化简,再求值,其中a=1+2cos45°;b=1-2sin45°22.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin αcos β+cos αsin β;sin(α-β)=sin αcos β-cos αsin β.例如sin 90°=sin(60°+30°)=sin 60°cos 30°+cos 60°sin 30°=×+×=1.类似地,可以求得sin 15°的值是___________________.23.小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.24.如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,(1)求证:CD是⊙O的切线.(2)若⊙O的半径为3,AE=5,求∠ADE的正弦值.参考答案1.答案为:A;.2.答案为:C3.答案为:C4.答案为:D.5.答案为:A;6.答案为:C.7.答案为:A;8.答案为:B;9.答案为:C10.答案为:C11.答案为:B;.12.答案为:C13.答案为:14.答案为:0.75;15.答案为:60°.16.答案为:75°17.答案为:18.答案为:直角.19.原式=120.原式=721.原式=22.原式=.23.解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.24.解:(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6(cm).在Rt△ABE中,sin∠ABE==,∴sin∠ADE=sin∠ABE=.28.2解直角三角形及其应用一.选择题1.如图,在Rt△ABC中,∠C=90°,BC=,AB=2,则∠B等于()A.15°B.20°C.30°D.60°2.在△ABC中,∠ACB=90°,若AC=8,BC=6,则sin A的值为()3.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.4.如图,传送带和地面所成斜坡的坡度为1:3,若它把物体从地面点A处送到离地面1米高的点B处,则物体从A到B所经过的路程为()A.3米B.米C.2米D.3米5.如图,在国旗台DF上有一根旗杆AF,国庆节当天小明参加升旗仪式,在B处测得旗杆顶端的仰角为37°,小明向前走4米到达点E,经过坡度为1的坡面DE,坡面的水平距离是1米,到达点D,测得此时旗杆顶端的仰角为53°,则旗杆的高度约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.6.29B.4.71C.4D.5.336.如图,AB是斜靠在墙上的长梯,AB与地面夹角为α,当梯顶A下滑1m到A′时,梯脚B 滑到B′,A'B'与地面的夹角为β,若tanα=,BB'=1m,则cosβ=()7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为()米(结果精确到1米)(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)A.27B.28C.29D.308.数学兴趣小组的同学们要测量某大桥主架顶端离水面的高CD.在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为45°,测得与大桥主架的水平距离AB为100米.则大桥主架顶端离水面的高CD为()A.(100+100•sinα)米B.(100+100•tanα)米C.(100+)米D.(100+)米9.某兴趣小组想测量一座大楼AB的高度,如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测量仪测得大楼顶端A的仰角为37°,测角仪DE的高度为1.5米,求大楼AB的高度约为多少米?()(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)A.39.3B.37.8C.33.3D.25.710.在数学综合实践课上,老师和同学们一起测量学校旗杆的高度,他们首先在旗杆底部C地测得旗杆顶部A的仰角为45°,然后沿着斜坡CD到斜坡顶部D点处再测得旗杆顶部A的仰角为37°(身高忽略不计),已知斜坡CD的坡度i=1:2.4,坡面CD长2.6米,旗杆AB所在旗台高度为1.4米,旗杆、旗台底部、斜坡在同一平面,则旗杆AB的高度为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.9.5米B.9.6米C.9.7米D.9.8米二.填空题11.如图,在正方形网格中,小正方形的边长为1,点A,B,C,D都在格点上,AB与CD相交于点O,则∠AOC的正切值是.12.如图,在平面直角坐标系中有一点P(6,8),那么OP与x轴的正半轴的夹角α的余弦值为.13.一座建于若干年前的水库大坝,目前坝高4米,现要在不改变坝高的情况下修整加固,将背水坡AB的坡度由1:0.75改为1:2,则修整后的大坝横截面积增加了平方米.14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.15.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,则教学楼BC的高度为.(点A,B,C,D都在同一平面上,结果保留根号)三.解答题16.如图,在△ABC中,AD是BC边上的高,BC=4,AD=12,sin B=.求:(1)线段CD的长;(2)sin∠BAC的值.17.石室联合中学金沙校区位于三环跨线桥旁边,为了不影响学生上课,市政在桥旁安装了隔音墙,交通局也对此路段设置了限速,九年级学生为了测量汽车速度做了如下实验:在桥上依次取B、C、D三点,再在桥外确定一点A,使得AB⊥BD,测得AB之间15米,使得∠ADC =30°,∠ACB=60°.(1)求CD的长(精确到0.01,≈1.73,≈1.41).(2)交通局对该路段限速30千米/小时,汽车从C到D用时2秒,汽车是否超速?说明理由.18.如图,一艘渔船沿南偏东42°方向航行,在A处测得一个小岛P在其南偏东64°方向.又继续航行(40﹣16)海里到达B处,测得小岛P位于渔船的南偏东72°方向,已知以小岛P为圆心,半径16海里的圆形海域内有暗礁.如果渔船不改变航向有没有触礁的危险,请通过计算加以说明.如果有危险,渔船自B处开始,沿南偏东多少度的方向航行,能够安全通过这一海域?(参考数据:sin22°=,cos22°=,tan22°=)参考答案一.选择题1.解:∵∠C=90°,BC=,AB=2,∴cos B==,∴∠B=30°,故选:C.2.解:在△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10,∴sin A===.故选:A.3.解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,故选:B.4.解:过B作BC⊥地面于C,如图所示:∵BC:AC=1:3,即1:AC=1:3,∴AC=3(米),∴AB===(米),即物体从A到B所经过的路程为米,故选:B.5.解:过点D作DM⊥BC,垂足为M,由题意得,∠B=37°,∠ADF=53°,BE=4,EM=1,∵坡面DE的坡度为1,∴=1,∴DM=EM=1=FC,在Rt△ADF中,∠DAF=90°﹣∠ADF=90°﹣53°=37°,∵tan∠DAF=≈0.75,设AF=x,则DF=0.75x=MC,在Rt△ABC中,∵tan∠B=,∴tan37°=≈0.75,解得x=≈6.29(米),故选:A.6.解:如图.∵在直角△ABC中,∠ACB=90°,tanα=,∴可设AC=4x,那么BC=3x,∴AB===5x,∴A′B′=AB=5x.∵在直角△A′B′C中,∠A′CB′=90°,A′C=4x﹣1,B′C=3x+1,∴(4x﹣1)2+(3x+1)2=(5x)2,解得x=1,∴A′C=3,B′C=4,A′B′=5,∴cosβ=.故选:A.7.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=20米,DE=40米,BF=CG,在Rt△CDG中,i=1:2.4,CD=26米,∴BF=CG=10米,GD=24米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=84米,∠E=24°,∴AF=FE•tan24°≈84×0.45=37.8(米),∴AB=AF﹣BF=37.8﹣10≈28(米);即建筑物AB的高度为28米;故选:B.8.解:在Rt△ABC中,,∴BC=AB•tanα,在Rt△ABD中,tan45°=,∴BD=AB•tan45°=AB,∴CD=a=BC+BD=AB•tanα+AB=(100+100•tanα)米,故选:B.9.解:如图,延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中,BF:CF=1:,∴设BF=k,则CF=k,∴BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=6,∵DF=DC+CF,∴DF=40+6在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.785(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.785﹣4.5≈33.3.答:大楼AB的高度约为33.3米.故选:C.10.解:作DH⊥FC交FC的延长线于点H,延长AB交CF的延长线于点T,作DJ⊥AT于点J,如图所示:则四边形EFTB与四边形DHTJ都是矩形,∴BT=EF=1.4米,JT=DH,在Rt△DCH中,CD=2.6米,=,∴DH=1(米),CH=2.4(米),∵∠ACT=45°,∠T=90°,∴AT=TC,设AT=TC=x.则DJ=TH=(x+2.4)米,AJ=(x﹣1)米,在Rt△ADJ中,tan∠ADJ==0.75,∴=0.75,解得:x=11.2,∴AB=AT﹣BT=11.2﹣1.4=9.8(米),故选:D.二.填空题11.解:如图取格点K,连接BK,过点K作KH⊥AB于H,如图所示:∵DB=CK=2,DB∥CK,∴四边形CDBK是平行四边形,∴CD∥BK,∴∠AOC=∠ABK,过点K作KH⊥AB于H.∵AB==,S△ABK=•AK•4=•AB•KH=20,∴HK==,∵BK==2,∴BH===,∴tan∠AOC=tan∠ABK===,故答案为:.12.解:如图作PH⊥x轴于H.∵P(6,8),∴OH=6,PH=8,∴OP==10,∴cosα===.故答案为:.13.解:∵背水坡AB的坡度为1:0.75,AC=4,∴=0.75,解得,BC=3,∵坡AD的坡度为1:2,AC=4,∴CD=8,∴BD=DC﹣BC=5,∴△ADB的面积=×5×4=10(平方米),故答案为:10.14.解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.15.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=30°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan30°=,即=,∴AE=30,∵AB=57,∴BE=AB﹣AE=57﹣30,∵四边形BCFE是矩形,∴CF=BE=57﹣30.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=57﹣30,∴BC=EF=30﹣57+30=(30﹣27)米.答:教学楼BC高约(30﹣27)米.故答案为:(30﹣27)米.三.解答题16.解:(1)∵AD是BC边上的高,∴∠D=90°,在Rt△ABD中,∵sin B=.∴=,又∵AD=12,∴AB=15,∴BD==9,又∵BC=4,∴CD=BD﹣BC=9﹣4=5;答:线段CD的长为5;(2)如图,过点C作CE⊥AB,垂足为E,∵S△ABC=BC•AD=AB•CE∴×4×12=×15×CE,∴CE=,在Rt△AEC中,∴sin∠BAC===,答:sin∠BAC的值为.17.解:(1)在Rt△ABC中,∠ABC=90°,∠ACB=60°,AB=15米,∴BC===5米,在Rt△ABD中,∠ABD=90°,∠ADB=30°,∴BD=AB=15米,∴CD=BD﹣BC=10≈17.32米,∴CD的长为17.32米;(2)∵30千米/小时=30000÷3600=米/秒,而10÷2≈8.66>,∴汽车超速.18.解:如图1,过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=64°﹣42°=22°,∠PBC=72°﹣42°=30°,AB=40﹣16,设PC=x,在Rt△PBC中,∵∠PBC=30°,∴BC=PC=x,∴AC=AB+BC=40﹣16+x,在Rt△P AC中,∵∠P AC=22°,∴tan∠P AC=,即=,解得,x=16,即PC=16,BP=2PC=32,∵16<16,∴有危险.如图2,渔船沿着BD方向航行,过点P作PD⊥BD,垂足为D,在Rt△PBD中,∵sin∠PBD===,∴∠PBD=45°,∴∠QBD=∠QBP﹣∠DBP=72°﹣45°=27°,即渔船自B处开始,沿南偏东27°的方向航行,能够安全通过这一海域.。

人教版九年级下册数学全册测试卷(含答案)

人教版九年级下册数学全册测试卷(含答案)

二次函数测试题一、填空题(每空2分,共32分)1.二次函数y=2x 2的顶点坐标是 ,对称轴是 .2.函数y=(x -2)2+1开口 ,顶点坐标为 ,当 时,y 随x 的增大而减小.3.若点(1,0),(3,0)是抛物线y=ax 2+bx+c 上的两点,则这条抛物线的对称轴是 . 4.一个关于x 的二次函数,当x=-2时,有最小值-5,则这个二次函数图象开口一定 . 5.二次函数y=3x 2-4x+1与x 轴交点坐标 ,当 时,y>0.6.已知二次函数y=x 2-mx+m -1,当m= 时,图象经过原点;当m= 时,图象顶点在y 轴上.7.正方形边长是2cm ,如果边长增加xcm ,面积就增大ycm 2,那么y 与x 的函数关系式是________________. 8.函数y=2(x -3)2的图象,可以由抛物线y=2x 2向 平移 个单位得到. 9.当m= 时,二次函数y=x 2-2x -m 有最小值5.10.若抛物线y=x 2-mx+m -2与x 轴的两个交点在原点两侧,则m 的取值范围是 . 二、选择题(每小题3分,共30分)11.二次函数y=(x -3)(x+2)的图象的对称轴是( )A.x=3B.x=-3C.12x =- D. 12x =12.二次函数y=ax 2+bx+c 中,若a>0,b<0,c<0,则这个二次函数的顶点必在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 13.若抛物线y=0.5x 2+3x+m 与x 轴没有交点,则m 的取值范围是( )A.m≤4.5B.m≥4.5C.m>4.5D.以上都不对 14.二次函数y=ax 2+bx+c 的图如图所示,则下列结论不正确的是( )A.a<0,b>0B.b 2-4ac<0 C.a -b+c<0 D.a -b+c>0 15.函数是二次函数m x m y m+-=-22)2(,则它的图象( )A.开口向上,对称轴为y 轴B.开口向下,顶点在x 轴上方C.开口向上,与x 轴无交点D.开口向下,与x 轴无交点 16.一学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=x x y ,则铅球落地水平距离为( ) A.53m B.3m C.10m D.12m 17.抛物线y=ax 2+bx+c 与y 轴交于A 点,与x 轴的正半轴交于B 、C 两点,且BC=2,S ΔABC =4,则c 的值( )A.-5B.4或-4C.4D.-4 (第14题)18.二次函数y=ax2+bx+c的图象如图所示,则此函数解析式为()A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y= -x2-2x-319.函数y=ax2+bx+c和y=ax+b在同一坐标系中大致图象是()(第18题)20.若把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2,则()A.b=-2,c=3B.b=2,c=-3C.b=-4,c=1D.b=4,c=7三、计算题(共38分)21.已知抛物线y=ax2+bx+c与x轴交点的横坐标分别为-1,2,且抛物线经过点(3,8),求这条抛物线的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学下册试题及详细答案
————————————————————————————————作者:————————————————————————————————日期:
综合测试(B 卷)
(50分钟,共100分)
班级:_______ 姓名:_______ 得分:_______ 发展性评语:_____________
一、请准确填空(每小题3分,共24分)
1.在函数①y=2x 2+2,②y=2x 2+x(1-2x),③y=x 2(1+x 2)-1,④y=21
x
+x 2,⑤y=x(x+1),⑥y=123++x x x ,
⑦y=1
22
4++x x x 中,是二次函数的是_____.(只填序号)
2.某函数具有下列两条性质:①图象关于y 轴成轴对称;②当x>0时,函数y 随自变量x 的增大而减小,请举一例:______.(用表达式表示)
3.某电视台综艺节目接到热线电话5000个,现要从中抽取“幸运观众”10名,王芳同学打通了一次热线电话,那她成为“幸运观众”的概率是_____.
4.如图1,⊙O 中,AB=BC=CD ,∠ABC=140°,则∠AED=_____.
5.已知一个圆锥的高是202,底面圆半径为10,则这个圆锥的侧面展开图的圆心角等于_____.
6.在△ABC 中,∠C=90°,sin A=
5
3
,BC=15,则△ABC 的周长是 ,面积是______. 7.如图2,一棵树在离地2 m 的地方被风刮断,量根部到树尖的距离为4 m ,猜想该树的高为_____ m. 8.想一想,怎样把一个圆形纸片通过折叠,折出一个面积最大的正方形?动手做一做,请把折痕在图3中画出来.折叠方法: .
A
B C
D
E O
2 m
4 m
(1) (2) (3)
二、相信你的选择(每小题3分,共24分)
9.若二次函数y=ax 2+bx+c 的图象如图4所示,则点A(-a ,
c
b
)在第( )象限. A.一
B.二
C.三
D.四 x
y
O
A
B C
D A
B
O
(4) (5) (6)
10.某次测试中,随机抽取了10份试卷,成绩如下:(单位:分)76,82,94,83,90,88,85,85,83,84.则这组数据的平均数和中位数分别为( )
A.85,84.5
B.85,85
C.84,85
D.84.5,84.5 11.△ABC 中,∠A=60°,AB=6 cm ,AC=4 cm ,则△ABC 的面积是( )
A.23 cm 2
B.43 cm 2
C.63 c m 2
D.12 cm 2
12.如图5,已知楼高AB 为50 m ,铁塔基与楼房房基间的水平距离BD 为50 m ,塔高DC 为
3
3
50150+ m ,
下列结论中,正确的是( )
A.由楼顶望塔顶仰角为60°
B.由楼顶望塔基俯角为60°
C.由楼顶望塔顶仰角为30°
D.由楼顶望塔基俯角为30° 13.如图6,将半径为4的圆形纸片沿半径OA 、OB 将其截成1∶5两部分,用所得的扇形围成圆锥的侧面,则圆锥的底面半径为( )
A.2
B.
3
10
C.
32或310 D.31或3
5 14.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=x 2+bx+c 的图象过点(1,0),求证:
这个二次函数的图象关于直线x=2对称.根据现有信息,题中的二次函数图象不具有的性质是( ) A.过点(3,0) B.顶点是(2,-2)
C.在x 轴上截得的线段长是2
D.与y 轴的交点是(0,3)
15.已知:如图7,⊙A 的圆心为(4,0),半径为2,OP 切⊙A 于P 点,则阴影部分的面积为( )
A.π3
232-
B.π3232+
C.323
4
-π D.π3
4
32-
A
P O
x
y
图7
图8
16.下列说法中,你认为正确的是
A.一口袋中装有99个红球,1个黑球,则摸一次摸到黑球的概率为
99
1
; B.如图8所示是可以自由转动的转盘,它平均每转6次,指针可能有5次落在黑色区域; C.小明前五次掷硬币都是正面朝上,则他肯定地说第六次掷还是正面朝上; D.某次摸奖的中奖率是1%,则只要摸奖100张,一定有一张中奖 三、考查你的基本功(共14分)
17.(6分)如果等腰三角形两腰上的高之和等于底边上的高,请猜测这个三角形底角的正切值.
18.(8分)已知抛物线y=-x 2+bx+c 与x 轴的两个交点分别为A(m ,O)、B(n ,O),且m+n=4,
3
1=n m . (1)求此抛物线的表达式;
(2)设此抛物线与y 轴的交点为C ,过C 作一平行于x 轴的直线交抛物线于另一点P ,请求出△ACP 的面积S △ACP .
A B
C
O x
y
四、生活中的数学(共18分 )
19.(8分)要测量河两岸相对两棵树A 、B 之间的距离,王立同学从A 点沿垂直AB 的方向前进到C 点,测得∠ACB=45°.继续沿AC 方向前进30 m 到点D ,此时沿得∠ADB=30°.依据这些数据能否求出两树之间的距离AB ?能求,写出求解过程;不能,说明理由.(3取1.73,精确到0.1 m)
20.(10分)如图11是一块直角三角形钢板,∠C=90°,BC=a ,AC=b ,AB=c.现想利用这块直角三角形钢板剪一个半圆形钢板,且保证半圆的半径为最大,猜想一下半圆的圆心应在何处?请说明理由.
A
B C
五、探究拓展与应用(共20分)
21.(10分)王磊同学设计了如图12所示的图案,他设计的方案是:在△ABC 中,AB=AC=6 cm , ∠
B=30°,以A 为圆心,以AB 长为半径作¼BEC
;以BC 为直径作¼BDC ,则该图案的面积是多少? A
B
C
E D
22.(10分)在“配紫色”游戏中,请你设计出两个转盘,使在游戏中,配成紫色的概率为
2
1.
参考答案
一、
1.①⑤⑦
2.y=-x 2(不唯一)
3.
500
1
4.60°
5.120°
6.60 150
7.(25+2)
8.方法:(1)先对折成半圆,如图a ;
(2)再对折成
4
1
圆,如图b ;
a b c
(3)展开,得到互相垂直直径的折痕,顺次沿连接圆周上相邻两直径端点的线折叠(如图c),此四条折线围成的四边形是正方形且面积最大.
二、9.D 10.A 11.C 12.C 13.C 14.B 15.A 16.B
三、17.解:如图所示, ∵AB=AC, ∴BE=CF . ∵AD=BE+CF, ∴AD=2BE .
∵Rt △ADC ∽Rt △BEC, ∴BC
AC
BE AD . ∴AC=2BC=4CD .
A
E F
∴AD=1522=-CD AC CD .

15=CD
AD
, 即tanACB=15. 18.解:(1)∵⎪⎩⎪
⎨⎧==+,3
1,
4n m n m ∴⎩⎨⎧==.3,1n m
∴A(1,0),B(3,0).
∴⎩⎨
⎧++-=++-=.390,10c b c b 得⎩⎨⎧-==.
3,4c b ∴y=-x 2+4x -3.
(2)∵y=-x 2+4x -3 , ∴C(0,-3). ∴y=-x 2+4x -3. 设P(x ,-3) , ∴x=4. ∴P(4,-3). ∴|PC|=4. ∴S △ACP =
21×|PC|×|OC|=2
1
×4×3=6. 四、19.解:设AB 为x m, ∴AC=AB=x m . ∵CD=30 m , ∴AD=(x+30) m .
在Rt △ABC 中, tan30°=
AD
AB
. ∴
30
33+=x x . ∴x ≈41.0(m) 答:两树间的距离约为41.0 m. 20.解:半圆圆心O 应在斜边AB 上且距B 点
b a a
c +处,且b
a ac
+最大(如图).

AC r AB OB =, ∴b r C OB =. ∴OB=b c
·r .
又∵BC r AB OA =, ∴OA=a c ·r , c=OA+OB=b cr a cr +.
∴r=b a ab +. ∴OB=b
a ac +.
五、21.解:∵AB=AC=6 cm ,∠ABC=30°,∴∠BAC=120°, BC=63.
S 扇BAC =
36036
120⨯⨯π=12π( c m 2),
S △ABC =3933621
=⨯⨯( c m 2),
S 半圆BD C =ππ2
27)33(212
=
⨯. ∴2cm )392
3
(S -+=+=∆πBAC ABC BDC S S S 扇半圆阴. 22.(1)参考.
O
r r A B
C


红蓝


.2
143214121=⨯+⨯。

相关文档
最新文档