简单机电一体化系统

合集下载

机电一体化系统概述

机电一体化系统概述

机电一体化系统概述机电一体化系统(Mechatronics System)是指将机械工程、电子工程和控制工程有机结合的一种综合性系统。

它融合了机械结构、传感器、执行器、电机、电子元件、控制系统和计算机等多种技术手段,实现了机械运动、能量转换和信息处理的一种智能化系统。

机电一体化系统的应用领域非常广泛,如机械制造、自动化生产线、汽车工业、航天航空、能源设备等。

机电一体化系统的组成包括多个子系统,如机械结构子系统、电子子系统、能源子系统和控制子系统等。

机械结构子系统主要由机械传动装置、机构部件和传感器等组成,它们协同工作,通过运动变换和能量转换实现特定的机械功能。

电子子系统则负责信号的采集、处理和控制执行器的工作,例如传感器可以感知环境信息,电机可以驱动机械运动。

能源子系统则是为整个系统提供能量,例如电源、电池或气压等。

控制子系统是机电一体化系统的“大脑”,通过对信号的处理和控制算法的实现,实现系统的自动化和智能化。

机电一体化系统的设计和开发需要考虑多种因素。

首先,需要对系统所应用的工作环境进行充分的分析和调研,包括温度、湿度、振动、噪声等,以便选择合适的机械结构和电子元件。

其次,需要对系统的功能要求进行明确,包括速度、精度、负载承载能力等。

此外,还需要对系统的可靠性、可维护性和安全性等进行全面的考虑。

机电一体化系统的应用领域非常广泛。

在机械制造领域,它可以用于自动化生产线的搬运、组装和装配等工作,提高生产效率和质量。

在汽车工业中,机电一体化系统可以实现汽车的自动驾驶和智能控制,提高行车安全性和舒适性。

在航天航空领域,机电一体化系统可以用于飞行器的导航、定位和控制,实现飞行器的自主飞行。

在能源设备领域,机电一体化系统可以用于风力发电、太阳能发电和水力发电等,提高能源利用效率和环境保护。

总之,机电一体化系统是一种综合性的系统,将机械工程、电子工程和控制工程有机结合,实现了机械运动、能量转换和信息处理的一种智能化系统。

机电一体化系统的基本概念和基本构成,共性关键技术,以及发展

机电一体化系统的基本概念和基本构成,共性关键技术,以及发展
伴生输出
黑 箱 法 的 表 达
物料 能量 信息
机电一体化产品 (黑箱)
物料′ 能量′ 信息′
伴生输入
物料:固体、液体、气体等任何物体; 能量:机械能、电能、热能、化学能、光 能等; 信息:数据、指示值、测量值、控制信号、 波形等。 物料的转换指如何将毛坯、半成品转换成 成品; 能量的转换指如何将其它形式的能量转换 成机械能或机械能变成其它形式能量; 信息的传输或转换指将物理量的测量和显 示、控制信号的传递等。 2、黑箱法求解方法 黑箱法求解过程就是黑箱白化的过程,步
一、市场调研
二、原理方案设计

1.产品方案构思 产品方案构思完成后,以方案图的形式将设计方案 表达出来。方案图应尽可能简洁明了,反映机电一 体化系统各组成部分的相互关系,同时应便于后面 的修改。 2.方案的评价对多种构思和多种方案进行筛选, 选择较好的可行方案进行分析组合和评价,从中再 选几个方案按照机电一体化系统设计评价原则和评 价方法进行深入的综合分析评价,最后确定实施方
机电一体化技术发展方向
1、智能化 2、微型化 3、模块化 4、 网络化 5 人格化
6、 绿色化

智能化:智能化是21世纪机电一体化技术发展的一个重要方向。 在控制理论的基础上,吸收人工智能、运筹学、计算机科学、 模糊数学、心理学、生理学和混沌动力学新思想、新方法,模 拟人类智能,使它具有判断推理、逻辑思维和自主决策等能力, 以求得到更高的控制目标。主要体现在诊断过程的智能化,人 机接口的智能化,自动编程的智能化,加工过程的智能化。 模块化:由于机电一体化产品种类和生产厂家繁多,研制和开 发具有标准机械接口、电气接口、动力接口、环境接口的机电 一体化产品单元是一项十分复杂但又是非常重要的事。这需要 制定各项标准,以便各部件、单元的匹配和接口。由于利益冲 突,近期很难制定国际或国内这方面的标准,但可以通过组建 一些大企业逐渐形成。显然,从电气产品的标准化、系列化带 来的好处可以肯定,无论是对生产标准机电一体化单元的企业 还是对生产机电一体化产品的企业,规模化将给机电一体化企 业带来美好的前程。

机电一体化原理及应用第一章机电一体化系统的概论

机电一体化原理及应用第一章机电一体化系统的概论

§4 机电一体化应用及发展前景
在新技术革命的浪潮中,自动化技术已深入到社会的各个方面, 有人称之为"全盘自动化"。 在这些自动化的系统中,主要是由很多种机电一体化产品所构 成。 从我国将要发展的机械工业产品来分析主要由以下产品需要实 现程度不同的机电一体化。 具体地说,典型的机电一体化产品主要包括:大型成套设备;数 控机床;仪器仪表电子化;自动化管理系统;电子化量具量仪; 工业机器人;电子化家用电器;电子化电机传动与调整系统;电 子化电站自动装置与开关板;电子医疗器械;电子化低压电器; 微电脑控制加热炉;电子控制汽车或内燃机;微电脑控制印刷机 械;微电脑控制食品机械或包装机械;微电脑控制办公机械;电 子式照相机;电子控制农业机械;电子控制塑料加工机械;电子 控制电焊机;计算机辅助设计系统(CAD);计算机辅助制造系统 (CAM);计算机集成制造系统(CIM)。
几种描述: 1983年日本振兴协会提出:

机械电子乃是在机械的主功能、动力功能、信息功能和 控制功能上引进微电子技术,并将机械装置与电子装置用相 关软件有机结合而构成系统的总称。

1984年美国机械工程师协会(ASME)的一个专家组在给美国 国家科学基金的报告中提出现代机械系统的定义: 由计算机信息网络协调与控制的,用于完成包括机械系 统、运动和能量流等动力学任务的机械(或机电部件)相互 联系的系统,这实质上就是机电一体化的机械系统。

§2 机电一体化系统的主要组成部分(要素)



机械本体 传感检测部分 执行部分 动力部分 驱动部分 信息处理及控制部分。
一、 机械本体

1、概念 机械本体就是其机械结构部分。 包括机械结构装置和机械传动装置,属于产品的基础部分。

机电一体化

机电一体化
机电一体化 机械系统设计
1.1机电一体化的基本含义 1.1机电一体化的基本含义
日本机械振兴协会经济研究所于1981 日本机械振兴协会经济研究所于1981 年提出具有通用性定义: 年提出具有通用性定义: • 即“机电一体化是在机械主功能、动力功 机电一体化是在机械主功能、 能、信息功能和控制功能上引进微电子技 术,并将机械装置与电子装置用相关软件 有机结合而构成系统的总称”. 有机结合而构成系统的总称” • 它体现了机电一体化产品及其技术的基本 内容和特征,所以具有指导性的定义。 内容和特征,所以具有指导性的定义。 •
• 3)传感与检测系统:将机电一体化产品在运行过 传感与检测系统: 程中所需的自身和外界环境的各种参数及状态转 换成可以测定的物理量, 换成可以测定的物理量,同时利用检测系统的功 能对这些物理量进行测定, 能对这些物理量进行测定,为机电一体化产品提 供运行控制所需的各种信息。 供运行控制所需的各种信息。传感与检测系统的 功能一般有传感器或仪表来实现, 功能一般有传感器或仪表来实现,对其要求是体 积小、便与安装与连接、检测精度高、抗干扰等。 积小、便与安装与连接、检测精度高、抗干扰指的是机电一体化向微型机器和微观领域发 展的趋势。国外将其称为微电子机械系统( 展的趋势。国外将其称为微电子机械系统(micro ,MEMS), electro mechanical system ,MEMS),或微机电 一体化系统,泛指几何尺寸不超过1 一体化系统,泛指几何尺寸不超过1 机电产 并向微米、纳米即发展。 品,并向微米、纳米即发展。
• 4)信息处理及控制系统:根据机电一体化产品的 信息处理及控制系统: 功能和性能要求, 功能和性能要求,信息处理及控制系统接受传感 与检测系统反馈的信息,并对其进行相应的处理、 与检测系统反馈的信息,并对其进行相应的处理、 运算和决策, 运算和决策,以对产品的运行施以按照要求的控 实现控制功能。机电一体化产品中, 制,实现控制功能。机电一体化产品中,信息处 理及控制系统主要是由计算机的软件和硬件以及 相应的接口所组成。要求信息处理速度高, 相应的接口所组成。要求信息处理速度高,A/D D/A转换及分时处理时的输入 输出可靠, 转换及分时处理时的输入/ 和 D/A转换及分时处理时的输入/输出可靠,系统 的抗干扰能力强

典型的机电一体化系统

典型的机电一体化系统

以六足爬虫机器人的设计来介绍典型的机电一体化系统姓名:朱尧班级:给排委培13-1学号:1323810122机电一体化系统的简介一、机电一体化的概念和内涵“机电一体化”是新生事物,由日本造英语Mechatronics (Mechanics和Electronics)翻译而来,关于它的确切含义,各国专家、学者的论点也各不相同,迄今国际上尚无统一标准。

较为人们接受的是由日本机械振兴协会经济研究所1981年提出的解释:1.机电一体化的概念机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。

(如机床电器化不能称为机电一体化)2.机电一体化的内涵机电一体化的内涵包括产品和技术。

典型机电一体化产品:BKX-I并联机床二、机电一体化产品的分类1.生产用:数控机床、机器人、FMC、FMS、CIMS2.运输包装用:电梯、数控包装机械、数控运输机械3.销售及银行用:自动称量机、自动售货机、自动取款机4.家庭用:录音机、CD/VCD/DVD、全自动洗衣机、微波炉、儿童玩具5.办公用:打印机、复印机、传真机、磁盘驱动器6.医疗用:X-射线机此外,还有航空、航天、国防、天文等及其他民用机电一体化产品,如雷达跟踪系统、射电望远镜.机电一体化产品的分类并没有统一的标准,一件产品是否属于机电一体化产品应根据前述机电一体化定义来判断。

尽管机电一体化产品(系统)中引入了微电子(计算机)技术,但其中的机械本体仍然是主体,产品(系统)的主要功能必须由机械来完成,否则就不能称其为机电一体化产品。

如电子计算器,非指针式电子表等,其主要功能是由电子器件和电路等完成,机械退居次要地位,这类产品应归属于电子产品,而不是机电一体化产品。

三、机电一体化相关技术1.基础技术:机械技术(包括机械学、机械加工技术和精密机械技术)电工电子技术:逻辑代数技术、计算机技术(软/硬件,操作系统)、电路原理、电子技术。

机电一体化系统基本组成

机电一体化系统基本组成

机电一体化系统基本组成机电一体化系统是指机械、电子、自动控制技术在机械制造行业中的全面应用,并通过数字化手段使之相互交融、紧密结合,以实现机械设备自动化、智能化的过程。

本文将介绍机电一体化系统的基本组成,包括传感器、执行器、控制器和人机界面等方面。

传感器传感器是机电一体化系统中重要的组成部分,其作用是将物理量转换为电信号输出,以便于计算机等设备进行数据采集、分析和控制。

在机械制造行业中,常见的传感器有以下几种:1.位移传感器:测量物体的位移或位置,如激光测距传感器、光电编码器等。

2.压力传感器:测量物体的压力或应变,如压变传感器、压力传感器等。

3.温度传感器:测量物体的温度,如热电偶、热敏电阻等。

4.光传感器:测量光的强度、颜色等光学参数,如光敏电阻、CCD传感器等。

5.流量传感器:测量介质的流量或流速,如磁流量计、超声波流量计等。

传感器的应用范围广泛,可以用于自动化生产线、机器人、无人驾驶等领域。

执行器执行器是机电一体化系统中的另一个重要组成部分,其主要作用是根据控制信号调整和控制机械运动状态,如加减速、转向、停车等。

常见的执行器有以下几种:1.电动机:将电能转化为机械能的装置,广泛应用于机械制造行业中的各种设备和系统中。

2.液压执行器:通过液体的压力来产生机械动作,如液压缸、液压马达等。

3.气动执行器:通过气压来产生机械动作,如气动缸、气动马达等。

执行器的选择和应用能够有效提高机械设备的生产效率和质量。

控制器控制器是机电一体化系统中的“大脑”,其主要作用是采集和处理传感器输出的数据并生成相应的控制信号,以控制执行器的动作状态。

目前,常用的控制器有以下几种:1.PLC:可编程逻辑控制器,广泛应用于自动化生产线、机床等场合。

2.微控制器:具有微处理器核心的小型计算机,可用于智能家居、机器人、可穿戴设备等领域。

3.单片机:小型集成电路芯片,广泛应用于各种控制电路中。

控制器的性能决定了机械设备的精度、效率和可靠性,因此在选择控制器时,需要根据不同的应用场合进行选择。

机电一体化系统设计

机电一体化系统设计

机电一体化系统设计机电一体化系统设计是一种将机械结构、电气控制、传感器及计算机信息技术整合在一起,以实现自动化和智能化生产的工程设计。

机电一体化系统设计与传统的机械设计、电气设计有所不同,它要求设计人员具备广泛的专业知识,从机械、电气、传感器、控制、计算机等多个方面考虑,才能实现系统的各项性能指标。

机电一体化系统的设计过程通常包括系统需求分析、系统结构设计、电气控制设计、机械设计及系统软件编程等几个方面。

其中,系统需求分析是整个系统设计的关键,需要通过对用户需求、功能要求和性能指标等进行分析,来确定系统的技术方案和设计目标。

系统结构设计是机电一体化系统设计的第二个重要环节。

在系统结构设计阶段,设计人员需要考虑机械、电气、传感器、控制及计算机等相关因素,以确定最佳的系统结构和指标要求。

为了达到这个目标,设计人员通常需要运用多学科知识和专业技能,才能找到最佳的解决方案。

电气控制设计是机电一体化系统设计的关键部分,能够直接影响系统的性能指标和工作效率。

设计人员需要考虑不同的电气控制器和传感器,以实现针对不同工作条件和环境的多功能控制。

在进行电气控制设计时,设计人员需要先制定控制策略,然后选择适合的电气控制器和传感器设备,并设计相应的电路和软件程序,来实现系统的自动化、智能化和高效化。

机械设计是机电一体化系统设计的另一个重要环节。

在进行机械设计时,设计人员需要考虑机械结构的稳定性、刚度、精度、寿命等因素,并与电气控制和计算机等相关组成部分进行整合,以满足系统的各项性能指标。

设计人员还需要运用CAD软件等工具,完成机械结构的三维建模和分析等工作。

系统软件编程是机电一体化系统设计的最后一个环节。

在进行系统软件编程时,设计人员需要运用不同的编程语言,如C、C++、Java等,来实现系统的各种功能要求。

为了达到系统的高可靠性和高效率,设计人员还要进行功能测试和调试等相关工作,确保系统在生产环境下能够正常运行。

总之,机电一体化系统设计是一项复杂且综合性能强的工程设计,需要设计人员具备广泛的专业知识和多学科技能,以实现高效、精确、智能化的生产过程和产品。

机电一体化系统设计

机电一体化系统设计

机电一体化系统设计一、引言机电一体化系统是指将机械和电气控制系统相结合,实现自动化控制和监测,以提高生产效率和产品质量。

在现代制造业中,机电一体化系统已经成为不可或缺的重要部分。

本文将探讨机电一体化系统设计的重要性、原则和实施步骤。

二、机电一体化系统设计的重要性1.提高生产效率机电一体化系统可以实现自动化生产,减少人为操作,提高生产效率。

通过优化机械和电气系统的配合,可以实现更高的生产速度和稳定性。

2.优化产品质量机电一体化系统可以实现精准控制和监测生产过程,减少因人为因素引起的错误,提高产品质量和一致性。

3.节约能源资源机电一体化系统可以实现能源的合理利用和分配,优化能源消耗结构,降低生产成本。

4.提升生产安全性机电一体化系统可以实现安全监测和自动报警,减少生产过程中的安全隐患,提高生产操作的安全性。

5.降低维护成本机电一体化系统可以实现在线监测和故障诊断,及时发现和排除问题,减少维护和维修成本。

三、机电一体化系统设计的原则1.整体性原则机电一体化系统设计要以整体性为原则,全面考虑机械和电气系统之间的协调和配合,确保系统各部分之间的一致性和稳定性。

2.可靠性原则机电一体化系统设计要考虑到系统的可靠性,选择高品质的机械和电气元器件,确保系统长期稳定运行。

3.灵活性原则机电一体化系统设计要具有一定的灵活性,能够根据生产需求进行调整和改进,适应市场的变化。

4.通用性原则机电一体化系统设计要具有一定的通用性,可以适用于不同的生产场景和环境,提高系统的适用性和可扩展性。

5.安全性原则机电一体化系统设计要考虑到系统的安全性,确保生产过程中的操作安全和人员安全,防止事故的发生。

四、机电一体化系统设计的实施步骤1.需求分析首先进行生产需求分析,明确机电一体化系统的功能和性能要求,确定系统的基本架构和设计方案。

2.系统设计根据需求分析的结果,进行系统设计,包括机械结构设计、电气控制系统设计、传感器和执行器的选择等。

机电的一体化系统设计

机电的一体化系统设计

机电的一体化系统设计机电一体化系统设计是指将机械、电子、电气、自动化等技术相结合的一种综合性设计。

它通过将机械结构、电气设备、传感器、执行器和控制系统等有机地结合在一起来实现系统的功能。

一体化设计能够提高系统的整体性能和运行效率。

因为机械、电子和自动化等不同专业领域的知识被集成在一起,可以更好地协同工作,提升系统的综合效益。

在机电一体化系统设计中,首先需要进行系统分析和需求分析,明确系统的功能和性能要求。

然后进行系统设计,包括机械结构设计、电气设计、自动化控制设计等方面。

机械结构设计是机电一体化系统设计的重要组成部分。

在设计机械结构时,需要考虑系统的稳定性、刚度和强度等因素。

同时还需要考虑材料的选择和加工工艺的优化,以提高系统的可靠性和寿命。

电气设计是机电一体化系统设计的另一个重要方面。

在电气设计时,需要选择适当的电气设备和元件,并设计电路图和布线图。

同时还需要进行电气参数计算和控制系统设计,以实现对整个系统的控制和监测。

此外,还需要考虑系统的电磁兼容性和安全性等因素。

自动化控制设计是机电一体化系统设计中的关键一环。

通过使用传感器和执行器,可以实现对系统的自动化控制。

在自动化控制设计中,需要选择合适的传感器和执行器,并进行控制算法的设计和优化。

同时还需要进行系统的建模和仿真,以验证设计的正确性和可行性。

在机电一体化系统设计中,还需要考虑系统的可拓展性和模块化设计。

通过模块化设计,可以将整个系统划分为若干个独立的子系统,每个子系统都具有独立的功能和自主控制。

这样可以提高系统的灵活性和可维护性,同时也方便对系统进行拓展和更新。

此外,在机电一体化系统设计中还需要考虑系统的能效和环保性。

通过优化设计和选择节能设备和材料,可以提高系统的能源利用效率和减少对环境的影响。

综上所述,机电一体化系统设计是一项复杂而综合的工作。

它需要综合运用机械、电子、自动化等多个学科的知识,进行系统的分析、设计和优化。

只有通过科学的设计和综合考虑各个方面的因素,才能确保机电一体化系统具有良好的性能和可靠性。

机电一体化

机电一体化
School of Mechanical Engineering & Automation
机电一体化系统的功能构成: 机电一体化系统的功能构成:
School of Mechanical Engineering & Automation
机电一体化技术的主要特征: 机电一体化技术的主要特征: ①整体结构最优化:在传统机械产品中,为了增加功能,或实现某一种控制 整体结构最优化:在传统机械产品中,为了增加功能, 规律,往往靠增加机械机构的办法来实现。如果采用机电一体化系统, 规律,往往靠增加机械机构的办法来实现。如果采用机电一体化系统,可以 从机械、电子、硬件、软件四个方面去实现同一种功能。 从机械、电子、硬件、软件四个方面去实现同一种功能。 ②系统控制智能化:这是机电一体化技术与传统的工业自动化技术最主要的 系统控制智能化: 区别之一。电子技术的引入,显著地改变了传统机械那种单纯靠操作人员, 区别之一。电子技术的引入,显著地改变了传统机械那种单纯靠操作人员, 按照规定的工艺顺序频繁重复的工作状况。 按照规定的工艺顺序频繁重复的工作状况。 ③操作性能柔性化:计算机软件技术的引入,能使机电一体化系统的各个传 操作性能柔性化:计算机软件技术的引入, 动机构的动作通过预先给定的程序,一步一步地由电子系统来协调。 动机构的动作通过预先给定的程序,一步一步地由电子系统来协调。在生产 动作通过预先给定的程序 对象变更需要改变传动机构的动作规律时,无须改变其硬件机构, 对象变更需要改变传动机构的动作规律时,无须改变其硬件机构,只要调整 由一系列指令组成的软件,就可以达到预期的目的。 由一系列指令组成的软件,就可以达到预期的目的。
School of Mechanical Engineering & Automation
机电一体化的相关技术: 机电一体化的相关技术: ①机械技术:机械技术是机电一体化的基础。 机械技术:机械技术是机电一体化的基础。 ②计算机与信息处理技术:计算机应用及信息处理技术是促进机电一体化技 计算机与信息处理技术: 术和系统发展的最活跃的因素。 术和系统发展的最活跃的因素。 ③检测与传感技术:传感与检测是实现自动控制、自动调节的关键环节,它 检测与传感技术:传感与检测是实现自动控制、自动调节的关键环节, 的功能越强,系统的自动化程度就越高。 的功能越强,系统的自动化程度就越高。 ④自动控制技术:自动控制技术与计算机控制技术相联系,是机电一体化中 自动控制技术:自动控制技术与计算机控制技术相联系, 十分重要的关键技术。 十分重要的关键技术。 ⑤伺服驱动技术:伺服驱动技术是直接执行操作的技术,伺服系统是实现电 伺服驱动技术:伺服驱动技术是直接执行操作的技术, 信号到机械动作的转换装置与部件。它对系统的动态性能、 信号到机械动作的转换装置与部件。它对系统的动态性能、控制质量和功能 具有决定性的影响。 具有决定性的影响。

机电一体化

机电一体化

要求:能快速、精确地获得信息并在相应的应 用环境中具有高可靠性。
1.4 共性关键技术
2、信息处理技术 主要完成信息的交换、存取、运算、判断 和决策等.其主要工具是计算机。
传感 器 A/D 计算 机 D/A 执行
装置
3、控制技术
关于软件方面的技术,主要以控制理论为 指导,对控制系统设计、仿真、现场调试、可 靠运行等。
数 控 铣 床
数控车床
焊接机器人
1.3 机电一体化的相关技术
机电一体化技术是自动化技术之一!
过程自动化 自动化 机械自动化 办公室自动化
主要目标
机电一体化
1.3 机电一体化的相关技术



1 2 3 4 5 6
检测传感技术 信息处理技术 自动控制技术 伺服驱动技术 机械技术 系统总体技术
1.2 机电一体化系统的构成
3、检测传感装置 检测产品内部状态和外部环境,实现计测 功能。 要求:体积小、精度高、抗干扰 4、电子控制单元
处理、运算、决策,实现控制功能。 要求:高可靠性、柔性、智能化
1.2 机电一体化系统的构成
5、执行机构
包括机械传动与操作机构,接收控制信息,完 成要求的动作,实现主功能。
1.2 发展概况


3.90年代后期开始为第三阶段,“智能化阶段”
① 光学、通信技术等进入了机电一体化,微细加工技术 也在机电一体化中崭露头脚,出现了光机电一体化和微机 电一体化等新分支; ② 对机电一体化系统的建模设计、分析和集成方法,机电 一体化的学科体系和发展趋势都进行了深入研究。 ③ 由于人工智能技术、神经网络技术及光纤技术等领域取 得的巨大进步,为机电一体化技术开辟了发展的广阔天地。 这些研究,将促使机电一体化进一步建立完整的基础和逐 渐形成完整的科学体系。

机电一体化系统教程

机电一体化系统教程

二、传感器组成 传感器一般由敏感元件、传感元件和测量转换电路三部分组成
三、传感器的分类 1、按被测物理量分类 按被测物理量,可分为温度、压力、流 量、物位、位移、加速度、磁场、光通量等传感器。 2、按传感器工作原理分类 按工作原理,可分为电阻传感器、 热敏传感器、光敏传感器、电容传感器、自感 传感器、磁电传感器 等 3、按传感器转换能量供给形式分类 按转换能量供给形式,分 为能量变换型(发电型)和能量控制型(参量型)两种 。 4、按传感器工作机理分类 按工作机理,可分为结构型传感器 和物性型传感器。 习惯上常把工作原理和用途结合起来命名传感器,如电容式压力传 感器、电感式位移传感器等。
构成机电一体化系统的五大组成要素之间必须遵循结构耦合、运动传 递、信息控制与能量转换四大原则。
其涉及的技术 领域有:
1 机械技术 2 计算机与信息技术 3 系统技术 4 自动控制技术 5 传感检测技术 6 伺服传动技术
六)、发展方向:
复合化;小型化和轻型化;高速化和精确化;智能化;系统化;绿色化和网络 化
二)、主要特征: 1、多项技术的合成 2、一个系统中不同子系统在空间上的集成 3、柔性化、智能化和自动化 4、内部运行是隐蔽的 5、由于有微处理器,所以其潜在功能可以扩大 三)、研究的重要意义 1、产品加工精度、质量提高;柔性增加 2、提高生产率、降低成本 3、简化结构、节约能源 4、提高现代制造业的装备水平(如机器人、数控机床等)
学习任务二:学习常用传感器
一、电阻应变片式传感器 电阻应变式传感器主要由电阻应变片及 测量转换电路等组成。
悬臂梁测量的应变片的机械变形
图3.12 各式箔式电阻应变片
图3.11 金属丝电阻应变片的结构
—半导体敏感条;2—基底;3—引线;4—引线联接片;5—内引线 图3.13 半导体应变片

机电一体化的机械系统组成

机电一体化的机械系统组成

机电一体化的机械系统组成机电一体化是指将机械、电气和控制等多个学科的知识进行融合,形成一个统一的系统。

机电一体化的机械系统由多个组成部分组成,这些组成部分相互协调、相互作用,以实现特定的功能。

本文将重点介绍机电一体化的机械系统的组成部分。

1. 机械传动部分机械传动部分是机电一体化的机械系统的核心组成部分,它负责将电机的转动传递给工作机构,实现所需的运动。

常见的机械传动方式有齿轮传动、带传动和链传动等。

齿轮传动具有传动效率高、传动比稳定等优点,广泛应用于机电一体化的机械系统中。

2. 电机部分电机部分是机电一体化的机械系统的能量转换部分,它通过将电能转化为机械能,驱动机械系统的工作。

常见的电机有直流电机、交流电机和步进电机等。

电机的选择应根据机械系统的需求来确定,以确保系统的稳定运行。

3. 传感器部分传感器部分是机电一体化的机械系统的感知部分,它通过感知周围环境的变化,将这些变化转化为电信号,供控制系统使用。

常见的传感器有温度传感器、压力传感器、光电传感器等。

传感器的选择应根据机械系统的需求来确定,以确保系统的可靠性和精度。

4. 控制器部分控制器部分是机电一体化的机械系统的控制中心,它根据传感器的信号和预设的控制策略,对机械系统进行控制和调节。

常见的控制器有PLC(可编程逻辑控制器)、单片机和微处理器等。

控制器的选择应根据机械系统的需求来确定,以确保系统的稳定性和可靠性。

5. 人机界面部分人机界面部分是机电一体化的机械系统与操作人员之间的交互界面,它通过显示器、键盘、触摸屏等设备,将机械系统的状态和参数展示给操作人员,并接受操作人员的指令。

人机界面的设计应简单直观、易于操作,以提高机械系统的使用效率。

6. 机械结构部分机械结构部分是机电一体化的机械系统的支撑和承载部分,它负责将各个组成部分连接在一起,并提供稳定的结构支撑。

机械结构的设计应考虑机械系统的功能需求和载荷要求,以确保系统的稳定性和可靠性。

简述机电一体化机械系统的组成

简述机电一体化机械系统的组成

简述机电一体化机械系统的组成机电一体化机械系统是指将机械结构、电气控制和传感器技术有机地融合在一起,形成一个整体的系统。

这种系统的设计和制造能够实现机械运动的控制、感知和反馈,从而提高机械设备的性能和精度。

机电一体化机械系统的组成主要包括以下几个方面:1. 机械结构:机械结构是机电一体化机械系统的基础,它由各种机械零部件组成,包括机床、传动装置、导轨、滑块和夹具等。

机械结构的设计和制造要考虑系统的运动特性、刚度和稳定性,以及与其他部件的配合和传递力矩等。

2. 电气控制:电气控制是机电一体化机械系统的核心,它通过电气信号控制机械的运动和操作。

电气控制包括各种传感器和执行器的选择和安装,以及控制器的设计和编程。

通过电气控制,可以实现机械的自动化和智能化,提高生产效率和产品质量。

3. 传感器技术:传感器技术是机电一体化机械系统中的重要组成部分,它能够感知机械的运动和工作环境的各种参数。

常用的传感器包括位移传感器、力传感器、温度传感器和压力传感器等。

传感器的选择和布置要根据具体的应用需求,以提供准确可靠的反馈信号。

4. 控制算法:控制算法是机电一体化机械系统中的关键技术,它决定了机械的运动轨迹和操作方式。

控制算法可以通过编程实现,也可以通过硬件电路实现。

常用的控制算法包括PID控制、模糊控制和神经网络控制等。

控制算法的设计要考虑系统的稳定性、鲁棒性和响应速度等指标。

5. 数据通信:数据通信是机电一体化机械系统中的重要环节,它实现了机械系统与其他系统之间的信息交互和数据传输。

数据通信包括有线通信和无线通信两种方式,可以通过串口、以太网、无线网络和蓝牙等方式实现。

数据通信的设计要考虑数据传输速率、可靠性和安全性等因素。

机电一体化机械系统的组成是一个相互关联、相互作用的整体,各个组成部分之间紧密配合,共同实现机械系统的功能和性能要求。

通过机电一体化技术的应用,可以提高机械设备的生产效率、准确度和可靠性,降低生产成本和能源消耗,实现智能制造和工业自动化的目标。

机电一体化

机电一体化

机电一体化一、机电一体化概念机电一体化技术又称机械电子技术,是机械技术、电子技术和信息技术有机结合的产物。

机电一体化在国外被称为Mechatronics,是日本人在20 世纪70 年代初提出来的,它是用英文Mechanics 的前半部分和Electronics 的后半部分结合在一起构成的一个新词,意思是机械技术和电子技术的有机结合,现已得到包括我国在内的世界各国的承认。

我国的工程技术人员习惯上把它译为机电一体化技术。

机械技术是一门古老的学科,它发展到今天经历了一个漫长的历史时期。

机械是现代工业的物质基础,国民经济的各个部门都离不开机械。

机械种类繁多,功能各异,不论哪一种机械,从诞生以来都经历了使用—改进—再使用—再改进,不断革新和逐步完善的过程。

对于某一种形式的机械,一般来说都有一定的局限性,或者说都有一定的适用范围、存在某些固有的缺点,这就迫使人们寻找新的工作原理,发明新型的机械.从而使得具有同一用途的机械具有不同的种类。

机械本身的发展也是无止境的,但是这种发展却是缓慢的。

各种机械发展到今天.单从机械角度对它们进行改进是越来越不容易了。

随着科学技术的发展,一个比较年轻的学科——电子技术正在蓬勃发展,从分立电子元件到集成电路(IC),从集成电路到大规模集成电路和超大规模集成电路,特别是微型计算机的出现,使电子技术与信息技术相结合并向其他学科渗透,把人类带人了一个神化般的世界。

信息技术(3C 技术)的主体包括计算机技术、控制技术和通信技术。

电子技术与计算机技术同机械技术相互交叉,相互渗透,使古老的机械技术焕发了青春。

在原有机械基础上引入电子计算机高性能的控制机能,并实现整体最优化,就使原来的机械产品产生了质的飞跃,变成功能更强、性能更好的新一代的机械产品或系统,这正是机电一体化的意义所在。

机电一体化技术是现代科学技术发展的必然结果。

由于大规模集成电路和超大规模集成电路的出现,特别是微型电子计算机的空前发展,促进了机械技术和电子技术相互交叉和相互渗透,并使机械技术和电子技术在系统论、信息论和控制论的基础上有机地结合起来.形成今天的机电一体化技术。

机电一体化系统

机电一体化系统

机电一体化系统复习资料概念部分1、机电一体化系统基本要素机电一体化系统一般包括七个基本结构要素:机械本体、动力部分、传感检测部分、执行部分、驱动部分、控制部分及信息处理单元。

2、机电一体化系统各元素功能3、执行机构含义、种类机械本体含机械传动装置和机械结构装置——人的身体,骨骼(数控的工作台,丝杆等)机械系统内涵:起传递功率,支承连接、执行功能。

机械系统种类和作用1、传动机构:机电一体化系统中传动机构的主要功能是传递转矩和转速,实际上它是一种转矩、转速变换器。

机械传动部件对伺服系统的伺服特性有很大影响,特别是其传动类型、传动方式、传动刚性以及传动的可靠性对系统的精度、稳定性和快速响应性有重大影响。

2、导向机构:其作用是支承和限制运动部件按给定的运动要求和规定的运动方向运动。

该机构应能保证安全准确。

3、执行机构:用来完成操作任务,执行机构根据操作指令的要求在动力源的带动下完成预定的操作,一般要求它具有较高的灵敏度、精确度、良好的重复性和可靠性等。

动力单元1、按照机电一体化系统的控制要求,为系统提供能量和动力以保证系统正常运行。

2、机电一体化的显著特征之一,是用尽可能小的动力输入获得尽可能大的功能输出。

传感控制单元1、自动检测——人的五官、皮肤(感应同步器,光栅)。

2、对系统运行过程中所需要的本身和外界环境的各种参数及状态进行检测,并转换成可识别信号,传输到控制信息处理单元,经过分析、处理产生相应的控制信息。

执行和驱动单元1、驱动单元:是在控制信息作用下,驱动各种执行机构完成各种动作和功能。

2、机电一体化技术一方面要求驱动单元具有高频率和快速响应等特性,同时又要求其对水、油、温度、尘埃等外部环境的适应性和可靠性;另一方面由于受几何上动作范围狭窄等限制,还需考虑维修方便,并且尽可能实行标准化、系列化、通用化。

3、常见执行和驱动单元:机械、电磁、电液执行机构和步进电机、交直流伺服电机驱动系统。

控制与信息处理单元机电一体化系统的核心单元,其功能是将来自各传感器的检测信息和外部输入命令进行集中、存储、分析、加工,根据信息处理结果,按照一定的程序发出相应的控制信号,通过输出接口送往执行机构,控制整个系统有目的地运行,并达到预期的性能。

简述机电一体化机械系统的组成

简述机电一体化机械系统的组成

简述机电一体化机械系统的组成机电一体化机械系统是指将机械传动与电气控制相结合,形成一个整体的系统。

这种系统能够实现机械运动的自动化、智能化,广泛应用于各个领域。

机电一体化机械系统的组成主要包括三个部分:机械部分、电气部分和控制部分。

下面将分别介绍这三个部分的具体内容。

1. 机械部分:机械部分是机电一体化机械系统的基础,它由各种机械元件组成,包括传动装置、传感器、执行机构等。

传动装置用于将电机的旋转运动转化为所需的线性或旋转运动,常见的传动装置有齿轮传动、皮带传动、链传动等。

传感器用于感知机械系统的状态和环境信息,如位置传感器、速度传感器、力传感器等。

执行机构用于根据控制信号进行相应的动作,如电动阀门、电动门禁等。

2. 电气部分:电气部分是机电一体化机械系统的核心,它主要由电气元件和电气设备组成。

电气元件包括电机、开关、保护器、接触器等,它们负责将电能转化为机械能,并进行各种电气控制。

电气设备包括电源、控制柜、仪表等,它们提供电能供应和电气控制所需的环境条件。

3. 控制部分:控制部分是机电一体化机械系统的大脑,它由控制器和控制算法组成。

控制器负责接收传感器反馈的信号,根据控制算法产生相应的控制信号,控制机械系统的运动。

控制算法是实现机电一体化机械系统自动化、智能化的关键,它可以根据实际需求进行编程,实现各种复杂的控制功能。

机电一体化机械系统的工作原理是:传感器感知机械系统的状态和环境信息,将其转化为电信号;控制器接收传感器反馈的信号,经过算法处理后产生相应的控制信号;电气部件根据控制信号进行动作,驱动机械部件实现相应的运动。

通过不断地反馈和控制,机电一体化机械系统能够实现自动化、智能化的运行。

机电一体化机械系统的应用非常广泛,例如在制造业中,可以应用于自动化生产线、机器人等领域;在交通运输领域,可以应用于自动驾驶车辆、交通信号控制等;在家居生活中,可以应用于智能家居、智能家电等。

机电一体化机械系统的发展将极大地提高生产效率,降低人力成本,改善生活质量。

机电一体化系统设计及应用实例

机电一体化系统设计及应用实例

6.3
6.3.1 有轨小车(RGV) 有轨小车(RailGuideVehicle)是一种沿着铁轨行
走的运输工具,有自驱和它驱两种驱动方式。自驱动 有轨小车通过车上的小齿轮和安装在铁轨一侧的齿条 啮合,利用交、直流伺服电动机驱动。它驱式有轨小 车由外部链索牵引,在小车底盘的前、后各装一导向 销,地面上修有一组固定路线的沟槽,导向销嵌入沟 槽内,保证小车行进时沿着沟槽移动。
图6-2 柔性制造单元
图6-3所示是加工棱体零件的柔性制造单元。单元 主机是一台卧式加工中心,刀库容量为70把,采用双 机械手换刀,配有8工位自动交换托盘库。托盘库为环 形转盘,托盘库台面支承在圆柱环形导轨上,由内侧 的环链拖动而回转,链轮由电机驱动。
图6-3 带托盘库的柔性制造单元
6.1.3柔性制造系统(FMS) 柔 性 制 造 系 统 ( FlexibleManufacturingSystem ) 由
图6-1所示为加工曲拐零件的刚性自动线总体布局 图。该自动线年生产曲拐零件17000件,毛坯是球墨铸 铁件。由于工件形状不规则,没有合适的输送基面, 因而采用了随行夹具安装定位,便于工件的输送。
图6-1 (a)正视图;(b)俯视图
该曲拐加工自动线由七台组合机床和一个装卸工 位组成。全线定位夹紧机构由一个泵站集中供油。工 件的输送采用步伐式输送带,输送带用钢丝绳牵引式 传动装置驱动。
6.2 数控机床
6.2.1 一般数控机床通常是指数控车床、数控铣床、数
控镗铣床等,它们的下述特点对其组成自动化制造系 统是非常重要的。
1. 2.自动化程度高 3.加工精度高且质量稳定
4.生产效率较高
5.
6. 现代数控机床一般都具有通信接口,可以实现上层计 算机与数控机床之间的通信,也可以实现几台数控机床之 间的数据通信,同时还可以直接对几台数控机床进行控制。 通信功能是实现DNC、FMC、FMS的必备条件。 图6-10是数控装置的基本组成框图。图6-10中的4为数 控系统,它是数控机床的核心环节。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图6-14 二维表面粗糙度测量仪 1-座基 2-工作台 3-传感器和触针 4-驱动箱 5-立柱 6-立柱伺服装置 7-控制和信号处理系统
图6-15 控制和信号处理系统
三、微型计算机接口电路 1.模拟信号处理与A/D转换部分 2.采样信号的产生 3.采样控制电路 四、程序设计
图6-16 微型计算机数据采集系统
二、绘图机机械零部件结构
图6-7 x轴滑架
图6-8 同步齿型带
图6-9 滑轮
三、绘图机控制系统及其控制软件
图6-10 CTS-8型绘图机硬件框图
图6-11 初始化程序流程图
图6-12 随机数据接受中断服务程序框图
图6-13 绘图命令执行流程图
第三节
二维表面粗糙度自动量仪
一、二维表面粗糙度测量仪结构 二、控制和信号处理系统
第六章 简单机电一体化系统
第一节全自动洗衣机
一、模糊全自动洗衣机的模糊推理
图6-1 模糊推理框图
二、洗衣机物理量检 测 1.浑浊度的检测 2.布量和布质检测 3.水温检测
图6-2 浑浊度检测器结构与安装 安装情况 b)混浊度较高时信号情况 d)混浊度较低时信号情况
图6-3 洗涤全过程的透光变化曲线 a)一般过程 b)轻度和重度污赃 c)油污及泥污 d)洗涤剂类型
三、控制电路 1.电源电路 2.洗衣机状态检测电路
3.显示电路 4.输出控制电路
图6-4 控制系统逻辑结构图
四、控制软件
图6-5 主程序框图
Байду номын сангаас 第二节
一、绘图机的工作原理
小型智能绘图机
图6-6 CTS-8型智能绘图机 1-笔库 2-操作板 3、7、磁性压条 4-绘图平板 5-绘图笔 6-笔爪 8-机壳 9-电源开关 10-电源插头 11-y轴滑臂 12-x轴同步齿型带 13-钢丝带 14-电源变压器 15-底板 16-控制电路板
相关文档
最新文档