页面置换算法OPT+FIFO+LRU+clock
详解页式管理置换算法FIFO_LRU_OPT
页式管理OPT、LRU、FIFO置换算法详解指令:1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6若内存最多容纳4个页面,则……一、OPT(理想型淘汰)算法该算法无法实现。
置换规则:(1)淘汰内存中以后不再访问的页面;(2)如果没有(1),则淘汰将要访问指令之后的将来最迟被访问的指令的页面。
分析:(1)当访问5时,内存1,2,3,4,发生第5次中断,淘汰不再访问的4,换入5,内存1,2,3,5;(2)当访问6时,内存1,2,3,5,发生第6次中断,淘汰不再访问的5,换入6,内存1,2,3,6;(3)当访问7时,内存1,2,3,6,发生第7次中断,由于之后的指令(1、2、3、6)都是现在内存页面都存在的指令,无法淘汰,但可以根据指令访问顺序,先淘汰将来最迟被访问的1,换入7,置换后的内存7,2,3,6;(4)当访问1时,内存7,2,3,6,发生第8次中断,淘汰不再访问的7,换入1,内存1,2,3,6;即OPT算法一共会出现8次缺页中断。
二、LRU(最近最久未使用)算法该算法利用堆栈实现,每次访问都调整堆栈中页面顺序。
把被访问页面从栈移出再压入栈顶。
置换规则:(1)栈顶始终为最新访问过的页面;(2)栈底始终为最近最久未被访问的页面;(3)访问存在的页面要调到栈顶。
分析:(1)访问第5个指令2时,由于内存页面中已经存在2,所以不置换,但调整2在栈中顺序,即将2调到栈顶,其它页面依次后置。
调整前内存4,3,2,1,调整后内存2,4,3,1;(2)访问第7个指令5时,发生第5次中断,原内存1,2,4,3,淘汰栈底3,栈顶调入5,调整后内存5,1,2,4;(3)访问第8个指令6时,发生第6次中断,原内存5,1,2,4,,淘汰栈底4,栈顶调入6,调整后内存6,5,1,2;……即LRU算法一共会出现10次缺页中断。
三、FIFO(先进先出)算法该算法利用队列实现。
FIFO与LRU的区别是FIFO遇到内存中存在的页面不需要调换页面顺序。
(完整word版)页面置换算法OPT+FIFO+LRU+clock
#include<iostream>#include<fstream>using namespace std;#define BlockSize 10#define PageSize 100int page[PageSize]; //页面数组存放页面int block[BlockSize]; //物理块数组int result[PageSize][BlockSize]; //存放页面和物理块二维数组int pSize = 0; //用户使用页面数int bSize = 0; //用户使用物理块数int blockFlag[BlockSize]; //用于LRU与最佳置换算法中,辅助判断该换出的页面int noPageCount = 0; //缺页次数//输入数据void inputData(){cout<<endl<<"请输入物理块数(1<=bSize<="<<BlockSize<<')'<<endl;cin>>bSize;cout<<"请输入页面数(1<=pSize<="<<PageSize<<')'<<endl;cin>>pSize;while(bSize<=0||bSize>BlockSize||pSize<=0||pSize>PageSize){//判断用户输入是否在范围内cout<<"输入范围错误,请重新输入:"<<endl;cout<<"请输入物理块数(1<=F<="<<BlockSize<<')';cin>>bSize;cout<<endl<<"请输入页面数(1<=p<="<<PageSize<<')';cin>>pSize;}cout<<"请输入页面走向"<<endl;for(int i = 0;i <pSize;i++)cin>>page[i];}//初始化page数组void initPage(){for(int i = 0;i<PageSize;i++)page[i] = -1;}//初始化block与result数组void initBlockResult(){int i = 0;for(i = 0;i<BlockSize;i++)block[i] = -1;for(i = 0;i < PageSize;i++)for(int j = 0; j < BlockSize;j++)result[i][j] = -1;}//查找物理块中是否存在要调用的页面int Exist(int i){for(int j = 0;j < bSize;j++)if(block[j] == i)return j;return -1;}//显示结果void display(int noPageCount){for(int i =0 ;i < pSize;i++){cout<<" "<<page[i]<<" ";for(int j = 0;j < bSize;j++){if(result[i][j] == -1) break;else cout<<'['<<result[i][j]<<']'<<' ';}cout<<endl;}cout<<"____________________________________"<<endl;cout<<endl<<"缺页次数:"<<noPageCount<<endl;cout<<"缺页率:"<<((double)noPageCount/pSize)*100<<'%'<<endl;cout<<"===================================="<<endl;}//最佳置换算法OPTvoid OPT(){int i = 0,j = 0;int position = 0,noPageCount = 0;int pageFlag = 0,resultFlag = 0; //页面标记(下标)指向下一个页面,结果标记表示结果的行,即result数组的行标for(i = 0;i < BlockSize;i++)blockFlag[i] = 0;while(pageFlag < pSize){if(Exist(page[pageFlag]) != -1) //判断页面是否已经存在resultFlag++;else{if(position < bSize) //判断有无空闲物理块{ //若有则将页面放入空闲块block[position] = page[pageFlag];position++;noPageCount++;for(i = 0;i < position;i++)result[resultFlag][i] = block[i];resultFlag++;}else{for(i = 0;i < bSize;i++){for(j = pageFlag+1;j < pSize;j++){if(block[i] == page[j]){blockFlag[i] = j;break;}}if(j == pSize) blockFlag[i] = 999;}int optPos = 0,max = blockFlag[0];for(int i = 0;i < bSize;i++)if(max < blockFlag[i]){max = blockFlag[i];optPos = i;}block[optPos] = page[pageFlag];noPageCount++;for(i = 0;i < bSize;i++)result[resultFlag][i] = block[i];resultFlag++;}}pageFlag++;}cout<<endl<<"最佳置换算法:"<<endl;display(noPageCount);return;}//先进先出页面置换算法FIFOvoid FIFO(){int blockFlag = 0,pageFlag = 0,resultFlag = 0; //物理块标记,确定该换出的物理块下标int i = 0,j = 0,noPageCount = 0;int position = 0; //指示物理块,查找有无空闲while (pageFlag < pSize){if(Exist(page[pageFlag]) != -1)resultFlag++;else{if(position < bSize){block[position] = page[pageFlag];position++;noPageCount++;for(i = 0;i <= position;i++)result[resultFlag][i] = block[i];resultFlag++;}else{block[blockFlag] = page[pageFlag]; //blockFlag指示要换出的页面noPageCount++;for(i = 0;i < bSize;i++)result[resultFlag][i] = block[i];resultFlag++;blockFlag++;blockFlag = blockFlag % bSize;}}pageFlag++;}cout<<endl<<"先进先出页面置换算法FIFO:"<<endl;display(noPageCount);return;}//最近最久未用算法LRUvoid LRU(){int i = 0,noPageCount = 0;int pageFlag = 0,resultFlag = 0,position = 0;for(i = 0;i < BlockSize;i++) //初始化时间记录数组blockFlag[i] = 0;while(pageFlag < pSize){if(Exist(page[pageFlag]) != -1){ //判断页面是否已经在主存中resultFlag++;blockFlag[Exist(page[pageFlag])] = 0; //若在则将时间记录数组对应位置为0 }else{if(position < bSize){block[position] = page[pageFlag];blockFlag[position] = 0;position++;noPageCount++;for(i = 0;i <= position;i++)result[resultFlag][i] = block[i];resultFlag++;}else{int last = 0,min = blockFlag[0];for(int i = 0;i < bSize;i++)if(min < blockFlag[i]){min = blockFlag[i];last = i;}block[last] = page[pageFlag]; //置换最久未用页面blockFlag[last] = 0;noPageCount++;for(i = 0;i < bSize;i++)result[resultFlag][i] = block[i];resultFlag++;}}for(i = 0;i < bSize;i++)blockFlag[i]++;pageFlag++;}cout<<endl<<"最近最久未用算法LRU:"<<endl;display(noPageCount);return;}//时钟(clock)置换算法void clock(){int i = 0,position = 0,noPageCount = 0;bool boolBlockFlag[BlockSize];int flag = 0; //访问位循环标记int pageFlag = 0,resultFlag = 0;while(pageFlag < pSize){if(Exist(page[pageFlag]) != -1){resultFlag++;boolBlockFlag[Exist(page[pageFlag])] = true;}else{if(position < bSize){block[position] = page[pageFlag];noPageCount++;boolBlockFlag[position] = true;position++;for(i = 0;i < position;i++)result[resultFlag][i] = block[i];resultFlag++;}else{while(true){ //无限循环,找出访问位为false 的页面if(boolBlockFlag[flag] == false) break;boolBlockFlag[flag] = false; //若为true,置为falseflag++;flag = flag%bSize;}block[flag] = page[pageFlag];boolBlockFlag[flag] = true;flag++;flag = flag%bSize;noPageCount++;for(i = 0;i < position;i++)result[resultFlag][i] = block[i];resultFlag++;}}pageFlag++;}cout<<endl<<"时钟(clock)置换算法:"<<endl;display(noPageCount);return;}int main(){initPage();int func;while(func!=5){cout<<"请选择所需要的功能:"<<endl;cout<<"0.输入数据"<<endl;cout<<"1.最佳(optimal)置换算法"<<endl;cout<<"2.先进先出(FIFO)置换算法"<<endl;cout<<"3.最近最久未用(LRU)置换算法"<<endl;cout<<"4.时钟(clock)置换算法"<<endl;cout<<"5.退出"<<endl;switch(func){case 0:inputData();break;case 1:initBlockResult();OPT();break;case 2:initBlockResult();FIFO();break;case 3:initBlockResult();LRU();break;case 4:initBlockResult();clock();break;case 5:break;}cout<<"请选择功能:";cin>>func;system("cls");}return 0;}。
页面置换算法(FIFO,LRU,最佳,Clock)
#include<iostream>using namespace std;void Print(int bc[],int blockCount){for(int i=0;i<blockCount;i++){cout<<bc[i]<<" ";}cout<<endl;}bool Travel(int bc[],int blockCount,int x){bool is_found=false;int i;for(i=0;i<blockCount;i++){if(bc[i]==x){is_found=true;break;}}return is_found;}void FIFO(int pc[],int bc[],int pageCount,int blockCount) {cout<<"0:FIFO置换算法"<<endl;int i;if(pageCount<=blockCount){cout<<"缺页次数为"<<0<<endl;cout<<"缺页率为"<<0<<endl;}else{int noPage=0;int p=0;for(i=0;i<pageCount;i++){cout<<"引用页:"<<pc[i]<<endl;if(!Travel(bc,blockCount,pc[i])){if(i<blockCount){bc[i]=pc[i];}else{if(p==blockCount){p=0;}bc[p]=pc[i];p++;}noPage++;cout<<"物理快情况:";Print(bc,blockCount);}cout<<endl;}cout<<"缺页次数为:"<<noPage<<endl;cout<<"缺页率为:"<<(float)noPage/pageCount<<endl;}}int FoundMaxNum(int a[],int n){int k,j;k=a[0];j=0;for (int i=0;i<n;i++){if(a[i]>=k){k=a[i];j=i;}}return j;}void LRU(int pc[],int bc[],int pageCount,int blockCount){cout<<"1:LRU置换算法"<<endl;if(pageCount<=blockCount){cout<<"缺页次数为"<<0<<endl;cout<<"缺页率为"<<0<<endl;}else{int noPage=0;int i,j,m;int *bc1=new int[blockCount];for(i=0;i<blockCount;i++){bc1[i]=0;}for(i=0;i<pageCount;i++){cout<<"引用页:"<<pc[i]<<endl;if(!Travel(bc,blockCount,pc[i])){if(i<blockCount){bc[i]=pc[i];for(int p=0;p<=i;p++){bc1[p]++;}}else{for(j=0;j<blockCount;j++){bc1[j]++;}int k=FoundMaxNum(bc1,blockCount);bc[k]=pc[i];bc1[k]=1;}noPage++;cout<<"物理快情况:";Print(bc,blockCount);}else if(Travel(bc,blockCount,pc[i])){if(i<blockCount){for(j=0;j<=i;j++){bc1[j]++;}for(m=0;m<=i;m++){if(bc[m]==pc[i]){break;}}bc1[m]=1;bc[m]=pc[i];}else{for(j=0;j<blockCount;j++){bc1[j]++;}for(m=0;m<blockCount;m++){if(bc[m]==pc[i]){break;}}bc1[m]=1;bc[m]=pc[i];}}cout<<endl;}cout<<"缺页次数为:"<<noPage<<endl;cout<<"缺页率为:"<<(float)noPage/pageCount<<endl;delete bc1;}}void Optiomal(int pc[],int bc[],int pageCount,int blockCount){cout<<"2:最佳置换算法"<<endl;if(pageCount<=blockCount){cout<<"缺页次数为"<<0<<endl;cout<<"缺页率为"<<0<<endl;}else{int noPage=0;int i,j,k;for(i=0;i<pageCount;i++){cout<<"引用页:"<<pc[i]<<endl;if(!Travel(bc,blockCount,pc[i])){if(i<blockCount){bc[i]=pc[i];}else{int max=0;int blockIndex;;for(j=0;j<blockCount;j++){for(k=i;k<pageCount;k++){if(bc[j]==pc[k]){break;}}if(k>=max){max=k;blockIndex=j;}}bc[blockIndex]=pc[i];}noPage++;cout<<"物理快情况:";Print(bc,blockCount);}cout<<endl;}cout<<"缺页次数为:"<<noPage<<endl;cout<<"缺页率为:"<<(float)noPage/pageCount<<endl;}}void NRU(int pc[],int bc[],int pageCount,int blockCount){cout<<"3:Clock置换算法"<<endl;if(pageCount<=blockCount){cout<<"缺页次数为"<<0<<endl;cout<<"缺页率为"<<0<<endl;}else{int noPage=0;int i,j;int *bc1=new int[blockCount];for(i=0;i<blockCount;i++){bc1[i]=0;}for(i=0;i<pageCount;i++){cout<<"引用页:"<<pc[i]<<endl;if(!Travel(bc,blockCount,pc[i])){for(j=0;j<blockCount;j++){if(bc1[j]==1){bc1[j]=0;}else if(bc1[j]==0){break;}if(j==blockCount-1){j=-1;}}bc[j]=pc[i];bc1[j]=1;noPage++;cout<<"物理快情况:";Print(bc,blockCount);}cout<<endl;}cout<<"缺页次数为:"<<noPage<<endl;cout<<"缺页率为:"<<(float)noPage/pageCount<<endl;delete bc1;}}int main(){int pageCount,blockCount,i;cout<<"输入页面数"<<endl;cin>>pageCount;int *pc=new int[pageCount];cout<<"输入页面走向"<<endl;for(i=0;i<pageCount;i++){cin>>pc[i];}cout<<"输入物理块数"<<endl;cin>>blockCount;cout<<"0:FIFO置换算法"<<endl;cout<<"1:LRU置换算法"<<endl;cout<<"2:最佳置换算法"<<endl;cout<<"3:Clock置换算法"<<endl;cout<<"按数字选择算法类别:"<<endl;int n;while(cin>>n){if(n==0){int *bc=new int[blockCount];FIFO(pc,bc,pageCount,blockCount);delete bc;}else if(n==1){int *bc=new int[blockCount];LRU(pc,bc,pageCount,blockCount);delete bc;}else if(n==2){int *bc=new int[blockCount];Optiomal(pc,bc,pageCount,blockCount);delete bc;}else if(n==3){int *bc=new int[blockCount];for(i=0;i<blockCount;i++){bc[i]=-1;}NRU(pc,bc,pageCount,blockCount);delete bc;}else break;}delete pc;return 0;}。
操作系统页面置换算法(opt,lru,fifo,clock)实现
操作系统页⾯置换算法(opt,lru,fifo,clock )实现选择调出页⾯的算法就称为页⾯置换算法。
好的页⾯置换算法应有较低的页⾯更换频率,也就是说,应将以后不会再访问或者以后较长时间内不会再访问的页⾯先调出。
常见的置换算法有以下四种(以下来⾃操作系统课本)。
1. 最佳置换算法(OPT)最佳(Optimal, OPT)置换算法所选择的被淘汰页⾯将是以后永不使⽤的,或者是在最长时间内不再被访问的页⾯,这样可以保证获得最低的缺页率。
但由于⼈们⽬前⽆法预知进程在内存下的若千页⾯中哪个是未来最长时间内不再被访问的,因⽽该算法⽆法实现。
最佳置换算法可以⽤来评价其他算法。
假定系统为某进程分配了三个物理块,并考虑有以下页⾯号引⽤串: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1进程运⾏时,先将7, 0, 1三个页⾯依次装⼊内存。
进程要访问页⾯2时,产⽣缺页中断,根据最佳置换算法,选择第18次访问才需调⼊的页⾯7予以淘汰。
然后,访问页⾯0时,因为已在内存中所以不必产⽣缺页中断。
访问页⾯3时⼜会根据最佳置换算法将页⾯1淘汰……依此类推,如图3-26所⽰。
从图中可以看出⾤⽤最佳置换算法时的情况。
可以看到,发⽣缺页中断的次数为9,页⾯置换的次数为6。
图3-26 利⽤最佳置换算法时的置换图2. 先进先出(FIFO)页⾯置换算法优先淘汰最早进⼊内存的页⾯,亦即在内存中驻留时间最久的页⾯。
该算法实现简单,只需把调⼊内存的页⾯根据先后次序链接成队列,设置⼀个指针总指向最早的页⾯。
但该算法与进程实际运⾏时的规律不适应,因为在进程中,有的页⾯经常被访问。
图3-27 利⽤FIFO 置换算法时的置换图这⾥仍⽤上⾯的实例,⾤⽤FIFO 算法进⾏页⾯置换。
进程访问页⾯2时,把最早进⼊内存的页⾯7换出。
然后访问页⾯3时,再把2, 0, 1中最先进⼊内存的页换出。
页式虚拟存储管理FIFO、LRU和OPT页面置换算法
目录1 需求分析 (2)1.1 目的和要求 (2)1.2 研究内容 (2)2 概要设计 (2)2.1 FIFO算法 (3)2.2 LRU算法 (3)2.3 OPT算法 (3)2.4 输入新的页面引用串 (3)3 详细设计 (4)3.1 FIFO(先进先出)页面置换算法: (4)3.2 LRU(最近最久未使用)置换算法: (4)3.3 OPT(最优页)置换算法 (4)4 测试 (5)5 运行结果 (5)6 课程设计总结 (9)7 参考文献 (10)8 附录:源程序清单 (10)1 需求分析1.1 目的和要求在熟练掌握计算机虚拟存储技术的原理的基础上,利用一种程序设计语言模拟实现几种置换算法,一方面加深对原理的理解,另一方面提高学生通过编程根据已有原理解决实际问题的能力,为学生将来进行系统软件开发和针对实际问题提出高效的软件解决方案打下基础。
1.2 研究内容模拟实现页式虚拟存储管理的三种页面置换算法(FIFO(先进先出)、LRU (最近最久未使用)和OPT(最长时间不使用)),并通过比较性能得出结论。
前提:(1)页面分配采用固定分配局部置换。
(2)作业的页面走向和分得的物理块数预先指定。
可以从键盘输入也可以从文件读入。
(3)置换算法的置换过程输出可以在显示器上也可以存放在文件中,但必须清晰可读,便于检验。
2 概要设计本程序主要划分为4个功能模块,分别是应用FIFO算法、应用LRU算法、应用OPT算法和页面引用串的插入。
1.1各模块之间的结构图2.1 FIFO 算法该模块的主要功能是对相应页面引用串进行处理,输出经过FIFO 算法处理之后的结果。
2.2 LRU 算法该模块的主要功功能是对相应的页面引用串进行处理,输出经过LRU 算法处理之后的结果。
2.3 OPT 算法该模块的主要功功能是对相应的页面引用串进行处理,输出经过OPT 算法处理之后的结果。
2.4 输入新的页面引用串该模块的主要功能是用户自己输入新的页面引用串,系统默认的字符串是0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,用户可以自定义全新的20个数字页面引用串。
常见的页面置换 电梯算法
常见的页面置换电梯算法
电梯算法是一种常用于操作系统中的页面置换算法,它可以有效地管理计算机内存,保证系统的稳定性和高效性。
在电梯算法中,页面在内存中的位置类似于电梯中的乘客在不同楼层中的位置,根据页面使用的频率和优先级,系统可以将页面从内存中置换出来,从而为新的页面腾出空间。
常见的页面置换策略包括FIFO(先进先出)、LRU(最近最少使用)、LFU(最不经常使用)、Clock(时钟置换)、OPT(最优置换)等。
其中,FIFO算法是最简单的页面置换算法,它按照页面进入内存的顺序将最先进入内存的页面置换出去;LRU算法则是根据页面最近的访问时间来判断哪些页面最有可能被再次使用,将最近最少使用的页面置换出去。
LFU算法则是根据页面使用的频率来进行置换,频率最低的页面被置换出去;Clock算法则是将内存中的页面放置在一个环中,每个页面有一个使用位,如果页面被访问,则把使用位设置为1,如果页面没有被访问,则使用位为0。
每次置换页面时,找到第一个使用位为0的页面进行置换。
最优置换算法则是根据未来的访问情况来预测哪些页面可能会被再次访问,将最长时间内不会被访问的页面置换出去。
虽然最优置换算法可以保证系统的最佳性能,但是它需要对未来的访问情况进行预测,因此在实际应用中难以实现。
总之,不同的页面置换算法都有其优缺点,需要根据具体应用场
景进行选择。
在操作系统中,通常会采用多种页面置换策略相结合的方式来管理内存,以达到最优的系统性能和稳定性。
常见的页面置换算法
常见的页面置换算法1.概述页面置换算法是操作系统中用于管理内存的一种算法,其目的是确保可用内存的最大化并实现对内存的高效使用。
在操作系统中,当进程所需的内存空间超出了可用的物理内存空间时,操作系统就需要从主存中选择一些页面腾出空间来装载进程所需的页面。
这就需要使用页面置换算法。
2.常见的页面置换算法2.1最优页面置换算法(OPT)最优页面置换算法是一种理论上的置换算法。
它的核心思想是通过计算进程未来访问各个页面的时间和距离,来推断出离当前时间最久的页面。
这种算法的优点是能够保证页面置换的最优性,但是它需要预先知道进程未来所有的页面调度情况,这在实际应用中是不可行的。
2.2先进先出(FIFO)置换算法先进先出置换算法是一种很简单的置换算法,它选取主存中驻留时间最长的页面作为替换目标。
优点是实现简单,但是缺点是可能会引发置换震荡问题。
2.3最近最久未使用算法(LRU)最近最久未使用算法是一种比较常用的页面置换算法,其核心思想是将驻留时间久且最近一次使用时间早的页面视为需要置换的页面。
相对于FIFO算法,LRU算法能够保证更高的页面命中率和更小的置换次数。
2.4时钟置换算法(Clock)时钟置换算法是一种改进型的FIFO算法。
该算法使用一个环形队列来存储主存中的页面位置信息。
当需要置换页面时,指针先指向队列首位置,遍历队列并且在第一遍扫描时,将页框的访问位ACC设置为0。
第一遍扫描结束后,如果有页面的ACC位为0,就将其替换出去。
如果找不到未访问页面,指针再回到队列首位置,以此类推,直到找到为止。
3.总结以上所述的几种页面置换算法是操作系统中常见的算法。
它们各有优点和缺点,在实际应用中,需要根据实际情况进行选择。
在选择算法后,还需要对其进行适当的调整,以满足实际需求。
操作系统学习资料-页面淘汰算法CLOCK
时钟(CLOCK)置换算法L RU算法的性能接近于OPT,但是实现起来比较困难,且开销大;FIFO算法实现简单,但性能差。
所以操作系统的设计者尝试了很多算法,试图用比较小的开销接近LRU的性能,这类算法都是CLOCK算法的变体。
简单的CLOCK算法是给每一帧关联一个附加位,称为使用位。
当某一页首次装入主存时,该帧的使用位设置为1;当该页随后再被访问到时,它的使用位也被置为1。
对于页替换算法,用于替换的候选帧集合看做一个循环缓冲区,并且有一个指针与之相关联。
当某一页被替换时,该指针被设置成指向缓冲区中的下一帧。
当需要替换一页时,操作系统扫描缓冲区,以查找使用位被置为0的一帧。
每当遇到一个使用位为1的帧时,操作系统就将该位重新置为0;如果在这个过程开始时,缓冲区中所有帧的使用位均为0,则选择遇到的第一个帧替换;如果所有帧的使用位均为1,则指针在缓冲区中完整地循环一周,把所有使用位都置为0,并且停留在最初的位置上,替换该帧中的页。
由于该算法循环地检查各页面的情况,故称为CLOCK算法,又称为最近未用(Not Recently Used, NRU)算法。
CLOCK算法的性能比较接近LRU,而通过增加使用的位数目,可以使得CLOCK算法更加高效。
在使用位的基础上再增加一个修改位,则得到改进型的CLOCK置换算法。
这样,每一帧都处于以下四种情况之一:1.最近未被访问,也未被修改(u=0, m=0)。
2.最近被访问,但未被修改(u=1, m=0)。
3.最近未被访问,但被修改(u=0, m=1)。
4.最近被访问,被修改(u=1, m=1)。
算法执行如下操作步骤:1.从指针的当前位置开始,扫描帧缓冲区。
在这次扫描过程中,对使用位不做任何修改。
选择遇到的第一个帧(u=0, m=0)用于替换。
2.如果第1)步失败,则重新扫描,查找(u=0, m=1)的帧。
选择遇到的第一个这样的帧用于替换。
在这个扫描过程中,对每个跳过的帧,把它的使用位设置成0。
页面置换算法实验报告
一、实验目的通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。
二、实验内容基于一个虚拟存储区和内存工作区,设计下述算法并计算访问命中率。
1、最佳淘汰算法(OPT)2、先进先出的算法(FIFO)3、最近最久未使用算法(LRU)4、简单时钟(钟表)算法(CLOCK)命中率=1-页面失效次数/页地址流(序列)长度三、实验原理UNIX中,为了提高内存利用率,提供了内外存进程对换机制;内存空间的分配和回收均以页为单位进行;一个进程只需将其一部分(段或页)调入内存便可运行;还支持请求调页的存储管理方式。
当进程在运行中需要访问某部分程序和数据时,发现其所在页面不在内存,就立即提出请求(向CPU发出缺中断),由系统将其所需页面调入内存。
这种页面调入方式叫请求调页。
为实现请求调页,核心配置了四种数据结构:页表、页帧(框)号、访问位、修改位、有效位、保护位等。
当CPU接收到缺页中断信号,中断处理程序先保存现场,分析中断原因,转入缺页中断处理程序。
该程序通过查找页表,得到该页所在外存的物理块号。
如果此时内存未满,能容纳新页,则启动磁盘I/O将所缺之页调入内存,然后修改页表。
如果内存已满,则须按某种置换算法从内存中选出一页准备换出,是否重新写盘由页表的修改位决定,然后将缺页调入,修改页表。
利用修改后的页表,去形成所要访问数据的物理地址,再去访问内存数据。
整个页面的调入过程对用户是透明的。
四、算法描述本实验的程序设计基本上按照实验内容进行。
即使用srand( )和rand( )函数定义和产生指令序列,然后将指令序列变换成相应的页地址流,并针对不同的算法计算出相应的命中率。
(1)通过随机数产生一个指令序列,共320条指令。
指令的地址按下述原则生成:A:50%的指令是顺序执行的B:25%的指令是均匀分布在前地址部分C:25%的指令是均匀分布在后地址部分具体的实施方法是:A:在[0,319]的指令地址之间随机选取一起点mB:顺序执行一条指令,即执行地址为m+1的指令C:在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’D:顺序执行一条指令,其地址为m’+1E:在后地址[m’+2,319]中随机选取一条指令并执行F:重复步骤A-E,直到320次指令(2)将指令序列变换为页地址流设:页面大小为1K;用户内存(页帧)容量为4页~32页;用户虚存容量为32K。
页面置换算法实验报告
页面置换算法实验报告一、实验目的本次实验的目的是通过模拟页面置换算法的过程,了解不同算法的优缺点,掌握算法的实现方法,以及对算法的性能进行评估。
二、实验原理页面置换算法是操作系统中的一个重要概念,它是为了解决内存不足的问题而产生的。
当系统中的进程需要使用内存时,如果内存已经被占满,就需要将一些页面从内存中置换出去,以便为新的页面腾出空间。
页面置换算法就是用来决定哪些页面应该被置换出去的算法。
常见的页面置换算法有以下几种:1. 最佳置换算法(OPT)最佳置换算法是一种理论上的最优算法,它总是选择最长时间内不会被访问的页面进行置换。
但是,由于无法预测未来的页面访问情况,因此最佳置换算法无法在实际中使用。
2. 先进先出置换算法(FIFO)先进先出置换算法是一种简单的置换算法,它总是选择最先进入内存的页面进行置换。
但是,这种算法容易出现“抖动”现象,即频繁地将页面置换出去,然后再将其置换回来。
3. 最近最久未使用置换算法(LRU)最近最久未使用置换算法是一种比较常用的置换算法,它总是选择最长时间未被访问的页面进行置换。
这种算法可以避免“抖动”现象,但是实现起来比较复杂。
4. 时钟置换算法(Clock)时钟置换算法是一种改进的FIFO算法,它通过维护一个环形链表来实现页面置换。
当需要置换页面时,算法会从当前位置开始扫描链表,如果找到一个未被访问的页面,则将其置换出去。
如果扫描一圈后都没有找到未被访问的页面,则将当前位置的页面置换出去。
三、实验过程本次实验使用Python语言编写了一个页面置换算法模拟程序,可以模拟上述四种算法的过程,并输出算法的性能指标。
程序的主要流程如下:1. 读取输入文件,获取页面访问序列和内存大小等参数。
2. 根据选择的算法,初始化相应的数据结构。
3. 遍历页面访问序列,模拟页面置换的过程。
4. 输出算法的性能指标,包括缺页率、页面置换次数等。
下面分别介绍四种算法的实现方法。
1. 最佳置换算法(OPT)最佳置换算法需要预测未来的页面访问情况,因此需要遍历整个页面访问序列,找到最长时间内不会被访问的页面。
操作系统:Java实现页面置换算法(OPT,FIFO,LRU)
操作系统:Java实现页⾯置换算法(OPT,FIFO,LRU)前⾔代码有很多冗余,因为是写作业时写的,不过代码简单易懂,看看就可以改了。
置换算法介绍页⾯置换算法(也称为页⾯淘汰算法)是⽤来选择换出页⾯的算法。
在请求页式存储管理⽅式中,由于⼀个进程运⾏的时候不是所有的页⾯都在内存中,所以会出现缺页中断。
当缺页的时候内存没有空闲的物理块时就需要换出内存中的⼀页,具体换出哪⼀页⾯是由页⾯置换算法决定的,页⾯置换算法的优劣直接影响到系统的效率要注意把页⾯置换和连续分配⽅式中的交换区别开来,页⾯置换的单位是页⾯⽽不是整个进程,交换的单位是整个进程当发⽣缺页中断后,系统不⼀定会执⾏页⾯置换算法。
因为发⽣缺页中断仅仅说明需要执⾏的页⾯没有在内存中,如果内存空间中还有空闲块的话,只需要⽤缺页中断处理程序把需要的页⾯从外存调⼊内存即可。
不需要页⾯置换算法:只有内存中没有空闲块的时候才需要页⾯置换算法。
所以,缺页中断不⼀定导致执⾏页⾯置换算法。
1. 最佳置换算法(OPT)在预知⼀个进程的页⾯号引⽤串的情况下,每次都淘汰以后不再使⽤的或以后最迟再被使⽤的页⾯,这种算法就是最佳置换算法显然,最佳置换算法是最优的,具有最低的缺页率。
但由于实际操作中往往⽆法事先知道以后会引⽤到所有页⾯的信息,所以最佳置换算法⽆法实现,只能作为⼀个标准来衡量其他置换算法的优劣2. 先进先出算法(FIFO)FIFO算法是最简单的页⾯置换算法,每次总是淘汰最先进⼊内存的页⾯,也就是将在内存存驻留时间最长的页⾯淘汰掉该算法实现简单,⽤⼀个队列的数据结构就可以实现,将页⾯按照次序排成⼀个队列,并设置指针指向最先进⼊的页⾯,每次需要淘汰页⾯时,将指针所指的页⾯淘汰即可,不过FIFO算法可能会产⽣Belady⼀场(缺页次数随着分配的物理块号的增加⽽增加),⽽且由于FIFO算法与进程实际运⾏规律不符,可能会选择淘汰程序经常使⽤的界⾯,实际效果不好3. 最近最少使⽤算法(LRU)选择最近最久没有被使⽤的页⾯予以淘汰,其思想是⽤以前的页⾯引⽤情况来预测将来会出现页⾯引⽤情况,也就是假设⼀个页⾯刚被访问,那么不久该页⾯还会被访问。
页面置换算法(操作系统试验)
实验4 页面置换算法(2学时)一、实验目的通过实验加强对虚拟存储管理中页面置换算法的理解和掌握。
二、实验内容编写程序实现虚拟存储管理中OPT,FIFO,LRU页面置换算法。
三、实验要求1、任意给出一组页面访问顺序(如页面走向是1、2、5、7、5、7、1、4、3、5、6、4、3、2、1、5、2)。
2、分配给该作业一定的物理块(如3块、4块等)。
3、利用OPT,FIFO,LRU页面置换算法模拟页面置换过程并计算其缺页率。
4、每访问一个页面均需给出内存中的内容(内存中的页面号),若有淘汰还需给出淘汰的页面号。
5、通过给出特殊的页面访问顺序,分配不同的物理块,利用FIFO 算法计算其缺页率,进一步理解Belady现象。
6、(附加)实现CLOCK置换算法,修改位可在确定页面号时直接任意给出。
代码部分:#include <stdlib.h>#include <iostream.h>#include <time.h>void rand(int n,int p[])//这函数是产生n个1~10的随机数放到p[]数组里面{int START=1;int END=10;int v;int i;int a;srand(time(NULL));for(i=0; i<n; i++){v=rand()%(END-START+1)+START;p[i]=v;cout<<v;}}struct Pro{int num,time;//num存放具体的内容,time在不同算法里面有不同的意义}; //它们是物理块和页面的数据结构int Input(int m,int N,Pro *p,Pro *page)//完成p[]数组和page[]的初始化工作{ //p[]数组是存放页面的空间,m是页面的长度//page[]是可以使用的物理块,N是物理块的大小cout<<endl<<"请输入各页面号"<<endl;int *p2=new int[m];rand(m,p2);for(int i=0;i<m;i++){p[i].num=p2[i];p[i].time=0;}for(i=0;i<N;i++)//初试化页面基本情况{page[i].num=0;page[i].time=N+2-i;}return m;}int Search(int e,Pro *page,int N)//算法里面都要用到它。
页面调度算法模拟
页⾯调度算法模拟模拟实现的算法:FIFO,Optimal(最佳置换),LRU,Clock,改进的Clock算法⼀、先⼊先出(FIFO):最简单的页⾯置换算法是先⼊先出(FIFO)法。
这种算法的实质是,总是选择在主存中停留时间最长(即最⽼)的⼀页置换,即先进⼊内存的页,先退出内存。
理由是:最早调⼊内存的页,其不再被使⽤的可能性⽐刚调⼊内存的可能性⼤。
建⽴⼀个FIFO队列,收容所有在内存中的页。
被置换页⾯总是在队列头上进⾏。
当⼀个页⾯被放⼊内存时,就把它插在队尾上。
这种算法只是在按线性顺序访问地址空间时才是理想的,否则效率不⾼。
因为那些常被访问的页,往往在主存中也停留得最久,结果它们因变“⽼”⽽不得不被置换出去。
FIFO的另⼀个缺点是,它会产⽣Belady现象,即在增加存储块的情况下,反⽽使缺页中断率增加了。
模拟算法如下:1package paging;23import java.util.LinkedList;45/**6 * FIFO(先进先出)页⾯置换算法7 *8 * @author wz9 * @date 15/11/30.10*/11public class FIFO {12private LinkedList<Integer> memoryBlock;1314void pageReplacement(int[] pageString, int memBlockNum) {15 memoryBlock = new LinkedList<>();16int pageFaultCount = 0, pageReplaceCount = 0;17for (int i = 0; i < pageString.length; i++) {18if (memoryBlock.contains(pageString[i]))19continue;20if (memoryBlock.size() >= memBlockNum) {21 memoryBlock.pollFirst();22// memoryBlock.set(0, pageString[i]);23 pageReplaceCount++;24 }25 memoryBlock.add(pageString[i]);26 pageFaultCount++;27 }28 System.out.println("缺页中断率: "+pageFaultCount/(double)pageString.length);29 System.out.println("页⾯置换次数: "+pageReplaceCount);30 }31 }⼆、Optimal(最佳置换)这是⼀种理想情况下的页⾯置换算法,但实际上是不可能实现的。
操作系统课程设计 页面置换算法C语言word文档良心出品
页面置换算法一•题目要求:通过实现页面置换算法的FIFO 和LRU 两种算法,理解进程运行时系统是怎样选择换出页面的,对于两种不同的算法各自的优缺点是哪些。
要求设计主界面以灵活选择某算法,且以下算法都要实现最佳置换算法(OPT):将以后永不使用的或许是在最长(未来)时间内不再被访问的页 面换出。
先进先出算法(FIFO):淘汰最先进入内存的页面,即选择在内存中驻留时间最久的 页面予以淘汰。
最近最久未使用算法(LRU):淘汰最近最久未被使用的页面。
最不经常使用算法(LFU)1、 编写算法,实现页面置换算法 FIFO 、LRU2、 针对内存地址引用串,运行页面置换算法进行页面置换;3、算法所需的各种参数由输入产生(手工输入或者随机数产生);4、输出内存驻留的页面集合,页错误次数以及页错误率; 四. 相关知识:1虚拟存储器的引入:局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储 空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。
2. 虚拟存储器的定义:虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种 存储器系统。
3. 虚拟存储器的实现方式:分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成 的页面形式虚拟存储系统。
请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成 的段式虚拟存储系统。
4. 页面分配:平均分配算法,是将系统中所有可供分配的物理块,平均分配给各个进程。
按比例分配算法,根据进程的大小按比例分配物理块。
考虑优先的分配算法,把内存中可供分配的所有物理块分成两部分:一部分按比例地分 配给各进程;另一部分则根据个进程的优先权,适当的增加其相应份额后,分配给各进程。
1) 2) 3) 4)二•实验目的:1、 用C 语言编写OPT 、FIFO 、LRU , LFU 四种置换算法。
操作系统_页面置换算法FIFO,OPT,LRU实现
cout <<frame[k].num <<' ';
cout <<endl;
}
}
cout <<“LRU:”<<endl;
cout <<“Error次数:”<<error <<endl;
cout <<“Frame Error:”<<(error / 12.0)<<endl <<endl;
}
intmain()
{
FIFO();
OPT();
LRU();
}
(以上为实现页面置换算法FIFO,OPT,LRU的代码)
frame[0].num = input[i];
elseif(frame[1].mark>frame[0].mark&&frame[1].mark>frame[2].mark)
frame[1].num = input[i];
else
frame[2].num = input[i];
cout <<input[i] <<“ | “;
3.FIFO算法实现。
4.在OPT实现中,mark属性设置,以及向后遍历的参数设置。
代码如下:
#include
usingnamespacestd;
intinput[12] = { 2,3,2,1,5,2,4,5,3,2,3,1 };
classpage
{
public:
intnum;
intmark;
操作系统课程设计 页面置换算法C语言
1、 编写算法,实现页面置换算法FIFO、LRU;
2、针对内存地址引用串,运行页面置换算法进行页面置换;
3、算法所需的各种参数由输入产生(手工输入或者随机数产生);
4、输出内存驻留的页面集合,页错误次数以及页错误:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储 空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。
4.页面分配:
平均分配算法,是将系统中所有可供分配的物理块,平均分配给各个进程。
按比例分配算法,根据进程的大小按比例分配物理块。
考虑优先的分配算法,把内存中可供分配的所有物理块分成两部分:一部分按比例地分 配给各进程;另一部分则根据个进程的优先权,适当的增加其相应份额后,分配给各进程。
5.页面置换算法:
FIFO基本思想:
是用队列存储内存中的页面, 队列的特点是先进先出, 与该算法是一致的, 所以每当发 生缺页时,就从队头删除一页,而从队尾加入缺页。或者借助辅助数组time[mSIZE]记录物
理块中对应页面的进入时间,每次需要置换时换出进入时间最小的页面。
LRU基本思想:
是用一维数组page[pSIZE]存储页面号序列,memery[mSIZE]是存储装入物理块中的页 面。数组flag[10]标记页面的访问时间。每当使用页面时,刷新访问时间。发生缺页时,就 从物理块中页面标记最小的一页,调出该页,换入所缺的页面。
2•虚拟存储器的定义:
虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种 存储器系统。
3•虚拟存储器的实现方式:
分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成 的页面形式虚拟存储系统。
操作系统之页面置换算法(最佳置换OPT,先进先出FIFO,最近最久未使用LRU)
操作系统之页⾯置换算法(最佳置换OPT,先进先出FIFO,最近最久未使⽤LRU)最近学习操作系统时,实验要求实现常见的三种页⾯置换算法,博主按照书上要求试着编写,实现了案例,并记录在博客随记中,以便后续⾃⼰复习并也给需要的同学分享参考⼀下!⽔平有限,若有错,请悄悄告诉博主!博主好⽴即改正。
最佳置换算法(optimal replacement,OPT)是从内存中选择今后不再访问的页⾯或者在最长⼀段时间后才需要访问的页⾯进⾏淘汰。
如下例⼦:根据页⾯⾛向依次处理,得到最终的置换结果如下图表,整个页⾯缺页次数为7,缺页率为7/12=58%。
1 #include <iostream>2 #include <stdio.h>3 #include <stdlib.h>4#define N 125#define B 36using namespace std;78int pageArr[N]={1,2,3,4,1,2,5,1,2,3,4,5};//页⾯⾛向9int block[B]={0};//物理块3个,其数值是页号10 typedef struct FLAG {11int flags[B];12int counts;13 } FLAG;1415void opt(int pageArr[],int block[]);16int inBlock(int which);17int findFar(int next);18void Replace(int index,int value);19void disPlay();2021int main(void){22 cout << "begin:" <<endl;23 opt(pageArr,block);24 cout << "end!" <<endl;25return0;26 }2728void opt(int pageArr[],int block[]){29int getIndex;30for(int i=0;i<N;i++){31if(i<3){//前3页号#短缺#进队列32 block[i]=pageArr[i];33 printf("缺页:(null)-->%d\n",pageArr[i]);34 }35else {36if(i==3){37 disPlay();3839 }40if(inBlock(pageArr[i])!=-1){//下⼀个页⾯if在物理块中返回index并跳过,反-141 disPlay();4243continue;44 }45 getIndex=findFar(i+1);//从下⼀个页号,找到最远出现的页⾯,替换的下标46if(getIndex==-1){47 cout<<"error,not replace obj!"<<'\t';48 }49else{50 Replace(getIndex,pageArr[i]);//由下标找到上⼀组替换⽬标,⽤第⼆参数替换51 disPlay();5253 }54 }55 }56return;57 }5859//替换block中的物理块60void Replace(int index,int value){61 printf("缺页:%d--被替换为-->%d\n",block[index],value);62 block[index]=value;63return;64 }656667//找到最远出现的页⾯68int findFar(int next){69int index=-1;//error,默认返回不存在的索引70 FLAG myflag;71 myflag.flags[0]=0;72 myflag.flags[1]=0;73 myflag.flags[2]=0;74 myflag.counts=0;75int stop = N-next;76while(stop--){77 index=inBlock(pageArr[next++]);78if(index!=-1){79 myflag.flags[index]=1;80 myflag.counts++;83break;84 }85 }86for(index=0;index<B;index++){87if(myflag.flags[index]==0)88break;89 }90return index;91 }929394//下⼀个页⾯if在物理块中返回index,反-195int inBlock(int which){96//int i=0;97//while(i<B)98// if(block[i++]==which)99// return i-1;100for(int i=0;i<B;i++){101if(block[i]==which)102return i;103 }104return -1;105 }106107//打印⼀元组108void disPlay(){109int i=0;110while(i<B){111 printf("%d\t",block[i++]);112 }113 printf("\n");114return;115 }上⾯是博主使⽤C++(基本是C语法)编写的代码,运⾏结果如下://////////////////////////////////////////////////////////////////////////begin:缺页:(null)-->1缺页:(null)-->2缺页:(null)-->31 2 3缺页:3--被替换为-->41 2 41 2 41 2 4缺页:4--被替换为-->51 2 51 2 51 2 5缺页:1--被替换为-->33 2 5缺页:3--被替换为-->44 2 54 2 5end!//////////////////////////////////////////////////////////////////////////先进先出算法:先进先出置换算法(first in first out,FIFO)是淘汰最先进⼊内存的页⾯,即选择在内存中驻留时间最长的页⾯进⾏淘汰的算法。
C语言 页面淘汰算法 OPT FIFO LRU CLOCK
《操作系统原理》上机作业(报告)作业:页面淘汰算法作业编号 6 题目页面淘汰/置换算法作业要求【题目要求】通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。
针对一个页框,根据实验数据,以OPT算法为参考,研究FIFO页面淘汰算法、LRU页面淘汰以及CLOCK算法针对同一批实验数据的缺页率,以及研究在不同页框设置下的各算法缺页率表现情况。
页面引用序列为:4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5(1)固定分配局部置换情况下,驻留集大小为3,针对该内存页面引用序列模拟各算法的运行过程,并计算缺页率。
(2)模拟驻留集大小为4和5的情况下各算法的运行过程和缺页率。
其菜单如下:*************内存分配和回收***********=================================0. 退出1. OPT算法实现2. LRU算法实现3. FIFO算法实现4. CLOCK算法5. 显示缺页率对比表=================================【实习要求】可选编程语言:C/C++/Java/C#/Python;实现在同一个程序文件中(C/C++);请适当注释;【实现提示】所需变量N:程序执行需要访问的页面数Msize:内存中可容纳的页数lack:在一次页面走向序列中用来统计缺页次数rate:缺页次数/总页数变量声明如下图所示:队列结构页面引用序列pages[N]和内存容量Memory[m]均用简单的数据结构线性表实现,其声明如图所示:【选做内容】改进型CLOCK算法实现。
构造一个页面引用序列,并出现Belady现象。
报告正文(运行屏幕截图及源代码)一.截图。
二.附录。
#include"stdio.h"#define N 30 //最大页数static int Msize; //内存容页数static int lacknum; //缺页数static int pages[N] = {4,3,2,1,4,3,5,4,3,2,1,5};static int memery[10];void Initial(){int i;for(i = 0; i < 10; i++){memery[i] = 0;}lacknum = 0;}int To_left(int index, int page) //计算之前的本页到现在已经多久了{int i = index - 1;while(i>=0){if(pages[i] == page)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include<iostream>#include<fstream>using namespace std;#define BlockSize 10#define PageSize 100int page[PageSize]; //页面数组存放页面int block[BlockSize]; //物理块数组int result[PageSize][BlockSize]; //存放页面和物理块二维数组int pSize = 0; //用户使用页面数int bSize = 0; //用户使用物理块数int blockFlag[BlockSize]; //用于LRU与最佳置换算法中,辅助判断该换出的页面int noPageCount = 0; //缺页次数//输入数据void inputData(){cout<<endl<<"请输入物理块数(1<=bSize<="<<BlockSize<<')'<<endl;cin>>bSize;cout<<"请输入页面数(1<=pSize<="<<PageSize<<')'<<endl;cin>>pSize;while(bSize<=0||bSize>BlockSize||pSize<=0||pSize>PageSize){//判断用户输入是否在范围内cout<<"输入范围错误,请重新输入:"<<endl;cout<<"请输入物理块数(1<=F<="<<BlockSize<<')';cin>>bSize;cout<<endl<<"请输入页面数(1<=p<="<<PageSize<<')';cin>>pSize;}cout<<"请输入页面走向"<<endl;for(int i = 0;i <pSize;i++)cin>>page[i];}//初始化page数组void initPage(){for(int i = 0;i<PageSize;i++)page[i] = -1;}//初始化block与result数组void initBlockResult(){int i = 0;for(i = 0;i<BlockSize;i++)block[i] = -1;for(i = 0;i < PageSize;i++)for(int j = 0; j < BlockSize;j++)result[i][j] = -1;}//查找物理块中是否存在要调用的页面int Exist(int i){for(int j = 0;j < bSize;j++)if(block[j] == i)return j;return -1;}//显示结果void display(int noPageCount){for(int i =0 ;i < pSize;i++){cout<<" "<<page[i]<<" ";for(int j = 0;j < bSize;j++){if(result[i][j] == -1) break;else cout<<'['<<result[i][j]<<']'<<' ';}cout<<endl;}cout<<"____________________________________"<<endl;cout<<endl<<"缺页次数:"<<noPageCount<<endl;cout<<"缺页率:"<<((double)noPageCount/pSize)*100<<'%'<<endl;cout<<"===================================="<<endl;}//最佳置换算法OPTvoid OPT(){int i = 0,j = 0;int position = 0,noPageCount = 0;int pageFlag = 0,resultFlag = 0; //页面标记(下标)指向下一个页面,结果标记表示结果的行,即result数组的行标for(i = 0;i < BlockSize;i++)blockFlag[i] = 0;while(pageFlag < pSize){if(Exist(page[pageFlag]) != -1) //判断页面是否已经存在resultFlag++;else{if(position < bSize) //判断有无空闲物理块{ //若有则将页面放入空闲块block[position] = page[pageFlag];position++;noPageCount++;for(i = 0;i < position;i++)result[resultFlag][i] = block[i];resultFlag++;}else{for(i = 0;i < bSize;i++){for(j = pageFlag+1;j < pSize;j++){if(block[i] == page[j]){blockFlag[i] = j;break;}}if(j == pSize) blockFlag[i] = 999;}int optPos = 0,max = blockFlag[0];for(int i = 0;i < bSize;i++)if(max < blockFlag[i]){max = blockFlag[i];optPos = i;}block[optPos] = page[pageFlag];noPageCount++;for(i = 0;i < bSize;i++)result[resultFlag][i] = block[i];resultFlag++;}}pageFlag++;}cout<<endl<<"最佳置换算法:"<<endl;display(noPageCount);return;}//先进先出页面置换算法FIFOvoid FIFO(){int blockFlag = 0,pageFlag = 0,resultFlag = 0; //物理块标记,确定该换出的物理块下标int i = 0,j = 0,noPageCount = 0;int position = 0; //指示物理块,查找有无空闲while (pageFlag < pSize){if(Exist(page[pageFlag]) != -1)resultFlag++;else{if(position < bSize){block[position] = page[pageFlag];position++;noPageCount++;for(i = 0;i <= position;i++)result[resultFlag][i] = block[i];resultFlag++;}else{block[blockFlag] = page[pageFlag]; //blockFlag指示要换出的页面noPageCount++;for(i = 0;i < bSize;i++)result[resultFlag][i] = block[i];resultFlag++;blockFlag++;blockFlag = blockFlag % bSize;}}pageFlag++;}cout<<endl<<"先进先出页面置换算法FIFO:"<<endl;display(noPageCount);return;}//最近最久未用算法LRUvoid LRU(){int i = 0,noPageCount = 0;int pageFlag = 0,resultFlag = 0,position = 0;for(i = 0;i < BlockSize;i++) //初始化时间记录数组blockFlag[i] = 0;while(pageFlag < pSize){if(Exist(page[pageFlag]) != -1){ //判断页面是否已经在主存中resultFlag++;blockFlag[Exist(page[pageFlag])] = 0; //若在则将时间记录数组对应位置为0 }else{if(position < bSize){block[position] = page[pageFlag];blockFlag[position] = 0;position++;noPageCount++;for(i = 0;i <= position;i++)result[resultFlag][i] = block[i];resultFlag++;}else{int last = 0,min = blockFlag[0];for(int i = 0;i < bSize;i++)if(min < blockFlag[i]){min = blockFlag[i];last = i;}block[last] = page[pageFlag]; //置换最久未用页面blockFlag[last] = 0;noPageCount++;for(i = 0;i < bSize;i++)result[resultFlag][i] = block[i];resultFlag++;}}for(i = 0;i < bSize;i++)blockFlag[i]++;pageFlag++;}cout<<endl<<"最近最久未用算法LRU:"<<endl;display(noPageCount);return;}//时钟(clock)置换算法void clock(){int i = 0,position = 0,noPageCount = 0;bool boolBlockFlag[BlockSize];int flag = 0; //访问位循环标记int pageFlag = 0,resultFlag = 0;while(pageFlag < pSize){if(Exist(page[pageFlag]) != -1){resultFlag++;boolBlockFlag[Exist(page[pageFlag])] = true;}else{if(position < bSize){block[position] = page[pageFlag];noPageCount++;boolBlockFlag[position] = true;position++;for(i = 0;i < position;i++)result[resultFlag][i] = block[i];resultFlag++;}else{while(true){ //无限循环,找出访问位为false 的页面if(boolBlockFlag[flag] == false) break;boolBlockFlag[flag] = false; //若为true,置为falseflag++;flag = flag%bSize;}block[flag] = page[pageFlag];boolBlockFlag[flag] = true;flag++;flag = flag%bSize;noPageCount++;for(i = 0;i < position;i++)result[resultFlag][i] = block[i];resultFlag++;}}pageFlag++;}cout<<endl<<"时钟(clock)置换算法:"<<endl;display(noPageCount);return;}int main(){initPage();int func;while(func!=5){cout<<"请选择所需要的功能:"<<endl;cout<<"0.输入数据"<<endl;cout<<"1.最佳(optimal)置换算法"<<endl;cout<<"2.先进先出(FIFO)置换算法"<<endl;cout<<"3.最近最久未用(LRU)置换算法"<<endl;cout<<"4.时钟(clock)置换算法"<<endl;cout<<"5.退出"<<endl;switch(func){case 0:inputData();break;case 1:initBlockResult();OPT();break;case 2:initBlockResult();FIFO();break;case 3:initBlockResult();LRU();break;case 4:initBlockResult();clock();break;case 5:break;}cout<<"请选择功能:";cin>>func;system("cls");}return 0;}。