流体输配管网
流体输配管网简述
直接连接的上下级管网是水力相关的,间接连接 则水力无关。 水力无关的管网可实现“热力相关”。
2 流体输配管网的分类
按流体相类:单相流与多相流管网
按动力形式:重力驱动与压力驱动管网
按与环境流体的关系:开式与闭式管网
按流动路径的确定性:枝状与环状管网
按流程距离:异程式管网与同程式管网
按服务范围:区域、城市、小区、建筑、房间…
该管网的功能及特点
功能:
从室外引入新鲜空气,并通过回风口从房间收集 空气至空调机组;将空调机组处理好的空气按各 送风口所需的量输送分配至各送风口。
特点:
(1)管内流体与环境相通,可进出环境空间。— —开式管网 (2)至每一个末端的输配路径是唯一的,即所有 管段的流动方向性是明确的。——枝状管网 (3)由机械装置提供动力。
3 4
2
1 蒸汽采暖管网
该管网的特点:
流体介质的相类:汽体、汽液混合、液体
管网不同位置的流体种类以及占主导地位的流 体各不相同,对流体输送和分配产生影响。
城市集中供热管网
1、“输配”流量耗能很多,怎样节省?怎样达到投资和运行费的 综合优化? 2、输配动力的设置位置有何考究?
3、对城市和城区,哪些部位应布置成环状?哪些可只布置成枝状?
《暖通空调》杂志 《煤气与热力》杂志 《给水排水》杂志
祝大家学习愉快! 谢谢大家!
安全、计量装置
安全阀、报警器、流量计、温度计、压力表等
其他装置与设备
膨胀水箱、排气装置、疏水器、过滤器等
流体输配管网基本功能的实现
设计:确定管网的组成要素(流动路径、 管道、动力、调控装置),满足各用户末 端对流量的输送、分配需求。 调节:调整管网的动力或调控装置,满足 各用户末端对流量的需求的变化。
《流体输配管网》课件
事故发生的原因: 管道老化、腐蚀、 超压等
应急救援措施:启 动应急预案、组织 抢修、疏散人员等
预防措施:定期 检查、维修、更 换等
研发方向:耐腐蚀、耐高温、高强度、轻量化等 应用领域:石油、天然气、水等流体输送 研发成果:新型复合材料、纳米材料等 未来展望:提高管道使用寿命,降低维护成本,提高输送效率
定期检查: 定期对管道 进行检查, 确保其完好 无损
清洁维护: 定期对管道 进行清洁, 防止堵塞和 腐蚀
泄漏检测: 定期对管道 进行泄漏检 测,及时发 现并修复泄 漏点
防腐处理: 定期对管道 进行防腐处 理,防止腐 蚀和生锈
更换维修: 定期对管道 进行更换和 维修,确保 其正常运行
管道事管网的信息化管理和远程监控
自动化控制技术的应用:实现 输配管网的自动化运行和维护
智能传感器技术的应用:提高 输配管网的监测和控制精度
人工智能技术的应用:提高输 配管网的智能化水平和决策能
力
云计算和大数据技术的应用: 实现输配管网的数据分析和优
化管理
5G技术的应用:提高输配管 网的数据传输速度和稳定性
绿色环保:未来流体输 配管网将更加注重环保, 采用清洁能源和绿色材 料,降低对环境的影响。
高效节能:通过优化设 计和技术升级,流体输 配管网的能源消耗将进 一步降低,提高能源利 用效率。
数字化转型:随着数字 化技术的普及,流体输 配管网将实现数字化转 型,提高数据分析和处 理能力。
汇报人:
流体动力设备类型:泵、风机、压 缩机等
设计要点:流体动力设备的性能参 数、安装位置、运行方式等
添加标题
添加标题
添加标题
添加标题
选型原则:满足流体输配管网的需 求,考虑经济性、可靠性、安全性 等因素
流体输配管网
第1章1、图中的供热管网与用户管网的连接方式,哪些是直接连接?哪些是间接连接?1-热源的加热装置;2-网路循环水泵;3-补给水泵;4-补给水压力调节器;5-散热器;6-水喷射器;7-混合水泵;8-表面式水-水换热器;9-供暖热用户系统的循环水泵;10-膨胀水箱;11-空气加热器;12-温度调节器;13-水-水式换热器;14-储水箱;15-容积式换热器;16-下部储水箱;17-热水供应系统的循环水泵;18-热水供应系统的循环管路答:(a)(b)(c)是直接连接,(d)(e)(f)(g)(h)(i)是间接连接。
2、蒸汽供暖系统中疏水器起什么作用?它通常设置在系统的什么位置?答:疏水器的作用是阻止蒸汽逸漏,迅速排除管道或用热设备中的凝水。
通常设置在用热设备的出口、蒸汽干管一定距离的最低点、水平蒸汽管道上升转弯处等。
3、什么是开式管网?什么是闭式管网?试分别举出两个工程应用实例。
答:开式管网与环境相通,具有进口和出口,它的源或汇是环境空间。
环境空间的流体从管网的进口流入管网;管网内的流体从出口排出管网,进入环境空间。
通风管网、燃气管网、建筑给排水管网等属于开式管网。
环境空间的流体与管内流体水力相关,环境空间的流体状态与流动状况直接影响管网内流体的流动。
闭式管网与外界环境空间在流体流动方面是隔绝的。
管网没有供管内流体与环境空间相通的进出口。
它的源和汇通常是同一个有限的封闭空间。
环境空间的流体状态与流动情况对管网内的流体流动和流动所需的动力没有直接的影响,管网内外流体之间是水力无关的。
供热管网、空调工程的冷热水管网等都属于闭式管网。
4. 如何区分枝状管网与环状管网?答:枝状管网与环状管网应根据管网中流动路径的确定性进行区分。
管网的任一管段的流向都是确定的,唯一的,该管网属于枝状管网。
若管网中有的管段的流动方向是不确定的,存在两种可能,该管网属于环状管网。
5. 为什么要对燃气管网按照输气压力进行分级?答:燃气管道漏气可能导致火灾、爆炸、中毒及其它安全事故。
流体输配管网的功能与类型(改)
老旧管网更新
对老旧、破损的管网进行更新改造,采用新 型管材和技术,提高管网的性能和安全性。
THANKS
感谢观看
智能化与自动化技术
智能检测与监控
利用物联网、传感器、云计算等技术, 对流体输配管网进行实时监测和数据采 集,实现远程监控和智能管理,提高管 网运行的安全性和可靠性。
VS
自动化控制
通过自动化控制系统,实现对流体输配管 网的远程控制和调节,提高管网的调度效 率和响应速度,减少人工干预和操作失误 。
环境友好型设计
调节与控制功能
总结词
流体输配管网还具有调节和控制流体介质的各种参数,如流量、压力、温度等。
详细描述
在工业生产和日常生活中,流体输配管网通过各种调节和控制设备,实现对流体 介质的各种参数进行调节和控制,以满足生产和生活需求。
03
流体输配管网的类型
按输送的流体介质分类
气体管网
用于输送气体,如空气、天然气和煤 气等。
详细描述
在供水、供气、供热等系统中, 流体输配管网将流体介质按照需 求分配到各个用户,确保每个用 户能够获得所需的流体量。
增压功能
总结词
流体输配管网还具有增压功能,能够将流体介质从低压力状态增压到高压力状 态。
详细描述
在一些高压流体输送系统中,流体输配管网通过增压设备将流体介质从低压力 状态增压到高压力状态,以满足系统对流体压力的要求。
流体输配管网的功能与类 型
• 引言 • 流体输配管网的功能 • 流体输配管网的类型 • 流体输配管网的未来发展与挑战
01
引言
主题简介
01
流体输配管网是用于输送和分配 液态和气态流体的网络系统,广 泛应用于工业、建筑、市政等领 域。
流体输配管网——复习重点
复习重点第一章:1.流体输配管网的基本功能与组成流体输配管网的基本功能是将从源取得的流体,通过管道输送,按照流量要求,分配给各末端装置;或者按流量要求从各末端装置收集流体,通过管道输送到汇。
末端装置、源或汇、管道是流体输配管网的基本组成。
动力装置、调控装置和其他附属设备是管网系统的重要组成。
2.流体输配管网的分类1)重力驱动管网与压力驱动管网2)开式管网与闭式管网3)枝状管网与环状管网4)异程管网与同程管网第二章:一、流体输配管网水力计算的基本原理和方法1、流体输配管网水力计算目的根据要求的流量分配,确定管网的各段管径(或断面尺寸)和阻力。
对枝状管外,求得管网特性曲线,为匹配管网动力设备准备好条件,进而确定动力设备(风机、水泵等)的型号。
2、流体输配管网水力计算的基本原理(1)水力计算的基本理论依据流体力学一元流动连续性方程、能量方程及串、并联管路流动规律。
(2)管网中流体稳定流动的条件管网的流动动力等于管网流动总阻力。
3、常用的水力计算方法假定流速法;压损平均法;静压复得法。
4、全压的来源与性质•来源于风机水泵等流体机械。
•来源于压力容器。
•来源于上级管网。
性质:•在一个位置上提供,沿整个环路中起作用。
•提供动力的位置在共用管段上,则共用该管路的所有环路都获得相同大小的全压动力。
与此相反:重力产生的环路动力是在整个环路上形成的。
它作用在整个环路上。
第三章一、闭式液体管网的水力特征和水力计算1.串、并联管路的水力特征第五章1.离心式泵与风机的工作原理2.离心式泵与风机的性能参数3.离心式泵与风机的基本方程—欧拉方程(基本假定、分析、修正、物理意义)4.泵与风机的功率与效率5.叶形对泵与风机性能的影响6.相似率与比转数第六章1.泵、风机在管网系统中的工作状态点2.泵、风机的工况调节第七章1. 液体管网压力分布图----水压图2.水力失调度(概念、计算公式)3.管网的水力工况分析(计算)。
流体输配管网教案设计
流体输配管网教案设计第一章:流体输配管网概述1.1 流体输配管网的定义与分类1.2 流体输配管网的基本组成1.3 流体输配管网的功能与应用1.4 流体输配管网的发展趋势第二章:流体力学基础2.1 流体的性质与分类2.2 流体的流动与阻力2.3 流体动力学方程2.4 流体流动的数值模拟第三章:管网设计基础3.1 管网设计的原则与步骤3.2 管网布置的基本形式3.3 管网中的水力计算3.4 管网设计中的优化方法第四章:管网设备与元件4.1 管网阀门的选择与使用4.2 管网泵的选择与使用4.3 管网加热器与冷却器的设计与应用4.4 管网与其他设备的连接与协调第五章:管网运行与管理5.1 管网的运行原理与操作5.2 管网的故障分析与处理5.3 管网的维护与检修5.4 管网的安全性与经济性评估第六章:流体输配管网的水力计算6.1 管道摩擦损失的计算6.2 局部损失的计算6.3 管网压力损失的合成6.4 管网的水力平衡与优化第七章:管网的稳定性与控制7.1 管网的压力控制与调节7.2 管网的流量控制与调节7.3 管网的波动与振动控制7.4 管网的自动化控制技术第八章:流体输配管网的优化设计8.1 管网设计的目标与约束条件8.2 管网优化设计的方法与算法8.3 管网经济性分析与评价8.4 管网优化设计的案例分析第九章:特殊类型的流体输配管网9.1 高温高压管网的设计与运行9.2 天然气管网的设计与运行9.3 腐蚀性流体管网的设计与运行9.4 非常规流体管网的设计与运行第十章:流体输配管网的环保与安全10.1 管网环境影响的评估与控制10.2 管网的安全设计与应急处理10.3 管网的节能减排技术10.4 管网的可持续发展策略第十一章:流体输配管网的模拟与仿真11.1 管网模拟与仿真的基本概念11.2 管网模拟与仿真的数学模型11.3 管网模拟与仿真的计算机实现11.4 管网模拟与仿真在工程中的应用案例第十二章:流体输配管网的现代化技术12.1 管网自动控制技术的发展12.2 管网信息化管理与监控12.3 管网智能优化与决策支持系统12.4 管网现代技术在提高运行效率中的应用第十三章:流体输配管网的案例分析13.1 城市供水管网案例分析13.2 天然气输配管网案例分析13.3 石油化工管网案例分析13.4 供热管网案例分析第十四章:流体输配管网的实验与实践14.1 管网实验的目的与意义14.2 管网实验设备与方法14.3 管网实验的操作步骤与注意事项14.4 管网实验结果的分析与讨论第十五章:流体输配管网的前沿话题15.1 管网设计的最新发展趋势15.2 管网材料与技术的创新15.3 管网环境保护与能源节约的新策略15.4 管网行业的未来挑战与机遇重点和难点解析第一章至第五章:重点:流体输配管网的定义、分类、功能、组成及发展趋势;流体流动的力学基础;管网设计原则、步骤、布置形式、水力计算及优化方法。
流体输配管网-3液体输配管网水力特征与水力计算
某工业园区液体输配管网的水力计算
根据园区内各车间的液体需求量、管道长度、管材和管径等参数,进行水力计算 ,优化管网布局和液体输送方案,提高输送效率。
04
液体输配管网优化设计
优化设计方法
应急处理
对突发的事故或故障,制定应急预案, 迅速组织人员和物资进网
采用智能化监测系统,实时监测管道的运行状态,有效预防了爆 管等事故的发生。
上海某排水管网
通过定期的清淤和维护,保证了管道的通畅,降低了堵塞和溢流 的风险。
成都某燃气管道
采用智能巡检机器人进行巡检,提高了巡检效率和准确性,降低 了人工成本。
某工业园区液体输配管网优化设计
针对某工业园区的液体输配管网进行优化设计,提高了管网的输送效率和可靠性,降低了能耗和生产 成本。
05
液体输配管网维护与管理
维护管理内容
管道检查
定期对管道进行外观检查,查 看是否有破损、腐蚀、渗漏等
现象。
管道清洗
定期对管道进行清洗,清除管 道内的杂质和沉积物,保持管 道的通畅。
水力计算公式
伯诺里方程
描述流体在管道中流动时,流体的压能和动能与位能 和阻力的关系,是水力计算的基础。
达西-威斯巴赫公式
用于计算管道中流体的流量和流速,以及管道的阻力 损失。
曼宁公式
用于计算管道的糙率系数和尼古拉兹系数,反映管道 的粗糙程度和阻力特性。
水力计算实例
某城市供水管道改造项目的水力计算
遗传算法
通过模拟生物进化过程中的自然选择和遗传机制,寻找最优解的 方法。
模拟退火算法
《流体输配管网》课件
02
03
2. 根据流量和流速确定管径 。
04
05
3. 根据流体性质和管道长度 进行修正。
泵站设计
泵的选择:根据流量、扬 程和效率来选择合适的泵
。
1. 确定泵的台数和备用泵 。
3. 设计泵站的给排水系统 。
泵站设计
2. 设计泵站的平面布置。
4. 考虑泵站的节能和环保 措施。
优化方法与技术
优化目标:降低管网运行成本,提高管网可靠 性。
新材料与新技术的应用
总结词
新材料的应用有助于提高管网的耐久性和性能,降低维护成本。
详细描述
随着科技的发展,新型材料如高分子复合材料、合金材料等在流体输配管网中得 到广泛应用。这些新材料具有优良的耐腐蚀、耐高温、耐压等性能,能够提高管 网的寿命和稳定性,降低因维护和更换管道带来的成本。
智能化与自动化发展
设计原则与步骤
2. 选择合适的管材和附件 。
1. 确定设计参数:包括流 量、压力、温度等。
步骤
01
03 02
设计原则与步骤
01
3. 进行管网布局设计。
02
4. 进行水力计算。
5. 校核管网的稳定性。
03
管径选择与计算
计算方法
管径选择:根据流量、流速 和经济流速来确定管径。
01
1. 按照经济流速计算管径。
应急处理
制定应急预案,及时应对管网事故,确保事故得到迅速处理,减少 损失。
维护保养
定期检查与维修
对管网设施进行定期检查,发现隐患及时维修,保证管网的正常运 行。
防腐与保温
采取有效的防腐和保温措施,延长管网使用寿命,提高流体输配的 效率。
更新改造
流体输配管网教案设计
学前教育中的手工教育学前教育是儿童教育的重要阶段,手工教育作为其中的一项重要内容,对儿童的综合能力培养有着积极的影响。
本文将探讨学前教育中的手工教育的重要性以及如何有效地进行手工教育。
一、手工教育的重要性手工教育是指通过动手实际操作,让儿童亲自参与到各种手工活动中,培养他们的动手能力、创造力和想象力。
手工教育在学前阶段具有以下重要性:1. 促进儿童身心发展:手工活动需要儿童动手实际操作,培养他们的精细动作和手眼协调能力。
这对儿童的身体发育和脑力发育都非常有益。
2. 激发儿童的创造力和想象力:手工活动充满了思维和创造的乐趣,儿童可以自由地发挥想象力,创造各种作品。
在这个过程中,他们不仅锻炼了自己的创造力,还培养了解决问题的能力。
3. 提高儿童的自信心:通过手工活动,儿童可以亲手制作出精美的作品,这种成就感会增强他们的自信心。
他们会发现自己可以通过努力获得成功,这对他们的成长非常重要。
4. 培养儿童的社交能力:在手工活动中,儿童通常需要与他人合作完成任务。
通过与他人的合作,他们学会了倾听他人的意见,与他人进行有效的沟通,培养了自己的社交能力。
二、有效进行手工教育的方法在进行手工教育时,需要注意以下几个方面,以确保教育的效果:1. 给予儿童充分的自主性:手工活动是儿童自我实现的过程,教育者应该尊重儿童的选择权,给予他们充分的自主性。
可以提供一些材料和工具供他们选择,并鼓励他们根据自己的兴趣和创造力进行操作。
2. 提供适当的指导和辅助:尽管儿童需要自主性,但他们在手工活动中仍需要一定的指导和辅助。
教育者可以在活动开始前给予简单明了的示范,提供适当的技巧和方法,并在活动中给予必要的帮助和支持。
3. 创设积极的学习环境:为了让儿童能够专注于手工活动,教育者需要创设积极的学习环境。
可以提供安静、整洁、宽敞的场所,提供丰富的材料和工具供儿童选择,并通过布置环境激发他们的学习兴趣。
4. 引导儿童进行反思和分享:在手工活动结束后,教育者可以引导儿童进行反思和分享。
流体输配管网
流体输配管网:许多公用设备工程,需要将流体输送并分配到各相关设备或空间,或者从各接受点将流体收集起来输送到指定店。
承担这一功能的管网系统称为流体输配管网流体输配管网的组成:末端装置,源和汇,动力装置,管道,调节装置,其他附属设备。
基本组成:末端装置,源和汇,管道;流体输配管网分类:1)按管内流动介质:单项流,多相流。
2)按动力的性质:重力驱动管网,压力驱动管网3)按管内流体与管外环境的关系:开式,闭式4)按上下级管网水里相关性:直接连接,间接连接5)按各并联管段所在环路之间流程长度:异程管网,同程管网6)流体流动方向:枝状,环状式管网膨胀水箱容积计算Vp=а△Tmax*Vc,Vp-水箱的有效容积,а-水的体积膨胀系数а=0.0006L/度。
Vc-水容积循环管作用:少量热水能流过水箱防止水箱结冰。
膨胀水箱作用:贮存冷热水系统水温上升时的膨胀水量以及恒定水系统的压力。
疏水器的功能:阻止蒸气逸漏,迅速排走用热设备及管道中的凝水,同时能排除系统中积留的空气和其他不凝性气体;疏水器通常多为水平安装。
在机械循环热供暖系统中应将膨胀水箱的膨胀管连接在循环水汞吸入侧的回水干管中。
(重力循环系统则接在供水总立管的顶端)。
为了排气,系统的供水干管必须有0.5%-1%向膨胀水箱方向上的坡度;散热器支管向膨胀水箱的坡度一般取1%。
采暖用户与热网的连接方式:无混合装置的直接连接,装水喷射器的直接连接,装混合水汞的直接连接,间接连接。
地下敷设供热管道的坡度应不小于0.02蒸汽管网:高压蒸汽采暖,低压蒸汽采暖,真空蒸汽采暖;低压蒸气采暖管网的基本类型:重力回水和机械回水;气力输送管网:吸送式,压送式当量直径:与矩形风管有相同单位长度摩擦阻力的圆形风管直径,分为流速当量直径Dv=2ab/(a+b),流量当量直径D L=1.3*(ab)0.625/(a+b)0.25。
最不利环路或分支环路的平均比摩阻:Rpj=а△Pj/∑li(Rpj一般取60-120Pa/m)实现基本均匀送风的基本条件:保持各侧孔静压相等,保持各侧孔流量系数相等,增大出流角a。
流体输配管网
流体输配管网:需要将流体输送并分配到各相关设备或空间,或者从各接收点将流体收集起来送到指定点,承担这一功能的管网系统。
包括管道、动力装置、调节装置、末端装置及其他附属装置。
通风工程的风管系统:排风系统和送风系统。
空调系统的两个基本功能:控制室内污染物浓度和热环境质量。
冷热水输配管网系统的分类:(1)按循环动力:重力循环和机械循环(2)按水流路径:同程式和异程式系统(3)按流量变化:定流量(负荷变化,改变供回水温度)和变流量(负荷变化,改变供水量)系统(4)按水泵设备:单式泵和复式泵系统(5)按与大气接触情况:开式和闭式(最高点设置排气阀。
适当位置设置膨胀水箱)系统。
膨胀水箱的作用:储存冷热水系统水温上升时的膨胀水量,在重力循环上供下回式系统中起排气作用,还起恒定水系统的压力。
排气阀装置应设在系统各环路供水干管末端的最高处,在系统运行时定期开启阀门将水中分离的空气排出。
蒸汽疏水器的功能:阻止蒸汽逸漏,迅速排走用热设备及管道中的凝水,同时排除系统中积留的空气和其他不凝性气体。
流体输配管网的分类:(1)按管内流体的相态:单相流和多相流管网(2)按管网动力性质:重力驱动管网和压力管网(3)按管网内流体与外界环境空间的联系:开式管网和闭式管网(4)并联管段各环路之间流程长短的差异:同程式管网和异程式管网(5)按官网之间的连接:直接连接(水力相关、热力相关)和间接连接(水力无关、热力相关)。
卫生间排气竖井内,气体密度冬季小于室外,夏季大于室外,若无排气风机,则竖井内冬季气流向上流动,夏季气流向下运动,倒灌入位于底层的卫生间。
空调建筑装有排风机的卫生间排气竖井,冬季在位压的辅助作用下,排气能力显著增强,夏季排风机除了克服竖井的阻力外,还要克服位压的辅助作用,排气能力削弱,尤其是高层建筑。
常用的水力计算方法:假定流速法、压损平均法、静压复得法。
假定流速法步骤:(1)绘草图,编号(2)确定流速(3)确定管径(4)计算各管段阻力(5)平衡并联管路(6)计算总阻力,计算管网特性曲线(7)根据管网特性曲线,选择动力设备。
流体输配管网流体输配管网的型式与装置课件
高温高压流体输配管网的发展趋势
总结词
高温高压流体输配管网是未来发展的趋势,具有高效 、安全、可靠等优点。
详细描述
随着能源、化工、动力等领域对高温高压流体输配管网 的需求不断增加,该领域的技术研究不断深入,并逐渐 成为流体输配管网技术发展的重点方向。高温高压流体 输配管网具有高效、安全、可靠等优点,能够满足现代 工业生产过程中的各种复杂需求。未来,高温高压流体 输配管网将朝着更高温度、更高压力、更长距离、更大 口径的方向发展,同时不断提高系统的稳定性和可靠性 。
蝶阀
控制流体流动的开 关,具有开关和调 节功能。
截止阀
控制流体流动的开 关,具有截止和调 节功能。
球阀
控制流体流动的开 关,具有开关和调 节功能。
旋塞阀
控制流体流动的开 关,具有开关和调 节功能。
过滤器与分离器
01
02
03
04
过滤器
去除流体中的杂质,保持流体 的清洁。
分离器
将流体中的气体和液体分离出 来。
案例三:某核电站的流体输配管网改造
总结词
复杂、安全、可靠的流体输配管网改造
详细描述
该核电站的流体输配管网改造工程是一个复杂的系统工 程,涉及多个专业领域和技术的综合应用。在改造过程 中,采用了先进的设计理念和技术手段,确保了管网的 安全性和可靠性。同时,在改造过程中,注重了环境保 护和节能减排,采用了环保材料和节能技术,降低了对 环境的影响。改造完成后,流体输配管网运行稳定可靠 ,提高了核电站的安全性和可靠性。
除污器
去除流体中的污物和杂质。
水处理器
处理水中的杂质和有害物质。
补偿器与伸缩器
补偿器
补偿管道的热胀冷缩,防止管道变形和损坏。
流体输配管网(516页完整课件)
1.2.4
明渠均匀流水力计算的基本问题
明渠均匀流的水力计算,主要有以下三种 基本问题,现以最常用的梯形断面渠道为例分 述如下:
1. 验算渠道的输水能力 这类问题主要是对已成渠道进行校核性的 水力计算,特别是验算其输水能力问题。
2. 决定渠道底坡 设计渠道底坡时,一般已知土壤或护面材 料、设计流量以及断面的几何尺寸,即已知n、 qV和m、b、h0各量,求所需要的底坡i。
图1-11 渠道底坡类型
1.2.1.2 明渠均匀流的条件与特征
均匀流是一种渐变流的极限情况,即流线 是绝对平行无弯曲的流动。
明渠均匀流的水流具有如下特征: 断面平均流速沿程不变;水深也沿程不变; 而且总能线即总水头线,水面及渠底相互平行, 也就是说,其总水头线坡度(水力坡度),测 管水头线坡度(水面坡度)和渠道底坡彼此相 等(图1-13),亦即 J Jp i
静压和位压相加,称为势压,以 ps 表示。 势压与管中水流的测压管水头相对应。 静压和动压之和,称为全压,以 pq表示。 静压,动压和位压三项之和以 p at 表示,称 为总压,与管中水流的总水头线相对应。
p at p
2
2
( a )(Z 2 Z 1 )
存在位压时,总压等于位压加全压。位压 为零时,总压就等于全压。 位压( a )(Z 2 Z1)实际上就表示了管内 外流体存在密度差时所具有的附加压头。
图1-4 环路划分
1.1.1.2 环状管网 1、Hardy-Cross方法 环状管网是指管道通过串联与并联的组合 存在一个以上闭合环路的管道系统(管网)。
图1-3
计算程序如下: ①将管网分成若干环路如图1-4上分成Ⅰ、Ⅱ、 Ⅲ三个闭合环路。按节点流量平衡确定流量,选取 限定流速,定出管径D。 ②按照上面规定的流量与损失在环路中的正负 值,求出每一环路的总损失。 ③根据上面给定的流量,若计算出来的不为零, 则每段管路应加校正流量,而与此相适应的阻力损 失修正值为。 ④用同样的程序,计算出第二次校正后的流量, 第三次校正后的流量……,直至满足工程精度要求 为止。
流体输配管网
(一)流体输配管网承担将流体输送并分配到各相关设备和空间,或者从各接受点将流体收集起来输送到指定点这一功能的管网系统。
它包括管道、动力装置、调节装置、末端装置及保证管网正常工作的其他附属装置。
基本功能:将从源取得的流体,通过管道输送,按照流量要求,分配给各末端装置;或者按流量要求从各末端装置收集流体,通过管道输送到汇基本组成:1、源或汇:源向管道中输送流体,汇从管道接受流体。
2、管道:它是源或汇合末端装置间输送和分配流体的通道3、末端装置:按要求从管道获取一定量的流体或将一定量的流体送入管道。
通风工程的主要任务是控制室内空气污染物,保证良好的室内空气品质,保护大气环境。
通风工程的风管系统分为两类:排风系统和送风系统空气输配管网的装置及管件有风机、风阀、风口、三通、弯头、变径管等,还有空气处理设备。
燃气输配管网由分配管道、用户引入管和室内管道三部分组成。
调压站功能:一是将输气管网的压力调节到下一级管网或用户需要的压力;二是保持调节后的压力稳定组成:调压器、阀门、过滤器、安全装置、旁通管、测量仪表。
液体输配管网类型:1.按循环动力可分为重力(自然)循环系统和机械循环系统2.按水流路径可分为同程式和异程式系统3.按流量变化可分为定流量和变流量系统4.按水泵设置可分为单式泵和复式泵系统5.按与大气接触情况可分为开式和闭式系统高层建筑给水管网竖向分区。
原因:为克服低层管道中静水压力过大的弊病。
基本形式:串联式、减压式、并列式、室外高低压给水管网直接供水。
蒸汽管网特点:蒸汽状态参数变化大,往往伴随相变。
分类:供气的表压力高于70kpa是,称为高压蒸汽采暖供气的表压力等于或低于70kpa时,称为低压蒸汽采暖系统中的压力低于大气压力时,称为真空蒸汽采暖蒸汽疏水器功能:阻止蒸汽逸漏,迅速排走用热设备及管道中的凝水,同时能排除系统中积留的空气和其他不凝性气体设置位置:水平安装建筑排水管网分类:1、生活排水管网2、工业废水排水管网3、屋面雨水排除管网气力输送管网是一种利用气流输送固体物料的输送方式,按其装置的形式各工作特点可分为吸送式、压送式、混合式、循环式。
流体输配管网
动介质:单项流,多相流。
2)按动力的性质:重力驱动管网,压力驱动管网3)按管内流体与管外环境的关系:开式,闭式4)按上下级管网水里相关性:直接连接,间接连接5)按各并联管段所在环路之间流程长度:异程管网,同程管网6)流体流动方向:枝状,环状式管网 膨胀水箱容积计算Vp=а△Tmax*Vc ,Vp-水箱的有效容积,а-水的体积膨胀系数а=0.0006L/度。
Vc-水容积循环管作用:少量热水能流过水箱防止水箱结冰。
膨胀水箱作用:贮存冷热水系统水温上升时的膨胀水量以及恒定水系统的压力。
疏水器的功能:阻止蒸气逸漏,迅速排走用热设备及管道中的凝水,同时能排除系统中积留的空气和其他不凝性气体;疏水器通常多为水平安装。
在机械循环热供暖系统中应将膨胀水箱的膨胀管连接在循环水汞吸入侧的回水干管中。
(重力循环系统则接在供水总立管的顶端)。
为了排气,系统的供水干管必须有0.5%-1%向膨胀水箱方向上的坡度;散热器支管向膨胀水箱的坡度一般取1%。
采暖用户与热网的连接方式:无混合装置的直接连接,装水喷射器的直接连接,装混合水汞的直接连接,间接连接。
地下敷设供热管道的坡度应不小于0.02蒸汽管网:高压蒸汽采暖,低压蒸汽采暖,真空蒸汽采暖;低压蒸气采暖管网的基本类型:重力回水和机械回水;气力输送管网:吸送式,压送式 当量直径:与矩形风管有相同单位长度摩擦阻力的圆形风管直径,分为流速当量直径Dv=2ab/(a+b ),流量当量直径D L =1.3*(ab )0.625/(a+b )0.25。
最不利环路或分支环路的平均比摩阻:Rpj=а△Pj/∑li (Rpj 一般取60-120Pa/m ) 实现基本均匀送风的基本条件:保持各侧孔静压相等,保持各侧孔流量系数相等,增大出流角a。
要保持a≥60° 垂直失调:在采暖建筑内,同一竖向的各层房间的室温不符合设计要求,出现上下层冷热不匀的现象;并联环路垂直失调的原因:各层所在环路的循环作用动力不同而引起;串联环路垂直失调的原因:各层散热器的传热系数随各层散热器平均计算温度差的变化程度不同而引起 气固两相流:沉降速度(若气体处于静止状态,颗粒与气体的相对运动速度),悬浮速度(若颗粒处于悬浮状态,使颗粒处于悬浮状态的竖直向上的气流速度),输送风速(气固两相流管中的气流速度)。
流体管网输配
1流体输配管网有哪些基本组成部分?各有什么作用?答:流体输配管网的基本组成部分及各自作用如下表:组成管道动力装置调节装置末端装置附属设备作用为流体流动提供流动空间,为流体流动提供需要的动力,调节流量,开启/关闭管段内流体的流动直接使用流体,是流体输配管网内流体介质的服务对象为管网正常、安全、高效地工作提供服2 比较开式管网与闭式管网、枝状管网与环状管网的不同点。
答:开式管网:管网内流动的流体介质直接与大气相接触,开式液体管网水泵需要克服高度引起的静水压头,耗能较多。
开式液体管网内因与大气直接接触,氧化腐蚀性比闭式管网严重。
闭式管网:管网内流动的流体介质不直接与大气相通,闭式液体管网水泵一般不需要考虑高度引起的静水压头,比同规模的开式管网耗能少。
闭式液体管网内因与大气隔离,腐蚀性主要是结垢,氧化腐蚀比开式管网轻微。
枝状管网:管网内任意管段内流体介质的流向都是唯一确定的;管网结构比较简单,初投资比较节省;但管网某处发生故障而停运检修时,该点以后所有用户都将停运而受影响。
环状管网:管网某管段内流体介质的流向不确定,可能根据实际工况发生改变;管网结构比较复杂,初投资较节枝状管网大;但当管网某处发生故障停运检修时,该点以后用户可通过令一方向供应流体,因而事故影响范围小,管网可靠性比枝状管网高。
3流体输配管网水力计算的目的是什么?答:水力计算的目的包括设计和校核两类。
一是根据要求的流量分配,计算确定管网各管段管径(或断面尺寸),确定各管段阻力,求得管网特性曲线,为匹配管网动力设备准备好条件,进而确定动力设备(风机、耗(设计计算)或者是根据已定的动力设备,确定保证流量分配要求的管网尺寸规格(校核计算);或者是根据已定的动力情况和已定的管网尺寸,校核各管段流量是否满足需要的流量要求(校核计算水泵等)的型号和动力消。
4水力计算的基本原理是什么?流体输配管网水力计算大都利用各种图表进行,这些图表为什么不统一?答:水力计算的基本原理是流体一元流动连续性方程和能量方程,以及管段串联、并联的流动规律。
流体管网输配
1 流体输配管网有哪些基本组成部分?各有什么作用?答:流体输配管网的基本组成部分及各自作用如下表:组成管道动力装置调节装置末端装置附属设备作用为流体流动提供流动空间,为流体流动提供需要的动力,调节流量,开启/关闭管段内流体的流动直接使用流体,是流体输配管网内流体介质的服务对象为管网正常、安全、高效地工作提供服2 比较开式管网与闭式管网、枝状管网与环状管网的不同点。
答:开式管网:管网内流动的流体介质直接与大气相接触,开式液体管网水泵需要克服高度引起的静水压头,耗能较多。
开式液体管网内因与大气直接接触,氧化腐蚀性比闭式管网严重。
闭式管网:管网内流动的流体介质不直接与大气相通,闭式液体管网水泵一般不需要考虑高度引起的静水压头,比同规模的开式管网耗能少。
闭式液体管网内因与大气隔离,腐蚀性主要是结垢,氧化腐蚀比开式管网轻微。
枝状管网:管网内任意管段内流体介质的流向都是唯一确定的;管网结构比较简单,初投资比较节省;但管网某处发生故障而停运检修时,该点以后所有用户都将停运而受影响。
环状管网:管网某管段内流体介质的流向不确定,可能根据实际工况发生改变;管网结构比较复杂,初投资较节枝状管网大;但当管网某处发生故障停运检修时,该点以后用户可通过令一方向供应流体,因而事故影响范围小,管网可靠性比枝状管网高。
3 流体输配管网水力计算的目的是什么?答:水力计算的目的包括设计和校核两类。
一是根据要求的流量分配,计算确定管网各管段管径(或断面尺寸),确定各管段阻力,求得管网特性曲线,为匹配管网动力设备准备好条件,进而确定动力设备(风机、耗(设计计算);或者是根据已定的动力设备,确定保证流量分配要求的管网尺寸规格(校核计算);或者是根据已定的动力情况和已定的管网尺寸,校核各管段流量是否满足需要的流量要求(校核计算水泵等)的型号和动力消。
4 水力计算的基本原理是什么?流体输配管网水力计算大都利用各种图表进行,这些图表为什么不统一?答:水力计算的基本原理是流体一元流动连续性方程和能量方程,以及管段串联、并联的流动规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“流体输配管网”释义
流体:具有流动性的物质 输配:按要求输送、分配 管网:管道(流体流动的通道)相互连接形成网 络
➢ 错误:流水输配管网;流体输送管网;流体输配管道
课程性质及与其他课程的联系
1、专业平台课(专业核心技术基础课) 2、以《流体力学》为主要理论基础;是
学习《暖通空调》、《供热工程》、 《建筑给排水》、《燃气供应》等专业 技术课的核心基础。 3、全国注册公用设备工程师考试科目
教材与参考书(续):
采暖通风与空气调节设计规范 GB50019-2003 城市热力网设计规范 CJJ34-2002 城市燃气设计规范 GB50028-93(2002年版) 建筑给水排水设计规范 GB50015-2003 工业金属管道设计规范 GB50316-2000
暖通空调杂志 煤气与热力杂志 给水排水杂志
课堂要求:认真听讲,不得干扰老师讲课 和其他同学听课。
教材与参考书:
《流体输配管网》 (第二版)付祥钊 主编
《工业通风》 (第二版)孙一坚 主编 《供热工程》 (第三版)贺平 孙刚 主编 《建筑给排水工程》(第四版)王增长 主编 《燃气输配》 (第三版)段常贵 主编 《暖通空调》 (第一版)陆亚俊 主编 《简明供热设计手册》 (第一版)李岱森 主编 《简明通风设计手册》 (第一版)孙一坚 主编 《简明空调设计手册》 (第一版)赵荣义 主编 《建筑燃气设计手册》 (第一版)袁国汀 主编
基本组成:动力
来源于“源” 如锅炉;储气罐的压力;上级管网的压力; 来源于重力 如自然循环热水采暖;建筑排水; 来源于机械动力--水泵与风机
机械通风、城市供热、城市给水等,应用广泛。
其他装置:
调控设备
调节阀、关断阀
安全、计量装置
安全阀、报警器、流量计、温度计、压力表 等
其他装置与设备
膨胀水箱、排气装置、疏水器、过滤器等
归纳:流体输配管网的组成
流体的源和汇 管道 动力装置 调控装置 末端装置 其他附属设备
1.1.2 西气东输接续天然气管网
该管网的特点:
1 按照压力不同分级,不同的场合应用不同 的压力级别。
2 城区管网的一些管线构成环状。 3上下级管网相互影响。 4是一个开式管网。
1.1.3 重力循环热水采暖管网
不同级管网之间的水力相关性
水力相关性的概念
“水”泛指流体;“水力”指流体流动时的一些力学性 质,主要是压力、速度等。
“相关”指上下级管网之间的压力、速度相互影响; “无关”指上下级管网之间压力、速度不相互影响。
直接连接的上下级管网是水力相关的,间接 连接则水力无关。
注意:水力无关的管网“热力相关”。
2.2.1 摩擦阻力计算
摩擦阻力系数
说明:
工程上常根据自身的工程特点,编制相应 的计算图表帮助计算。
任何计算公式或图表,都有其制图条件和 使用范围,使用时要特别注意。
当工程条件与得出公式或图表的条件有差 异时,常采用修正的方法。 如密度和黏度 修正、温度和热交换修正以及管壁粗糙度 修正等。
水力计算:设计计算;校核计算 设计计算:根据要求的流量分配,确定管网的各
段管径(或断面尺寸)和阻力。对枝状管外,求 得管网特性曲线,为匹配管网动力设备准备好条 件,进而确定动力设备(风机、水泵等)的型号。 校核计算:根据已定的动力设备,确定保证流量 输配的管道尺寸;或者根据已定的管道尺寸,确 定保证流量输配的动力设备。 ✓ 水力计算是流体输配管网设计及其运行质量保证 的基本手段。
压一致,则二者综合作用加强管内气体流 动,若驱动方向相反,则由绝对值大者决 定管流方向;绝对值小者实际上成为另加 流动阻力。
✓ 如空调建筑装有排气风机的卫生间排气竖 井,冬季在位压的辅助作用下,排气能力 明显加强;夏季排气风机除克服竖井的阻 力时,还要克服位压,排气能力削弱,尤 其是高层建筑。
2.2 流体输配管网水力计算的基本原理和方法
2.2 流体输配管网水力计算的基本原理和方法
设计计算 已知:管网系统的布置;各末端设备的风量; 确定:风道的断面尺寸;风道的阻力;选择
合适的动力设备(风机型号及其匹配的电机 功率)。
2.2 流体输配管网水力计算的基本原理和方法
校核计算 已知:管网系统的布置;风道断面的尺寸;
通风系统的动力设备; 确定:各末端设备的风量是否满足要求;动
课程的学习任务
通过各种教学环节,掌握暖通空调工程、城市燃 气工程、供热工程、建筑给排水工程、建筑消防 工程、工厂动力工程等各类工程中的流体输配管 网的基本原理与技术。掌握进行管网系统设计、 调试和调节的基本理论和方法,并形成初步的工 程实践能力。能够正确应用设计手册和参考资料 进行上述管网系统的设计、调试和调节,并为从 事其它大型、复杂管网工程的设计和运行管理打 下初步基础。
1.2.2 流体输配管网的分类
1.2.2.1 单相流与多相流管网 1.2.2.2 重力驱动与压力驱动管网 1.2.2.3 开式与闭式管网 1.2.2.4 枝状与环状管网 1.2.2.5 异程式管网与同程式管网
1.2.3 多级管网之间的连接方式
1.2.3.1 直接连接--水力相关 1.2.3.2 间接连接--水力无关
管网设计:确定管网形式、流通断面;匹配动力; 确定管网调节方案并设置相应的装置。
课程的学习方法和要 求
教师指导和学生自学相结合。以学生自学 为主。
自学方法:阅读参考书、做习题、观察分 析实际管网、做实验。
可以“免听考核”。但必须在开课后两周 内提出书面申请,否则以旷课论处。必须 上实验课。
g(a )(H2 H1) P12
以厨房排烟管网为例, 当没有开启排风机、 且未设防倒流阀,夏 季竖井中密度低,室 外空气经竖井进入室 内;冬季竖井温度高, 室内空气进入竖井。
厨房排烟管网
5
4
7F
3 2
1
1F
系统图
(2)U型管道内的重力流
1
2
H2 通过列写断面1-D、断面D-2
的能量方程,综合后得到:
图2-3-1制图条件: 标准大气压; T=20℃; 密度1.204kg/m3; 运动黏度: 15.06×10-6m2/s; 粗糙度k=0.15mm; 圆形截面风管。 修正方法:教材P54公式 (2-3-3)~(2-3-9)
2.2.1 局部阻力计算
产生原因: 流动边界几何形状改变,使流动产生涡
旋、流动方向变化,引起能量损失。
g(1 2 )(H2 H1) P12
注意:断面1和2分别在进口和出 口外;
P12包含了进口阻力损失
和出口阻力损失。
H1
D
(2)U型管道内的重力流
进出口位于相同标高时,流 动动力是竖管内的密度差与
1
高差的乘积,与管外大气密
度无关。
H2 2
流动方向取决于竖管内密度 的相对大小。
请分析1、2断面高差不等
求大。 输送距离有限。
1.1.5 热水供热管网系统
1-热源 2-循环水泵 3-补水泵 4-压力调节阀 5-散热器 6-喷射泵 7-混合水泵 8-热交换器 9-用户循环水泵 10-膨胀水箱
该管网的特点:上下级管网的连接
一级管网 集中供热管网 (外网) 二级管网 用户采暖管网 (内网) 两级管网之间的连接方式: (a)直接连接 (b)装喷射泵直接连接 (c)装混合水泵直接连接 (d)装换热器间接连接
1.2 小结
1.2.1 流体输配管网的基本功能与基本 组成
基本功能
从“源”取得流体,通过管道输送,按照要 求将流量分配给用户的末端装置; 从末端装置处按照要求收集流体,通过管道, 将其输送到“汇”。
基本组成
基本组成:末端装置 从管道中取得一定量的流体,或将一定量 的流体送入管道。如:排风罩、散热器、 送风口、燃气罩;卫生器具、配水龙头等。 基本组成:管道 在“源”和“汇”之间,给流体流动以路 径,引导流体流动。
第1章 流体输配管网型式与装置
自然界中的流体输配管网: 人体呼吸系统 血液循环系统 植物水分输配系统 江河水系 工程中的流体输配管网: 西气东输 南水北调 城市供热、给水排水、燃气 建筑物采暖、上下水、燃气、空调送排风、空调冷冻水与冷却水 工厂通风
1.1 举例认识管网
1.1.1 居民楼厨房排烟管网
局部阻力基本计算公式:
P v2
2
局部阻力系数:
局部阻力处,流动处于阻力平方区。局部阻力系 数只与几何形状有关。
局部阻力系数与其安装条件(受流动环境的影 响) 、各部分的几何尺寸有关(如突扩)。同名 的局部阻力在不同的场合有不同的阻力系数值。
局部阻力系数值通过一般实验获得。 局部阻力系数值总是与所指的断面动压对应的,
2.2.3 常用的水力计算方法
假定流速法 压损平均法 静压复得法
假定流速法的特点
先按技术经济要求选定管内流速,再结合 所需输送的流量,确定管道断面尺寸,进 而计算管道阻力,得出需要的作用压力。 假定流速法适用于作用压力未知的情况。
的情况。
H1
g(1 2 )(H2 H1) P12
D
(3)闭式管道内的重力流
H2
具有与进出口断面 等高的U型重力流 竖管相同的水力特 征。
g(1 2 )(H2 H1) P12
H1
2.1.2 气体压力管流水力特征
2.1.3 压力和重力综合作用下的气体管流水力特征
若压力(Pq1-Pq2)驱动的流动方向与位
2
4
3
1 重力循环热水采暖
1-热源 2-膨胀水
箱
3-散热器 4-管道
该管网的特点:
重力作用形成管网中流体流动的动力。 (思考:空调冷冻水系统能否依靠自然循环?) 枝状管网 (注意:“闭合”不一定是“环状”) 闭式管网 (同程与异程)
1.1.4 蒸汽采暖管网
3 4