最新四年级奥数题:数字谜习题及答案(B)

合集下载

小学奥数数字谜试题及答案

小学奥数数字谜试题及答案

小学奥数数字谜试题及答案一、数字谜题在小学奥数竞赛中,数字谜题常常是考察学生逻辑思维和数学运算能力的重要题型之一。

下面是几个常见的数字谜题,希望能帮助你培养数学思维和解题能力。

1. 数字排列将数字1、2、3、4、5、6、7、8、9组成一个9位数,使得每个数字出现且仅出现一次,并且每两个相邻的数字之间的差值都是一个质数。

请问有多少种可能的排列方式?2. 数字替换给定一个四位数abcd,满足条件:abcd * 4 = dcba。

请问abcd是多少?3. 数字矩阵在3x3的方格中填写数字1-9,使得每一行、每一列和对角线上的数字之和都相等。

请找出所有满足条件的填法。

二、数字谜题答案1. 数字排列的可能性有5040种。

解析:由于质数只有2、3、5、7,所以9位数中第一个数字只能是2或者5。

然后,考虑到相邻数字之间的差值为质数,我们可以根据2和5的不同情况来排列剩下的数字。

根据计算可知,数字排列的可能性有5040种。

2. abc*d = dcba,其中a、b、c、d是0-9的数字。

解析:由于abc * 4 = dcba,根据乘法的性质可知,a最大为2,且a 只能为1或2。

根据计算可知abcd为21978。

3. 数字矩阵的填法有8种。

解析:考虑到每一行、每一列和对角线上的数字之和都相等,由此可得数字矩阵的可能解。

2 9 47 5 36 1 84 3 89 5 12 7 66 7 21 5 98 3 48 1 63 5 74 9 24 9 23 5 78 1 62 7 69 5 14 3 86 1 87 5 32 9 48 3 41 5 96 7 2通过以上数学谜题的解析,我们可以锻炼和提升自己的逻辑思维和数学运算能力。

希望能够对大家的数学学习起到一定的帮助作用。

四年级思维专项训练17 数字迷(试卷+解析)

四年级思维专项训练17 数字迷(试卷+解析)

四年级思维训练17 数字谜1.A、B、C各代表不同的数字,要使下面的式子成立,A=_________。

2.如下图所示的竖式中,相同图形表示相同数字.不同图形表示不同数字,则△+Ο+口_________。

3.在下面的算式中,不同的汉字代表不同的数字,则其中四位数“我要参加”最大是________。

4.下面的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.如果:巧十解十数十字十谜=30,那么“数字谜”所代表的三位数是____________。

5.下面的乘法算式中,只知道一个数字“8”,请你补全,这个算式的积最小是_________。

6 . 在算式ABCD+EFG=2010中,不同的字母代表不同的数字,那么A+B+C+D+E+F+G=______。

7. 在下面的乘法竖式中相同的字母代表相同的数字,不同的字母代表不同的数字,被乘数等于______。

8. 在下面的口里填上合适的数字后,所得的积是_______。

9.“我爱北京奥运”是个六位数,每个不同的汉字表示不同的数.符合下面竖式的这个六位数是________。

10.在口内填人适当的数字,下列竖式成立,被除数等于_______。

11.下面竖式中,“学理科到学而思”的每个汉字表示0-9这10个数字中的一个,相同的汉字表示相同的数字,不同的汉字表示不同的数字,四位数“到学而思”的最大值是_______。

12.请在下图每个方框中填人一个不是8的数字,使乘法竖式成立.13 .在下图方框中填入适当的数字使竖式成立,其中较大的乘数为 ________。

14. 在下面的算式中,“a、b、c”分别代表0~9中的三个不同的数字,那么,数字b是b =15. 电子数字o~9如图1所示,图2是由电子数字组成的乘法算式,但有一些模糊不清,请将图2的电子数字恢复,并将它写成横式形式:__________。

16.下面的算式中,每个汉字代表O~9中的一个数字,不同汉字代表不同数字.相同汉字代表相同数字,美十妙十数十学十花十园=__________。

一起学奥数数字谜四年级

一起学奥数数字谜四年级
为保证乘积是二位数,还需要考虑个位相乘后进位的数。 测试B=0或B=5,都能保证乘积为两位数,所以AB为10或15
例2、在下面算式的□内各填入一个合适的数字,使算式成立。
□0 0 □
- 5 0□9
1□ 9 3
□7 0 0 □ 2 - 5 0 □ 90
1 □ 93 9
【分析】竖式运算中,补上某些漏掉的数的关键,是找到突破点。这是一个减法,观察已知的各个位置,可以发现个
558÷6=93,所以可以确定除数的个位为3 在□41-551时,产生连续借位,且差最高位为0,所以被除数最高位为6, 余数为83。 被除数的个位是非常清楚的,应该一眼就能够看出为7 接着,只要做837÷93=9即可。
第三讲 提高篇
例1、如图,请在右图每个方框中填入一个不是8的数字,使乘法竖式成立。则最后
确定两个乘数后,其它的就很容易确定了。
注意:有没有学生不理解第二行的乘数十位是奇数
例5、在下面竖式的□里填入合适的数字,使竖式成立。
□ 6□ 9
9□3 ) □6 4 1 □7
5 5 □8 □8 3 7 □8 □3 □7 0
【分析】利用5×99<550,7×90>559,可以确定商十位为6。 因为与3相加个位为1的数只有8,所以可以确定第三行个位数为8。
3)8× □-17=47
4)36-150÷ ☆=6
【分析】用实物来表示数(如苹果、足球等),之前应该已学习过。用符号表示数,有的小朋友也应该碰到过了。下一步 我们将会学习更加抽象的,用字母来表示数,这些都是学习方程的基础。
我们可以把一个等式看作是天平,左边放着符号,右边放着表示重量的数字。我们知道天平两边同事加减等量的 东西,天平不会倾斜。所以,等号的两边加减或乘除相等的数,等号仍然能够成立。

四年级思维专项训练17 数字迷(试卷+解析)

四年级思维专项训练17 数字迷(试卷+解析)

四年级思维训练17 数字谜1.A、B、C各代表不同的数字,要使下面的式子成立,A=_________。

2.如下图所示的竖式中,相同图形表示相同数字.不同图形表示不同数字,则△+Ο+口_________。

3.在下面的算式中,不同的汉字代表不同的数字,则其中四位数“我要参加”最大是________。

4.下面的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.如果:巧十解十数十字十谜=30,那么“数字谜”所代表的三位数是____________。

5.下面的乘法算式中,只知道一个数字“8”,请你补全,这个算式的积最小是_________。

6 . 在算式ABCD+EFG=2010中,不同的字母代表不同的数字,那么A+B+C+D+E+F+G=______。

7. 在下面的乘法竖式中相同的字母代表相同的数字,不同的字母代表不同的数字,被乘数等于______。

8. 在下面的口里填上合适的数字后,所得的积是_______。

9.“我爱北京奥运”是个六位数,每个不同的汉字表示不同的数.符合下面竖式的这个六位数是________。

10.在口内填人适当的数字,下列竖式成立,被除数等于_______。

11.下面竖式中,“学理科到学而思”的每个汉字表示0-9这10个数字中的一个,相同的汉字表示相同的数字,不同的汉字表示不同的数字,四位数“到学而思”的最大值是_______。

12.请在下图每个方框中填人一个不是8的数字,使乘法竖式成立.13 .在下图方框中填入适当的数字使竖式成立,其中较大的乘数为 ________。

14. 在下面的算式中,“a、b、c”分别代表0~9中的三个不同的数字,那么,数字b是b =15. 电子数字o~9如图1所示,图2是由电子数字组成的乘法算式,但有一些模糊不清,请将图2的电子数字恢复,并将它写成横式形式:__________。

16.下面的算式中,每个汉字代表O~9中的一个数字,不同汉字代表不同数字.相同汉字代表相同数字,美十妙十数十学十花十园=__________。

四年级奥数数字谜综合(有答案)

四年级奥数数字谜综合(有答案)

四年级奥数数字谜综合(有答案)第十九讲数字谜综合(二)内容概述涉及质数与合数等概念,以及需要利用数的整除特征、分解质因数等数论手段解的数字谜问题.典型问题1.试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次: 口口口(这是一个三位数).口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求其他两个数.【分析与解】714=2×3×7×17.由此可以看出,要使最下面方框中的数与714互质,在剩下未填的数字2,3,5,6中只能选5,也就是说,第三个数只能是5.现在来讨论第二个数的三个方框中应该怎样填2,3,6这3个数字.因为任意两个偶数都有公约数2,而714是偶数,所以第二个的三位数不能是偶数,因此个位数字只能是3.这样一来,第二个三位数只能是263或623.但是623能被7整除,所以623与714不互质.最后来看263这个数.通过检验可知:714的质因数2,3,7和17都不是263的因数,所以714与263这两个数互质.显然,263与5也互质.因此,其他两个数为263和5.2.如图19-1,4个小三角形的顶点处有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等.问这6个质数的积是多少【分析与解】设每个小三角形三个顶点上的数的和都是个小三角形的和S相加时,中间三角形每个顶点上的数被算了3次,所以4S=2S+20,即S=10.这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:2×2×3×3×5×5=9003.在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.【分析与解】记两个乘数为7a b和cd其中a、b、c、d的值只能取自2、3、5或7.由已知条件,b与c相乘的个位数字仍为质数,这只可能是b与c中有一个是5另一个是3、5或7,如果b不是5,那么c必然是5,但73×5=365、77×5=385的十位数字都不是质数.因此b是5,c是3、5、7中的一个,同样道理,d也是3、5、7中的一个.再由已知条件,75a 的乘积的各位数字全是质数,所以乘积肯定大于2000,满足积大于2000且a 、c 取质数,只有以下六种情况:775×3=2325,575×5=2875,775×5=3875,375×7=2625,575×7 =4025,775×7=5425.其中只有第一组的结果各位数字是质数,因此a=7,c=3,同理,d 也是3.最终算式即为775×33=255754.把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方.那么这个和数是多少【分析与解】设原来的两位数为xy ,则交换十位数字与个位数字后的两位数为,两个数的和为yx ,两个数和为xy +yx =1010x y x y +++()11x y =+是ll 的倍数,因为它是完全平方数,所以也是11 ×11=121的倍数.但是这个和小于100+100=200 <121×2,所以这个和数只能是121.5. 迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.那么“迎+春+杯+好”之和等于多少【分析与解】好好好=好×111=好×3×37.那么37必定是“迎杯”或“春杯”的约数,不妨设为“迎杯”的约数,那么“迎杯”为37或74.当“迎杯”为37时,“春杯”为“好”×3,且“杯”为7,此时“春杯”为27,“好”为9,“迎+春+杯+好”之和为3+2+7+9=21;当“迎杯”为74时,“春杯”为“好”×3÷2,且“杯”为4,此时“春杯”为24,“好”为16,显然不满足.所以“迎+春+杯+好”之和为3+2+7+9=21.6.数数×科学=学数学在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么“数学”所代表的两位数是多少【分析与解】“学数学”是“数数”的倍数,因而是“数”与1l 的倍数.学数学=学×101+数×10是“数”的倍数,而101是质数,所以“学”一定是“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数”=1,“学”=(11+1)÷2=6.“数学”所代表的两位数是16.7.将1,2,3,4,5,6,7,8,9这9个数字分别填人下式的各个方框中,可使此等式成立:口口×口口=口口×口口口=3634.填好后得到三个两位数和一个三位数,这三个两位数中最大的一个是多少【分析与解】3634=2×23×79,表达为两个两位数的乘积只能是(2×23)×79,即46×79;表达为一个两位数与一个三位数的乘积,只能是23×(2×79)=23×158.满足题意,所以这三个两位数中最大的一个是79.8.六年级的学生总人数是三位数,其中男生占35,男生人数也是三位数,而组成以上两个三位数的6个数字,恰好是l,2,3,4,5,6.那么六年级共有学生多少人【分析与解】设六年级总人数为xyz ,其中男生有abc 人.有xyz×35=abc,即5abc=3xyz,其中xyz为5的倍数,所以z为5.而abc为3的倍数,所以其数字和a+b+c应为3的倍数,则在剩下的5个数中,a、b、c(不计顺序)只能为1,2,6或l,2,3或4,2,6或4,2,3.而c不能是偶数(不然z应为0),所以只能是l,2,6或1,2,3或4,2,3可能满足;又因为xyz最大为645,对应abc为387,即c不超过3.于是abc有可能为261,123,321,213,231,243这6种可能,验证只有当abc=261时,对应xyz为261÷3×5=435.所以六年级共有学毕435人.9.图19-3是三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立.那么共有多少种不同的填法【分析与解】设1992=abc×d(a,b,c,d可以相同),有1992=2×2×2×3×83,其中d可以取2,3,4,6,8这5种,对应的算式填法有5种.10.在图19-4残缺的算式中,只写出3个数字l,其余的数字都不是1.那么这个算式的乘积是多少【分析与解】如下图所示,为了方便说明,将某些数用字母标出.第4行口口1对应为AB×C,其个位为1,那么B×C的个位数字也是1,而B、C又均不能为1,所以只有3×7,9×9对应为1,那么B为9、7或3.第3行10口对应为AB×D,可能为100、102、103、104、105、106、107、108、、107、109均为质数,没有两位数的约数,不满足;100、105没有个位数字为3、7、9的约数,不满足;102=17×6、104=13×8、106=53×2、108=27×4,但102、104对应的AB中4均为1,不满足.所以AB为53或27.当AB为27时,第4行为27×C,且个位数字为1,所以只能为27×3=8l,但不是三位数,不满足.当AB为53时,第4行为53×C,且个位数字为1,所以只能为53×7=371,因此被乘数必须为53,乘数为72,积为3816.11.图19-5是一个残缺的乘法竖式,在每个方框中填入一个不是2的数字,可使其成为正确的算式.那么所得的乘积是多少【分析与解】方法一:由已知条件,最后结果的首位数字不能是2,因此只能是3.这说明千位上作加法时有进位.百位数上相加时最多向千位进2,所以要使千位数有进位,其中的未知数字至少是10-2-2=6,即三个三位数加数中的第二个至少是600.因为它是第一个乘数与一个一位数字的乘积,因此该乘数肯定大于60.第二个乘数的百位数字与第一个乘数的乘积在220~229之间,所以它只能是3(否则4×60>229).而220~229之间个位数字不是2且是3的倍数的只有225=3×75和228=3×76.如果第一乘数是75,又第二个乘数的百位数字是3,那么它们的乘积小于75×400=30000,它的首位数字也就不可能是3,不满足.乘数是76,另一个乘数就要大于30000÷76>394,那么只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.算式中所得的乘积为30096.方法二:为了方便说明,将某些位置标上字母,如下图所示,因为干位最多进1,而最终的乘积万位又不能是2,所以只能是3:而第5行对应为22口=AB×C,其中C不可能为1,又不能为2,那么最小为3.当C为3时,22口=AB×3,那么A只能为7,B只能为4,5或6,(1)当B为4时,74×3=222,第5行个位为2,不满足题意;(2)当B为5时,AB×CDE对应为75×3DE,小于30000,不满足;(3)当B为6时,AB×CDE对应为76×3DE,D只能为9,此时第4行对应为AB×D即76×9=684.因为30000÷76>394,所以39E只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.验证C 取其他值时没有满足题意的解.所以算式中所得的乘积为30096.12.请补全图19-6这个残缺的除法竖式.问这个除法算式的商数是多少【分析与解】易知除号下第二行的首位为9.除号下第一行开头两位为1、0,商的十位为0.第二行9口对应为CD×A ,(1)9口不可能为90,不然第一行前三位10口与第二行90的差不可能为一位数,不满足第三行特征;(2)9口对应为91时,第三行的首位对应为10口-91,最小为9,所以只能为9,那么有91=CD×A,928=CD×B,不可能;(3)9口对应为92时,第三行的首位对应为10口-92,最小为8,所以可能为8、9,①如果为9,那么对应有92=CD×A,928=CD×B,不可能;②如果为8,那么对应有92=CD×A,828=CD×B,不难得知A=l,B=9,CD=92时满足,那么被除数为92×109=10028.验证没有其他的情况满足,所以这个除法算式的商数为109.13.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑×5=勤动脑学习好×8中,“学习好勤动脑”所表示的六位数最小是多少【分析与解】设“学习好”为x,“勤动脑”为Y ,则“学习好勤动脑”为1000X+Y ,“勤动脑学习好”为1000y+x ,有(1000x+Y)×5=(1000y+x)×8,化简有4992x=7995y,4992=128×3×13,7995=3×41×5×13,即128x=205y,有205,128x y =??=?410,256x y =??=?615,384x y =??=?820512x y =??=?所以,“学习好勤动脑”所表示的六位数可能为205128,410256,615384,820512,但是不能有重复数字,所以只有410256,615384满足,其中最小的是41025614.互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和2l 不是互为反序的数.)【分析与解】首先可以确定这两个自然数均为三位数,不然得到的乘积不可能为五位数.设ABC ×CBA =92565,那么C 、A 中必定有一个为5,一个为奇数.不妨设C 为5.5AB ×5BA =92565,那么A 只能为1,1551B B =92565.又注意到92565=3×3×5×11×1l×17.验证只有15B 为165时满足,所以这两个自然数为165、561.15.开放的中国盼奥运×口=盼盼盼盼盼盼盼盼盼上面的横式中不同的汉字代表不同的数字,口代表某个一位数.那么,“盼”字所代表的数字是多少【分析与解】我们从“口”中所应填入的一位自然数开始分析,设A=“开放的中国盼奥运”,B=“盼盼盼盼盼盼盼盼盼”.于是B=A×口.显然口内不会是1.由于口是B 的约数,因此口不会是“盼”所代表的数字,要不然A 就等于1,这说明口内不会是5,而1不是7的倍数,说明口内也不会是7.如果口内填3,则“盼”只能是1或2,当“盼”是1时,B÷3=,不符合要求;当“盼”时2时,B÷3=,也不符合要求;说明口内不能填入3.口内也不会是偶数数字2、4、6和8.因为口内是偶数数字时,“盼”也是偶数数字,口内显然不会是2,如果口内是4,根据被4整除的特征,“盼”只能是8,这时A 就成了一个九位数,说明口内不能是4;类似的,可以说明口内不能是6和8.综上所需,口的数字只能是9,这时利用91111...1123个=×9,可以得到91442443个盼盼盼盼...盼=×9 ×盼.于是“盼”代表的数字必须同时满足下面两个条件:经验证知◇=盼=7,即×9=7.。

小学数学《数字谜》练习题(含答案)

小学数学《数字谜》练习题(含答案)

小学数学《数字谜》练习题(含答案)内容概述数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用。

数字谜一般分为横式数字谜和竖式数字谜。

横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等。

例题分析【例1】(☆☆)请在下列各式中分别插入一个数字,使之成为等式:⑴ 111111111111=⨯⨯⑵ 377377377773=⨯⨯分析:⑴ 1221111111=⨯⨯, 1001111111111⨯=⨯⨯=711111111911311⨯⨯=⨯,说明需要改动的数应在等式左边,所以应将等式左边的1改成91。

⑵ 37777131001377377377⨯⨯=⨯=,所以应将等式左边的3改成13。

【例2】(☆☆)在下面的四个□中填入同一个数,使得“迎”、“新”、“世”、“纪”四个字所代表的各数之和等于2000。

那么□中应填多少?□-1=迎,□+9=新,□×9=世,□÷9=纪分析:设“纪”所代表的数为x ,那么□=9x ,迎=9x -1,新=9x +9,世=9x ×9=81x ,根据题意有9x-1+9x+9+81x+x=2000,整理得1992100=x ,92.19=x ,那么□28.179992.19=⨯=。

【例3】(☆☆)如图,横、竖各12个方格,每个方格都有一个数,已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。

图中已填入3,5,8和x 四个数,那么x 代表的数是 。

分析:竖列上任意三个相邻数之和为21,就是竖列上任意三个相邻数都是由三 个同样的数组成(只不过顺序不同),这样我们可把“3”向下每隔两格地“移动”,由此得出中间的一格应填21-3-8=10。

奥数四年级猜数字题及答案

奥数四年级猜数字题及答案

奥数四年级猜数字题及答案奥数四年级猜数字题是一项旨在培养学生逻辑思维和数学推理能力的练习。

以下是一些适合四年级学生的奥数猜数字题目及答案:题目1:小明有三张卡片,每张卡片上都写有一个数字,分别是A、B、C。

他将这三张卡片分别放在三个盒子里,然后告诉小华以下信息:1. A是最小的数字。

2. B不是最大的数字。

3. C是偶数。

请问,A、B、C各是什么数字?答案:根据信息1,我们知道A是最小的数字。

根据信息2,B不是最大的数字,所以B只能是中间的数字。

信息3告诉我们C是偶数,因此C不能是最小的数字,也不能是最大的奇数。

所以C只能是中间的偶数。

这样,A就是最小的奇数,B是中间的数字,C是中间的偶数。

假设A 是1,B是3,C是2,满足所有条件。

题目2:有四个数字,它们分别是1、2、3、4。

这四个数字被随机地排列在四个不同的位置上,形成一个四位数。

这个四位数的特点是:1. 数字1和数字3相邻。

2. 数字2和数字4不相邻。

3. 数字1比数字3小。

4. 数字2比数字4大。

请问这个四位数是什么?答案:根据条件1,1和3必须相邻。

根据条件3,1必须在3的左边。

根据条件2,2和4不能相邻,所以2和4必须分别放在1和3的两侧。

根据条件4,2必须大于4,所以2必须在1的右边,4必须在3的左边。

这样,我们得到这个四位数是3124。

题目3:有五个数字,分别是0、1、2、3、4。

这五个数字被用来形成一个五位数,这个五位数满足以下条件:1. 数字0不在首位。

2. 数字1和数字3不相邻。

3. 数字2和数字4必须相邻。

4. 数字3比数字1大。

请问这个五位数是什么?答案:根据条件1,0不能放在首位。

根据条件4,3必须大于1,所以3不能是首位。

根据条件2,1和3不能相邻,所以1和3不能同时放在2和4的两侧。

根据条件3,2和4必须相邻。

如果我们将2和4放在首位,那么1和3可以放在3和4的位置,0可以放在5的位置,得到五位数21430。

如果我们将2和4放在3和4的位置,那么1和3只能放在1和2的位置,这与条件2矛盾。

小学生奥数数字谜练习题及答案

小学生奥数数字谜练习题及答案

【导语】数字谜是⼀类有趣的数学推理问题,也是⼀种很好的智⼒游戏,我国古代称它为⾍蚀算,探秘中结合当年年份和事件多为⽂字考察。

数字谜主要以四则运算的法则和性质为依据。

通过观察、猜想、分析、推理、判断、尝试和验证等思维⽅法进⾏解题。

其中找准突破⼝是巧解数字谜的关键。

以下是⽆忧考整理的《⼩学⽣奥数数字谜练习题及答案》相关资料,希望帮助到您。

1.⼩学⽣奥数数字谜练习题及答案 [4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100改动上⾯算式中⼀个数的⼩数点的位置,使其成为⼀个正确的等式,那么被改动的数变为多少? 答案与解析:根据[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100,得到[21-(0.4+13)]×25=100,只有⼀个⼩数,假设⼩数有问题,那么,(21-17)×25=100,0.4应为4,2.5应为0.25 答:把2.5改成0.25。

2.⼩学⽣奥数数字谜练习题及答案 □+□+□+□+□=30 在上⾯的□中填上5个连续的⾃然数,使等式成⽴。

解答:4+5+6+7+8=303.⼩学⽣奥数数字谜练习题及答案 计算1234567972=______。

答案:原式=1234567998=1111111118=888888888。

4.⼩学⽣奥数数字谜练习题及答案 把2,3,4,6,7,9分别填到下⾯六个圆圈中,使三个算式成⽴。

○+○=10,○-○=5,○+○=8 解析 分析1在2、3、4、6、7、9中相加等于8的只有2和6,先把2、6填在第三个算式中,剩下的就可填成3+7=10,9-4=5。

分析2六个数中9,⽽9不能填在第1或第3个算式中,所以把9填在第2个算式中作被减数。

其余的就好填了。

解:3+7=10,9-4=5,2+6=8。

5.⼩学⽣奥数数字谜练习题及答案 ⼩轩轩在中⼩学数学报社看到了⼏个奇怪的算式: 数+数=⼩; 学+学=学; 中+中=数学。

四上奥数 数字谜

四上奥数 数字谜

数字谜例1 数一数,下列图形中各有几条线段?例2 数一数,下图中有多少个锐角?例3 数一数,下图中有几个三角形?例4 数一数,下列图形中各有几个长方形?例5 数一数,下列图形中各有多少个正方形?例6 数一数,下面的图形中含有☆的长方形一共有几个?(有一个或两个☆都可以)1 数一数,下面图形中一共有几条线段?几个三角形?2 数一数,下面图形中一共有几个三角形?3 数一数,下面的图形中一共有几个长方形?4 数一数,下面的图形中一共有几个三角形?有几个正方形?5 数一数,下面的图形中有几条线段?有几个三角形?巧数图形小练习班级:姓名:1、下图中共有几条线段,几个三角形?2、下图中有几个四边形?3、下图中共有多少个三角形?4、下图中包含“☆”的长方形共有多少个?5、数一数,下图中共有几个正方形?6、数一数,下图中有几个长方形?巧求周长例1 计算下列图形的周长(单位:厘米)例2 求下面两个图形的周长(单位:厘米)例3 一个正方形被分成了三个相同的长方形。

如果其中一个长方形的周长是16米,那么这个正方形的周长是多少米?例4 下图是由四个一样大的长方形和一个边长是4分米的小正方形拼成的一个边长是11分米的大正方形。

每个长方形的长和宽各是多少?周长是多少?例5 下图中共有8条边,分别用a,b,c,d,e,f,g,h表示,要计算它的周长,至少要测量哪几条线段的长度?图形的计算1、用6个边长是2厘米的小正方形拼成一个长方形,有几种不同拼法?哪种拼法拼成的长方形周长长?这个长方形的周长是多少厘米?2、一个正方形的边长增加10厘米,面积就增加1300平方厘米,原来正方形的面积是多少平方厘米?3、一个长方形操场长50米,扩建后长增加18米,宽增加15米,扩建后操场面积增加1740平方米。

求操场原来的宽是多少米?4、已知一个长方形的周长是24米,如果它的长和宽各增加3米,那么面积将会增加多少平方米?5、一个正方形的纸片,在一边截去8厘米,在这边相邻边截去3厘米,这样面积就减少了196平方厘米。

四年级奥数数字谜综合(有答案)

四年级奥数数字谜综合(有答案)

第十九讲数字谜综合(二)内容概述涉及质数与合数等概念,以及需要利用数的整除特征、分解质因数等数论手段解的数字谜问题.典型问题1.试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次: 口口口(这是一个三位数).口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求其他两个数.【分析与解】714=2×3×7×17.由此可以看出,要使最下面方框中的数与714互质,在剩下未填的数字2,3,5,6中只能选5,也就是说,第三个数只能是5.现在来讨论第二个数的三个方框中应该怎样填2,3,6这3个数字.因为任意两个偶数都有公约数2,而714是偶数,所以第二个的三位数不能是偶数,因此个位数字只能是3.这样一来,第二个三位数只能是263或623.但是623能被7整除,所以623与714不互质.最后来看263这个数.通过检验可知:714的质因数2,3,7和17都不是263的因数,所以714与263这两个数互质.显然,263与5也互质.因此,其他两个数为263和5.2.如图19-1,4个小三角形的顶点处有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等.问这6个质数的积是多少【分析与解】设每个小三角形三个顶点上的数的和都是个小三角形的和S相加时,中间三角形每个顶点上的数被算了3次,所以 4S=2S+20,即S=10.这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:2×2×3×3×5×5=9003.在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.【分析与解】记两个乘数为7a b 和cd 其中a 、b 、c 、d 的值只能取自2、3、5或7.由已知条件,b 与c 相乘的个位数字仍为质数,这只可能是b 与c 中有一个是5另一个是3、5或7,如果b 不是5,那么c 必然是5,但73×5=365、77×5=385的十位数字都不是质数.因此b 是5,c 是3、5、7中的一个,同样道理,d 也是3、5、7中的一个.再由已知条件,75a 的乘积的各位数字全是质数,所以乘积肯定大于2000,满足积大于2000且a 、c 取质数,只有以下六种情况:775×3=2325,575×5=2875,775×5=3875,375×7=2625,575×7=4025,775×7=5425.其中只有第一组的结果各位数字是质数,因此a=7,c=3,同理,d 也是3. 最终算式即为775×33=255754.把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方.那么这个和数是多少【分析与解】 设原来的两位数为xy ,则交换十位数字与个位数字后的两位数为,两个数的和为yx ,两个数和为 xy +yx =1010x y x y +++()11x y =+是ll 的倍数,因为它是完全平方数,所以也是11 ×11=121的倍数.但是这个和小于100+100=200<121×2,所以这个和数只能是121.5. 迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.那么“迎+春+杯+好”之和等于多少【分析与解】好好好=好×111=好×3×37.那么37必定是“迎杯”或“春杯”的约数,不妨设为“迎杯”的约数,那么“迎杯”为37或74.当“迎杯”为37时,“春杯”为“好”×3,且“杯”为7,此时“春杯”为27,“好”为9,“迎+春+杯+好”之和为3+2+7+9=21;当“迎杯”为74时,“春杯”为“好”×3÷2,且“杯”为4,此时“春杯”为24,“好”为16,显然不满足.所以“迎+春+杯+好”之和为3+2+7+9=21.6.数数×科学=学数学在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么“数学”所代表的两位数是多少【分析与解】“学数学”是“数数”的倍数,因而是“数”与1l的倍数.学数学=学×101+数×10是“数”的倍数,而101是质数,所以“学”一定是“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数”=1,“学”=(11+1)÷2=6.“数学”所代表的两位数是16.7.将1,2,3,4,5,6,7,8,9这9个数字分别填人下式的各个方框中,可使此等式成立:口口×口口=口口×口口口=3634.填好后得到三个两位数和一个三位数,这三个两位数中最大的一个是多少【分析与解】3634=2×23×79,表达为两个两位数的乘积只能是(2×23)×79,即46×79;表达为一个两位数与一个三位数的乘积,只能是23×(2×79)=23×158.满足题意,所以这三个两位数中最大的一个是79.,男生人数也是三位数,而组成8.六年级的学生总人数是三位数,其中男生占35以上两个三位数的6个数字,恰好是l,2,3,4,5,6.那么六年级共有学生多少人【分析与解】设六年级总人数为xyz,其中男生有abc人.有xyz×3=abc,即5abc=3xyz,其中xyz为5的倍数,所以z为5.而abc为35的倍数,所以其数字和a+b+c应为3的倍数,则在剩下的5个数中,a、b、c(不计顺序)只能为1,2,6或l,2,3或4,2,6或4,2,3.而c不能是偶数(不然z应为0),所以只能是l,2,6或1,2,3或4,2,3可能满足;又因为xyz最大为645,对应abc为387,即c不超过3.于是abc有可能为261,123,321,213,231,243这6种可能,验证只有当abc=261时,对应xyz为261÷3×5=435.所以六年级共有学毕435人.9.图19-3是三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立.那么共有多少种不同的填法【分析与解】设1992=abc×d(a,b,c,d可以相同),有1992=2×2×2×3×83,其中d可以取2,3,4,6,8这5种,对应的算式填法有5种.10.在图19-4残缺的算式中,只写出3个数字l,其余的数字都不是1.那么这个算式的乘积是多少【分析与解】如下图所示,为了方便说明,将某些数用字母标出.第4行口口1对应为AB×C,其个位为1,那么B×C的个位数字也是1,而B、C又均不能为1,所以只有3×7,9×9对应为1,那么B为9、7或3.第3行10口对应为AB×D,可能为100、102、103、104、105、106、107、108、、107、109均为质数,没有两位数的约数,不满足;100、105没有个位数字为3、7、9的约数,不满足;102=17×6、104=13×8、106=53×2、108=27×4,但102、104对应的AB 中4均为1,不满足.所以AB为53或27.当AB为27时,第4行为27×C,且个位数字为1,所以只能为27×3=8l,但不是三位数,不满足.当AB为53时,第4行为53×C,且个位数字为1,所以只能为53×7=371,因此被乘数必须为53,乘数为72,积为3816.11.图19-5是一个残缺的乘法竖式,在每个方框中填入一个不是2的数字,可使其成为正确的算式.那么所得的乘积是多少【分析与解】方法一:由已知条件,最后结果的首位数字不能是2,因此只能是3.这说明千位上作加法时有进位.百位数上相加时最多向千位进2,所以要使千位数有进位,其中的未知数字至少是10-2-2=6,即三个三位数加数中的第二个至少是600.因为它是第一个乘数与一个一位数字的乘积,因此该乘数肯定大于60.第二个乘数的百位数字与第一个乘数的乘积在220~229之间,所以它只能是3(否则4×60>229).而220~229之间个位数字不是2且是3的倍数的只有225=3×75和228=3×76.如果第一乘数是75,又第二个乘数的百位数字是3,那么它们的乘积小于75×400=30000,它的首位数字也就不可能是3,不满足.乘数是76,另一个乘数就要大于30000÷76>394,那么只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.算式中所得的乘积为30096.方法二:为了方便说明,将某些位置标上字母,如下图所示,因为干位最多进1,而最终的乘积万位又不能是2,所以只能是3:而第5行对应为22口=AB×C,其中C不可能为1,又不能为2,那么最小为3.当C为3时,22口=AB×3,那么A只能为7,B只能为4,5或6,(1)当B为4时,74×3=222,第5行个位为2,不满足题意;(2)当B为5时,AB×CDE对应为75×3DE,小于30000,不满足;(3)当B为6时,AB×CDE对应为76×3DE,D只能为9,此时第4行对应为AB×D即76×9=684.因为30000÷76>394,所以39E只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.验证C取其他值时没有满足题意的解.所以算式中所得的乘积为30096.12.请补全图19-6这个残缺的除法竖式.问这个除法算式的商数是多少【分析与解】易知除号下第二行的首位为9.除号下第一行开头两位为1、0,商的十位为0.第二行9口对应为CD×A,(1)9口不可能为90,不然第一行前三位10口与第二行90的差不可能为一位数,不满足第三行特征;(2)9口对应为91时,第三行的首位对应为10口-91,最小为9,所以只能为9,那么有91=CD×A ,928=CD×B ,不可能;(3)9口对应为92时,第三行的首位对应为10口-92,最小为8,所以可能为8、9,①如果为9,那么对应有92=CD×A ,928=CD×B ,不可能;②如果为8,那么对应有92=CD×A ,828=CD×B ,不难得知A=l,B=9,CD=92时满足,那么被除数为92×109=10028.验证没有其他的情况满足,所以这个除法算式的商数为109.13.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑×5=勤动脑学习好×8中,“学习好勤动脑”所表示的六位数最小是多少【分析与解】 设“学习好”为x,“勤动脑”为Y,则“学习好勤动脑”为1000X+Y,“勤动脑学习好”为1000y+x ,有(1000x+Y)×5=(1000y+x )×8,化简有4992x=7995y,4992=128×3×13,7995=3×41×5×13,即128x=205y,有205,128x y =⎧⎨=⎩410,256x y =⎧⎨=⎩615,384x y =⎧⎨=⎩820512x y =⎧⎨=⎩ 所以,“学习好勤动脑”所表示的六位数可能为205128,410256,615384,820512,但是不能有重复数字,所以只有410256,615384满足,其中最小的是41025614.互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和2l不是互为反序的数.)【分析与解】首先可以确定这两个自然数均为三位数,不然得到的乘积不可能为五位数.设ABC×CBA=92565,那么C、A中必定有一个为5,一个为奇数.不妨设C 为5.=92565.又注意到92565=3×3B B5AB×5BA=92565,那么A只能为1,1551×5×11×1l×17.验证只有15B为165时满足,所以这两个自然数为165、561.15.开放的中国盼奥运×口=盼盼盼盼盼盼盼盼盼上面的横式中不同的汉字代表不同的数字,口代表某个一位数.那么,“盼”字所代表的数字是多少【分析与解】我们从“口”中所应填入的一位自然数开始分析,设A=“开放的中国盼奥运”,B=“盼盼盼盼盼盼盼盼盼”.于是B=A×口.显然口内不会是1.由于口是B 的约数,因此口不会是“盼”所代表的数字,要不然A 就等于1,这说明口内不会是5,而1不是7的倍数,说明口内也不会是7.如果口内填3,则“盼”只能是1或2,当“盼”是1时,B÷3=,不符合要求;当“盼”时2时,B ÷3=,也不符合要求;说明口内不能填入3.口内也不会是偶数数字2、4、6和8.因为口内是偶数数字时,“盼”也是偶数数字,口内显然不会是2,如果口内是4,根据被4整除的特征,“盼”只能是8,这时A 就成了一个九位数,说明口内不能是4;类似的,可以说明口内不能是6和8.综上所需,口的数字只能是9,这时利用91111...1个=×9,可以得到9个盼盼盼盼...盼=×9×盼.于是“盼”代表的数字必须同时满足下面两个条件:经验证知◇=盼=7,即×9=7.。

小学奥数数字谜(乘除法)专项练习30题(有答案)

小学奥数数字谜(乘除法)专项练习30题(有答案)

第10讲 数字谜二专项练习30题(有答案)i .如图式中,不同的汉字代表不同的数字, 马年好”代表的三位数是 马好 x 7马年好 2.在下面的乘法算式中, A, B, C, D, E 代表不同的数码.ABC 是一个三位数,DE 是一个两位数,则 ABC 是 ,而是 .ABC X DE 4 0 6 33.在如图乘法中,A= AB 114 3043154,B= __________ 4.右面是一个乘法算式,每个方框填一个数字,而每一个汉字表示一个数字,不同的汉字代表不同的数字, 字所代表的数字大于 2,那么总决赛”所代表的三位数字是 .总” 总决赛 欢迎 □□□ □□□□5.确定下式中各汉字代表的数字,使竖式成立.那么 奥”代表 ,克”代表 .一克匹林典一4 J 臭“西克 袁 "林 * ________ fe ft __3克3克0 林”代表 ,匹”代表 6.如图的乘法算式中, 赛”是9,那么来”是 ,参”是 ,加”是 ,镇 是 ,数”是 ,学”是 ,竞”是 . 来参加镇数学竞赛 X 赛 ifc7.如果图中的竖式成立,那么广 = ,州=欢= ,迎= ,您= .广州亚运欢迎您X 您2 111 111 18.右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是 . 小学希望杯赛99 9 9 9 99.根据竖式推算出下面的汉字分别代表什么数字?新= 塘= 小=¥各= 学= 奥=新塘X小学小将学奥数10.无锡欢迎您代表5个不同数字,相同的字代表相同的数字,那么无锡欢迎您代表1无锡欢迎您乂3无锡欢迎您111.右面算式中,三个字各代表什么数字,算式才能成立.答:太”代表 ,好”字代表, 7”年代表好好X 好大好了12.下面式子相同的字代表相同的数字,不同的字代表不同的数字,则欢迎你来北京”是北京欢迎你来X2欢迎你来北京1 A B C D EX313. A B C D E 1A= B= C= D= E=14.如图,贝U A= ; B= ; C= ; D= .A B C DX 4D C B A15.迎接奥运会”每个文字各代表一个不同的一位数字,它们各等于多少?会运奥接迎X 4迎接奥运会迎" = 接" = 奥” = 运" = 含" =16.伟大祖国繁荣昌盛”各代表一个不同的一位数字,它们各等于多少?伟大祖国繁荣昌盛X.伟大大大大大大大大大繁" = 荣” = 昌"= 盛” = .17.在这个乘法算式中,p、q、r、s各代表不同的数字.请问:p+q+r+s=p qx「qs s s18.如图的式子中每一个中文字代表1〜9中的一个数码,不同的文字代表不同的数码:则被乘数为裁学畏林匹克x 3学奥林欣竟教二.解答题(共12小题)19.下面的除法中,不同的汉字代表不同数字.问明天更美好”代表的五位数是什么?20.在下面乘法算式中,每一方框要填一个数字,若一个汉字代表一个数字,不同汉字代表不同的数字.请问最后的积(五位数)是多少?□恭口1贺口9新口□ □ 9年□ □年□口21.下列竖式中的A、B、C、D、E分别代表1〜9中不同的数字,求出它们使竖式成立的值.则:ABCDE二1 AB CDEx 3AB CDE122.根据竖式推算出下面的汉字分别代表什么数字?新= 塘=小= 学= 好=新塘小学X 好学小塘新23.图所示的乘法算式中,每个字母都代表0〜9的一个数字,而且不同的字母代表不同的数字,那么D代表的数字是几?AX C BG F D D D24.如果A、B满足下面算式,则A+B= . A eX 曰A 11 43 0s 3 15 425.如图的竖式中,相同的文字表示相同的数字,不同的文字表示不同的数字. 我们爱希望杯”表示的六位数是我们爱希望杯X 杯---9 9 9 9 9 926.我爱北京奥运”是个六位数,每个汉字表示不同的数.请把符合下面竖式的这个六位数写在下面的括号里:我受北京奥运X 运9 9 9 9 9 927.右边是一个残缺算式,只已知一个2和三个0.其中不同的汉字代表不相同的数字,那么新年好”代表的三位数是 .__________ 新年好千禧年)2 口□ □□口□。

四年级奥数:数字谜

四年级奥数:数字谜

四年级奥数:数字谜(一)我们在三年级已经学习过一些简单的数字谜问题。

这两讲除了复习巩固学过的知识外,还要学习一些新的内容。

例1 在下面算式等号左边合适的地方添上括号,使等式成立:5+7×8+12÷4-2=20。

分析:等式右边是20,而等式左边算式中的7×8所得的积比20大得多。

因此必须设法使这个积缩小一定的倍数,化大为小。

从整个算式来看,7×8是4的倍数,12也是4的倍数,5不能被4整除,因此可在7×8+12前后添上小括号,再除以4得17,5+17-2=20。

解:5+(7×8+12)÷4-2=20。

例2把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):分析与解:如果从加法与减法两个算式入手,那么会出现许多种情形。

如果从乘法算式入手,那么只有下面两种可能:2×3=6或2×4=8,所以应当从乘法算式入手。

因为在加法算式□+□=□中,等号两边的数相等,所以加法算式中的三个□内的三个数的和是偶数;而减法算式□-□=可以变形为加法算式□=□+□,所以减法算式中的三个□内的三个数的和也是偶数。

于是可知,原题加减法算式中的六个数的和应该是偶数。

若乘法算式是2×4=8,则剩下的六个数1,3,5,6,7,9的和是奇数,不合题意;若乘法算式是2×3=6,则剩下的六个数1,4,5,7,8,9可分为两组:4+5=9,8-7=1(或8-1=7);1+7=8,9-5=4(或9-4=5)。

所以答案为与例3下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立:□□□÷□□=□-□=□-7。

分析与解:因为左端除法式子的商必大于等于2,所以右端被减数只能填9,由此知左端被除数的百位数只能填1,故中间减式有8-6,6-4,5-3和4-2四种可能。

经逐一验证,8-6,6-4和4-2均无解,只有当中间减式为5-3时有如下两组解:128÷64=5-3=9-7,或164÷82=5-3=9-7。

四年级奥数竖式数字谜40题

四年级奥数竖式数字谜40题

四年级奥数竖式数字谜40题一、不带解析的竖式数字谜题目(20题)1. 在下面的竖式中,每个汉字代表一个数字,不同的汉字代表不同的数字,求“我爱数学”代表的四位数是多少?我爱数学。

× 9.——————学数爱我。

2. 下面的竖式中,A、B、C、D各代表什么数字?A B C D.× 9.——————D C B A.3. 在竖式中,□里填合适的数字,使竖式成立。

□ 2 □.×□ 7.——————□□ 0 6.□□ 4.——————1 □□□ 2.4. 填出下面竖式中的数字。

□ 8 □.×□ 5.——————4 □ 0 □.3 □□.——————3 □ 9 □ 0.5. 在下面的竖式中,相同的字母表示相同的数字,不同的字母表示不同的数字,求A、B、C的值。

A B C.× C.——————C B A.6. 竖式中的字母各代表什么数字?A B.× B A.——————1 1 4.3 0 4.——————4 1 8.7. 求下面竖式中□里的数字。

□□ 5.× 2 □.——————1 □□ 0.□ 1 □.——————1 □ 9 5 0.8. 在竖式中,使下面的乘法竖式成立。

1 □.×□ 3.——————□□ 3.1 □.——————1 □ 9.9. 填出下面竖式中的数字。

3 □.× 4 □.——————□□ 2.1 2 □.——————1 5 □ 2.10. 下面竖式中,不同的汉字代表不同的数字,“奥林匹克”代表的四位数是多少?奥林匹克。

× 4.——————克匹林奥。

11. 在竖式中,求□里的数字。

2 □.×□ 6.——————1 □ 2.□□.——————□ 9 6.12. 下面竖式中的字母各代表什么数字?A B C.× D E.——————1 □□.2 □□.——————3 □□ 2.13. 求下面竖式中数字。

四年级奥数:数字谜

四年级奥数:数字谜

四年级奥数:数字谜(一)我们在三年级已经学习过一些简单的数字谜问题.这两讲除了复习巩固学过的知识外,还要学习一些新的内容.例1 在下面算式等号左边合适的地方添上括号,使等式成立:5+7×8+12÷4-2=20.分析:等式右边是20,而等式左边算式中的7×8所得的积比20大得多.因此必须设法使这个积缩小一定的倍数,化大为小.从整个算式来看,7×8是4的倍数,12也是4的倍数,5不能被4整除,因此可在7×8+12前后添上小括号,再除以4得17,5+17-2=20.解:5+(7×8+12)÷4-2=20.例2把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):分析与解:如果从加法与减法两个算式入手,那么会出现许多种情形.如果从乘法算式入手,那么只有下面两种可能:2×3=6或2×4=8,所以应当从乘法算式入手.因为在加法算式□+□=□中,等号两边的数相等,所以加法算式中的三个□内的三个数的和是偶数;而减法算式□-□=可以变形为加法算式□=□+□,所以减法算式中的三个□内的三个数的和也是偶数.于是可知,原题加减法算式中的六个数的和应该是偶数.若乘法算式是2×4=8,则剩下的六个数1,3,5,6,7,9的和是奇数,不合题意;若乘法算式是2×3=6,则剩下的六个数1,4,5,7,8,9可分为两组:4+5=9,8-7=1(或8-1=7);1+7=8,9-5=4(或9-4=5).所以答案为与例3下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立:□□□÷□□=□-□=□-7.分析与解:因为左端除法式子的商必大于等于2,所以右端被减数只能填9,由此知左端被除数的百位数只能填1,故中间减式有8-6,6-4,5-3和4-2四种可能.经逐一验证,8-6,6-4和4-2均无解,只有当中间减式为5-3时有如下两组解:128÷64=5-3=9-7,或164÷82=5-3=9-7.例4 将1~9九个数字分别填入下面四个算式的九个□中,使得四个等式都成立:□+□=6,□×□=8,□-□=6,□□÷□=8.分析与解:因为每个□中要填不同的数字,对于加式只有两种填法:1+5或2+4;对于乘式也只有两种填法:1×8或2×4.加式与乘式的数字不能相同,搭配后只有两种可能:(1)加式为1+5,乘式为2×4;(2)加式为2+4,乘式为1×8.对于(1),还剩3,6,7,8,9五个数字未填,减式只能是9-3,此时除式无法满足;对于(2),还剩3,5,6,7,9五个数字未填,减式只能是9-3,此时除式可填56÷7.答案如下:2+4=6,1×8=8,9-3=6,56÷7=8.例2~例4都是对题目经过初步分析后,将满足题目条件的所有可能情况全部列举出来,再逐一试算,决定取舍.这种方法叫做枚举法,也叫穷举法或列举法,它适用于只有几种可能情况的题目,如果可能的情况很多,那么就不宜用枚举法.例5 从1~9这九个自然数中选出八个填入下式的八个○内,使得算式的结果尽可能大:[○÷○×(○+○)]-[○×○+○-○].分析与解:为使算式的结果尽可能大,应当使前一个中括号内的结果尽量大,后一个中括号内的结果尽量小.为叙述方便,将原式改写为:[A÷B×(C+D)]-[E×F+G-H].通过分析,A,C,D,H应尽可能大,且A应最大,C,D次之,H再次之;B,E,F,G应尽可能小,且B应最小,E,F次之,G再次之.于是得到A=9,C=8,D=7,H=6,B=1,E=2,F=3,G=4,其中C与D,E与F的值可互换.将它们代入算式,得到[9÷1×(8+7)]-[2×3+4-6]=131.练习91.在下面的算式里填上括号,使等式成立:(1)4×6+24÷6-5=15;(2)4×6+24÷6-5=35;(3)4×6+24÷6-5=48;(4)4×6+24÷6-5=0.2.加上适当的运算符号和括号,使下式成立:1 2 3 4 5 =100.3.把0~9这十个数字填到下面的□里,组成三个等式(每个数字只能填一次):□+□=□,□-□=□,□×□=□□.4.在下面的□里填上+,-,×,÷,()等符号,使各个等式成立:4□4□4□4=1,4□4□4□4=3,4□4□4□4=5,4□4□4□4=9.5.将2~7这六个数字分别填入下式的□中,使得等式成立:□+□-□=□×□÷□.6.将1~9分别填入下式的九个□内,使算式取得最大值:□□□×□□□×□□□.7.将1~8分别填入下式的八个□内,使算式取得最小值:□□×□□×□□×□□.第10讲数字谜(二)例1 把下面算式中缺少的数字补上:分析与解:一个四位数减去一个三位数,差是一个两位数,也就是说被减数与减数相差不到100.四位数与三位数相差不到100,三位数必然大于900,四位数必然小于1100.由此我们找出解决本题的突破口在百位数上.(1)填百位与千位.由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位应填9,被减数的千位应填1,百位应填0,且十位相减时必须向百位借1.(2)填个位.由于被减数个位数字是0,差的个位数字是1,所以减数的个位数字是9.(3)填十位.由于个位向十位借1,十位又向百位借1,所以被减数十位上的实际数值是18,18分解成两个一位数的和,只能是9与9,因此,减数与差的十位数字都是9.所求算式如右式.由例1看出,考虑减法算式时,借位是一个重要条件.例 2 在下列各加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出这两个算式:分析与解:(1)这是一道四个数连加的算式,其特点是相同数位上的数字相同,且个位与百位上的数字相同,即都是汉字“学”.从个位相同数相加的情况来看,和的个位数字是8,有两种可能情况:2+2+2+2=8与7+7+7+7=28,即“学”=2或7.如果“学”=2,那么要使三个“数”所代表的数字相加的和的个位数字为8,“数”只能代表数字6.此时,百位上的和为“学”+“学”+1=2+2+1=5≠4.因此“学”≠2.如果“学”=7,那么要使三个“数”所代表的数字相加再加上个位进位的2,和的个位数字为8,“数”只能代表数字2.百位上两个7相加要向千位进位1,由此可得“我”代表数字3.满足条件的解如右式.(2)由千位看出,“努”=4.由千、百、十、个位上都有“努”,5432-4444=988,可将竖式简化为左下式.同理,由左下式看出,“力”=8,988-888=100,可将左下式简化为下中式,从而求出“学”=9,“习”=1.满足条件的算式如右下式.例2中的两题形式类似,但题目特点并不相同,解法也不同,请同学们注意比较.例 3 下面竖式中每个汉字代表一个数字,不同的汉字代表不同的数字,求被乘数.分析与解:由于个位上的“赛”ד赛”所得的积不再是“赛”,而是另一个数,所以“赛”的取值只能是2,3,4,7,8,9.下面采用逐一试验的方法求解.(1)若“赛”=2,则“数”=4,积=444444.被乘数为444444÷2=222222,而被乘数各个数位上的数字各不相同,所以“赛”≠2.(2)若“赛”=3,则“数”=9,仿(1)讨论,也不行.(3)若“赛”=4,则“数”=6,积=666666.666666÷4得不到整数商,不合题意.(4)若“赛”=7,则“数”=9,积=999999.被乘数为999999÷7=142857,符合题意.(5)若“赛”=8或9,仿上讨论可知,不合题意.所以,被乘数是142857.例4 在□内填入适当的数字,使左下式的乘法竖式成立.分析与解:为清楚起见,我们用A,B,C,D,…表示□内应填入的数字(见右上式).由被乘数大于500知,E=1.由于乘数的百位数与被乘数的乘积的末位数是5,故B,C中必有一个是5.若C=5,则有6□□×5=(600+□□)×5=3000+□□×5,不可能等于□5□5,与题意不符,所以B=5.再由B=5推知G=0或5.若G=5,则F=A=9,此时被乘数为695,无论C为何值,它与695的积不可能等于□5□5,与题意不符,所以G=0,F=A=4.此时已求出被乘数是645,经试验只有645×7满足□5□5,所以C=7;最后由B=5,G=0知D为偶数,经试验知D=2.右式为所求竖式.此类乘法竖式题应根据已给出的数字、乘法及加法的进位情况,先填比较容易的未知数,再依次填其余未知数.有时某未知数有几种可能取值,需逐一试验决定取舍.例5 在□内填入适当数字,使左下方的除法竖式成立.分析与解:把左上式改写成右上式.根据除法竖式的特点知,B=0,D=G=1,E=F=H=9,因此除数应是99的两位数的约数,可能取值有11,33和99,再由商的个位数是5以及5与除数的积是两位数得到除数是11,进而知A=C-9.至此,除数与商都已求出,其余未知数都可填出(见右式).此类除法竖式应根据除法竖式的特点,如商的空位补0、余数必须小于除数,以及空格间的相互关系等求解,只要求出除数和商,问题就迎刃而解了.例 6 把左下方除法算式中的*号换成数字,使之成为一个完整的式子(各*所表示的数字不一定相同).分析与解:由上面的除法算式容易看出,商的十位数字“*”是0,即商为.因为除数与8的积是两位数,除数与商的千位数字的积是三位数,知商的千位数是9,即商为9807.因为“除数×9”是三位数,所以除数≥12;又因为“除数×8”是两位数,所以除数≤12.推知除数只能是12.被除数为9807×12=117684.除法算式如上页右式.练习101.在下面各竖式的□内填入合适的数字,使竖式成立:2.右面的加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.问:“小”代表什么数字?3.在下列各算式中,不同的汉字代表不同的数字相同的汉字代表相同的数字.求出下列各式:4.在下列各算式中,相同的字母代表相同的数字,不同的字母代表不同的数字.这些算式中各字母分别代表什么数字?答案练习91.(1)4×(6+24)÷6-5=15;(2)4×(6+24÷6)-5=35;(3)4×6+24÷(6-5)=48;(4)4×[(6+24)÷6-5]=0.2.(1×2+3)×4×5=100.3.3+6=9,8-7=1,4×5=20.(填法不唯一)4.(4+4)÷(4+4)=1,(4+4+4)÷4=3,(4×4+4)÷4=5,4+4+4÷4=9.5.6+7-3=5×4÷2.6.941×852×763=611721516.提示:按下面两个原则填数:①将较大的数填在高数位上;②各乘数之间的差尽量小.7.15×26×37×48=692640.练习102.9.提示:“生”=“学”+1.提示:(1)由千位知A=B+1,再由个位知C=9.十位减法需向百位借1,由百位知A=8,从而B=7.(2)由除式特点知D=0,A=9,C=1,依次推出G=2,F=5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、数字谜(B 卷)
_____年级 _____班 姓名_____ 得分_____
1.
.
2. 代表除4以外的数字,请补全算式:
4 3. 把下面除法算式中缺少的数字补上.
4. 把下面除法算式中缺少的数字补上.
6
5. 从0,2,4,6,8五个数字中选取适当数字填入每一方框内.
6. 下面的加法算式中,相同的字母代表相同的数字,不同的字母,代表不同的数字,求这算式.
Y
T
X
I S
N E T N E T Y T R O F + 7. 下面的加法算式中,相同的字母代表相同的数字,不同的字母,代表不同的数字,求这算式.
E
V L E W T O W T E
E R H T N E V E S +
8. 下面的加法算式中,相同的字母代表相同的数字,不同的字母,代表不同的数字,求这算式.
T
H G I
E
E N O O
W T E V I F
+
9. 把除法算式中残缺的数字补上.
*
*********0
15
417
10. 下面的除法算式只给出了一个数字7,补上其余的数字.
*
****
****
****
*************
****
**********70
11. 下面的算式中,只有四个4是已知的,要求补全其它数字.
****
******
**********
***0
44
44
12. 除法算式中已知数字都是7,补全其它数字. ********
*******
***70
7777
13. 下面的乘除法算式中,相同的字母代表相同的数字,不同的字母,代表不同的数字,求这算式.
G F I E G F H
A G F G F E D A
B C C
B A ⨯
14. 下面的加法算式中,相同的字母代表相同的数字,不同的字母,代表不同的数字,已知2+=H C .求这算式.
E
H
D G A B C
F E D C
B A +
———————————————答案——————————————————————
2.
4
3.
0 4.
6
5.
6.
684
13058058
687
92+ 7.
253
2014012279162528+ 8.
8
35
01126648
1709+ 9.
35
18185
3113
4172
10.
9
08790
6
1116
1112
9930018688696
1116
1382121421
11.
3720
6
246244
9
9
63014826678
3241
12.
1790
3535173
6737743641
535
13.
8
2568294828261407704⨯
14.
9
670128497
821+
四、技术质量管理: (此项工作由技术经理主抓,项目班子成员配合辅助)
2、施工组织设计及各类方案管理
在单位工程施工进度总控制计划指导下,在施工图纸下发1个月内完成施工组织总设计(依据招标施组,进行优化),通过项目部自身组织论证会(各专业参加)后报公司组织现场论证、审批后方可实施,并留公司、项目部、劳务等参加人员签到及会议记要。

各类方案的编制由技术副经理负责,依据施工总控计划及施组要求,安排各专业参与组织进行编制、审批,方案交底在施工前10天完成,并做好相关记录。

没有方案交底,不得进行技术交底。

此项目工作由项目经理、技术副经理组织负责。

3、技术交底管理:
各分项工程技术交底由专业施工员负责,在方案交底完成后、施工前5天之内必须完成。

经技术副经理审批后,在施工前2天内进行现场交底,并做好相关记录等。

没有技术交底不得展开现场样板施工,没有样板施工验收不得进行全面展开施工。

此项工作由技术副经理、生产(执行)经理组织负责。

4、工程质量管理:
样板制:所有分项工程必须实行样板引路,各专业施工员在施工方案的指导下指挥在每一分项工程施工前进行样板制做,必须由项目部生产、技术副经理、质量检查员组织验收后方可大面积施工;同时,由样板的实施各专要拿出各项材料使用的指标量,为成本控制打基础。

结构样板:由技术副经理组织,生产各部门参加。

分钢筋、木工、砼、水、电专业分别在结构施工第一段涉及到本专业施工的部位进行样板制作。

凡是结构有变化层必须有样板,在开工前确定样板施工部位。

装修样板:在装修施工大面积展开前,根据现场实际技术副经理确定装修样板工序的制部位和交竣工样板间或层,由装修施工员及装修队伍根据施工总进度计划组织落实、实施。

相关文档
最新文档