船体强度与结构设计复习材料
船体结构与强度知识点汇总及答案
船体结构与强度知识点汇总及答案1、旁内龙骨在横舱壁处间断后,与横舱壁之间有哪几种连接方式?各有何优缺点?答:旁内龙骨在横舱壁处间断后,与横舱壁之间有三种连接方式:(1)单独加肘板;(2)纵桁腹板升高;(3)腹板不升高而面板加宽。
各自的优缺点分别是:第一种工艺性好,影响舱容;第二种强度较好,也影响舱容;第三种不影响舱容,但工艺性较差。
2、尾尖舱内的结构采用哪些加强措施?答:尾尖舱内的加强措施有:(1)肋骨间距≤600mm,且板厚增加;(2)底部设升高肋板;(3)设强胸横梁和舷侧纵桁;(4)中线面处设制荡舱壁。
3、中型货船货舱区的结构一般采用混合骨架式,请问哪些部位采用纵骨架式,哪些部位采用横骨架式?答:中型货船货舱区一般采用混合骨架式结构。
船底和上甲板采用纵骨架式结构,舷侧和下甲板采用横骨架式结构。
4、油船油舱区为什么设高腹板的纵向桁材?答:油船油舱内都设高腹板的纵向桁材(底纵桁,甲板纵桁),这是因为:(1)加强纵向强度;(2)当船舶横摇时,高复板对舱内液体起制荡作用,减少液体摇荡,从而减少船舶横摇;(3)对于液舱而言,高腹板不影响舱容。
5、舷墙的作用有哪些?海船的舷墙高度不小于多少?答:舷墙的作用是:保障人员安全,减少甲板上浪,防止甲板上的物品滚落海中。
海船的舷墙高度不小于1.0m。
6、试述船体静水总纵弯曲的产生。
答:船舶在静水中受到的外力有船舶及其装载的重力和水的浮力。
重力包括船体本身结构的重量和机器、装备、燃料、水、供应品、船上人员及行李和载货的重量等。
重力的方向向下,浮力的方向向上。
当重力和浮力的大小相等、重心和浮心作用在同一条铅垂线上时,船舶处于平衡状态。
但由于船体的各段重力和浮力的大小并不相等。
船舶装载情况及船体浸水部分形状总是变化,因而船体各段重力和浮力的不平衡总是存在。
重力大的一段有下移的趋势,浮力大的一段有上移的趋势。
然而,船体是一整体结构,各段不可能让它们自由上下移动,在船体结构内部必然有内力产生,这就使船体发生弯曲变形,即总纵弯曲。
船舶强度与结构设计复习
1.外力计算
将船体理想化为一变断面的空心薄壁梁,船体梁 在外力作用下沿其纵向铅垂面内所发生的弯曲,称为 总纵弯曲。船体梁抵抗总纵弯曲的能力,称为总纵强 度(简称纵强度)。 作用于船体上的重力与浮力是引起船体梁总纵弯 曲的主要外力。 全船总的重力和浮力是大小相等、方向相反,并 且作用在同一铅垂线上,即全船处于静力平衡状态, 但对沿船长的任一区段它们是不平衡的。假定重力沿 船长的分布为p(x),浮力沿船长的分布为b(x),则引起 船体梁总纵弯曲的载荷为
(1)在强力甲板中作用着等于屈服极限 的拉应力 (即中拱状态); (2)在强力甲板中作用着等于骨架Байду номын сангаас临界应力 的压 应力(即中垂状态)。具体计算该临界应力时,应 考虑材料不符合胡克定律的修正。 具体计算时,假定在极限弯矩作用下,船体刚性 构件中 的应力沿型深方向按线性规律分布。 为了提高船体梁的过载能力,应尽可能降低板在 极限弯矩作用下的折减程度。在设计中应保证甲 板边板、舷顶列板及平板龙骨的临界应力达到结构 材料的屈服极限,也就是说,这些构件在极限弯矩 作用下不应当失稳。
q( x) p( x) b( x) 根据梁理论,作用在船体梁横剖面上的剪力和弯 矩为: N ( x ) x q ( x )dx
0 x x M (x ) q ( x)dxdx 0 0
剪力N(x)左下右上为正,弯矩M(x)左逆右顺为正。 在船体详细结构设计完成之后,将船长分为20 站,计算每站内的重量,可得到较为精确的船体结 构的重量分布曲线。 浮力沿船长分布状况的曲线称为浮力曲线。浮 力曲线与纵向坐标轴所围成的面积等于作用在船 体上的浮b(x),该面积的形心纵向坐标即为浮心的 纵向位置。浮力曲线可通过邦戎曲线求得。
船体结构复习材料
船体结构复习材料《船体结构》复习材料⼀、选择填空第⼀章船舶类型及结构的⼀般知识1、船舶按航⾏区域可分为海船和内河船;按航⾏状态可分为排⽔型船、潜艇、滑⾏艇、⽔翼艇和⽓垫艇;按推进动⼒可分为风帆船、蒸汽机船、内燃机船、燃⽓轮机船和核动⼒船;按推进器可分为螺旋桨船、喷⽔推进船,空⽓螺旋桨推进船和明轮船;按建造材料可分为钢船、⽊船、⽔泥船,铝合⾦船和玻璃钢船等。
通常⼀般是按船舶的⽤途来分类,可分为如下⼏种:运输船、⼯程船、渔业船、港务船、海洋调查船、战⽃舰艇、辅助舰艇。
2、船体发⽣扭转变形的时机:①船舶在斜浪航⾏;②⾸尾装载对中⼼线左右不对称时。
3、船体的四⼤板架:甲板板架、舷侧板架、船底板架和舱壁板架。
第⼆章外板和甲板板1、通常在⾸尾端将外板板列数⽬减少,⽽把原有的两列板并成⼀列板。
2、并板的两种形式:双并板和齿形并板。
3、外板的端接缝应布置于1 /4或3/4肋距处。
4、钢板长边与长边之间的接缝称为边接缝:5、舷边连接的三类形式:舷边⾓钢铆接、圆弧舷板连接、舷边直⾓焊接。
6、⾓隅应做成圆形、椭圆形或抛物线形。
7、⼀般⾸舷弧是尾舷弧的2倍。
第三章船底结构1、内底边板的结构形式:⽔平式、下倾式(普通⼲货船)、上倾式(散货船)、折曲式。
2、箱型中底桁主要⽤于集中布置管系,避免管⼦穿过货舱⽽妨碍装货。
3、中底桁是⽔密的连续构件。
4、横⾻架式单底结构由内龙⾻与肋板组成。
5、横⾻架式双层底结构肋板的三种形式:主肋板(实肋板)、⽔密肋板、框架肋板(组合肋板)。
6、内龙⾻分为中内龙⾻和旁内龙⾻。
7、中底桁在中部0.75L区域范围内应连续,并尽可能向⾸尾柱延伸。
第四章舷侧结构1、多层甲板船上的肋⾻有主肋⾻和甲板间肋⾻。
2、强肋⾻每隔⼏档肋距设置⼀道,⽤于局部加强或⽀撑舷侧纵桁。
第五章甲板结构1、横⾻架式甲板⾻架由横梁和甲板纵桁等构件组成。
2、纵⾻架式甲板⾻架由甲板纵⾻、甲板纵桁和强横梁等构件组成。
3、甲板纵桁的剖⾯尺⼨较⼤,常⽤T型材制成,它作为横梁的⽀点,可以减⼩横梁的尺⼨。
船舶结构强度与设计复习题
船舶结构强度与设计复习题船舶结构强度与设计复习题船舶结构强度与设计是船舶工程中非常重要的一部分,它涉及到船舶的安全性和可靠性。
在进行船舶结构设计时,需要考虑到各种力学和材料力学的知识。
下面将提供一些船舶结构强度与设计的复习题,帮助读者回顾相关知识。
1. 什么是船舶结构强度?船舶结构强度是指船舶结构在各种外力作用下的抗力能力。
它包括静态强度、动态强度和疲劳强度等方面。
船舶结构的设计应该能够满足船舶使用寿命内的各种工况和负荷要求。
2. 船舶结构设计中常用的材料有哪些?船舶结构设计中常用的材料包括钢材、铝合金和玻璃钢等。
钢材具有高强度和良好的可塑性,广泛应用于船舶建造。
铝合金具有较低的密度和良好的耐腐蚀性能,适用于船舶的轻量化设计。
玻璃钢具有优良的抗腐蚀性能,适用于船舶的特殊部位。
3. 船舶结构设计中常见的荷载有哪些?船舶结构设计中常见的荷载包括静荷载和动荷载。
静荷载包括自重、货物重量、燃油重量等,它们是静态荷载。
动荷载包括波浪荷载、风荷载、船员和乘客的荷载等,它们是动态荷载。
4. 什么是船舶结构的疲劳强度?船舶结构的疲劳强度是指船舶结构在循环荷载作用下的抗疲劳能力。
船舶在航行过程中会受到波浪的作用,波浪荷载会引起船体的振动和变形,从而产生疲劳损伤。
船舶结构的疲劳强度设计要考虑到船舶使用寿命内的循环荷载。
5. 船舶结构设计中常用的强度计算方法有哪些?船舶结构设计中常用的强度计算方法包括解析法和数值模拟法。
解析法是指通过解析公式和理论计算船舶结构的强度。
数值模拟法是指通过有限元分析等数值方法计算船舶结构的强度。
这两种方法在船舶结构设计中都有广泛应用。
6. 船舶结构设计中需要考虑的安全系数有哪些?船舶结构设计中需要考虑的安全系数包括材料强度安全系数、结构强度安全系数和疲劳强度安全系数等。
材料强度安全系数是指材料的实际强度与设计强度之间的比值,用来保证材料的可靠性。
结构强度安全系数是指结构的实际强度与设计强度之间的比值,用来保证结构的可靠性。
船舶强度与结构设计的复习题
复习题第一章(重点复习局部载荷分配、静水剪力弯矩的计算绘制)1、局部载荷是如何分配的?(2理论站法、3理论站法以及首尾理论站外的局部重力分布计算)P P P =+21a P L P P ⋅=∆+)(2121由此可得:⎪⎪⎭⎪⎪⎬⎫∆-=∆+=)5.0()5.0(21L aP P L a P P分布在两个理论站距内的重力2、浮力曲线是如何绘制的?浮力曲线通常按邦戎曲线求得,下图表示某计算状态下水线为W-L 时,通常根据邦戎曲线来绘制浮力曲线。
为此,首先应进行静水平衡浮态计算,以确定船舶在静水中的艏、艉吃水。
帮戎曲线确定浮力曲线3、M、N曲线有何特点?(1) M曲线:由于船体两端是完全自由的,因此艏、艉端点处的弯矩应为零,亦即弯矩曲线在端点处是封闭的。
此外,由于两端的剪力为零,即弯矩曲线在两端的斜率为零,所以弯矩曲线在两端与纵坐标轴相切。
(2) N曲线:由于船体两端是完全自由的,因此艏、艉端点处的剪力应为零,亦即剪力曲线在端点处是封闭的。
在大多数情况下,载荷在船舯前和舯后大致上是差不多的,所以剪力曲线大致是反对称的,零点在靠近船舯的某处,而在离艏、艉端约船长的1/4处具有最大正值或负值。
5、计算波的参数是如何确定的?计算波为坦谷波,计算波长等于船长,波峰在船舯和波谷在船舯。
采用的军标GJB64.1A中波高h按下列公式确定:当λ≥120m时,当60m≤λ≤120m时,当λ≤60m时,20λ=h(m)230+=λh(m)120+=λh(m)6、船由静水到波浪中,其状态是如何调整的?船舶由静水进入波浪,其浮态会发生变化。
若以静水线作为坦谷波的轴线,当船舯位于波谷时,由于坦谷波在波轴线以上的剖面积比在轴线以下的剖面积小,同时船体中部又较两端丰满,所以船在此位置时的浮力要比在静水中小,因而不能处于平衡,船舶将下沉ξ值;而当船舯在波峰时,一般船舶要上浮一些。
另外,由于船体艏、艉线型不对称,船舶还将发生纵倾变化。
船体结构复习
第一章船舶与海洋平台一般类型及结构的一般知识一、名词解释1、总纵弯曲:作用在船体上的重力、浮力、波浪水动力和惯性力等引起的船体绕水平横轴的弯曲,它是由静水总纵弯曲和波浪总纵弯曲两部分叠加而成。
2、中拱弯曲:当波峰在船中时,会使船体中部向上弯曲。
3、中垂弯曲:当波谷在船中时,会使船体中部向下弯曲。
4、总纵强度:船体结构抵抗纵向弯曲不使整体结构遭受破坏或不发生不允许的变形的能力。
5、横向强度:横向构件抵抗横向载荷的能力。
6、局部强度:个别构件对局部载荷的抵抗能力。
7、主船体:上甲板以下的部分,由船底、舷侧、上甲板围成的水密空心结构。
8、上层建筑:上甲板以上的围蔽建筑物部分,它分为首楼、桥楼、艉楼以及甲板室。
9、纵骨架式:板格的长边沿船长方向,短边沿船宽方向,纵向骨材的间距小而密横向桁材的间距大而疏。
10、横骨架式:板格的长边沿船宽方向,短边沿船长方向,横向骨材的间距小而密纵向桁材的间距大而疏。
11、混合骨架式:纵横方向的骨材间距相差不多,板格的形状接近正方形。
12、弯矩的最大值在船体中部,向首尾部逐渐减小。
13、一般认为当波浪的波长等于船长时,船体的弯曲最为严重。
14、组成船体的四种板架结构:甲板板架、舷侧板架、船底板架和舱壁板架。
二、简答题1、作用在船体与海洋平台上的外力有哪些?答:①船体的总纵弯曲:作用在船体上的重力、浮力、波浪水动力和惯性力等引起的船体绕水平横轴的弯曲,它是由静水总纵弯曲和波浪总纵弯曲两部分叠加而成;②横向的局部载荷:局部的水压力和货物的横向载荷等;③局部载荷:机器和螺旋桨运转时的振动力、船首端的波浪砰击和水面漂浮物的撞击等局部外力、油船的油货舱内液体的晃动载荷等局部外力;④波浪惯性力:船舶横摇时引起肋骨的歪斜和船体的扭转。
(发生扭转的原因:①船舶在斜浪中穿行;②首尾载荷分布不均。
)2、船体骨架布置的形式有几种?各有何优缺点?分别运用于哪些船舶或部位?答:①纵骨架式:板格的长边沿船长方向,短边沿船宽方向,纵向骨材的间距小而密横向桁材的间距大而疏。
船体强度与结构设计概念总结
11、端点不封闭的修正
三要素:波形,波长和波高 ①在实际计算时, 取波长等于船长, 并且规定按波峰在船舯和波谷在船舯两种典型状态进行 计算。 ②波长λ和波高 h 之间没有固定的关系。 波高可以按有关规范或强度标准选取 (一般随船长 而变化)。
13、坦谷波曲线形状的特点
波峰陡峭,波谷平坦,波浪轴线上下的剖面积不相等 当波峰或波谷在船舯时,波浪中的浮力相对于静水中的浮力的变化最为明显,因此在船 舯剖面会产生最大的波浪弯矩。 但是,其它剖面的最大弯矩并不发生在波峰或波谷在船舯时。 计算分析表明,当船舶静置在波浪上时,在波长稍大于船长时(1.05~1.1 倍船长)才得到 最大的波浪弯矩,但此时的波浪弯矩与波长等于船长时的波浪弯矩相差不大。 所以,在实际计算时,取波长等于船长,并且规定按波峰在船舯和波谷在船舯两种典型状 态进行计算。
由于计算误差,艏、艉端点处剪力和弯矩为零的条件一般很难满足。
12、波浪的三要素
修正方法:用一根直线把剪力曲线和弯矩曲线封闭起来,并对 各理论站的剪力、 弯矩按线性比例关系进行修正。 比如, 第 i 站剪力和弯矩的修正值分别是: i i N s (i ) N s (20) M s (i ) M s (20) 20 20
L x g xb d f 1 dm x f 2 R L x g xb d a1 d m x f 2 R
艏、艉吃水确定后,每一站的吃水通过线性插值得到,利用邦戎曲线求出对应于该吃水的浮 力分布,同时计算出总浮力 B1 及浮心纵向坐标 xb1。 如果求得的这两个数值不满足下述精 度要求,则应作第二次近似计算。
船体强度与结构设计知识点
船体强度与结构设计知识点《船体结构与强度设计》知识点1.掌握船体强度概念,并理解其含义。
2.掌握船体强度计算所包括的内容。
3.掌握船体强度的划分及其各自的含义。
4.掌握作用在船体上载荷种类的划分及各自含义。
5.掌握总纵弯曲外力的产生与船体梁的弯曲变形原因及相关概念。
6.掌握重量曲线、浮力曲线、载荷曲线、剪力曲线、弯矩曲线的含义。
7.了解重量曲线的计算与绘制步骤与方法。
8.了解静水浮力曲线的计算与绘制。
9.掌握载荷、剪力、弯矩的基本公式及计算步骤。
10.掌握影响静水弯矩的主要因素。
11.掌握影响波浪弯矩的主要因素。
12.掌握总纵强度外力计算。
13.掌握计算状态选取原则。
14.掌握船体扰度及货物分布对静水弯矩的影响。
15.掌握波浪三要素含义及标准计算方法。
16.掌握Smith修正的含义及原因。
17.掌握剖面模数的概念及含义。
18.掌握计算剖面的选取原则及相关概念。
19.掌握危险剖面及剖面中和轴概念含义。
20.掌握强力甲板含义、纵向强力构件的含义及划分。
21.了解船体结构稳定性要求原因及检验公式。
22.掌握剖面折减的概念,了解折减系数计算公式及方法。
23.掌握构件多重作用含义,四类构件的划分及应力合成。
24.了解船体扰度计算公式及方法。
25.掌握极限弯矩含义了解其计算方法。
26.掌握船体梁的特点及载荷曲线、剪力曲线、弯矩曲线的特点。
27.掌握需用应力及名义应力的含义。
28.掌握局部强度及计算模型的含义。
29.了解计算模型的原则及结构处理模型化。
30.掌握强度带板及稳定性带板含义。
31.掌握衡量型材剖面材料利用指标:剖面利用系数和比面积。
32.掌握型材剖面几何要素的计算。
33.掌握船体梁剖面几何要素计算。
34.掌握型材总稳定性影响因素及型材侧向失稳的含义。
35.掌握微分法计算相当厚度原理。
36.了解规范发设计对船体强度,刚度,稳定性要求。
37.掌握应力集中原因及减少措施。
38.掌握强力上层建筑含义。
船体强度与结构设计 复习
绪论一.填空1. 作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷和局部性载荷。
2. 作用在船休结构上的载荷,按载荷随时间变化的性质,可分为;不变载荷、静变载荷、动变载荷和冲击载荷。
二.概念题: 1. 静变载荷等等三.简答题:1.船体强度研究的内容有哪些?2.作用在船体结构上的载荷如何进行分类?试说明。
3.为什么要对作用在船体结构上的载荷进行分类?4.结构设计的基本任务和内容是什么?第一章:一、填空题1. 船体重量按分布情况来分可以分为:总体性重量、局部性重量。
2. 对于计算船体总纵强度的计算状态,我国《钢质海船入级和建造规范》中规定,选取满载:出港、到港;压载:出港、到港;以及装载手册中所规定的各种工况作为计算状态。
3. 计算波浪弯矩的传统标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。
4. 计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种,直接法又称为麦卡尔法。
5. 计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对浮力曲线所作的修正,称为波浪浮力修正,或称史密斯修正。
二、概念题:1. 船体梁2. 总纵弯曲3. 总纵弯曲强度4. 重量曲线5. 浮力曲线6. 荷载曲线7. 静水浮力曲线8. 静水剪力、弯矩曲线9. 波浪附加浮力10. 波浪剪力11. 波浪弯矩12. 静波浪剪力13. 静波浪弯矩14. 静置法15. 静力等效原则16. 史密斯修正二、简答题:1. 在船体总纵弯曲计算中,计算总纵剪力及弯矩的步骤和基本公式是什么?2. 在船体总纵弯曲计算中重量的分类及分布原则是什么?3. 试推导在两个及三个站距内如何分布局部重量。
4. 空船重量曲线有哪几种计算绘制方法?试推导梯形重量分布的计算公式。
5. 教材中,静水剪力、静水弯矩的计算采用的是什么方法?静波浪剪力、静波浪弯矩的计算采用的是什么方法?两种方法可以通用吗(计算方法唯一吗)?6. 波浪浮力曲线需要史密斯修正吗?为什么?第二章:一、填空题1. 纵向连续并能有效传递总纵弯曲应力的构件称为纵向强力构件。
船体强度与结构设计复习材料
船体强度与结构设计复习材料绪论1。
船体强度:是研究船体结构安全性的科学.2。
结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能.3。
全船设计过程:分为初步设计、详细设计、生产设计三个阶段。
4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。
5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态.第一章引起船体梁总纵弯曲的外力计算1.船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。
2.总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。
3.总纵强度:船体梁抵抗总纵弯曲的能力。
4.引起船体梁总纵弯曲的主要外力:重力与浮力。
5.船体梁所受到的剪力和弯矩的计算步骤:①计算重量分布曲线平p(x);②计算静水浮力曲线bs(x);③计算静水载荷曲线qs(x)=p(x)-bs(x);④计算静水剪力及弯矩:对③积分、二重积分;⑤计算静波浪剪力及弯矩:⑥计算总纵剪力及弯矩:④+⑤。
6.重量的分类:①按变动情况来分:不变重量(空船重量)、变动重量(装载重量);②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。
7.静力等效原则:①保持重量的大小不变;②保持重心的纵向坐标不变;③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。
8.浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线.9.载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。
10.载荷、剪力和弯矩之间的关系:①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应;②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值;③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。
船体强度与结构设计复习
船体强度与结构设计复习绪论1.总纵强度:在船体总纵强度计算中,通常将船体理想化为⼀变断⾯的空⼼薄壁梁,简称船体梁。
船体梁在外⼒作⽤下沿其纵向铅垂⾯内所发⽣的弯曲,称为总纵弯曲。
船体梁抵抗总纵弯曲的能⼒,称为总纵强度。
2.船体总纵强度计算的传统⽅法:将船舶静置在波浪上,求船体梁横剖⾯上的剪⼒和弯曲⼒矩以及相应的应⼒,并将它与许⽤应⼒相⽐较以判断船体强度。
3.评价结构设计的质量标准:安全性,营运合适性,船舶的整体配合性,耐久性,⼯艺性,经济性。
4.按照静置法所确定的载荷来校核船体的总纵强度,是否反映船体的真实强度,为什么?答:按照静置法所确定的载荷来校核船体总强度,不反映船体的真实强度,因为海浪是随机的,载荷是动态的,⽽且当L 较⼤时载荷被夸⼤,但具有相互⽐较的意义。
第⼀章引起船体梁总纵弯曲的外⼒计算5.总纵弯曲:船体梁在外⼒作⽤下沿其纵向铅垂⾯内所发⽣的弯曲。
(中拱:船体梁中部向上拱起,⾸、尾两端向下垂。
中垂:船中部下垂,⾸、尾两端向上翘起。
)6.重量曲线:船舶在某⼀计算状态下,描述全船重量沿船长分布状况的曲线。
绘制重量曲线的⽅法:静⼒等效原则。
7.浮⼒曲线:船舶在某⼀装载情况下,描述浮⼒沿船长分布状况的曲线8.载荷曲线:在某⼀计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。
9.静⽔剪⼒:船体梁在静⽔中所受到的剪⼒沿船长分布状况的曲线。
10.弯矩曲线:船体梁在静⽔中所受到的弯矩沿船长分布状况的曲线。
(重量的分类:按变动情况来分:①不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。
②变动重量,即装载重量,包括货物、燃油、淡⽔、粮⾷、旅客、压载等各项可变重量。
按分布情况来分:①总体性重量,即沿船体梁全长分布的重量,通常包括:主体结构、油漆、锁具等各项重量。
②局部性重量,即沿船长某⼀区段分布的重量。
)11.局部重量的分配原则(P12):重量的分布原则:静⼒等效原则。
①保持重量的⼤⼩不变,这就是说要使近似分布曲线所围成的⾯积等于该项实际重量。
船舶强度与结构设计复习
船舶强度与结构设计复习船舶的强度设计主要涉及到船体的结构强度、结构稳定性和结构可靠性等方面。
结构强度是指船舶在正常服役条件下承受荷载所需的强度。
结构稳定性是指船舶在遇到外界力矩时,保持稳定的能力。
结构可靠性是指船舶结构在各种不确定因素下,如船舶老化、材料损伤、机械疲劳等情况下的可靠性。
在船舶强度设计中,需要进行强度计算和结构分析。
强度计算主要包括刚度计算、应力计算、挠度计算和疲劳寿命计算。
刚度计算是为了确定船体结构的整体刚性,保证船舶在载货和受力的情况下不会发生过度变形。
应力计算是为了确定材料的承载能力,保证船体结构不会发生断裂或损坏。
挠度计算是为了确定船体结构的变形程度,保证船舶在航行时的稳定性和舒适性。
疲劳寿命计算是为了确定船舶结构在疲劳荷载下的寿命,保证船舶在长期使用中不会因疲劳而发生结构破坏。
在船舶结构设计中,需要考虑船体的整体布局和结构形式。
船体的整体布局包括船长、船宽、船高、船舱排列等参数的确定,以及船体的分割和船体连接部分的设计。
船体的结构形式包括船体壳体结构、船舱结构、甲板结构、船尾螺旋桨结构等。
在设计过程中,需要根据船舶用途和航行条件,选择合适的结构形式和材料。
此外,船舶结构设计还需要考虑到各种外界因素的影响,如船体的浸水、船舶碰撞等。
在设计中,需要合理设置各种舱门、舱盖、船舶设备等,保证船体的密封性和船舶的整体安全性。
总之,船舶强度与结构设计是保证船舶在航行中安全可靠的重要环节,涉及到船体的结构强度、结构稳定性和结构可靠性等方面。
在设计过程中,需要进行强度计算和结构分析,并根据船舶用途和航行条件选择合适的结构形式和材料。
同时,还需要考虑外界因素的影响,并合理设置各种舱门、舱盖、船舶设备等,以确保船舶在航行中的安全性和可靠性。
船舶强度与结构设计复习
第2章 船体外载荷
• 波谷在船中:船舶下沉,增加排水量,真实波面 应该位于参考波面以上。
• 真实波面C-C就是待求的。
第2章 船体外载荷
第1章 船体结构基础
第1章 船体结构基础
• 船体结构各构件的作用 ②总纵强度
表示船体梁抵抗弯曲、剪切和扭转变形的能力。 在抵抗总纵弯曲时,所有的纵向构件都是有效的, 包括船底板、舷侧板、甲板板、纵舱壁以及纵骨。横 向构件如横舱壁以及其上的加强筋,肋板,肋骨,甲 板横梁等横向构件是不参与抵抗总纵弯曲的。 ③横向强度 狭义上:横向强度是表示抵抗横向变形的能力; 广义上:在研究横向变形能力时,考虑力的传递 机理以及相应的结构变形。
长上的差值产生分布载荷。
每单位船长上的差额就构成作用在船体梁上的 分布载荷。船体梁在这个载荷作用下将发生总纵弯 曲变形,并在船体梁断面上产生剪力和弯矩。
第2章 船体外载荷
N
x
x
0
q(
x)dx
剪力载荷曲线的一次积分
M
x
x
0
N
(
x)dx
x
0
x
0
qxdxdx
弯矩载荷曲线的二次积分
应。 • 弯矩曲线在两端的斜率为零,弯矩曲线在两端与x
轴相切。
第2章 船体外载荷
精度要求:
第2章 船体外载荷
• 对于端点不封闭的情况,线性内插修正实际上就 是按线性比例修正。
• 各用一条直线把剪力曲线和弯矩曲线封闭起来, 也就是用此直线作为 x 轴,则在右端点处分别有
N(L) =0,M(L) =0。
第2章 船体外载荷
4、载荷曲线 ①载荷曲线性质 ②载荷曲线与剪力、弯矩曲线的关系※ 5、调整平衡位置的方法 ①逐步近似法 ②直接法 6、规范波浪弯矩、剪力计算公式
船体强度与结构设计知识点汇总及答案
船体强度与结构设计知识点汇总及答案1、在船体总纵强度计算时,船体梁总纵弯矩和剪力的计算步骤是什么?总纵弯矩和剪力的计算步骤是:(1)计算重量分布曲线;(2)计算静水浮力曲线;(3)计算静水载荷曲线;(4)计算静水剪力及弯矩;(5)计算静波浪剪力及弯矩;(6)将静水剪力及弯矩和静波浪剪力及弯矩叠加,即得总纵弯矩和剪力。
2、简单叙述一下在进行绘制重量曲线时所遵循的静力等效原则的主要内容。
(1)保持重量大小不变,使近似分布曲线所围的面积等于该项实际重量;(2)保持重量重心的纵向坐标不变,使近似分布曲线所围的面积形心纵坐标与该项重量的重心纵坐标相等;(3)近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。
3、增加不对称工字剖面最小剖面模数最有效的方法是什么?方法是增加腹板高度或者小翼板的剖面积。
4、解释一下什么叫极限弯矩?5、是指在船体剖面内离中和轴最远点的刚性构件中引起的应力达到结构材料屈服极限或构件的临界应力时的总纵弯曲力矩。
6、什么叫剖面利用系数?在实际所用的型材中,其最小剖面模数仅为理想剖面模数的一部分,即,为理想剖面模数,则即为剖面利用系数。
7、引起船体扭转外力的三种成因是什么?8、三种成因是:(1)船舶在斜浪中航行时引起的扭转力矩;(2)船舶倾斜时引起的扭矩;(3)船舶横摇时引起的扭矩。
9、如何判断船体构件是否需要折减?如何计算折减系数?在经过总纵强度的第一次近似计算后,求得的某些板的压应力如果大于相应构件的临界应力,表明该构件失稳,这时,应该对这种构件进行折减。
折减的方法是:将纵向强力构件分为刚性构件和柔性构件两类,然后将柔性构件用某个刚性构件代替,但要保持剖面上承受的压力值保持不变,也就是,其中,为虚拟的刚性构件的剖面积。
则折减系数,折减系数小于1,利用折减系数可以将柔性构件的剖面积化为相当的刚性构件的剖面积,从而保证可以运用简单梁的公式来计算总纵弯曲应力。
10、何谓船体计算状态?试说出四种计算状态的名称。
《船体结构与强度设计》复习题
《船体结构与强度设计》复习题船体结构与强度设计》复习题一、判断题1、长期以来,总强度一直是船体结构强度校核的主要方面。
(V)2、强度标准设计又称为计算设计方法,是目前应用比较广泛的方法。
(V)3、船舶除具有一定的强度外,还必须具有一定的刚度。
(V)4、对那些抗扭刚度较低的船体来说,扭转强度的研究就显得十分必要。
(V)5、在单跨梁的弯曲理论中,我们规定弯矩在梁的左断面逆时针为正,在梁的右断面顺时针为正,反之为负。
(V)6、在材料力学中,多数是根据剪力方程与弯矩方程或根据载荷、剪力与弯矩三者之间的微积分关系来画剪力图与弯矩图,在结构力学中也是一样。
(X)7、通过在方程中引入初始点的弯曲要素值来求解梁挠度曲线方程的方法叫做“初参数法”。
(V)8、如果梁上受到几个载荷共同作用时,就可以用“叠加原理”来进行计算。
V) 9、求解静不定梁往往是利用弯曲要素表,并通过变形协调条件来进行,而不能利用“初参数法”。
(X)10、在船体结构中,除了少数的桁架结构外,大多数的结构都是以弯曲变形为主的静不定杆系,例如连续梁、刚架及板架等属于这类杆系。
(V)11 、变形连续条件就是变形协调条件。
(V)12、交叉梁系中不受任何外载荷作用的杆系称为无载杆。
(V)13、从原则上讲,力法可以解一切静不定结构。
(V)14、在船体结构计算中,常将甲板纵骨与船底纵骨视作连续梁,而甲板横梁与船底肋板作为它们的弹性支座。
(X)15、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。
(V)16、位移法中关于弯曲要素正负号的规定与力法中的规定一样。
(X)17、节点平衡方程又叫位移法方法,且此方程为正则方程。
(V)18、在弯矩分配法基本结构下,连接于节点的各杆杆端的固端弯矩一般来说相互平衡,即作用于节点上的固端弯矩之和等于零。
(X)19、和位移法相比,弯矩分配法可以使问题简单化,因为绕过了求节点转角这一步而直接求出杆端弯矩。
(X)20、正则方程就是力的互等定理的反应。
船体强度与结构设计第3章资料
座的刚性系数。
v
R
A
Ship Strength and Structural Design
3.1 局部强度计算的力学模型
骨材支承条件的简化
(4)弹性固定端 如果固定端发生有一个正比于端部弯矩的转角, 则此固定端称作弹性固定端,如图所示。
M
M
Ship Strength and Structural Design
Ship Strength and Structural Design
3.1 局部强度计算的力学模型 船体局部强度和总纵强度一样,也是一种相对强 度。外力、内力和许用应力的一致性是相对强度 的基本出发点。 既然力学模型是结构计算中用以代替实际结构的 一个模型,它必须满足下列要求: (1)反映实际结构的工作性能; (2)便于计算。
Ship Strength and Structural Design
3.1 局部强度计算的力学模型
构件几何尺寸的简化
(2)肋骨刚架 肋骨刚架计算时,其长度、宽度取组成肋骨刚架 的梁的中和轴线的交点之间的距离,用中和轴线 代替实际构件。一般不考虑梁拱和舭部的弯曲, 由于肘板和开孔的存在而引起的构件剖面的变化 一般也不考虑,即在内力计算时把每个构件看作 是等值梁。但在计算梁的剖面模数时必须考虑肘 板的影响。如图所示。
Ship Strength and Structural Design
3.1 局部强度计算的力学模型
构件几何尺寸的简化
构件几何尺寸的简化 为了便于计算,在建立力学模型时,需要对实际 结构的几何要素(如跨距、宽度、带板尺寸、剖 面模数等)作一些简化处理。 (1)板架 板架计算时,其长度、宽度取相应的支持构件之 间的距离。例如,船底板架和甲板板架的长度取 横舱壁之间的距离,宽度取为船宽。 (3)在计算构件的剖面要素时应包括带板(附 连翼板)的影响。
船体强度与结构设计复习题.doc
船体强度与结构设计复习题一.学习中掌握的内容第1章1.术语:静水弯矩波浪附加弯矩浮力曲线重量曲线载荷曲线弯矩曲线计算弯矩2.基本问题(1)载荷分类:按其对结构的影响分类一一总体性载荷,局部性载荷;按其随时间变化性质分类:不变载荷,静变载荷,动变载荷,冲击载荷。
(1)局部重量分配原则和方法(2)全船性重量的分配方法(3)如何作出重量曲线如何求出静水中的浮力曲线(4)如何绘制坦谷波(5)何谓船舶静止在波浪上(6)如何进行静水中的纵倾调整(7)解释静水弯矩产生的原因(8)如何进行波浪上的纵倾调整(9)Muckle方法的适用条件是什么(10)如何计算静水弯矩如何计算波浪附加弯矩3.计算:能够计算静水弯矩和波浪附弯矩第2章1.术语:总纵强度纵向强力构件船体等值梁剖面抗弯几何特性折减系数极限弯矩构件的多重作用过载能力许用应力2.基本问题:如何选择计算断面如何进行第一次总弯曲应力计算(1)第一次计算总弯曲应力和第二次计算的区别是什么(2)如何计算折减系数,如何确定柔性构件的面积(3)为什么说总强度计算方法为相对强度计算方法(4)计算弯矩和极限弯矩的区别(5)如何计算船体的极限弯矩(6)如何判断船体的过载能力(7)为什么总弯曲应力的计算要逐步近似计算完成(8)为什么许用应力随船长增加而提高(9)总强度校核时,应该选择哪些剖面3.计算:能够考虑折减进行总弯曲应力计算第3章局部强度1.术语:局部强度力学模型边界条件水头高度2.基本问题(1)确定力学模型的原则(2)模型尺寸的确定(3)边界条件的简化(4)载荷的确定(5)横向强度计算模型(6)甲板板架计算模型(7)船底板架计算模型(8)肋骨强度计算模型(9)船底纵骨计算模型;甲板纵骨计算模型(10)模型结构化的处理:对称性的利用(11)有限元计算方法:计算步骤、奇异性的排除第4章船体扭转强度1.术语:扭转刚度、扭转强度、横摇扭矩2.基本问题(1)哪些类型船舶需要计算扭转强度(2)引起船体扭矩的原因有哪些(3)计算斜浪航行扭矩的方法步骤第5章型材剖面设计1.术语:剖面利用系数、剖面模数比面积、惯性矩比面积、理想剖面、腹板相当面积2.基本问题(1)如何提高构件剖面材料利用率(2)提高剖面惯性矩有哪些措施(3)符合什么条件的构件按照抗弯强度条件设计(4)符合什么条件的构件按照抗剪切强度条件设计(5)什么是型材的侧向失稳(6)如何确定梁的强度设计条件第6、7章结构设计(中剖面设计、结构规范法设计)1、结构设计的基本任务和内容(1)设计前提:主尺度、总布置图、线型图、船体说明书。
船体结构强度复习
绪论1.船体结构安全性是什么?所谓结构的安全性是指结构能承受在正常施工和正常使用时可能出现的各种载荷和载荷效应,并在偶然事件发生时及发生后,仍能保持必须的整体稳定性。
2.船体强度计算应包括下述内容:(1)确定作用在船体和各个结构上的载荷的大小及性质,即所谓外力问题。
(2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各个作用中的任何一种作用时的载荷,即结构的极限状态分析(亦称求载荷效应的极限值),即所谓内力问题。
(3)确定合适的强度标准,并检验强度条件。
3.从整体上研究其(船体梁)变形规律和抵抗破坏的能力,通常称为总强度。
4.从局部上研究其(船体梁)变形规律和抵抗破坏的能力,通常称为局部强度。
5.作用在船体结构上的载荷,按其对结构的影响可分为:①总体性载荷:是指引起整个船体的变形或破坏的载荷和载荷效应。
例如:总纵弯曲的力矩,剪力,应力及纵向扭矩等。
②局部性载荷:是指引起局部结构,构件的变形或破坏的载荷。
例如:水密试验时的水压力,机器的不平衡所造成的惯性力,局部震动,海损时的水压力等。
6.作用在船体结构上的载荷,按载荷随时间变化的性质,可分为:①不变载荷:是指在作用时间内不改变其大小的载荷。
(在不变载荷作用下的结构响应分析称为静水分析)例如:静水载荷(包括静水压力,货物压力,静水弯矩等),水密试验时的水压力等。
②静变载荷:是指载荷在作用时间内有变化,但其变化的最小周期超过该受力结构构件的固有周期若干倍,故又称准静态载荷。
例如:作用于船体的波浪载荷(包括动水压力,波浪诱导弯矩等),液体货物的晃动压力,航行中的甲板上浪,下水载荷等,其中最重要的是波浪载荷。
③动变载荷:是指在作用时间内的变化周期与所研究的结构构件响应固有振动周期同阶:例如:局部结构的强迫(机械)震动,由螺旋桨引起的脉动压力,船体梁的波激震动等。
④冲击载荷:是指在非常短的时间内突然作用的载荷。
例如:砰击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船体强度与结构设计复习材料绪论1.船体强度:是研究船体结构安全性的科学。
2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。
3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。
4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。
5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。
第一章引起船体梁总纵弯曲的外力计算1.船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。
2.总纵弯曲:船体梁在外力作用下沿其纵向铅垂面所发生的弯曲。
3.总纵强度:船体梁抵抗总纵弯曲的能力。
4.引起船体梁总纵弯曲的主要外力:重力与浮力。
5.船体梁所受到的剪力和弯矩的计算步骤:①计算重量分布曲线平p(x);②计算静水浮力曲线bs(x);③计算静水载荷曲线qs(x)=p(x)-bs(x);④计算静水剪力及弯矩:对③积分、二重积分;⑤计算静波浪剪力及弯矩:⑥计算总纵剪力及弯矩:④+⑤。
6.重量的分类:①按变动情况来分:不变重量(空船重量)、变动重量(装载重量);②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。
7.静力等效原则:①保持重量的大小不变;②保持重心的纵向坐标不变;③近似分布曲线的围与该项重量的实际分布围相同或大体相同。
8.浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。
9.载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。
10.载荷、剪力和弯矩之间的关系:①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应;②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值;③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。
11.计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。
12.挠度及货物分布对静水弯矩的影响:①挠度:船体挠度对静水弯矩的影响是有利的;②货物:自首至尾(或自尾至首)的连续装卸顺序,将满、空舱分散且间隔安排。
13.静波浪弯矩的影响因素:船型、波浪要素(波形、波长、波高)以及船舶与波浪的相对位置。
14.坦谷波的特点:波峰陡峭,波谷平坦,波浪轴线上、下的剖面积不相等。
轴线以下面积比以上面积大(波谷面积大于波峰面积)。
15.静波浪剪力和弯矩的传统标准计算方法(静置法):①将船舶静置于波浪上,即假想船舶以波速在波浪的传播方向上航行,船舶与波浪处于相对静止状态;②以二维坦谷波作为标准波形,计算波长等于船长,计算波高按有关规或强度标准选取;③取波峰位于船中两种状态分别进行计算。
16.确定船舶在波浪上平衡位置的方法:逐步近似法、直接发(麦卡尔法)。
17.波浪浮力修正(史密斯修正):计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对浮力曲线所作的修正。
18.总纵弯矩:船舶在同一计算状态下,静水弯矩和静波浪弯矩的代数和。
第二章船体总纵强度计算1.船体剖面模数(W=I/Z):表征船体结构抵抗弯曲变形能力的一种几何特性,也是衡量船体总纵强度的一个重要标志。
2.计算剖面(危险剖面):可能出现最大弯曲应力的剖面。
3.纵向强力构件:纵向连续并能有效地传递总纵弯曲应力的构件。
4.间断构件:长度较短的纵向构件。
其参与总纵弯曲的有效性取决于其长度及与船体的连接情况。
5.船体总纵强度计算中必须考虑的两个主要问题:反映船体结构的工作特征(结构的稳定性和构件的多重作用)。
6.纵向强力构件分类:①第一类构件:只承受总纵弯曲;(不计甲板横荷重的上甲板)②第二类构件:同时承受总纵弯曲和板架弯曲;(船底纵桁、底板)③第三类构件:同时承受总纵弯曲、板架弯曲、纵骨弯曲/板的弯曲;(纵骨架式中的船底纵骨、横骨架式中的船底板)④第四类构件:同时承受总纵弯曲、板架弯曲、纵骨弯曲、板的弯曲;(纵骨架式中的船底板)7.许用应力:在结构设计预计的各种工况下,船体结构构件所容许承受的最大应力值。
(许用应力通常小于构件材料破坏时的极限应力值或结构发生危险状态时材料所对应的极限应力值,以保证其强度有足够的储备,许用应力值随船长而增加)8.安全系数(K):考虑强度计算中的许多不确定性,为保证设计结构必要的安全度而引入的强度储备。
9.船体总纵弯曲的总挠度:弯曲挠度与剪切挠度之和,船体的总挠度与船长之比应小于1/400~1/500。
10.船体极限弯矩:在船体剖面离中和轴最远点的刚性构件中引起的应力达到结构材料屈服极限(受拉)或构件的临界应力(受压)的总纵弯曲力矩。
第三章船体结构局部强度计算1.局部强度:船体在外力作用下除发生总纵弯曲变形外,各种局部结构,如船底、甲板、船侧和舱壁板架以及横向肋骨框架也会因局部在和作用而发生变形、失稳或破坏。
2.影响计算模型的主要因素:①结构的重要性:对重要结构应采用比较精确的计算模型;②设计阶段:在初步设计阶段可用较粗糙的模型,在详细设计阶段则需要较精确的计算模型;③计算问题的性质:对于结构静力分析,一般可用较复杂的计算模型,对于结构动力和稳定性分析,由于问题比较复杂,可用简单的计算模型。
3.三种支座情况:①自由支持在刚性支座上;②刚性固定;③弹性支座和弹性固定。
(简化成何种支座,视相邻构件与计算构件间的相对刚度及受力后变形特点而定)4.带板(附连翼板):为估算骨架的承载能力,应八一定宽度的板计算在骨架剖面中,即作为它的组成部分来计算骨架梁的剖面面积、惯性矩和剖面模数等几何要素。
5.船底结构的强度计算步骤:①船底外板的强度计算;②船底纵骨弯曲应力计算;③船底板架计算;第四章船体扭转强度计算1.甲板大开口船舶特点:舱口宽度已达到、甚至超过船宽的80%,舱口长度达到舱壁间距的90%。
2.作用在船体上的扭转外力:①船舶斜浪航行时的扭矩;②船舶倾斜时的扭矩;③船舶摇摆时的扭矩;3.扭转强度计算的标准状态:①船体为直立状态;②船的航向角与波浪行进方向的夹角取作α=45°;③取坦谷波,有效波长等于船长:λ/cos45°=λ·根号二=L,同时,取波高h为波长λ的1/20;④船与波浪的相对位置是把船中设在波峰上(中拱)或设在波谷上(中垂),并且通常不做史密斯修正。
4.符拉索夫两个基本假设:①薄壁梁中面无剪切变形;②梁的横剖面外廓投影形状不变(刚周边假设)。
5.等直薄壁梁扭转理论:①开口剖面薄壁梁自由扭转;②闭口剖面薄壁梁自由扭转。
第五章型材剖面设计1.型材剖面设计应符合的要求:①具有足够的强度、刚度和稳定性;②应尽可能符合生产与工艺方面的要求,如简单制造简单、施工质量高;③满足特殊结构与营运使用的要求;④剖面材料分布合理,使所得结构重量最轻,这是船体结构工程师的重要目标之一。
2.衡量型材剖面材料分布合理程度的指标:①剖面利用系数;②比面积。
3.船体骨架梁带板宽度的变化对梁材最小剖面模数的影响不大(f2变化对W1的影响不大)。
4.增加不对称剖面型材最小剖面模数最有效地办法是增加腹板的高度,或者腹板高度不变时,增加小翼板的剖面积(增加f1或增加h,W1增加明显)。
5.型材腹板的相当面积:相当于使最大剪应力沿腹板高度均匀分布的剖面积。
6.型材的局部稳定性:其翼板和腹板的稳定性。
7.型材剖面设计要求:①翼板最大弯曲正应力σ不超过许用应力[σ],即σ=M/W1<=[σ];②腹板最大剪应力τ不超过许用值[τ],及τ=NS/It<=[τ];③保证腹板不丧失局部稳定性,即要求h/t<=m;④考虑腐蚀或工艺性,即要求t>=t0;⑤保证面板不能丧失局部稳定性,即要求b/t1<=n0。
第六章船体中剖面计算法设计1.船体结构的设计法设计:运用结构分析方法的综合来确定船体横剖面的最优尺寸和所有构件的尺寸,并保证结构在外载荷作用下具有足够的强度、稳定性。
2.基本要求:在计算设计时,假定船体总布置和线型已经确定。
广义地说,中剖面结构计算设计应包括综合决定纵、横构件布置及其尺寸。
3.相当厚度:是船体板厚度与所有纵骨剖面积平铺在其宽度上的假想厚度相加所得。
4.设计问题分步(分级优化):①计算满足总纵强度要求的结构相当厚度,即解决材料在整个横剖面上的最优配置;②根据求得的相当厚度,按局部强度与稳定性等要求确定板格及纵骨的尺寸,即解决材料在板与纵骨间的合理分配。
5.插值法实质:用插值方法求船体剖面在甲板和船底应力都等于其许用应力时真实中和轴的位置。
6.设计要求:①总强度要求;②局部强度要求;③稳定性要求:保证纵骨具有足够的刚度和稳定性,使它在板格失稳之前不发生失稳破坏,是结构设计首要的和最基本的原则。
第七章船体结构规法设计1.规法设计的基本步骤:①根据对母型船的研究和所设计船的特殊要求,分析所设计船的船体强度要求,选择合适的建造规;②根据型线图和总布置图,绘制中剖面图、基本结构图和肋骨型线图等草图,并进行结构构件的初步布置;③按规计算船体主要构件的尺寸,边计算、边绘图、边完善初始的结构布置方案。
2.建造规的选用:在结构设计之前,首先要根据设计船的建造材料、航行区域及类型等选择合适规。
3.结构布置的一般原则和规定:①结构的整体性原则;②受力的均匀性和有效传递原则;③结构的连续性和减少应力集中原则;④局部加强原则;⑤一些基本规定。
第八章上层建筑设计1.上层建筑:船体最上层连续甲板以上的舱室结构物。
2.上层建筑的特点:①以一舷伸至另一舷的或其侧壁板离舷侧外板向部大于船宽的4%;②甲板室的侧壁则在主题舷侧外板向相当的距离。
3.端点效应:由于水平剪力对上层建筑的偏心作用,将使上层建筑向与主体弯曲相反的方向弯曲,即引起了侧壁的纵向应变,使剖面发生歪斜。
由于它与主体弯曲引起的纵向应变相反,从而减少了弯曲应力,这种倾向越接近端部越厉害。
4.柔度效应:对于甲板室,如果它仅支持在甲板横梁上,由于横梁相对柔软,竖向力使它发生弯曲,结果使甲板室与主体具有不同的曲率半径,甚至相反。
5.上层建筑的分类:①强力上层建筑:即上层建筑能100%有效地参加总纵弯曲;②轻型上层建筑,即上层建筑不能100%有效地参加总纵弯曲。