液氨储罐的设计
液氨储罐设计..
第一章绪论1. 1设计任务设计一液氨贮罐。
工艺条件:温度为40℃,氨饱和蒸气压MPa.1,容积55为20m3, 使用年限15年。
1.2设计要求及成果1. 确定容器材质;2. 确定罐体形状及名义厚度;3. 确定封头形状及名义厚度;4. 确定支座,人孔及接管,以及开孔补强情况5. 编制设计说明书以及绘制设备装配图1张(A1)。
1.3技术要求(一)本设备按GBl50-1998《钢制压力容器》进行制造、试验和验收(二)焊接材料,对接焊接接头型式及尺寸可按GB985-80中规定(设计焊接φ)接头系数0.1=(三)焊接采用电弧焊,焊条型号为E4303(四)壳体焊缝应进行无损探伤检查,探伤长度为100%第二章设计参数确定2.1 设计温度O题目中给出设计温度取40C2.2 设计压力在夏季液氨储罐经太阳暴晒,随着气温的变化,储罐的操作压力也在不断变化。
通过查阅资料可知包头最高气温为40.4℃,通过查表可知,在40℃ 时液氨的饱和蒸汽压(绝对压力)为1.55MPa ,密度为580kg/m3,而容器设计时必须考虑在工作情况下可能遇到的工作压力和相对应的温度两者相结合中最苛刻工作压力来确定设计压力。
一般是指容器顶部最高压力与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。
此液氨储罐采用安全法,依据《化工设备机械基础》若储罐采用安全法时设计压力应采用最大工作压力w P 的1.105.1-倍,取设计压力w P P 05.1=(已知MPa P w 55.1=表压)所以 MPa P P w 6.105.1==。
2.3 腐蚀余量查《腐蚀数据手册》16MnR 耐氨腐蚀,其y mm /1.0<λ,若设计寿命为15年,则mm 5.11.0152=⨯==αλC2.4焊缝系数该容器属中压贮存容器,技《压力容器安全技术监察规程》规定,氨属中度 毒性介质,容器筒体的纵向焊接接头和封头基本上都采用双面焊或相当于双面焊的全焊透的焊接接头,所以φ取0.1或85.0常见。
《液氨储罐设计》课件
罐车运输适用于 小规模、短距离 的液氨运输,具 有机动灵活、适 应性强的特点。
在装卸过程中, 需要注意安全防 护,防止液氨泄 漏和火灾事故的 发生。
工艺流程图
添加标题
液氨储罐设计流程: 设计、制造、安装、 调试、运行、维护
添加标题
设计阶段:确定储罐 尺寸、材料、结构、 安全措施等
添加标题
制造阶段:选择合适 的材料和工艺,确保 储罐质量
Part One
单击添加章节标题
Part Two
液氨储罐设计概述
液氨的性质和用途
液氨储罐的重要性
液氨是一种重要的工业原料,广泛应用于化工、制药、食品等行业
液氨储罐是储存液氨的重要设施,其安全性和可靠性直接影响到生产安全 和产品质量 液氨储罐的设计需要满足国家相关标准和规范,确保储罐的安全性和稳定 性
选址应考虑消防、救 援等应急设施的布局 和设置
布局原则
安全距离: 确保储罐 与周边设 施保持足 够的安全 距离
风向:考 虑风向, 避免风向 对储罐的 影响
地形:选 择地势平 坦、地质 稳定的区 域
交通:便 于运输和 应急救援
防火:远 离火源, 设置防火 隔离带
防爆:设 置防爆墙 和防爆门, 防止爆炸 事故发生
储罐材料
碳钢:具有良好的强度和韧性, 适用于中低压储罐
不锈钢:具有良好的耐腐蚀性 和耐高温性,适用于高压储罐
玻璃钢:具有良好的耐腐蚀性 和轻量化,适用于低压储罐
复合材料:具有良好的耐腐蚀 性和耐高温性,适用于高压储 罐
储罐附件
安全阀:用于控制 储罐内的压力,防 止超压
温度计:用于监测 储罐内的温度,防 止温度过高
安全距离
液氨储罐与建筑物的距离:至少100米
液氨储罐设计
液氨储罐设计液氨储罐是一种专门用于贮存液态氨的设备,通常采用铁质或钢质材料构建,其几何形状多样,包括球型、柱形、圆锥形等。
在化工、农业、医学、能源和环保等领域中,液氨储罐被广泛应用于氨气的储存、输送和使用。
液氨储罐的设计应考虑到以下因素:储罐的尺寸、外观、重量、储存容量、操作压力、储存温度、安全措施和环境影响等。
具体设计要求如下:1.设计参数与标准:储罐的设计应符合国家、行业和企业规定的设计标准和规范。
例如,对于LPG液化气罐,其设计应符合GB 50332-2013《钢制储罐设计规范》、GB50183-2005《液化石油气储存和运输设备技术条件》,以及国际规范ASME Section VIII Division 1等。
2.储罐材质和厚度:液氨储罐应采用高品质钢材或耐腐蚀材料制成,以保证其耐久性和安全性。
材质选择应考虑到单价、可用性、操作需求等因素。
对于钢制储罐,其厚度应根据所存放液体的特性和储罐的形状、尺寸等因素计算确定,以保证其承受压力和温度的能力。
3.储罐容量和形状:液氨储罐的密封容量应比其设计储存量大一些,以确保液体进入储罐时不会波涛汹涌。
储罐的几何形状可以是圆柱形、球型、圆锥形或其他形状,视实际情况而定。
4.安全措施:储罐应安装适当的安全设备,如安全阀、液位报警器、温度控制器等,以保证储存液体的安全。
此外,对于大规模储罐,还应考虑配备防火、防爆和灭火系统等。
5.管道和附件:液氨储罐应配备合适的出、进料管道和其他附件,如泄放阀、气密性检测器、排气装置等,以便于运输和输送。
6.环境考虑:储罐的设立不应对周围环境造成影响,应考虑其在地形、气候、土壤等方面的适应性。
7.检修和保养:液氨储罐应设计为易于检修和保养。
储罐的喷漆、防腐处理、检修等工作,应每隔一段时间进行,以保证其长期使用效果。
20m3液氨储罐的设计
20m3液氨储罐的设计摘要储罐按其形式可分为方形和矩形容器、球形容器、圆筒形容器(立式、卧式)。
按其承压性质和能力可分为内压和外压,内压容器又可分为常压、低压、中压、高压、超高压等五类。
根据使用时候的壁温,可分为常温容器、高温容器、中温容器和低温容器。
按其结构材料分类,容器有金属制的和非金属制的两类。
按其反应情况可分为反应压力容器(R)、换热压力容器(E)、分离压力容器(S)、储存压力容器(C)等。
本次设计,我选用的是卧式圆筒形、中压常温的内压容器。
经计算,筒体规格为:公称直径DN 1800mm,1m高的容积V12.545m3,1m高的内表面积F1 5.66m2,1m高筒节质量536kg。
封头选用椭圆形标准封头,其规格为:公称直径DN 1800mm,曲面高度h1 450mm,直边高度h0 40mm,内表面积F i, 3.73m2,,容积V 0.866m3。
筒体外伸端到支座的距离a = 1.8m。
目录1 引言 (1)2 设计任务书 (1)3 设计参数及材料的选择 (1)3.1 设备的选型与轮廓尺寸 (1)3.2 设计压力 (2)3.3 筒体及封头材料的选择 (2)3.4 许用应力 (3)4 结构设计 (3)4.1 筒体壁厚计算 (3)4.2 封头设计 (4)4.2.1 半球形封头 (4)4.2.2 标准椭圆形封头 (4)4.2.3 标准碟形封头 (5)4.2.4 圆形平板封头 (6)4.2.5 不同形状封头比较 (6)4.3 压力试验 (7)4.4鞍座 (8)4.4.1鞍座的选择 (8)4.4.2 鞍座的位置 (9)5 结果 (11)参考文献 (13)1 引言液氨,是一种无色液体,有强烈刺激性气味。
氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。
氨易溶于水,溶于水后形成氢氧化铵的碱性溶液。
液氨多储于耐压钢瓶或钢槽中,且不能与乙醛、丙烯醛、硼等物质共存。
液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。
液氨储罐的结构和强度设计
液氨储罐的结构和强度设计液氨储罐是储存液体氨气的装置,其结构和强度设计对于储罐的安全运行至关重要。
下面将从液氨储罐的结构设计和强度设计两方面进行详细说明。
液氨储罐的结构设计主要包括两部分,即外罐和内罐。
内罐是用来储存液氨的主体部分,一般采用不锈钢材料制成,以保证液氨不会泄漏。
外罐则是对内罐进行保护和支持的结构,一般由碳钢材料制成。
内外罐之间形成的空隙通常被称为保温层,用来降低液氨的蒸发和能量损失。
液氨储罐的结构设计还包括液氨进出口、排气孔和安全装置等部分。
液氨进出口需要满足储罐的进出液要求,通常设置在储罐的顶部或侧面。
排气孔用于放出液氨蒸汽和气体,具有防止过压和阀门失效的功能。
安全装置包括压力表、液位计、安全阀等,用于监测储罐的压力和液位,并在必要时进行自动控制和保护。
首先是内压强度设计。
液氨储罐内部存有高压液氨,因此必须具有足够的强度来抵御内部压力的作用。
内压设计考虑到储罐的材料特性、制造工艺、结构形式等因素,采用了钢结构设计中的薄壁容器理论,并依据液体容器规范对壁厚、焊缝、支承等进行合理设计和计算。
其次是大地震作用强度设计。
液氨储罐是在地面上建设的,因此必须能够抵御地震带来的横向和纵向荷载。
大地震作用强度设计需要考虑储罐的结构形式、地震分级、地基状况等因素,采用了抗震设计的相关规范,如地震设计规范、抗震设计技术规范等,来确保储罐的抗震能力。
除了内压强度和地震作用强度,液氨储罐还需要考虑其他荷载,如风载、温变荷载、雪载等。
这些荷载需要根据具体地区的气候条件、使用环境等因素进行设计和计算。
总之,液氨储罐的结构和强度设计是确保储罐安全运行的重要环节。
对于设计人员来说,需要结合液氨储罐的实际情况和相关规范要求进行设计和计算,以确保储罐在各种荷载和工况下能够安全可靠地运行。
液氨储罐设计规范
液氨储罐设计规范液氨储罐设计规范液氨储罐设计是液氨储存和运输系统中的重要环节,设计规范的合理性影响着液氨安全运行和环境保护。
以下是液氨储罐的设计规范要点:1. 储罐选址和场地设计储罐选址应远离居民区和火源,具备足够的通风和排放条件,以便在发生泄漏时能够及时散发液氨气体。
场地设计应考虑防火、排水、排气等因素,并满足储罐的支撑和固定要求。
2. 结构和材料选择液氨储罐结构可以采用球形或圆柱形,球形结构可减少材料用量。
而球形结构中的支撑腿应采用独立支撑方式,以减少热应力。
储罐材料选择应考虑其抗压强度、抗腐蚀性和低温性能。
3. 安全阀与泄漏防护储罐应配置安全阀和泄漏防护装置,以防止储罐内部压力过高和泄漏事故。
安全阀应根据储罐的设计压力和容积进行选择,并在每年定期检测和校准。
泄漏防护装置包括泄漏报警器、止回阀、堤坝和防喷器等。
4. 异常情况处理液氨储罐设计应考虑各种异常情况的处理,包括火灾、地震、泄漏和爆炸等。
储罐应配置火灾报警系统和灭火系统,以及应急处理预案和逃生通道。
5. 操作和维护要求液氨储罐的操作和维护应符合相应的规范。
操作人员应接受培训,了解储罐的工作原理和安全操作规程。
储罐的定期检查和维护应包括液位、压力、温度和防腐等方面的监测与维护。
6. 泄漏应急预案液氨储罐设计应制定相应的泄漏应急预案,包括报警、疏散、应急处理和环境保护等方面的措施。
应急预案应定期检查和演练,以确保应急响应的高效性和准确性。
总之,液氨储罐设计规范的合理性和严格执行对保障液氨安全运输和使用至关重要。
每个环节都应严格按照规范要求进行设计、建设和运行,以减少事故风险,保障生产和环境的安全。
《液氨储罐设计》课件
储罐的结构
罐体
用于储存液氨的主体部分,通常由筒 体、封头等组成
附件
包括人孔、手孔、清洗口、压力表接 口、液位计接口等,用于满足储罐操 作和维护的需求
储罐的附件
01
02
03
04
安全阀
用于控制储罐内压力,防止超 压事故的发生
压力表
用于监测储罐内压力,保证储 罐安全运行
温度计
用于监测储罐内温度,保证储 罐安全运行
设计原则和标准
符合国家和行业标准
液氨储罐的设计应符合国家和行业的 有关标准和规范,确保安全性和可靠 性。
优化工艺流程
储罐的设计应优化工艺流程,提高生 产效率,降低能耗和资源消耗。同时 ,应考虑操作的便捷性和维护的方便 性。
考虑环境因素
设计时应充分考虑当地的环境因素, 如气候、地质、地震等条件,以确保 储罐的安全运行。
设计有效的废水处理系统,对液氨储罐运行过程 中产生的废水进行净化处理,确保废水达标排放 。
废气处理系统
安装废气处理设施,对液氨储罐产生的废气进行 收集、处理和净化,减少对大气的污染。
3
固体废物处理
对液氨储罐运行过程中产生的固体废物进行分类 、处理和处置,确保符合固体废物管理规定。
储罐的环保监测系统
设计案例二:大型液氨储罐
总结词
大型液氨储罐设计案例,适用于大型工业企业、化肥厂和冷库等领域。
详细描述
大型液氨储罐设计案例,主要考虑液氨的大规模储存和运输,以及更高的安全性和环保要求。设计时 需考虑储罐容量、压力、温度等参数,以及液氨的物理和化学性质。同时,需要考虑储罐的支撑结构 、防震措施和安全附件的配置。此外,还需考虑储罐的自动化控制和监控系统。
易汽化和冷凝
50立方米液氨储罐设计说明书
50立方米液氨储罐设计说明书50立方米液氨储罐是一种用于储存液氨的设备,具有广泛的应用领域,包括化工、农业、制冷等行业。
本设计说明书将详细介绍50立方米液氨储罐的结构、性能、操作要点以及安全措施,以供相关人员参考和指导。
首先,介绍储罐的结构。
50立方米液氨储罐由罐体、密封装置、进出料口、排气装置、压力表等组成。
罐体采用钢材制成,经过特殊防腐处理,确保其在长期存储液氨的环境下不受腐蚀。
密封装置采用可靠的螺栓紧固和软管连接,以保证液氨不泄漏。
进出料口和排气装置在设计上考虑了便捷性和安全性,使得装卸操作更加方便,并能有效消除气体积压。
其次,介绍储罐的性能特点。
50立方米液氨储罐具有良好的密封性能、耐腐蚀性和抗震性。
密封装置的选材和结构设计保证了液氨的密封性,有效防止液氨的挥发和泄漏。
同时,储罐的钢材材质和结构设计考虑了液氨的腐蚀性,能够在长期使用中保持稳定性。
此外,储罐经过专业设计,在地震等外力作用下能够保持稳定,保护液氨的安全。
然后,介绍储罐的操作要点。
在使用50立方米液氨储罐时,需要按照相关操作规程进行操作。
首先,操作人员需要了解储罐的结构和性能特点,熟悉液氨的特性和储罐的操作要点。
其次,操作人员需要正确连接进出料口和排气装置,确保液氨的输送畅通。
操作过程中,需要注意操作规程,确保操作的安全性和可靠性。
最后,介绍储罐的安全措施。
50立方米液氨储罐在储存液氨的同时,也需要考虑安全问题。
操作人员需严格遵守有关安全操作规程,穿戴相应的个人防护装备。
储罐周围应设有安全警示标志,以引起人们的注意和警惕。
定期对储罐进行检查和维护,确保其安全使用。
综上所述,本设计说明书详细介绍了50立方米液氨储罐的结构、性能、操作要点和安全措施。
鉴于液氨储存的重要性和风险性,操作人员在使用储罐时应该严格按照说明书操作,并加强安全意识和防护措施,确保液氨的安全储存和使用。
液氨储罐设计
(6)安全阀接管
安全阀接管尺寸由安全阀泄放量决定。 本贮罐选用f32×2.5mm旳无缝钢管, 法兰为 HG20592 法兰 SO25-2.5 RF 16MnR。
7.设备总装配图
附有贮罐旳总装配图,技术特征表, 接管表,各零部件旳名称、规格、 尺寸、材料等见明细表。
本贮罐技术要求
1.本设备按GBl50-1998《钢制压力容器》进 行制造、试验和验收
(3)充水质量m3 m3=Vg V=V对+V筒=30.42m3, m3=30420 Kg (4)附件质量m4
人孔约200Kg,其他接管总和按300Kg
计,m4=500Kg
设备总重量
m=m1+m2+m3+m4=6202+2750+30420+50
0=40t 使用两个鞍座,每个鞍座约承受196KN负荷,
2.焊接材料,对接焊接接头型式及尺寸可按 GB985-80中要求(设计焊接接头系数=1.0)
3.焊接采用电弧焊,焊条型号为E4303
本贮罐技术要求
4.壳体焊缝应进行无损探伤检验, 探伤长度为100%
5.设备制造完毕后,以2.6MPa表压 进行水压试验
6.管口方位按接管表
技术特性表
名称 设计压力 工作温度 物料名称
故取p=1.1x(2.0-0.1)=2.1MPa (表压);
Di=2600mm;[]t=163MPa(附录6);
=1.O(双面对接焊100%探伤,表(4-9)
C2=2mm
dd
pDi
2 t
p
C2
dd
2.1 2600 21631.0 1.6
2.0 18.8
取Cl=0.8mm(表4-10),圆整取dn=20mm
低温常压液氨储罐的设计标准
低温常压液氨储罐的设计标准《低温常压液氨储罐的设计标准》1. 引言低温常压液氨储罐作为一种重要的工业设备,在化工、制冷等领域有着广泛的应用。
其设计标准的制定对于保障设备的安全运行、提高工作效率具有重要意义。
本文将从多个方面探讨低温常压液氨储罐的设计标准,并提出个人观点和理解。
2. 设计标准的制定背景从当前工业生产的实际需求出发,低温常压液氨储罐的设计标准需要考虑到液氨在常温常压下的特性、操作要求、安全性需求等方面。
根据相关法规和规范,设计标准需要制定相应的技术要求、安全要求和质量控制要求等。
3. 技术要求在设计低温常压液氨储罐时,需要考虑液氨在常温常压下的物性,比如密度、蒸发潜热、沸点等,以确保储罐能够稳定地存储液氨。
设计标准还应包括储罐的结构设计、材料选用、焊接工艺等技术要求,以满足设备在使用过程中的需求。
4. 安全要求液氨作为一种易燃易爆气体,设计低温常压液氨储罐的安全性要求至关重要。
设计标准需要考虑到储罐在潜在的事故情况下的应急处理措施、防火防爆措施、安全阀的设置等方面,以确保设备在发生意外情况时能够有效地保护人员和设备的安全。
5. 质量控制要求储罐的设计、制造、安装和维护需要符合一系列的质量控制要求,以确保设备的可靠性和稳定性。
设计标准需要包括材料的质量认证、焊缝的无损检测、设备的试压验收等质量控制环节,以保证设备在长期运行中不会出现质量问题。
6. 个人观点和理解在设计低温常压液氨储罐的标准时,应综合考虑技术、安全和质量等多个方面的因素,并且需要不断地进行更新和完善。
设计标准也应该考虑到环境保护和资源节约的要求,尽可能降低液氨的泄露和损耗,以实现可持续发展的目标。
7. 总结低温常压液氨储罐的设计标准是一项关乎工业生产安全和效率的重要工作。
它不仅需要满足设备在技术和安全方面的要求,还需要考虑到质量控制和环境保护的需求。
在未来的工作中,我们需要不断加强标准的研究和制定,以适应不断变化的工业需求和社会环境。
液氨储罐
• 公称直径Di和筒体长度L的计算:
L V 2 Vn π Di2 4
取Di = 2600 Di= 2800 Di = 3000 Di = 3200 经计算 当Di = 3200mm时,L = 4656mm,此时,Di/L = 0.687 最接近0.618 所以取 Di = 3200mm
筒体壁厚的计算
封头厚度的计算
采用的是长短轴之比为2的标准椭圆形封头,各参数与筒体相同,
其厚度计算式为:
δ
Kp cDi
2σt 0.5p
1.6 3200 21701 0.51.6
15.09
mm
K
1 6
2
Di 2 hi
2
1
设计厚度为:
δd δ C2 15.09 2 17.09 mm
设备总质量W W=W1+W2+W3
• 鞍座的选择
每个鞍座承受的负荷为
F Wg 38035.89.81 186.57 kN
2
2
根据鞍座承受的负荷,查表(《化工设备机械基础》,大连理 工大学出版社,附录16)可知,选择轻型(A)带垫板,包角为 120°的鞍座。即JB/T4712-92 鞍座A3000-F, JB/T4712-92 鞍座A3000-S。
由于接管材料与壳体材料都为16mnr故fr1故根据公式课求得面积二者得出数值较大的则为有效宽度有效高度h外侧高度h1nt接管实管实际外伸二者得出数值较小的则为外侧高度内侧高度h2nt接管实管实际外内伸壳体有效厚度减去计算厚度之外的多余面积按式43mm接管有效厚度减去计算厚度之外的多余面积按式44mm根据公式
液氨储罐的设计范文
液氨储罐的设计范文
1.储罐材料选择
液氨是一种在常温下为无色气体,液氨储罐需要选用能够承受低温和高压的材料。
常见的材料有碳钢、不锈钢和玻璃钢。
碳钢和不锈钢都具有较好的强度和耐腐蚀性,适合储存液氨。
玻璃钢具有较高的机械强度和良好的耐腐蚀性能,但需要特别注意低温下的应力开裂。
2.结构设计
液氨储罐通常是垂直圆柱形结构,底部为圆锥形或平底设计,顶部有透气装置和液位计。
储罐壁通常采用双层结构,内层负责贮存液氨,外层起到保温作用。
内外层之间的空气隔离,可以减少换热,提高保温效果。
内壁还需喷涂耐腐蚀涂层,以防止液氨对储罐壁的腐蚀。
3.安全性能
液氨是一种具有强烈刺激性和腐蚀性的气体,因此液氨储罐设计时需要采取一系列安全措施。
首先是防火措施,储罐需要设置适当的防火墙和阻火系统。
其次是安全阀和爆破片的设置,用于防止罐内压力超过安全范围。
还需要配备泄漏探测器和报警系统,以及防爆电器设备。
4.储罐周围环境
5.附属设备
液氨储罐需要配备一些附属设备,如输送系统、冷却系统、液位监测系统等。
输送系统可以将液氨导入或排出储罐,冷却系统可以保持储罐内的液氨在适当的温度范围内,液位监测系统可以实时监测储罐内的液位情况。
总结:。
液氨储罐课程设计
液氨储罐课程设计1. 引言液氨储罐是一种用于储存氨气的设备,广泛应用于化工、冶金、制药、食品加工等领域。
由于液氨具有高毒性、易燃易爆等危险性质,储罐设计和操作安全非常重要。
2. 设计要求液氨储罐的设计应满足以下要求:- 安全:储罐内氨气压力控制在安全范围内,避免漏气和爆炸等事故。
- 稳定:储罐体结构稳定,能承受储存氨气的重量。
- 经济:储罐设计应在满足安全和稳定要求的前提下,尽可能减少成本。
3. 设计原则液氨储罐的设计原则:- 选择合适材料:储罐体应选用抗腐蚀和耐磨损性能好的材料,如碳钢、不锈钢等。
- 合理结构:储罐结构应简单、紧凑、稳定,高低温变形小。
- 考虑安全设计:储罐应有压力自动调节器、安全阀、温度控制器、液位监测器、泄漏探测器等安全设备。
- 考虑操作性:储罐应有方便操作的进出口和排气口,易于维修保养。
- 环保:储罐设计应考虑废气、废水等环保问题。
4. 设计步骤液氨储罐的设计步骤:1)确定储罐容量和使用环境:需考虑使用要求、周围环境等因素。
2)选择合适的材料和工艺:根据使用要求和成本等考虑,选择合适的材料和工艺。
3)确定储罐内部结构和设备:包括泵、管道、安全设备、控制器等。
4)制定设计方案:根据前面的工作,制定详细的设计方案,包括制图和计算书等。
5)审核和调整设计方案:方案制定后,需要进行审核和调整,确保方案的合理性和安全性。
6)制造和安装:制造和安装储罐,同时对储罐进行测试和验收。
7)后续维护:储罐安装后需要进行日常维护,如检查气密性、液位监测等。
5. 结论液氨储罐设计应在满足安全和稳定要求的前提下,尽可能减少成本。
设计过程中需注意选择合适材料、简化结构、考虑安全设计和操作性等因素。
储罐制造时需要对设计方案进行审核和调整,并进行测试和验收。
储罐安装后需要进行日常维护,确保储罐的安全运行。
液氨储罐设计
4. 鞍座
首先粗略计算鞍座负荷
罐体总质量m=m1+m2+m3+m4 式中:m1—罐体质量;m2—封头质量;m3—液氨质量;m4—附件质 量 ①罐体质量m1 DN=2200mm, δ n=18mm的筒节,L=4500mm,质量q1=1290kg/m 所以m1=q1×L=5805kg ②封头质量m2 DN=2200mm, δ n=18mm ,质变高度h=40mm的标准椭圆形封头质 量m2′=1230kg,所以
4. 鞍座
故贮罐总质量=21968kg 总负荷F=mg/2=107.8kN 每个鞍座只承受107.8kN负荷,根据附录16,可以选用轻型带 垫板,包角为120°的鞍座,即
JB/T4712-92
JB/T4712-92
鞍座A2200-F
鞍座A2200-S
5.人孔
根据贮罐的设计温度,最高工作压力、材质、介质及使用要求 等条件,选用公称压力为PN=2.5MPa水平吊盖带颈对焊法兰人孔 (HG21524—95).人孔公称直径选定为DN=450mm。采用榫槽面密封 面(TG型)和石棉橡胶板垫片。人孔结构如图6—45所示,人孔各零 件名称、材质及尺寸见表6—19。
接触途径及中毒症状
2.皮肤和眼睛接触 低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤 或眼睛接触高浓度的氨气能引起严重的化学烧伤。 皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀 部位呈胶状并发软,可发生深度组织破坏。 高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的 炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病 例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕 、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症 。多次或持续接触氨会导致结膜炎。
液氨储罐设计注意事项
液氨储罐设计注意事项1.安全设计液氨具有高压、高温、易燃、易爆的特性,因此储罐的安全设计至关重要。
设计时必须遵循相关的法规和标准,并确保储罐符合安全操作和维护的要求。
2.储罐材质选择液氨对材质的要求较高,常用的材质有碳钢、不锈钢和钛合金等。
选取合适的材质可以提高储罐的耐腐蚀性和耐高压性能。
3.储罐结构设计储罐的结构设计要考虑液氨的容量、压力和温度等因素。
常见的储罐结构有球形、圆柱形和卧式圆筒形等。
设计时要充分考虑储罐的稳定性和强度,以防止任何可能的爆炸或泄漏情况。
4.罐体保温液氨在常温下为无色无味的气体,需要在-33℃下压缩成液氨。
因此,储罐设计时应考虑外部保温层以减少液氨的蒸发损失,并降低储罐与外界环境的热交换。
5.泄漏防护为减少泄漏风险,储罐的设计要考虑防护装置,如泄漏报警器、安全阀、溢流装置等。
这些装置可以及时检测和处理泄漏情况,保护人员和环境的安全。
6.检修和维护储罐的设计应充分考虑检修和维护的便利性。
例如,为了方便检修,可以设计检查孔或安装可移动的维修平台。
此外,还应该定期进行检查和保养,以确保储罐的安全和可靠性。
7.管道连接液氨储罐与供气管道的连接必须安全可靠。
设计时要考虑接头和密封件的选用,并严格按照相关规范进行安装和测试,以防止泄漏。
8.储罐周边安全设施与储罐相邻的区域应设立明确的安全警示标识,并且需要有足够的安全距离,以防止事故发生时对人员和设备的伤害。
9.监测和报警系统设计时应考虑监测和报警系统,以便在发生异常情况时及时发出警报并采取相应的应急措施。
10.合规性审查液氨储罐的设计必须符合国家和地方的法规和标准。
在设计过程中,应进行合规性审查,确保储罐符合所有适用的规定。
总之,液氨储罐设计需要综合考虑各种因素,包括安全性、环境影响和运维成本等。
只有在设计过程中合理考虑这些注意事项,才能确保储罐的安全可靠运行。
液氨储罐设计规范
液氨储罐设计规范
液氨储罐是用来储存液体氨的设备,它在多个行业中被广泛应用,包括化工、冶金、制冷等领域。
为了确保储罐的安全运行,设计规范起着重要的作用。
下面将介绍一些液氨储罐的设计规范。
1. 储罐设计应符合当地相关法律法规和标准要求,包括安全生产法、压力容器安全技术监察条例等。
2. 储罐的选型应根据工艺要求和实际情况来确定,包括储存容量、工作压力、材料选择等。
3. 材料选择要考虑液氨的腐蚀性,通常使用碳钢、不锈钢等具有良好耐腐蚀性的材料。
4. 储罐的结构要牢固,通常采用圆筒形状,底部为锥形或球形。
5. 储罐的尺寸要根据液氨的储存容量和实际情况来设计,要保证结构的合理性和安全性。
6. 储罐应配备安全阀、液位计、压力表等安全设备,以确保储罐内的压力和液位在安全范围内。
7. 储罐与其它设备之间的连接要通过合适的管道和阀门来实现,要保证密封性和可靠性。
8. 储罐周围应设有防火设施,以防止火灾事故的发生。
9. 储罐应定期进行检查和维修,包括外观检查、材料检测、泄漏检测等,以确保其安全运行。
10. 储罐应配备适当的防护措施,如防护栏杆、警示标识等,
以确保操作人员的安全。
总之,液氨储罐的设计应遵循相关的法律法规和标准要求,要保证其在使用过程中的安全性和可靠性。
通过合理的结构设计、材料选择和安全设备配置,可以有效地预防事故的发生,确保液氨储罐的正常运行。
储罐的设计还需要考虑运输、储存和使用中的安全性。
总的来说,液氨储罐设计应考虑到液氨的特性和使用条件,确保其在使用中的安全性和可靠性。
液氨储罐毕业设计
液氨储罐毕业设计液氨储罐毕业设计近年来,液氨储罐在工业领域中的应用越来越广泛。
液氨作为一种重要的化工原料,被广泛用于制冷、化肥生产等领域。
因此,设计和建造一座安全可靠的液氨储罐成为了工程师们的重要任务之一。
一、液氨储罐的基本结构液氨储罐通常由罐体、支撑结构、绝热层、进出料管道、安全阀等组成。
罐体是储存液氨的主体部分,通常采用钢材制造,具有良好的耐腐蚀性和密封性。
支撑结构用于支撑罐体,通常采用钢结构或混凝土结构。
绝热层的作用是减少液氨的蒸发损失,常见的绝热材料有聚苯板、玻璃棉等。
进出料管道用于液氨的进出,安全阀则用于保护储罐在超压情况下的安全。
二、液氨储罐的设计要点1. 安全性:液氨是一种具有高度腐蚀性和毒性的化学品,因此在设计液氨储罐时,安全性是首要考虑的因素。
储罐的设计应符合相关的安全标准和规范,采用合适的材料和工艺,确保储罐在正常运行和突发情况下的安全性。
2. 结构强度:液氨储罐需要能够承受内部压力和外部荷载的作用,因此结构强度是设计中的重要考虑因素。
通过合理的结构设计和材料选择,确保储罐在正常使用寿命内不会发生变形、破裂等问题。
3. 绝热性能:绝热层的设计对于减少液氨的蒸发损失至关重要。
合理选择和布置绝热材料,确保储罐的绝热性能达到要求,减少能源的浪费。
4. 操作便捷性:液氨储罐的设计应考虑到操作人员的使用便捷性。
合理设置进出料口、排气口等,方便操作和维护。
三、液氨储罐的施工和验收液氨储罐的施工需要严格按照设计图纸和相关规范进行。
施工过程中需注意施工工艺、质量控制和安全管理,确保储罐的质量和施工进度。
施工完成后,需要进行验收,包括结构强度测试、绝热性能测试、安全阀调试等。
只有通过验收并获得相关部门的许可,储罐才能投入使用。
四、液氨储罐的运行和维护液氨储罐的运行需要有专业的操作人员进行监控和维护。
定期检查储罐的安全阀、进出料管道等设备,确保其正常运行。
同时,定期检测储罐的腐蚀情况,及时进行维修和防腐处理,延长储罐的使用寿命。
课程设计-液氨储罐设计
课程设计-液氨储罐设计
液氨储罐设计是一种重要的工程研究课题,通过科学设计液氨储罐,可以更有效地支
持液氨的运输、储存和使用。
为了让液氨储罐长期保持高效运行,需要做出合理的设计,
包括结构优化、设备安装/安全性等。
首先,液氨储罐的外表及内部结构必须合理,其次,液氨储罐的抗爆能力是一个重要
的指标。
储罐的抗爆性能取决于储罐的材料和厚度,两者必须权衡,在抗爆性能满足要求
的情况下,罐体应尽量轻,可以减轻设备的重量。
此外,在承受液氨极高的腐蚀性作用,
储罐材质除了要耐腐蚀,还必须减少储罐表面的缺陷和斑点,以尽量减少液氨的腐蚀渗透,维持储罐更长久的使用寿命。
另外,液氨储罐结构要求安全可靠,支架应能承受压力,罐体及支架无渗漏;液氨储
罐的内外表面应无裂纹、斑点和缺陷,以便提高贮存液氨的安全性;储罐内部及连接处应
做到无死角,确保清洗和液氨的流动;合理的耗能节点设计可以使储罐的节能效果更出色,耗能节点可以选择一端法兰式或折叠式接口;还应安装安全阀、急停阀,以防止压力过大时,对罐体和储罐周围环境造成危害;此外,安装安全设备及报警装置, function installed,当储罐出现异常时,及时发出警报,可以确保安全。
液氨储罐设计既考虑到安全又考虑到节能,包括结构优化、安装安全系统、主从机节
能设计等,这些步骤可以帮助用户保障液氨储罐系统的安全、可靠性和节能效果,从而更
好地支撑液氨运输、储存和使用。
卧式液氨储罐设计
1. 前 言 2. 设计总论 3. 设计计算 4. 总 结
LOGO
1前言
本设计为一个在常温中压条件下的卧式液氨 储罐。液氨储罐是合成氨工业中必不可少的储 存容器,所以本设计主要内容包括容器材质选 取、罐体结构及壁厚设计、封头壁厚设计及支 座设计选取。在设计过程中综合考虑经济性、 实用性和安全可靠性。设备的选择大都有相应 的执行标准,各项设计参数都正确参考了行业 使用标准或国家标准,并考虑到结构方面的要 求,合理地进行设计。
图2-1 常见容器凸形封头的形式
2.2 材料及结构的选择与论证
2.2.3 容器支座的选择 压力容器靠支座支承并固定在基础上 ,鞍式支
座是应用最广泛的一种卧式支座,鞍式支座普遍使 用双鞍座支承。
图2-2 鞍式支座总体图
3 设计计算
3.1 确定罐体的内径及长度 3.2 筒体厚度设计 3.3 封头壁厚设计 3.4 水压试验及强度校核 3.5 核算承载能力并选择鞍座
在《钢制压力容器》中,只考虑钢板平面腐余量取C2=2㎜。 d C2 32.34 2 34.34㎜
式中 d ——设计厚度,㎜。 根据钢板厚度规格,圆整后确定名义厚度n 38㎜。
3.2 筒体厚度设计
现已知圆筒Di、n ,需对圆筒进行强度校核。校核如下:
t pc Di e 141.19MPa t 157 1.0 157MPa
2e
式中 e ——有效厚度,e n C,㎜; n ——名义厚度,㎜;
C ——厚度附加量,㎜;
t ——设计温度下圆筒的计算应力,MPa。
满足强度条件。
圆筒的最大允许工作压力 pw为
pw
2e t
Di e
2.95MPa
2.5MPa
式中 pw ——圆筒的最大允许工作压力,MPa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.燕京理工学院Yanching Institute of Technology(2018)届本科生化工设备机械基础大作业题目:液氨储罐的设计学院:化工与材料工程学院专业:应用化学学号: 140140023 姓名:游超杰指导教师:周莉莉2017年6月30日.目录1、设计任务书 (1)2、前言 (2)3.设计方案 (3)3.1设计依据及原则 (3)3.2、设计要求 (3)技术特性表 (3)4、设计计算 (5)4.1、圆筒厚度设计 (5)4.2、封头壁厚设计 (6)4.3、水压试验及强度校核 (6)5、选择人孔并核算开孔补强 (7)5.1、人孔参数确定 (7)5.2、开孔补强的计算 (8)6、接口管设计 (10)6.1、进料管 (10)6.2、出料管 (10)6.3、液位计接口管 (10)6.4、放空阀接口管 (11)6.5、安全阀接口管 (11)6.6、排污管 (11)6.7、压力表接口 (11)7、鞍座负载设计 (11)首先粗略计算鞍座负荷 (11)7.1、罐体质量m1 (12)7.2、封头质量m2 (12)7.3、液氨质量m3 (12)7.4、附件质量m4 (12)8、设计汇总 (13)1、设计任务书课题:液氨储罐的设计(家乡衡水)设计内容:根据既定的工艺参数设计一台液氨储罐已知工艺参数:最高使用温度T=40℃罐体容积V=12mm3此时氨的饱和蒸汽压P=1.55MPa具体的内容包括:1.筒体材料选择2.罐的结构及尺寸(内径、长度)形状(卧式、球形、立式),罐体厚度,封头形状及厚度,支座的选择,人孔及接管,开孔补强下达时间:2017年6月16日完成时间:2017年6月30日2、前言本次课程设计是化工与材料工程学院,应用化学专业对化工设备机械基础这门课程进行的。
课设题目为液氨储罐的课程设计。
液氨,又称为无水氨,是一种无色液体。
氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。
液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。
气氨相对密度(空气=1):0.59,分子量为17.04.液氨的密度是NH30.562871Kg/L(50℃) 。
自燃点:651.11℃饱和蒸汽压:2.033MPa熔点(℃):-77.7 爆炸极限:16%~25%沸点(℃):-33.4 1%水溶液PH值:11.7比热kJ(kg·K):氨(液体)4.609 氨(气体)2.179 蒸汽与空气混合物爆炸极限16~25%(最易引燃浓度17%)。
氨在20℃水中溶解度34%,25℃时,在无水乙醇中溶解度10%,在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。
水溶液呈碱性。
液态氨将侵蚀某些塑料制品,橡胶和涂层。
遇热、明火,难以点燃而危险性较低; 但氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。
液氨主要用于生产硝酸、尿素和其他化学肥料,还可用作医药和农药的原料。
在国防工业中,用于制造火箭、导弹的推进剂。
可用作有机化工产品的氨化原料,还可用作冷冻剂。
液氨还可用用于纺织品的丝光整理。
液氨通常采用钢瓶或槽车灌装。
灌装用钢瓶或槽车应符合国家劳动局颁发的“气瓶安全监察规程”、“压力容器安全监察规程”等有关规定。
本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识并查阅相关书籍完成设计。
设计基本思路:本设计综合考虑环境条件、介质的理化性质等因素,结合给定的工艺参数,机械按容器的选材、壁厚计算、强度核算、附件选择、焊缝标准的设计顺序,分别对储罐的筒体、封头、人孔接管、人孔补强、接管、管法兰、液位计、鞍座、焊接形式进行了设计和选择。
设备的选择大都有相应的执行标准,设计时可以直接选用符合设计条件的标准设备零部件,也有一些设备没有相应标准,则选择合适的非标设备。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
本设计过程的内容包括容器的材质的选取、容器筒体的性质及厚度、封头的形状及厚度、确定支座、人孔及接管、开孔补强的情况以及其他接管的设计与选取。
3.设计方案3.1设计依据及原则本液氨贮罐属于中压容器,设计以“钢制压力容器”国家标准(GB150)为依据,严格按照政府部门对压力容器安全监督的法规“压力容器安全技术监督教程”的规定进行设计。
以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。
设计的步骤如下:(1)根据设计中要用的各种参数进行计算及材料选择。
(2)对容器的筒体、封头鞍座及其他附件进行参数计算。
(3)对计算出来的数据进行校核。
3.2、设计要求技术特性表管口表3.3、液氨储罐设计参数的确定3.3.1、设计温度与设计压力的确定(1)设计温度:T= 40℃(2)设计压力:本贮罐在最高使用温度40℃下,氨的饱和蒸汽压为1.55MPa(绝对压强),容器上装有安全阀,则取1.05到1.10倍的最高工作压力作为设计压力,这里取最高设计压力为1.10倍。
所以设计压力为P= 1.10×(1.55-0.10133)=1.60MPa。
3.3.2、罐体和封头材料的选择(1)材料选择:由操作条件可知,该容器属于中压、常温范畴(化工设备机械基础第六版P56表2-2)。
考虑到机械性能、强度条件、腐蚀情况等要求,筒体和封头的材料选用可以考虑20R、16MnR这两种钢种。
如果纯粹从技术角度看,建议选用20R类的低碳钢板, 16MnR钢板的价格比20R贵,但在制造费用方面,同等重量设备的计价, 16MnR钢板为比较经济。
所以在此选择16MnR 钢板作为制造筒体和封头材料。
钢号为16MnR的钢板(适用温度范围-40-475℃,使用状态为热轧或正火,钢板标准为GB6654—1996)。
接管材料选用钢号为16MnR的接管(许用应力:[σ]=[σ]t=163MPa)。
法兰材料为16MnR,鞍座材料选用16MnR。
(2)钢板厚度负偏差:由《化工设备机械基础》第六版P97表4—9可知,钢板=0.80mm。
厚度在7.5-25mm时钢板负偏差C1(3)腐蚀裕量:腐蚀裕量由介质对材料的均匀腐蚀速率和容器的设计寿命决定。
=Ka,其中K为腐蚀速率;a容器的使用寿命。
对于低合金钢的容器,腐蚀裕量C2其腐蚀程度若属于轻度腐蚀,腐蚀速度 0.05-0.13(mm/a),腐蚀余量≥1.0mm,(第六版P98 表4-11)故腐蚀余量取C=2.0mm.2(4)焊接头系数:本次课程设计是液氨储罐的机械设计。
氨属于中度毒性物质,查(第六版P56 表2-2)可知该设备为中压储存容器,即为第三类压力容器。
由于焊缝区是容器上强度比较薄弱的地方,要保证设备密封性能良好,故筒体焊接结构采用双面焊的全焊透的对接接头,且全部无损探伤的,故取焊接头系数φ=1.0。
(5)许用应力:对于本设计是用钢板卷焊的筒体以内径作为公称直径DN=D=1600mm.假设16MnR钢的厚度在16-36mm之间,设计温度下钢板的许用应i力[σ]t=163Mpa。
4、设计计算4.1、圆筒厚度设计16MnR 的密度为7.85t/m 3,熔点为1430℃,许用应力[]tσ列于下表:表3.1 16MnR 许用应力在GB-150-1998《钢制压力容器》中规定,将计算厚度与腐蚀裕量作为设计厚度,即: 2][2C p DNp ctc d +-⨯=φσδ 式中 δd —设计厚度(mm );C 2—腐蚀裕量(mm ); P c —圆筒的设计压力(MPa ); DN —圆筒的公称直径(mm ); φ—焊接接头系数;[σ]t —钢板在设计温度下的许用应力(MPa )。
于是2][2C p DNp ctc d +-⨯=φσδ=1.60×1600/(2×163×1.0-1.60)+2.0=9.89mm. 将设计厚度加上钢板负偏差后向上圆整到钢板的标准规格的厚度,及圆筒的钢号板厚/㎜在下列温度(℃)下的许用应力/ Mpa≤2010015020025030016MnR6~16 170 170 170 170 156 14416~36163 163 163 159 147 13436~60157 157 157 150 138 125>60~100153 153 150 141 128 116名义厚度: 1C d n +=δδ=9.89+0.8=10.69mm即1C d n +=δδ=9.89+0.80+△。
圆整后取δn =11.00mm 后的16MnR 钢板制作筒体。
4.2、封头壁厚设计由于椭圆封头厚度的计算公式和筒体厚度的计算公式几乎相同,说明筒体采用标准椭圆封头,其封头厚度近似等于筒体厚度,这样筒体和封头可采用相同厚度的钢板制作。
因为D i /2h f =2时,定义为标准椭圆封头,所以封头的形状系数K=1.0。
封头的设计厚度为: 25.0][2··C p KDN p ct c d +-=φσδ即25.0][2··C p KDN p ctc d +-=φσδ=1.60×1600/(2×163×1.0-0.5×1.60)+2.0=9.87mm 。
考虑钢板厚度负偏差及冲压减薄量,需圆整,封头的名义厚度由公式可得1C d n +=δδ=9.87+0.8,圆整后取δn =11mm 厚的16MnR 钢板作封头。
4.3、水压试验及强度校核由《化工设备机械基础》(第六版P100)查得内压容器液压试验时应力校核公式为φσδδσs ee t t DN p 9.02)(≤+=式中p t —试验压力(MPa ); δe —有效厚度(mm );σs —圆筒材料在试验温度下的屈服点(MPa );D i —圆筒的内直径;σt — 圆筒壁在试验压力下的计算应力(MPa );Φ—圆筒的焊接接头系数。
其中p t =1.25p=1.25×1.60=2.00MPa δe =8.2mm σs =325MPa 于是ee t t Di p δδσ2)(+==20.8220.8160000.2⨯+⨯)(=196.12MPa ≤φσs 9.0=0.9×325×1.0=292.5MPa.水压试验满足强度要求。
5、选择人孔并核算开孔补强5.1、人孔参数确定为了检查设备使用过程中是否产生裂纹、变形、腐蚀等缺陷,应开设检查孔,此设备应至少开设一个人孔,人孔的形状有圆形和椭圆两种,当设备内径D>i 1000mm时,压力容器上的开孔最好是圆形的。