(完整版)深度学习与卷积神经网络基础理论与实例分析
解析深度学习——卷积神经网络原理与视觉实践
yXk 什么是深度学习? X X X X X X X X X X X X X X X X X X X X X X X X X X Rj
yXj 深度学习的前世今生 X X X X X X X X X X X X X X X X X X X X X X X X X R9
AA 基础理论篇
RN
R 卷积神经网络基础知识
jXRXj 深度特征的层次性 X X X X X X X X X X X X X X X X X X X X X X 93
jXk 经典网络案例分析 X X X X X X X X X X X X X X X X X X X X X X X X X X 9N
jXkXR H2t@L2i 网络模型 X X X X X X X X X X X X X X X X X X X X X X 9N
jXkXk o::@L2ib 网络模型 X X X X X X X X X X X X X X X X X X X X X 8j
jXkXj L2irQ`F@AM@L2irQ`F X X X X X X X X X X X X X X X X X X X X X 8j
jXkX9 残差网络模型 X X X X X X X X X X X X X X X X X X X X X X X X X 89
k 卷积神经网络基本部件
jR
kXR “端到端”思想 X X X X X X X X X X X X X X X X X X X X X X X X X X X X jR
kXk 网络符号定义 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X jj
kX9 汇合层 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X jd
深度卷积实验报告
一、实验目的1. 理解深度卷积神经网络(Deep Convolutional Neural Network, DCNN)的基本原理。
2. 掌握DCNN在图像识别任务中的应用。
3. 通过实验验证DCNN在特定数据集上的性能。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 深度学习框架:TensorFlow 2.04. 数据集:CIFAR-10(一个包含10个类别的60,000个32x32彩色图像的数据集)三、实验原理深度卷积神经网络是一种深度学习模型,通过多层卷积、池化和全连接层来提取图像特征并进行分类。
实验中使用的DCNN模型结构如下:1. 输入层:接受32x32x3的彩色图像作为输入。
2. 卷积层1:使用5x5的卷积核,步长为1,激活函数为ReLU。
3. 池化层1:使用2x2的最大池化。
4. 卷积层2:使用5x5的卷积核,步长为1,激活函数为ReLU。
5. 池化层2:使用2x2的最大池化。
6. 卷积层3:使用5x5的卷积核,步长为1,激活函数为ReLU。
7. 池化层3:使用2x2的最大池化。
8. 全连接层1:使用512个神经元,激活函数为ReLU。
9. 全连接层2:使用10个神经元,对应10个类别,激活函数为Softmax。
四、实验步骤1. 数据预处理:将CIFAR-10数据集划分为训练集、验证集和测试集,并对图像进行归一化处理。
2. 模型构建:使用TensorFlow框架构建DCNN模型。
3. 模型训练:使用训练集对模型进行训练,并使用验证集调整模型参数。
4. 模型评估:使用测试集评估模型的性能。
五、实验结果与分析1. 训练过程:在训练过程中,模型损失函数逐渐减小,准确率逐渐提高。
经过约50个epoch的训练,模型在验证集上的准确率达到90%左右。
2. 模型性能:在测试集上,模型的准确率为85.2%,与CIFAR-10数据集的平均准确率相当。
3. 参数调整:通过调整模型参数,如卷积核大小、层数、神经元数量等,可以进一步优化模型的性能。
深度卷积神经网络的原理与应用
深度卷积神经网络的原理与应用深度卷积神经网络(Deep Convolutional Neural Network, DCNN)是一种在计算机视觉领域取得巨大成功的深度学习模型。
它通过模拟人脑视觉系统的工作原理,能够对图像进行高效的特征提取和分类。
本文将介绍DCNN的原理、结构和应用,并探讨其在计算机视觉领域的前沿研究。
一、DCNN的原理DCNN的核心思想是模拟人脑视觉系统中的神经元活动。
人脑视觉系统通过多层次的神经元网络对图像进行处理,从低级特征(如边缘、纹理)逐渐提取到高级特征(如形状、物体)。
DCNN也采用了类似的层次结构,通过多层卷积和池化层对图像进行特征提取,再通过全连接层进行分类。
具体来说,DCNN的核心组件是卷积层。
卷积层通过一系列的卷积核对输入图像进行卷积操作,提取图像的局部特征。
每个卷积核对应一个特定的特征,如边缘、纹理等。
卷积操作可以有效地减少参数数量,提高计算效率。
此外,卷积层还通过非线性激活函数(如ReLU)引入非线性,增加模型的表达能力。
为了减小特征图的尺寸,DCNN还引入了池化层。
池化层通过对特征图进行降采样,保留重要的特征同时减小计算量。
常用的池化操作有最大池化和平均池化。
通过多次卷积和池化操作,DCNN可以逐渐提取出图像的高级特征。
二、DCNN的结构DCNN的结构通常由多个卷积层、池化层和全连接层组成。
其中,卷积层和池化层用于特征提取,全连接层用于分类。
除了这些基本组件,DCNN还可以引入一些额外的结构来提高性能。
一种常见的结构是残差连接(Residual Connection)。
残差连接通过跳过卷积层的部分输出,将输入直接与输出相加,从而解决了深层网络训练困难的问题。
这种结构能够有效地减少梯度消失和梯度爆炸,加速网络收敛。
另一种常见的结构是注意力机制(Attention Mechanism)。
注意力机制通过给予不同特征不同的权重,使网络能够更加关注重要的特征。
这种结构在处理复杂场景或多目标识别时能够提升模型的性能。
深度学习中的主要网络结构与原理解析
深度学习中的主要网络结构与原理解析深度学习是一种机器学习方法,通过模拟人脑神经网络的结构和功能,实现对大规模数据的学习和处理。
在深度学习中,网络结构起到了至关重要的作用,不同的网络结构决定了模型的性能和学习能力。
本文将对深度学习中的主要网络结构与原理进行解析。
一、卷积神经网络(CNN)卷积神经网络是深度学习中最重要的网络结构之一,它主要用于图像和语音等二维数据的处理。
CNN的核心思想是通过卷积层、池化层和全连接层等组成,实现对图像特征的提取和分类。
其中,卷积层通过卷积操作提取图像的局部特征,池化层通过降采样操作减少参数数量,全连接层通过多层神经元实现分类任务。
CNN的优点在于能够自动学习图像的特征,减少了手动特征提取的工作量,因此被广泛应用于图像识别、目标检测等领域。
二、循环神经网络(RNN)循环神经网络是一种具有记忆功能的神经网络,主要用于序列数据的处理,如语音识别、自然语言处理等。
RNN的特点在于能够处理变长的输入序列,并通过隐藏层的循环连接实现对历史信息的记忆。
然而,传统的RNN在处理长序列时容易出现梯度消失或梯度爆炸的问题,限制了其在实际应用中的效果。
为了解决这个问题,研究者提出了长短期记忆网络(LSTM)和门控循环单元(GRU)等变种结构,有效地解决了梯度问题,提升了RNN在序列数据处理中的表现。
三、生成对抗网络(GAN)生成对抗网络是一种通过对抗训练的方式生成新的数据样本的网络结构。
GAN 由生成器和判别器两个部分组成,生成器通过学习真实数据的分布,生成与之相似的新样本,判别器则通过判断样本的真实性来提供反馈。
通过不断迭代训练,生成器和判别器的性能逐渐提升,最终生成器能够生成逼真的新样本。
GAN的应用非常广泛,如图像生成、图像修复、图像风格转换等。
四、自编码器(Autoencoder)自编码器是一种无监督学习的神经网络结构,主要用于数据的降维和特征提取。
自编码器由编码器和解码器两部分组成,编码器将输入数据映射到低维的隐藏层表示,解码器则将隐藏层表示重构为原始数据。
深度学习CNN卷积神经网络入门PPT课件
softmax
softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为 (0,1)的值,而这些值的累和为1
VGG刺猬特征图可视化
第一层卷积核学 到的图片特征
VGG刺猬特征图可视化
第一层特征图的细节比较清晰和输入图片较为相似,提取出了输入 图片的边缘。
VGG刺猬特征图可视化
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
参数数目计算
C1有156个参数:(5*5+1)*6=156
S2有12个参数:因为S2中每个map中的每个点都与C1的四个点相连接进行池化,一般做完 池化操作比如取最大或平均,还要乘以一个数,再加一个bias,再非线性变换
C3有1516个参数:C3也是通过5*5的卷积核由14*14的map得到10*10的map,不过这里连接 方式有点复杂,共有(5*5*3+1)*6+(5*5*4+1)*9+(5*5*6+1)*1=1516个参数。
逻辑回归
过拟合与欠拟合
基础知识
过拟合与欠拟合
正则化
λ=1
λ=0
λ=100
过拟合与欠拟合解决方案
解决欠拟合(高偏差)的方法 1.增加神经网络的隐藏层数和隐藏单元数等 2.增加更多的特征 3.调整参数和超参数 超参数包括: 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、batch_size、正则化参数λ等 4.降低正则化约束
深度学习之神经网络(CNN-RNN-GAN)算法原理+实战课件PPT模板可编辑全文
8-5showandtell模型
8-2图像生成文本评测指标
8-4multi-modalrnn模型
8-6showattendandtell模型
8-10图像特征抽取(1)-文本描述文件解析
8-8图像生成文本模型对比与总结
8-9数据介绍,词表生成
8-7bottom-uptop-downattention模型
第6章图像风格转换
06
6-1卷积神经网络的应用
6-2卷积神经网络的能力
6-3图像风格转换v1算法
6-4vgg16预训练模型格式
6-5vgg16预训练模型读取函数封装
6-6vgg16模型搭建与载入类的封装
第6章图像风格转换
单击此处添加文本具体内容,简明扼要的阐述您的观点。根据需要可酌情增减文字,与类别封装
06
7-12数据集封装
第7章循环神经网络
7-13计算图输入定义
7-14计算图实现
7-15指标计算与梯度算子实现
7-18textcnn实现
7-17lstm单元内部结构实现
7-16训练流程实现
第7章循环神经网络
7-19循环神经网络总结
第8章图像生成文本
08
第8章图像生成文本
02
9-9文本生成图像text2img
03
9-10对抗生成网络总结
04
9-11dcgan实战引入
05
9-12数据生成器实现
06
第9章对抗神经网络
9-13dcgan生成器器实现
9-14dcgan判别器实现
9-15dcgan计算图构建实现与损失函数实现
9-16dcgan训练算子实现
9-17训练流程实现与效果展示9-14DCGAN判别器实现9-15DCGAN计算图构建实现与损失函数实现9-16DCGAN训练算子实现9-17训练流程实现与效果展示
智能之门:神经网络与深度学习入门(基于Python的实现)课件CH17
Ø 卷积神经网络的学习
• 平移不变性 • 旋转不变性 • 尺度不变性
• 卷积运算的过程
Ø 单入多出的升维卷积
• 原始输入是一维的图片,但是我们可以用多个卷积核分别对其计算,得到多个特征输出。
Ø 多入单出的降维卷积
• 一张图片,通常是彩色的,具有红绿蓝三个通道。我们可以有两个选择来处理:
ü 变成灰度的,每个ing
• 池化又称为下采样,downstream sampling or sub-sampling。池化方法分为两种,一种是 最大值池化 Max Pooling,一种是平均值池化 Mean/Average Pooling。
• 最大值池化,是取当前池化视野中所有元素的最大值,输出到下一层特征图中。
Ø 卷积神经网络的典型结构
• 在一个典型的卷积神经网络中,会至少包含以下几个层:
ü 卷积层 ü 激活函数层 ü 池化层 ü 全连接分类层
Ø 卷积核
• 卷积网络之所以能工作,完全是卷积核的功劳。
• 各个卷积核的作用
Ø 卷积的后续运算
• 四个子图展示如下结果:
ü 原图 ü 卷积结果 ü 激活结果 ü 池化结果
ü 对于三个通道,每个通道都使用一个卷积核,分别处理红绿蓝三种颜色的信息
• 显然第2种方法可以从图中学习到更多的 特征,于是出现了三维卷积,即有三个卷 积核分别对应三个通道,三个子核的尺寸 是一样的。
• 对三个通道各自做卷积后,得到右侧的三 张特征图,然后再按照原始值不加权地相 加在一起,得到最右侧的白色特征图。
Ø 卷积编程模型
• 输入 Input Channel • 卷积核组 Weights,Bias • 过滤器 Filter • 卷积核 Kernel • 输出 Feature Map
深度卷积神经网络ppt课件
神经网络简要介绍
人类视觉机理:
David Hubel 和 TorstenWiesel 发现了视觉系 统的信息处理 方式,即视皮 层的分级特性, 获得1981年诺 贝尔生理学或 医学奖。
Low-level sensing
Preprocessing
人工神经网络发展历程
• 发展基础:
数据爆炸:图像数据、文本数据、语音数 据、社交网络数据、科学计算等
计算性能大幅提高
• 为什么有效
– 浅层神经网络可以近似任意函数,为何多层?
深层网络结构中,高层可以综合应用低层信息。 低层关注“局部”,高层关注“全局”、更具有语
义化信息。 为自适应地学习非线性处理过程提供了一种可能的
感知机(Perceptron)
通过查找超平面解决二类分类问题(通过二值函数解决二类分类问题)
公式表达:
f (x) sign(w x)
w x 可看作对输入的空间变换
四种空间变换:维度、缩放、旋转、平移
感知机中的线性映射限制了模型的表达能力,线 性变化的组合仍为线性变化。
神经网络简要介绍
ANN基本构成:感知机(Perceptron)+激活函数
1、计算每层中每个节点的输出
y
m j
h(s
m j
)
h(
wimj
y m1 i
)
h()
为激活函数
2、在输出层计算损失
m j
h' (smj )(Tj
yi m j
)
Tj 为目标参考输出,一般从样本训练中得到。
神经网络简要介绍
深度学习与卷积神经网络基础理论与实例分析ppt课件
目录
0 1
概述与背景
人脑视觉机理 与特征表示
0 2
0 3
卷积神经 网络
TensorFlow的 相关介绍
0 4
12
3.1 初探----LeNet框架
3.卷积神经网络-CNN
LeCun 1998年,LeCun提出LeNet,并成功应用于美国手写数字识别。测试误差小于1%。 麻雀虽小,但五脏俱全,卷积层、pooling层、全连接层,这些都是现代CNN网络的基本组件。
第三次兴起(2012年):深度学习的兴 起,一直到现在。
• 发展基础: 数据爆炸:图像数据、文本数据、 语音数据、社交网络数据、科学计 算等 计算性能大幅提高
3
目录
0 1
概述与背景
人脑视觉机理 与特征表示
0 2
0 3
卷积神经 网络
TensorFlow的 相关介绍
0 4
4
2.人脑视觉机理与特征表示
3.2 基本单元-----卷积层
3.卷积神经网络-CNN
如上图是LeNet-5,它的第一个卷积层含有6的feature map,每一个feature map对应一个卷积核,也就
对应提取了图像的一种特征。这里注意最终的feature map并不是做完卷积后的结果,然后还要加一个 非线性激活的操作,一般用ReLU函数,这个过程一般叫做detector stage。
Top Layer: the neurons respond to highly complex, abstract concepts that we would identify as different animals
输出: The network predicts what the
深度学习基础知识解读
深度学习基础知识解读第一章深度学习的背景和概念1.1 人工智能与机器学习的发展历程1.2 深度学习的定义和特点1.3 深度学习与传统机器学习的区别第二章神经网络及其基本原理2.1 人脑神经系统简介2.2 人工神经网络概述2.3 基本神经网络的结构和运行机制2.4 优化算法:梯度下降和反向传播第三章深度学习常用的网络结构3.1 卷积神经网络(CNN)3.1.1 卷积和池化层的原理3.1.2 LeNet-5网络结构解析3.1.3 AlexNet网络结构解析3.2 循环神经网络(RNN)3.2.1 循环单元(RNN unit)的原理3.2.2 长短时记忆网络(LSTM)的结构和应用 3.2.3 双向循环神经网络第四章深度学习的主要应用领域4.1 计算机视觉4.1.1 图像分类和目标检测4.1.2 图像分割和语义分割4.2 自然语言处理4.2.1 语言模型和文本生成4.2.2 机器翻译4.2.3 文本分类和情感分析4.3 语音识别和合成4.3.1 语音识别原理与技术4.3.2 语音合成原理与技术4.4 推荐系统4.4.1 基于内容的推荐4.4.2 协同过滤推荐4.4.3 深度学习在推荐系统中的应用第五章深度学习的训练和优化技巧5.1 数据预处理5.1.1 数据清洗和归一化处理5.1.2 数据增强技术5.2 正则化技术5.2.1 L1和L2正则化5.2.2 Dropout正则化5.2.3 批归一化(Batch Normalization) 5.3 学习率调整策略5.3.1 学习率衰减5.3.2 动量方法5.3.3 自适应学习算法(Adam)第六章深度学习的挑战和未来发展趋势6.1 深度学习存在的问题和挑战6.1.1 数据需求和标注困难6.1.2 模型的复杂性和计算资源要求6.2 深度学习的未来趋势6.2.1 模型压缩和轻量化网络6.2.2 自迁移学习和跨域学习6.2.3 强化学习和深度强化学习通过本文,我们深入解读了深度学习的基础知识。
深度学习神经网络原理与应用分析
深度学习神经网络原理与应用分析深度学习神经网络是当今最热门的领域之一,其在人工智能、计算机视觉、语音识别和自然语言处理等方面都有广泛的应用。
深度学习的基础是神经网络,本文将对深度学习神经网络的原理与应用进行分析。
一、神经网络的基本结构与原理神经网络是由多个神经元组合而成的网络结构,每个神经元都具有多个输入和一个输出。
神经元接收到多个输入,并将这些输入送入激活函数中进行处理,最终输出一个结果。
多个神经元组成的网络就可以实现更加复杂的功能。
神经网络通常由输入层、中间层和输出层组成。
输入层是神经网络的接口,将外部信息输入到神经网络中;中间层是神经网络的核心,通过多个中间层的组合,可以实现非常复杂的功能;输出层是神经网络的输出接口,将神经网络的输出结果输出到外部。
神经网络的训练过程通常采用反向传播算法,该算法是求解网络的最优权值的一种方法。
在训练过程中,首先对神经网络进行正向传播,得到神经网络的输出结果;然后,将输出结果与期望输出结果进行比较,计算误差;最后,将误差通过反向传播算法传回网络,调整神经元之间的权值,使得误差最小化。
二、深度学习神经网络的应用1.计算机视觉深度学习在计算机视觉领域有着广泛的应用,如图像分类、目标识别和人脸识别等。
目前,卷积神经网络(CNN)已成为计算机视觉领域最常用的深度学习模型。
CNN的特点是可以自动提取图像的特征,并可以逐层提取信息,逐渐深入到图像的各个层次。
通过CNN,可以实现图像分类、目标检测、图像分割等多种计算机视觉任务。
2.语音识别深度学习在语音识别领域的应用也非常广泛。
传统的语音识别方法通常是通过Gaussian混合模型(GMM)和隐马尔可夫模型(HMM)来实现的。
然而,这些方法需要手动提取语音的特征,容易受到噪声和变化的影响。
深度学习神经网络可以自动提取语音的特征,并且对于噪声和变化具有很好的鲁棒性。
目前,深度学习神经网络已经成为语音识别领域最常用的模型之一。
卷积神经网络PPT课件
多层感知器预测
将光栅化后的向量连接到多层感知器
16
CNN参数更新
17
多层感知器层
• 残差定义 • 使用多层感知器的参数估计方法,得到其最低的一个隐层 s 的残差向量 • δs 。 • 现在需要将这个残差传播到光栅化层 r ,光栅化的时候并没有对向量的
值做修改,因此其激活函数为恒等函数,其导数为单位向量。
6
隐层输出层
可以视为级联在隐层上的一个感知器。若为二分类,则常用 LogisticRegression;若为多分类,则常用Softmax Regression。
7
核心!权值、偏置估计(结论如下,推导见“卷积神经网络全面 解析”)
• 残差定义:
假设有层 p, q, r ,分别有 l, m, n 个节点,
对网络权值的训练,可以使感知器对一组输人矢量的响应达到元素为0或1 的目标输出,从而实现对输人矢量分类的目的。
3
单层感知器作用范围
• 感知器是一个简单的二类分类的线性分类模型,要求我们的样本是线性可 分的。
4
多层感知器
多层感知器的思路是,尽管原始数据是非线性可分的,但是可以通过某种方 法将其映射到一个线性可分的高维空间中,从而使用线性分类器完成分类。 图1中,从X到O这几层,正展示了多层感知器的一个典型结构,即输入层隐 层输出层。
20
• 对权值和偏置的更新:
卷积层
• 其中,rot180 是将一个矩阵旋转180度; Oq'是连接到该卷积层前的池化 层的输出。
•
21
卷积层的残差反传?
22
整体思路
• 以层为单位,分别实现卷积层、池化层、光栅化层、MLP隐层、分类层这 五个层的类。其中每个类都有output和backpropagate这两个方法。
神经网络中的卷积神经网络应用案例分享
神经网络中的卷积神经网络应用案例分享神经网络是一种基于人工神经元和神经突触的信息处理系统,可以用于图像识别、语音识别、自然语言处理等多种场景。
其中,卷积神经网络(Convolutional Neural Network,CNN)是最常用的神经网络之一,特别擅长于处理图像和视频数据。
近年来,随着深度学习技术的发展和普及,CNN被广泛应用于图像识别、目标检测、人脸识别等领域,在潜在病变检测、智能电力系统等方面也获得了不错的成果。
以下将分享一些神经网络中的卷积神经网络应用案例。
一、图像分类图像分类是CNN最常见的应用之一。
在这个任务中,CNN将图像作为输入,预测其所属的类别。
有些经典的数据集如MNIST (手写数字识别)、CIFAR-10/100(物体识别)和IMAGENET(大规模图像分类)等,它们作为深度学习算法的测试基准,广泛被用于各种图像识别任务。
其中,在ImageNet数据集上进行的ImageNet Large ScaleVisual Recognition Challenge,即ImageNet比赛,一直被视为深度学习界的“奥林匹克”。
2012年,Hinton等人提出的AlexNet网络,在这个比赛中赢得了独一无二的胜利。
自此之后,CNN技术快速发展,逐渐替代了以往基于手工设计特征的方法,成为了图像识别任务中的主流算法。
二、物体检测在实际应用中,不仅需要识别图像中的物体,还需要准确地定位它们的位置。
因此,物体检测也成为了一个重要的任务。
相比于图像分类,物体检测需要对每一个检测到的物体进行分类和定位,属于一个多任务学习问题。
基于CNN的物体检测方法在过去几年内得到了重大的进展。
比如,R-CNN、Fast R-CNN和Faster R-CNN等网络结构通过引入不同的思想和技巧,实现了从底图到物体识别的端到端训练,直接输出物体的区域和类别信息。
这些方法在维持着较高的精度的前提下,大幅提高了处理速度。
神经网络理论基础PPT课件
20世纪80年代,随着反向传播算法的提出,神经网络重 新受到关注。反向传播算法使得神经网络能够通过学习来 调整权重,从而提高了网络的性能。
感知机模型
1957年,心理学家Frank Rosenblatt提出了感知机模型 ,它是最早的神经网络模型之一,用于解决模式识别问题 。
深度学习的兴起
神经网络的模型
总结词
神经网络的模型是由多个神经元相互连接而成的计算模型,它能够模拟生物神经系统的 复杂行为。
详细描述
神经网络模型可以分为前馈神经网络、反馈神经网络和自组织神经网络等类型。前馈神 经网络中,信息从输入层逐层传递到输出层,每一层的输出只与下一层相连。反馈神经 网络中,信息在神经元之间来回传递,直到达到稳定状态。自组织神经网络能够根据输
入数据的特性进行自组织、自学习。
神经网络的参数
总结词
神经网络的参数是用于调整神经元之间连接强度的可训练参 数,它们在训练过程中不断优化以实现更好的性能。
详细描述
神经网络的参数包括权重和偏置等。权重用于调整输入信号 对激活函数的影响程度,偏置则用于调整激活函数的阈值。 在训练过程中,通过反向传播算法不断调整参数,使得神经 网络能够更好地学习和逼近目标函数。
作用
误差函数用于指导神经网络的训练, 通过最小化误差函数,使网络逐渐 逼近真实数据。
梯度下降法
基本思想
梯度下降法是一种优化算法,通 过不断调整神经网络的参数,使
误差函数逐渐减小。
计算方法
计算误差函数的梯度,并根据梯 度信息更新网络参数。
优化策略
采用不同的学习率或适应学习 率策略,以加快训练速度并避免
2006年,深度学习的概念被提出,神经网络的层次开始 增加,提高了对复杂数据的处理能力。
卷积神经网络报告ppt课件
单击此处辑内容
单击添加标题,建议您在展示时采 用微软雅黑体
单击此处编辑内容
单击添加标题,建议您在展示时采 用微软雅黑字体
3
卷积的过程
左边是被卷积图片的像素显示,其中的数 字代表每个像素点的像素值。中间的小图 片就是卷积核,卷积核会从图片的左上角 开始从左到右从上到下的进行卷积操作, 每一次的卷积操作如右图所示:卷积核里 的每个值与其对应位置的图片像素值相乘, 再将所有相乘的结果求和就得到了结果。
7
CNN网络的执行过程
右图展示了Input图片经过卷基层的过程,该卷 基层有六个神经元,每个神经元有一个卷积核。
单击此处辑内容
单击添加标题,建议您在展示时采 用微软雅黑体
单击此处编辑内容
单击添加标题,建议您在展示时采 用微软雅黑字体
8
CNN网络的执行过程
单击此处辑内容
单击添加标题,建议您在展示时采 用微软雅黑体
单击此处辑内容
单击添加标题,建议您在展示时采 用微软雅黑体
单击此处编辑内容
单击添加标题,建议您在展示时采 用微软雅黑字体
5
池化的过程
一般经过卷积操作后生成的图像尺寸还是 太大,为了减少网络计算的复杂度,需要 把卷及操作后的图片进行缩小,也就是进 行池化(Pooling)。池化字面理解就是把 图片分成一个个池子,常用的池化有最大 池化和平均池化,右图展示的是最大池化, 把图片分为了四个2*2的池子,选取每个 池子中的最大值作为结果。平均池化就是 取每个池子的平均值作为结果。右图中经 过池化图片尺寸就缩减为原图的一半。
深度学习史上最详细的卷积循环神经网络ppt
2021/3/11
11
卷积神经网络(CNN)介绍
激励层
把卷积层输出结果做非线性映射
CNN采用的激励函数一般为ReLU(The Rectified Linear Unit/修正线性 单元),它的特点是收敛快,求梯度简单
2021/3/11
12
卷积神经网络(CNN)介绍
激励层
和前馈神经网络一样,经过线性组合和偏移后,会加入非线性增强模型 的拟合能力。
对于每个2*2的窗口选出最大的数作为输出矩阵的相应元素的值, 比如输入矩阵第一个2*2窗口中最大的数是6,那么输出矩阵的第一 个元素就是6,如此类推。
2021/3/11
14
卷积神经网络(CNN)介绍
池化过程
2021/3/11
15
卷积神经网络(CNN)介绍
池化过程
2021/3/11
16
卷积神经网络(CNN)介绍
2021/3/11
7
卷积神经网络(CNN)介绍
卷积计算层
2021/3/11
8
卷积神经网络(CNN)介绍
卷积计算层
2021/3/11
9
卷积层的计算过程
卷积运算的特点:通过卷积运算,可
2021/3/11
以使原信号特征增强,并且降低噪音 10
卷积层的计算过程
同一个图片,经过两个(红色、绿色)不同的filters扫描过后可得到不同 特点的Feature Maps。 每增加一个filter,就意味着你想让网络多抓取一个 特征。
• 局部关联。每个神经元看做一个滤波器(filter) • 窗口(receptive field)滑动, filter对局部数据计算
2021/3/11
6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Feature selection
Inference: prediction, recognition
2.2 特征表示
2.人脑视觉机理与特征表示
手工地选取特征是一件非常费力、启发式(需要专 业知识)的方法,而且它的调节需要大量的时间。
➢ 既然手工选取特征不太好,那么能不能自动地学习一些 特征?
➢ 学习出特征能否很好的表征目标?
目录
人脑视觉机理
01
与特征表示
03
概述与背景
02
卷积神经 网络
TensorFlow的t框架
3.卷积神经网络-CNN
LeCun 1998年,LeCun提出LeNet,并成功应用于美国手写数字识别。测试误差小于1%。 麻雀虽小,但五脏俱全,卷积层、pooling层、全连接层,这些都是现代CNN网络的基本组件。
卷积
当获得一张船图作为输入的时候,网络正确的给船的分 非线性(ReLU)
类赋予了最高的概率(0.94)。输出层的各个概率相加应
池化或下采样
为1.
分类(全连接层)
输出层
3.1 初探----CNN结构演变
3.卷积神经网络-CNN
CNN的应用也很广泛,其中包括图像分类,目标检测,目标识别,目标跟踪,文本检测和识别以及位置估计等。
卷积神经 网络
TensorFlow的 相关介绍
04
2.人脑视觉机理与特征表示
2.1 人脑视觉机理---大脑神经元的信号传输
神经元
人工神经网络
树突
输入
神经元 接收信号
隐含层输入
神经元激活 轴突发出信号
隐含层输出
大脑神经元信号传输的模拟
2.人脑视觉机理与特征表示
2.1 人脑视觉机理---大脑识别物体过程
3.2 基本单元-----卷积层
3.卷积神经网络-CNN
如上图是LeNet-5,它的第一个卷积层含有6的feature map,每一个feature map对应一个卷积核,也就
对应提取了图像的一种特征。这里注意最终的feature map并不是做完卷积后的结果,然后还要加一个 非线性激活的操作,一般用ReLU函数,这个过程一般叫做detector stage。
➢ 从原始信号摄入开始(瞳孔 摄入像素 Pixels);
➢ 接着做初步处理(大脑皮层 某些细胞发现边缘和方向);
➢ 然后抽象(大脑判定,眼前 的物体的形状);
➢ 然后进一步抽象(大脑进一 步判定该物体)。
Low-level sensing
Preprocessing
Feature extraction
2.2 特征表示
2.人脑视觉机理与特征表示
✓ 在不同对象上做训练时, 所得的边缘基底 是非常 相似的,但对象部分和模 型 就会完全不同了。
特征表示也可以分层
结构性特征 抽象层面越高,存在的可 能猜测就越少,就越利于 分类 初级(浅层)特征表示
2.人脑视觉机理与特征表示
神经元的模型
分层处理信息
特征的分层表达
输出: The network predicts what the object most likely is, based on its training
2.3浅层学习和深度学习
2.人脑视觉机理与特征表示
深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而 最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习, 深度学习的不同在于: 1)强调了模型结构的深度,通常有5层、6层,甚至几十层的隐层节点; 2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个 新特征空间,从而使分类或预测更加容易。这种分层结构,是比较接近人类大脑的结构的。 与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。
First Layer: the neurons respond to different simple shapes, like edges
High Layer: the neurons respond to more complex structures
Top Layer: the neurons respond to highly complex, abstract concepts that we would identify as different animals
目录
01
概述与背景
人脑视觉机理
与特征表示
03
02
卷积神经
网络
TensorFlow的 相关介绍
04
1.概述与背景
1.1 人工智能、机器学习、深度学习、数据挖掘之间的关系
数据挖掘
深度学习 机器学习
人工智能
1.2 神经网络兴衰史
1.概述与背景
第一次兴起(1958年):感知机,由于 没有引入非线性,不能求解异或问题。
训练: during the training phase, a neural network is fed thousands of labeled images of various animals, learning to classify them
输入: An unlabeled image is shown to the pre-trained network
3.2 基本单元-----卷积层
3.卷积神经网络-CNN
步幅(Stride) 步幅是每次滑过的像 素数。当Stride=2的 时候每次就会滑过2 个像素。步幅越大, 特征映射越小。
卷积层--convolution 池化层--pooling 全连接层—fully connected
3.1 初探----完整的CNN
3.卷积神经网络-CNN
输入层
卷积层 +ReLU
池化层
卷积层 +ReLU
池化层
全连接 层
全连接 层
把图片分入四个类别:狗,猫,船,鸟
卷积神经网络主要执行了四个操作:
第二次兴起(1986年):将BP(Back Propagation)神经网络的提出。
第三次兴起(2012年):深度学习的兴 起,一直到现在。
• 发展基础: ✓ 数据爆炸:图像数据、文本数据、 语音数据、社交网络数据、科学计 算等 ✓ 计算性能大幅提高
目录
01
概述与背景
人脑视觉机理 与特征表示
02
03