永磁直流电动机计算程序

合集下载

永磁电动机计算公式大全(电磁计算程序)精讲

永磁电动机计算公式大全(电磁计算程序)精讲

ƒ
p
1 N 1 N
%
cosφ I n T
N
A r/min N.m
N
N
B级 双层
18 转子外径 19 转子内径 20 定、转子铁心长度 21 铁心计算长度 铁心有效长度 铁心叠压系数 净铁心长 22 定子槽数 23 定子每级槽数 24 极距 25 定子槽形 梨形槽
D2 Di2 l1=l2 la=l1 leff Kfe lFe Q1 Qp1 τ p
26.65 6.3 12.19
根据I1q查表10-1得 1.38E+01 4.44E+00 0.448328451 0.801493714 0.893868894 3.25E+00 6.34E+00 0.999959394 2.72E+01 -5.17E-01 7.124891206 0.010084516 196.0756768 0.818432713 1.745334746 1.084150606 261.3172646
4.69E-01 6.28E-01 0.0205 1.65E-01 5.31E-01 1.63E+00 0.812981515 0.325192606 0.4 6.558622511 193.4528014 1.231451467 158.2920937 0.011846361 0.858709257 0.009949617 8.19E+00
12
cm A
Fδ Fδ q h1t1 bt1 Bt10 Ft1 Ht10 h1j1 l1j1 Bj10 Fj1 C1 Hj10 Kt ΣF ΣF
ad
T A A/cm cm cm T cm
A/cm
A A H H
aq

永磁无刷直流电机简介

永磁无刷直流电机简介
电气学院
表贴凸出式和插入式转子磁路构造图
电气学院
1)表贴凸出式转子磁路构造 • 其构造简朴,制造成本较低,转动惯量较小,多用于矩形
波永磁同步电动机和恒功率运营范围不宽旳永磁同步电动 机中
2)表贴插入式转子磁路构造 • 这种构造可充分利用转子构造磁路旳不对称性所产生旳磁
阻转矩,提升电机旳功率密度。制造工艺也较简朴。一般 用于某些调速永磁同步电动机中。
B
(2)空载时铁心中旳附加(或杂散)损耗,它是由定转子开槽引起旳气隙磁导变化 而产生旳谐波磁场在对方表面产生旳表面损耗及脉振损耗。 (3)电气损耗,是由工作电流在绕组中产生旳损耗,对直流电机或同步电机而言, 也涉及电刷在换向器或集电环上旳接触电阻损耗。
(4)负载时旳附加(或杂散)损耗,是由定子或转子电流所产 生旳漏磁场在定、转子绕组里和铁心及构造件里引起旳多种损耗。
• 假如将一只霍尔传感器安装在接近转子旳位置,当N极逐渐接近 霍尔传感器即磁感应强度到达一定值时,其输出是导通状态;
• 当N极逐渐离开霍尔传感器、磁感应强度逐渐减小时,其输出依 然保持导通状态;只有磁场转变为S极并到达一定值时,其输出 才翻转为截止状态。
• 在S-N交替变化磁场下,传感器输出波形占高、低电平各占50%。 • 假如转子是一对极,则电机旋转一周霍尔传感器输出一种周期旳
✓ 具有很好旳力学特征,韧性好、抗压强度高、可加工等
✓ 价格合理,经济性好
电气学院
• 铁氧体:适合于对电机体积、重量和性能要求不高,而对电机旳经济 性要求高旳场合。
• 铝镍钴:适合于对电机体积、重量和性能要求不高,但工作温度超出 300度或要求温度稳定性好且电机旳成本不高旳场合。
• 钕铁硼:适合于对电机体积、重量和性能要求很高,工作环境温度不 高,对永磁体温度稳定性要求不高旳场合。

永磁同步电动机电磁计算程序

永磁同步电动机电磁计算程序

序号名称公式单位一额定数据1额定功率P Nkw2相数m13额定线电压U N1V 额定相电压U NV4额定频率ƒHz5极对数p6额定效率η1N%7额定功率因数cosφ1N8额定相电流I NA9额定转速n Nr/min10额定转矩T NN.m11绝缘等级B级12绕组形式双层二主要尺寸13铁芯材料50W470硅钢片14转子磁路结构形式15气隙长度δcm16定子外径D1cm17定子内径D i1cm永磁同步电动机电磁计算程序以下公式中π取值为3.1418转子外径D2cm19转子内径D i2cm20定、转子铁心长度l1=l2cm21铁心计算长度la=l1cm铁心有效长度l effcm铁心叠压系数K fe净铁心长l Fecm22定子槽数Q1 23定子每级槽数Q p1 24极距τp 25定子槽形梨形槽b s0cmh s0cmb s1cmh s1cmh s2cmrcm26每槽导体数N s1 27并联支路数a1 28每相绕组串联导体数NΦ129绕组线规N11S11mm230槽满率根据N11S11=1.54mm2,线径取d1/d1i=1.4mm/1.46mm,并绕根数N1(1)槽面积s scm2槽楔厚度hcm(2)槽绝缘占面积s icm2h1scm绝缘厚度C icm(3)槽有效面积s ecm2(4)槽满率sf% N1三永磁体计算31永磁材料类型铷铁棚32永磁体结构矩形33极弧系数a p34主要计算弧长b1pcm35主要极弧系数a1p 36永磁体Br温度系数a Br永磁体剩余磁通密度B r20T温度t℃t=80℃时剩余磁通密度B rT37永磁体矫顽力H c20KA/m永磁体H c温度系数a Hct=80℃时矫顽力Hc KA/m 38永磁体相对回复磁导率u ru0H/m39最高工作温度下退磁曲线的拐点b k40永磁体宽度b mcm41永磁体磁化方向厚度h Mcm42永磁体轴向长度l Mcm43提供每级磁通的截面积S M cm2四磁路计算44定子齿距t1cm45定子斜槽宽b skcm46斜槽系数K sk147节距y48绕组系数K dp1(1)分布系数K d1α°q1(2)短距系数K p1β49气隙磁密波形系数K f50气隙磁通波形系数KΦ51气隙系数Kδ52空载漏磁系数σ053永磁体空载工作点假设值b1m054空载主磁通Φδ0W b55气隙磁密Bδ056气隙磁压降δ12cm直轴磁路FδA交轴磁路Fδq 57定子齿磁路计算长度h1t1 58定子齿宽b t159定子齿磁密B t10T60定子齿磁压降F t1A查第2章附录图2E-3得H t10A/cm61定子轭计算高度h1j1cm62定子轭磁路计算长度l1j1cm63定子轭磁密B j10T64定子轭磁压降F j1cm查第2章附录图2C-4得C1查第2章附录图2E-3得H j10A/cm65磁路齿饱和系数K t66每对极总磁压降ΣF adAΣF aqA67气隙主磁导ΛδH68磁导基值ΛbH69主磁导标幺值λδ70外磁路总磁导λ1H71漏磁导标幺值λσ72永磁体空载工作点b m073气隙磁密基波幅值Bδ1T74空载反电动势E0V五参数计算75线圈平均半匝长l zl BcmdcmτycmsinαcosαC s76双层线圈端部轴向投影长f dcm77定子直流电阻R1ΩρΩ.mm2/mS1mm2d1mm78漏抗系数C x79定子槽比漏磁导λS1查第2章附录2A-3得K u1K L1λu1λL 1与假设值误差小于1%,不用重复计算80定子槽漏抗X s181定子谐波漏抗X d1Ω查第2章附录2A-4得ΣS82定子端部漏抗X e1Ω83定子斜槽漏抗X sk1Ω84定子漏抗X1Ω85直轴电枢磁动势折算系数K ad 86交轴电枢磁动势折算系数K aqK q87直轴电枢反应电流X adΩE dVI1dAF adA f1adb madΦδadW b88直轴同步电抗X dΩ89交轴磁化曲线(X aq-Iq)计算六工作性能计算90转矩角θ°91假定交轴电流I1q A92交轴电枢反应电抗X aqΩ见P428页表10-1 Xaq-Iq曲线93交轴同步电抗X qΩ94输入功率P1kwSINθSIN2θCOSθ95直轴电流I d A96交轴电流I q A97功率因数cosφ°ψ°φ°98定子电流I1A99负载气隙磁通ΦδW bEδV 100负载气隙磁密BδT 101负载定子齿磁密B t1T 102负载转子磁密B j2T 103铜耗P cu1W 104鉄耗(1)定子轭重量G j1kg(2)定子齿重量G t1kg(3)单位铁耗查第2章附录2E-4得p t1w/kgp j1w/kg(4)定子齿损耗P t1W(5)定子轭损耗P j1W(6)总损耗P Fe Wk1k2105杂耗P sP sN kw106机械损耗P fw w107总损耗ΣP kw108输出功率P2kw109效率η%110工作特性见P430表10-2111失步转矩倍数K MT max112永磁体额定负载工作点b mNf1adN113电负荷A1A/cmλ1n114电密J1A/mm2115热负荷A1J1(A/cm)(A/mm2)116永磁体最大去磁工作点b mhf1adhI adh Alaobusi算例4.00003.0000360.0000207.846096926.50003.00000.89601.00007.15960155253072.07547170.052314.814.74.8191919.10.9518.053667.7453333330.350.080.680.091.060.443213841.539699259 .4mm/1.46mm,并绕根数N1=11.0449520.20.1572481.150.030.887704 76.8400277610.82 6.4511733330.832911-0.121.22801.13216923-0.12856.544 1.0523700751.26E-063.61.219136.81.290888889 1.678155556 0.9808257135 0.932879761 0.965960169302 0.965753860.8333333331.2300402670.9406348791.2448267171.30.87 0.010365012 0.8411970220.02 1101.610936 833.7137955 1.2966666670.6405444441.793880386233.490 2.576666667 5.344105556 1.114305729 12.980832390.71.735 1.211871535 1347.991769 1080.094628 7.68922E-06 1.50683E-065.1029296776.63380858 1.5308789030.869003789 %,不用重复计算1.034706209201.529426831.682915872327.2568888890.5490852490.8357663494.3414579342.3838305111.7158936780.02171.53861.48.21E-010.9608659780.870.9050.403328710.6744.69E-016.28E-010.02051.65E-015.31E-011.63E+00 0.812981515 0.3251926060.4 6.558622511 193.4528014 1.231451467 158.2920937 0.011846361 0.858709257 0.0099496178.19E+0026.656.312.19根据I1q查表10-1得1.38E+014.44E+000.4483284510.8014937140.8938688943.25E+006.34E+000.9999593942.72E+01-5.17E-017.1248912060.010084516196.07567680.8184327131.7453347461.084150606261.317264623.264103534.2097075396.22.17 26.10018674 50.48310465 166.21667622.52 19.806546740.0227.9841 0.4753245883.97E+008.93E+010.18536125713.360.8611346311.04E-02 176.61978556.643 4.630762516 817.884282 0.4683161174.61E-014.79E+01。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例一. 主要技术指标1. 额定功率:W 30P N =2. 额定电压:V U N 48=,直流3. 额定电流:A I N 1<3. 额定转速:m in /10000r n N =4. 工作状态:短期运行5. 设计方式:按方波设计6. 外形尺寸:m 065.0036.0⨯φ二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P '直流电动机 W P K P NNm i 48.4063.03085.0'=⨯==η,按陈世坤书; 长期运行 N i P P ⨯''+='ηη321 短期运行 N i P P ⨯''+='ηη431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比L/D λ′=27.计算电枢内径m n B A P D N s i i i 23311037.110000255.0110008.048.401.61.6-⨯=⨯⨯⨯⨯⨯=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-⨯= 8. 气隙长度m 3107.0-⨯=δ 9. 电枢外径m D 211095.2-⨯= 10. 极对数p=111. 计算电枢铁芯长 m D L i 221108.2104.12--⨯=⨯⨯='='λ根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-⨯12. 极距 m p D i 221102.22104.114.32--⨯=⨯⨯==πτ 13. 输入永磁体轴向长m L L m 2108.2-⨯==三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22110733.06104.114.3--⨯=⨯⨯==π3. 槽形选择梯形口扇形槽,见下图;4. 预估齿宽: m K B tB b Fe t t 2210294.096.043.155.010733.0--⨯=⨯⨯⨯==δ ,t B 可由设计者经验得,t b 由工艺取m 210295.0-⨯5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056.196.0255.08.02.222-⨯=⨯⨯⨯⨯=≈Φ=δδτ1j B 可由设计者经验得,1j h 由工艺取m 210325.0-⨯根据齿宽和轭高作出下图,得到具体槽形尺寸6. 气隙系数 135.1)5()5(2010101=-++=b b t b t K δδδ7.电枢铁心轭部沿磁路计算长度m h ph h D L j ij t i i 2111110064.2)21(2)2(-⨯=+-⨯++=απ8.槽面积2410272.0m S -⨯=电枢铁芯材料确定从数据库中读取电枢冲片材料DW540-50电枢冲片叠片系数96.01=Fe K 电枢冲片材料密度331/1075.7m j ⨯=ρ电枢冲片比损耗kg W p s /16.2)50/10(=四.转子结构1. 转子结构类型:瓦片磁钢径向冲磁2. 永磁体外径m D D i m 211026.12-⨯=-=δ3. 永磁体内径m H D D m m mi 21086.02-⨯=-=4. 永磁体极弧系数8.0=m α5. 紧圈外经D 2=m 21032.1-⨯6. 永磁材料磁化方向截面积24221043.421026.114.3108.28.02m p D L S mm m m ---⨯=⨯⨯⨯⨯⨯==πα7. 永磁材料的选取永磁体材料:钕铁硼 剩磁r B :矫顽力c H :796 kA/m 永磁体材料密度m ρ:cm 38. r B 对应的磁通Wb S B m r r 41087676.4-⨯=⋅=φ 9.c H 对应的磁势A D D H F mim c c 3200)2(2=-= 10. 转子轭材料选择由于转子较细,故转轴、磁轭为一体,选用10号钢 11.转子磁轭等效宽度 m D D D D b i mi i e j 22222221033.02102.01086.022---⨯=⨯-⨯=-=-=12.转子磁轭沿磁路方向长度瓦片m pD D b L mii e j j 222221083.0)21(4)(-⨯=-++=απ五、磁路计算1. 漏磁系数2.1=σ2. 气隙磁通δδδταB L B i 926.4==Φ3.空载电枢齿磁密δδδB B K b t B B Fe t t 588.296.010295.010733.022=⨯⨯⨯⨯==-- 4. 空载电枢轭磁密δδδB B L K h B Fe j j 819.28.296.0325..02926.4211=⨯⨯⨯=Φ=5. 空载转子轭磁密δδδσB B L b B j j 198.38.233.02926.42.1222=⨯⨯⨯=Φ= 6. 气隙磁势A B B B K F 462610127.010135.11007.06.1106.1⨯=⨯⨯⨯⨯⨯=⨯=-δδδδδδ7. 定子齿磁势A H H h H F t t t t t 22109.01045.022--⨯=⨯⨯== 8. 定子轭部磁势A H L H F j j j j 211110064.2-⨯== 9. 转子轭部磁势A H L H F j j j j 222221083.0-⨯== 10. 总磁势∑+++=21j j t F F F F F δ 11. 总磁通Wb B m 410926.42.1-⨯⨯=Φ=Φδδσ12.空载特性曲线计算见表;因为表面磁钢永磁电机电动机负载时气隙的合成磁场与空载时差不多;六.电路计算1. 绕组形式及电子开关形式:两相导通星形三相六状态 2. 绕组系数采用单层集中整距绕组,即 第一节距)(31槽==τy 每极每相槽数12pmZq ==m 是相数;p 为极对数 故绕组系数1=w K3. 预取空载转速m in /120000r n =' 4. 每相绕组串联匝数φW '0.7V U 24.8025.700为管子压降,取匝,∆=Φ'∆-='δφαpn UU W i取匝82W =φ5. 电枢总导体数根4922==φmW N6. 实际每槽导体数N s =N/Z=82根7. 实际空载转速0nmin /11742109039.28217.02488.05.725.7400r pW U U n i=⨯⨯⨯⨯-⨯⨯=Φ∆-=-δφα8. 计算绕组端部长度m pD D pDav l i b 211101.42)2)(2.122.1-⨯=+=='ππ 9. 计算电枢绕组每匝平均长度m l L L bav 2108.13)(2-⨯='+= 10. 预估导线截面积2661007086.01101463.04830m a J U P S aN N c-⨯=⨯⨯⨯⨯=''='η 式中26'/1014m A J a⨯=为预取导线电流密度 1=a 为每相绕组支路数 11. 导线选取选择F 级绝缘导线QZY-2 导线计算截面积26210066.04m d S c c -⨯==π导线最大截面积262max max 10092.04m d S c c -⨯==π导线直径md m d c c 3max 310342.01029.0--⨯=⨯=12. 槽满率计算公式选择35.01042max=⨯⋅=-S c s s S S N K π13. 实际导线电流密度26'/1015m A aS U P J c N Na ⨯==η 14. 每相电枢绕组电阻Ω==⨯=Φ-31022)20(62)20(20cavcava S a l W S ma Nl r ρρ式中)/(0157.02)20(m mm ⋅Ω=ρ为导线的电阻率 设电机绕组的工作温度t 为75C 0,则导线工作温度电阻Ω=⨯-+=65.3])20(1[20t a at p t r r 式中00395.0=t p 为导线的电阻温度系数七.电枢反应计算1. 起动电流 A r UU I atst 77.722=∆-=2. 起动时每极直轴电枢反应最大值A K W I F w st sdm 27643==φ 3. 额定工作时的反电动势 V n W pC N ie 5.39152'==δφφα 4. 额定工作时电枢电流 A r EU U I ata 97.022=-∆-=5. 额定工作时最大直轴去磁磁势A K W I F W a adm 3443==φ 6. 负载工作点:根据sdm F 和adm F ,可在空载永磁体工作图上作出负载和起动时的特性曲线2、3,求负载特性曲线与永磁体去磁曲线的交点,得负载工作点:负载气隙磁感应强度T B 5872.0=δ 负载气隙磁通Wb 4108925.2-⨯=Φδ负载电枢齿磁感应强度t B = 负载电枢轭磁感应强度j B =7. 额定工作时电磁转矩m N I W pT a iem .0366.04==δφφπα8. 起动电磁转矩 m N I C T st T st .293.0=Φ=δ 八. 性能计算1. 电枢铜损W r I p at a Cu 87.622== 2. 电枢铁损W G B G B f p K p j j t t a Fe 11.4)()50)(50/10(12123.1=+= 式中a K ------铁损工艺系数,取2=a K1j G ------定子轭重kg L h D D G j s j 05816.010])2([43211211=⨯--=-πρt G ------定子齿重kg ZL h b G t t s t 0173.0103=⨯=-ρ3. 轴承摩擦损耗W n G K p N p mp mpn 05.1103=⨯=-Kmp=3,p G 为磁钢重 转子轭重 转轴重 传感器转子重的和 3=mp K 为默认情况,可让用户自己指定kg G G G G r g m p 035.0=++=4. 风损W L n D p N mpb 13.01026332=⨯=-5. 机械损耗和铁损W p p p p mpb mpn Fe 29.5=++='6. 考虑到附加损耗后的机械损耗和铁损 W p p 877.63.1='=系数可选 7. 开关管损耗W U I p a 358.12=∆⨯=∆8. 电机总损耗W p p p p Cu 1.15=++=∆∑9. 输入功率W I U P a N 56.461==10. 输出功率W p P P N 46.311=-=∑ 11. 效率%57.67%1001=⨯=P P N η 12. 摩擦转距m N n p T N.00657.056.90== 13. 额定输出转距 m N T T T em .03.002=-=。

永磁有刷直流电动机课程设计

永磁有刷直流电动机课程设计

永磁直流有刷电动机课程设计目录摘要一、设计背景及其发展状况二、有刷直流电动机的组成结构和工作原理1.永磁直流电动机的结构、起动和转动机理2.永磁有刷直流电动机的反电动势和转矩、转速、调速范围3.永磁有刷直流电动机的功率和效率三、永磁有刷直流电动机的设计1.永磁有刷直流电动机主要尺寸的确定2.永磁有刷直流电动机的绕组设计3.永磁有刷直流电动机换向器的设计四、磁路计算1.组抗参数2.损耗参数3.外特性4.效率特性五、个人总结参考文献摘要永磁有刷直流电机是在直流电机的基础上用永磁铁代替原有磁体材料建立的主磁场。

直流电动机采用了永磁励磁后,因省去了励磁绕组,降低了励磁损耗,使其具有结构简单、体积小、效率高、用铜量少等优点。

本文分析了永磁有刷直流电机的工作原理,研究了永磁有刷直流电机电磁的特点, ,运用解析计算的方法分析出电机的各项参数。

为设计永磁有刷直流电动机,我们依据Matlab强大的数据计算能力建立起了永磁有刷直流电机的数学模型并进行了仿真进而对控制系统进行了一定的分析,同时还对比了在不同的参数下电机的工作性能,为电机系统的设计及其工作的稳定性提供了一定的依据。

经设计出的200W永磁有刷直流电动机具有简便高效的特点。

关键词永磁直流电机有刷设计电机一、设计背景及其发展状况1820年,丹麦物理学家奥斯特发现了电流在磁场中受机械力的作用,即电流的磁效应。

1821年,英国科学家法拉第总结了载流导体在磁场内受力并发生机械运动的现象,法拉第的试验模型可以认为是现代直流电动机的雏形。

1822年,法国人吕萨克发现电磁铁,,即用电流流过绕在铁芯上的线圈的方法可以产生磁场。

在这些发现与发明的基础上,1831年法拉第发现了电磁感应定律,发明了盘式电机。

1831年,法拉第发现了电磁感应定律,并发明了盘式电机。

同年,亨利制作了振荡电机。

1832年,斯特金发明了换向器,并对亨利的振荡电机进行了改进,制作了世界上第一台能连续旋转运动的电机。

永磁无刷直流电机设计实例

永磁无刷直流电机设计实例

永磁无刷直流电机设计实例永磁无刷直流电机(Brushless DC Motor,BLDC)是一种形式先进的电机,具有高效率、长寿命、高功率密度、高控制精度等优点,已广泛应用于机床、机器人、电动工具等领域。

在本文中,我们将介绍永磁无刷直流电机的设计实例。

1. 电机参数计算在进行永磁无刷直流电机设计之前,首先需要计算出电机的一些参数,包括额定功率、额定转速、额定电压、额定电流等。

这些参数将作为电机设计的基础。

1.1 标称功率Pn = Tmax × ωnPn 为电机标称功率,Tmax 为电机最大扭矩,ωn 为电机额定转速。

1.2 额定转速永磁无刷直流电机的额定转速通常由应用需求决定。

对于电动工具来说,需要较高的额定转速,而对于机床来说,需要较低的额定转速。

通常情况下,可以根据应用的要求来选择适当的额定转速。

永磁无刷直流电机的额定电压通常由电源系统决定。

通常情况下,可以选择电压稳定器或直流电源来提供稳定的电压。

根据实际需求和电源系统的限制,可以确定电机的额定电压。

2. 永磁体设计永磁体是永磁无刷直流电机中最重要的组件之一,其设计将直接影响电机的性能。

永磁体的设计包括永磁体的形状、尺寸以及选用的材料。

2.1 形状与尺寸永磁体的形状和尺寸对电机的输出特性有着重要的影响。

通常情况下,可以选择方形、圆形、椭圆形等形状,并根据电机设计参数计算出永磁体的尺寸。

2.2 材料选择永磁体选用的材料决定了电机的性能。

目前常用的永磁体材料有 NdFeB、SmCo、AlNiCo 等。

不同的永磁体材料具有不同的磁性能、机械性能和耐温性能,应根据实际应用需求进行选择。

3. 绕组设计绕组是永磁无刷直流电机中的另一个关键组件,在电机的输出特性和效率上起着重要作用。

绕组的设计涉及到绕组的形状、导线直径、匝数和线材材料等方面。

绕组的形状通常与永磁体相对应,可以根据永磁体的形状来确定绕组的形状。

3.2 导线直径导线直径直接影响到电机的电阻和电感,对电机的输出特性和效率有着重要影响。

永磁直流力矩电机的阻尼和阻尼系数计算

永磁直流力矩电机的阻尼和阻尼系数计算
5 ,所 以可 以忽 略不计 。 %
3 阻尼 系数 的计算举例
下 面是一 台 4 0 机座 号 的 永 磁直 流 力 矩 电动 机 3 实测 的 相 关 数 据 :G o=7 0 V,I o=0 3 .6 A,n 。=
2 . /mi 9 4r n, , = 27 5 . A , Ts= 61 N ・ m , R : 7 2. 2 Q 5
当电动机没有加速度 时,二者则平衡相等 ,使 电机
稳 定运行 在 某 一转 速 下 。这 个 阻滞 力 矩 ,具 有 阻 尼
性 质 ,且 是反 电势 产 生 的 ,所 以说 它 是 反 电势 产 生
的阻尼力 矩 。直 流 力 矩 电机 的阻 尼 ,则 主 要 指 反 电

还可 将式 ( ) 2 简化 成式 数 ,
K / 0=6 7 2 . =2 . 9 ( ・m ( D= n 1/94 09 N /r a ) r n ) i
系数 就是 电机 单 位 转 速产 生 的 阻尼 力 矩 。 而转 矩 灵 敏度 = . 5K ,故式 ( ) 9 5 e 2 可简化 为式 ( ) 3:
K 95K R D= . 5 e a / () 3
发 电机 。是 电动 机 ,它 产 生 的 驱 动 力矩 使 电机 获 得
加速度 ;是 发 电机 ,它产 生 的 阻 滞 力矩 使 电动 机 减 速 ,加 速 度 越 大 ,反 电 势 产 生 的 阻 滞 力 矩 也 越 大 。
微 电机
永磁 直 流 力矩 电机 的 阻尼和 阻尼 系数 计 算
张 文 海
( 成都精密 电机厂 ,成都 6 00 ) 15 0
中 图分 类 号 :T 3 96 M 5 .
文 献 标 志码 :A

永磁同步伺服电机电磁计算流程

永磁同步伺服电机电磁计算流程

电机计算与磁场分析1.1 计算程序及算例注:计算采用手算和MathCAD 计算结合使用的方法所以计算结果保留到小数点后三位。

一、 额定数据1.额定功率 5KW N P =2.相数 3m =3.额定电压 直流输出电压 40V d U =额定相电压 217.949V 2.34d N U U +== 三相桥整流考虑二极管压降4.功率因数 cos 0.8ϕ= sin 0.6ϕ=5.额定相电流 310116.071A cos N N N P I m U ϕ⨯==⋅⋅ 6.效率 0.9N η=7.额定转速 100000rpm N n = 8.预取极对数 2p =9.频率 3333Hz 60N pnf ==10.冷却方式 空气冷却 11.转子结构 径向套环12.电压调整率 20%N U ∆≤二、永磁材料选择13.材料牌号 NSC27G 烧结钐钴材料,主要考虑到高温工作环境 该材料高温下退磁小。

14.预计温度 T= 250C 15.剩余磁通密度 20 1.0T r B =0.03%B r rB α=----的温度系数 0r I L B =---的不可逆损失率工作温度下 201(20)(1)0.931T100100Br r r IL B t B α⎡⎤=+--=⎢⎥⎣⎦ 16.计算矫顽力 20760kA/m c H =工作温度下 201(20)(1)707.56KA/m 100100Br C r IL H t H α⎡⎤=+--=⎢⎥⎣⎦17.相对回复磁导率 3010 1.047rr C B H μμ-=⨯=式中 70410H /m μπ-=⨯ 三、永磁体尺寸18.永磁体磁化方向长度 0.35cm M h =19.永磁体宽度 1.56cm M b =20.永磁体轴向长度 5.35cm M L = 21.永磁体段数 1W =22.永磁体每极截面积 28.346cm M M M A L b == 23.永磁体每对极磁化方向长度 20.7cm MP M h h == 24.永磁体体积 311.684cm m M MP V PA h == 25.永磁体质量 31095.812g m m m V ρ-=⨯= 稀土钴材料密度 38.2g/cm ρ=四、转子结构尺寸26.气隙长度 10.19cm δδ=∆+= 均匀气隙空气隙长度10.03cm δ= 非磁性套环长度 0.16cm ∆=27.转子外径 2 3.0cm D = 28.轴孔直径 2 1.0cm i D =29.转子铁心长度 2 5.35cm M L L ==30.衬套厚度 222()0.49cm 2i M h D D h h --∆+==31.极距 2(2)2.105cm 2D pπτ-∆== 径向瓦片形32.极弧系数 0.74p α=33.极间宽度 2(1)0.547cm p b ατ=-= 五、定子绕组和定子冲片34.定子外径 1 4.8cm D =35.定子内径 1212 3.06cm i D D δ=+= 36. 定子铁心长度 1 5.35cm M L L ==长径比λ=1.7537.每极每相槽数 1q =38. 定子槽数 212Q mpq ==39.绕组节距 3y = 整距绕组,影响下面一些系数40. 短距系数 180sin 12p K β==41. 分布因数 1d K = 42.斜槽因数 1sk K =43.绕组因数 1dp d p sk K K K K ==波形系数 sin()20.91.024i iK φαπα⋅==44.预估永磁体空载工作点 '00.67m b = 工作点范围在0.55-0.75Br 内但高速电机应取小一些。

永磁直流电动机电磁计算程序

永磁直流电动机电磁计算程序
叠片系数KFe
23 极距 24 气隙长度
永磁直流电动机电磁计算程序
符号或算式
单位
PN
W
UN
V
nN
r/min
IN
A
TstN
η n=PN/UNIN*100 P'=(1+2η n/100)/(3η n/100)*PN E'a=(1+2η n/100)/3*UN p
Br20 工作温度时的剩磁密度为
α br为Br的温度系数 IL为Br的不可逆损失率 Hc20 工作温度时的矫顽力为 Hc=[1-(t-20)α Br/100](1-IL/100)Hc20 μ r=Br/μ 0Hc/1000 bk
0.6 0.6
1 0.36
1 54.16666667
1.4 0.8
2.5 4.385139671 0.654498458 0.135005868 4.036484279 1.747272727 1.065527066 1.223684486 0.088166387 0.000171066 3.823841793
t'k=tk*De2/Dk(厘米)
要求bk<0.8τ (1-α δ )厘米
七 最大去磁校核
113 不同工作时的最大瞬时电流
A
突然起动时
A
瞬时堵转时
A
114 直轴电枢磁动势
A
A
115 交轴电枢磁动势 116 换向元件电枢磁动势 117 电枢总去磁磁动势 118 最大去磁时永磁体工作点
Amax
A/cm A A A
12 114.591561
9.75 22
0.443181818 1
0.75 0.78 0.441786459 22.06948582 2528.97683 半梨形槽

永磁直流电机设计程序

永磁直流电机设计程序

永磁直流电机设计程序在现代工业和日常生活中,永磁直流电机因其高效、可靠和易于控制等优点,得到了广泛的应用。

从电动玩具到电动汽车,从家用电器到工业自动化设备,都能看到它的身影。

而设计一款性能优良的永磁直流电机,需要一套严谨的设计程序。

接下来,就让我们一起深入了解永磁直流电机的设计程序。

首先,在设计之前,我们需要明确电机的应用场景和性能要求。

这包括电机的输出功率、转速范围、转矩特性、效率要求、尺寸限制等。

这些要求将直接影响后续的设计参数选择和结构设计。

接下来,就是确定电机的主要尺寸。

这是设计过程中的关键步骤。

主要尺寸包括电枢直径和长度、磁极长度等。

这些尺寸的确定通常基于经验公式和性能要求的计算。

例如,根据所需的输出功率和转速,可以通过公式估算出电枢直径。

在确定主要尺寸后,就需要设计电枢绕组。

电枢绕组的设计要考虑到绕组的形式(如单叠绕组、单波绕组等)、匝数、线径等参数。

匝数的选择要根据电机的电压和磁通量来计算,以确保产生足够的电磁转矩。

线径的选择则要考虑电流密度和散热条件,以避免绕组过热。

磁极的设计也是至关重要的一环。

永磁体的材料选择会影响电机的性能和成本。

常见的永磁材料有钕铁硼、铁氧体等。

磁极的形状和尺寸要根据磁场分布的要求进行设计,以保证气隙磁场的均匀性和强度。

然后是电机的机械结构设计。

这包括电机的轴、端盖、轴承、外壳等部件的设计。

这些部件不仅要满足机械强度的要求,还要考虑到安装、维护的便利性和成本。

在完成初步设计后,需要进行电磁性能的计算和分析。

这可以通过电磁场有限元分析软件来实现。

通过分析,可以得到电机的磁场分布、转矩特性、效率等性能参数,与设计要求进行对比。

如果性能不满足要求,就需要对设计参数进行调整和优化。

在电磁性能满足要求后,还需要进行热分析。

电机在运行过程中会产生热量,如果散热不良,会导致电机温度升高,影响性能甚至损坏电机。

因此,要对电机的散热途径进行设计,计算电机的温升,确保电机在工作温度范围内安全运行。

永磁直流电机电流公式

永磁直流电机电流公式

电机公式感应电动势E根据电磁学原理,两电刷间的感应电动势为e E K n φ=(1)式中,E ---感应电动势(V )Ф------一对磁极的磁通(Wb )n ------电枢转速(r/min )Ke ------与电机结构有关的常数电磁转矩T M电枢绕组中的电流和磁通相互作用,产生电磁力和电磁转矩,其大小可用如下公式表示 t a T K I φ=(2)式中,T ---电磁转矩(N ·m )Ф------一对磁极的磁通(Wb )Ia ------电枢电流(A )Kt ------与电机结构有关的常数,Kt=9.55Ke外加电压a a U E I R =+(3)式中,U ---外加电枢电压(V )E ------感应电势(V )Ia ------电枢电流(A )Ra ------电枢回路内阻(Ω)将公式(1)和(2)带入公式(3)中,整理得理想空载转速 e U n K φ= 实际空载转速a a e e R U n I K K φφ=- 注意:当电动机轴上的负载转矩大于电磁转矩T M 时,电动机不能启动,电枢电流为Ist ,长时间的大电流会烧坏电枢绕组。

直流电机的启动特性对直流电动机而言,在未启动之前n=0,E=0,而Ra 一般很小。

当电动机直接接入电网并施加额定电压时,启动电流为Ist=U/Ra这个电流很大,一般情况下能达到其额定电流的10~20倍,过大的启动电流危害很大。

(1)对电动机本身的影响a.使电动机在换向过程中产生危险的火花,烧坏整流子;b.过大的电枢电流产生过大的电动应力,可能引起绕组的损坏;(2)对机械系统的影响与启动电流成正比例的启动转矩使运动系统的动态转矩很大,过大的动态转矩会在机械系统和传动机构中产生过大的动态转矩冲击,使机械传动部件损坏;所以,直流电动机是不允许直接启动的,即在启动时必须设法限制电枢电流。

电机有关术语转速/线速度/角速度转速即电机旋转的速度,用符号“n”表示,其国际标准单位为rps(转/秒)或rpm(转/分)。

永磁直流电动机电磁计算程序

永磁直流电动机电磁计算程序

永磁直流电动机电磁计算程序以下是一个简单的永磁直流电动机电磁计算程序的示例:```pythonimport math#输入电机参数voltage = float(input("请输入电机电压(伏):"))current = float(input("请输入电机电流(安):"))speed = float(input("请输入电机转速(转/分钟):"))#计算电机电磁力flux_density = 0.95 # 磁通密度(特斯拉)pole_pairs = 2 # 极对数armature_length = 0.1 # 电枢长度(米)force_constant = 2 * math.pi * pole_pairs * flux_density * armature_length # 电机电磁力常数(牛)force = force_constant * current#计算电机功率和效率power = voltage * currentefficiency = power / (force * speed)#输出计算结果print("电磁力:", force, "牛")print("功率:", power, "瓦")print("效率:", efficiency * 100, "%")```在上述示例程序中,首先通过`input`函数获取用户输入的电机参数,包括电压、电流和转速。

然后,根据给定的参数计算电机的电磁力、功率和效率。

电机电磁力的计算使用了一些基本的电磁学公式,如电机电磁力常数的计算公式为`2 * math.pi * pole_pairs * flux_density *armature_length`,其中`math.pi`为圆周率,`pole_pairs`为极对数,`flux_density`为磁通密度,`armature_length`为电枢长度。

永磁直流有刷电动机计算实例

永磁直流有刷电动机计算实例

12. 永磁体剩磁密度 Br20 0.65 T,Br的温度系数 αBr 0.07 %/K,Br的不可逆损失率 IL 0
工作温度时的剩磁密度 Br
1
(t
20) α10B0r1
IL 100

Br20

0.625
T
13. 永磁体计算矫顽力 Hc20 440 kA/m
Da
3
6.1P'104 αiA'B'δNnλ

3.8
cm
22. 电枢长度 La λDa 3 cm
23. 极距
τ
πDa 2p

5.96
cm
24. 气隙长度 δ 0.05 cm 25. 永磁磁极结构 瓦片形 26. 极弧系数查图3-16得 αp 0.70
27. 磁瓦圆心角,对于瓦片形结构的磁瓦圆心角为 θp αp180 126 °
得,求得后,再计算铁氧体的电枢计算长度为 Lef=La+ΔLa*(hm+δ) 31. 已知 hp 0,永磁体内径 Dmi Da 2δ 2hp 3.9 cm
32. 永磁体外径 Dmo Dmi 2hm 4.7 cm
33. 电枢圆周速度 υa πDaNn 5.96 m/s

1 2
h22(d1

2r22)

r23d3

Ci(πr22

2h22

d1)

0.277
73.3 圆形槽 As πr212 2Ciπr21
73.4 矩形槽
As
1 2
(b02

d2)h2

h22d2

永磁无刷直流电机计算与仿真

永磁无刷直流电机计算与仿真

定义网格剖分(续)
设置求解选项
运动设置
• Setup Solution/Motion Setup • 设置运动对象:选定对象Band ,点击 Set Band • 机械参数设置:点击Mechanical Setup
运动设置(续)
• 初始位置设置为 120 度:要使A相初相位为0,在初始位 置,要保证A相磁势轴线与磁钢磁势轴线方向相反。
永磁无刷直流电动机计算与仿真
参考文献:ANSOFT应用笔记《A Permanent Magnet Brushless DC Motor Problem》 以一个4极550W无刷直流电动机为例,讲述如何 应用RMxprt完成设置、求解及结果分析。求解完 成后,以RMxprt 的输出结果为基础,在瞬态有限 元求解器EMpulse中对电机特性做更详细分析。 郑满华 08年5月
• 打开网格剖分器
定义网格剖分(续)
• 设置所有面和对象种子值为2mm Mesh/Seed/Surface Mesh/Seed/Object • 执行剖分Mesh/Make • 修改剖分结果,将Band对象三角形数改为 1000(Refine/Object.) • 使master , slave边界匹配 Mesh/Line Match
创建感应电压波形图(续)
创建感应电压波形图(续)
A
创建感应电压波形图(续)
A
创建感应电压波形图(续)
创建感应电压波形图(续)
机械瞬态分析
将A ,B 相绕组电阻由 4.5 GΩ 改为4.5Ω 将直流电源电压由0 V改为220V. Setup Solution/Motion Setup Mechanical Setup,数据在RMxprt的Design Output 的FEA Transient Input Data数据项中

永磁有刷直流电动机课程设计

永磁有刷直流电动机课程设计

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载永磁有刷直流电动机课程设计地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容永磁直流有刷电动机课程设计目录摘要设计背景及其发展状况有刷直流电动机的组成结构和工作原理永磁直流电动机的结构、起动和转动机理永磁有刷直流电动机的反电动势和转矩、转速、调速范围永磁有刷直流电动机的功率和效率永磁有刷直流电动机的设计永磁有刷直流电动机主要尺寸的确定永磁有刷直流电动机的绕组设计永磁有刷直流电动机换向器的设计磁路计算组抗参数损耗参数外特性效率特性个人总结参考文献摘要永磁有刷直流电机是在直流电机的基础上用永磁铁代替原有磁体材料建立的主磁场。

直流电动机采用了永磁励磁后,因省去了励磁绕组,降低了励磁损耗,使其具有结构简单、体积小、效率高、用铜量少等优点。

本文分析了永磁有刷直流电机的工作原理,研究了永磁有刷直流电机电磁的特点, ,运用解析计算的方法分析出电机的各项参数。

为设计永磁有刷直流电动机,我们依据Matlab强大的数据计算能力建立起了永磁有刷直流电机的数学模型并进行了仿真进而对控制系统进行了一定的分析,同时还对比了在不同的参数下电机的工作性能,为电机系统的设计及其工作的稳定性提供了一定的依据。

经设计出的200W永磁有刷直流电动机具有简便高效的特点。

关键词永磁直流电机有刷设计电机设计背景及其发展状况1820年,丹麦物理学家奥斯特发现了电流在磁场中受机械力的作用,即电流的磁效应。

1821年,英国科学家法拉第总结了载流导体在磁场内受力并发生机械运动的现象,法拉第的试验模型可以认为是现代直流电动机的雏形。

1822年,法国人吕萨克发现电磁铁,,即用电流流过绕在铁芯上的线圈的方法可以产生磁场。

无刷直流电动机程序的设计说明

无刷直流电动机程序的设计说明

无刷直流电动机程序的设计说明无刷直流电动机(BLDC)是一种通过控制器来驱动转子的永磁电机,它具有高效率、高功率密度、高可靠性和低噪音等优点,被广泛应用于工业和消费电子设备中。

本设计说明将详细介绍BLDC电机程序的设计原则、功能模块和实现方法。

一、设计原则1.确定需求:在进行BLDC电机程序的设计之前,需要明确电机的工作特性、效率要求、控制精度和稳定性等需求。

2.选择算法:根据需求和使用场景选择合适的控制算法,常用的算法有基于电流控制的直接转矩控制(DTC)、感应电动机控制(IMC)和速度控制算法等。

3.硬件平台:选择合适的硬件平台实现BLDC电机的控制,包括控制器、电源和传感器等。

4.软件开发:根据硬件平台的特性,选择合适的开发工具和编程语言进行程序开发。

5.调试和测试:进行程序的调试和测试,优化程序性能和控制精度。

6.部署和维护:最终将程序部署到目标平台上,对电机进行稳定长期的运行和维护。

二、功能模块BLDC电机程序主要包括下述功能模块:1.传感器接口模块:负责与传感器进行通信,并读取电机运行过程中的实时参数,如转子位置、转速和电流等。

2. 转子位置估计模块:通过读取传感器的数据来估计转子的位置,可以采用霍尔传感器、编码器或者反电动势(back EMF)等方法进行位置估计。

3.控制算法模块:根据转子的位置和转速,使用相应的控制算法来生成转矩控制信号,控制电机的运行。

4.功率控制模块:根据控制信号,控制功率器件(如MOSFET)的开关状态,实现电机的正反转和转矩调节等功能。

5.保护模块:监测电机运行过程中的电流、温度和电压等参数,当参数异常时,进行相应的保护动作,以防止电机损坏。

6.通信接口模块:与上层控制系统进行通信,接受控制指令和返回电机运行状态等信息。

三、实现方法BLDC电机程序的实现方法如下:1.使用C/C++等高级编程语言编写程序,根据目标硬件平台的特性进行代码的优化和适配。

2.将功能模块划分为不同的函数或模块,使用模块化的方式进行程序开发,提高代码的可读性和可维护性。

永磁同步电动机电磁计算程序

永磁同步电动机电磁计算程序
67 气隙主磁导 68 磁导基值 69 主磁导标幺值 70 外磁路总磁导 71 漏磁bt1 Bt10 Ft1 Ht10 h1j1 l1j1 Bj10 Fj1 C1 Hj10 Kt ΣF ad ΣF aq
Λδ Λb λδ λ1 λσ
cm A
T A A/cm cm cm T cm
23.26410353 4.209707539
6.2
2.17 26.10018674 50.48310465 166.2166762
2.5 2
19.80654674 0.02
27.9841 0.475324588
3.97E+00 8.93E+01
0.185361257 13.36
0.861134631 1.04E-02
cm
Ksk1
y
Kdp1 Kd1
α
°
q1
Kp1
β
Kf


σ0
b1m0
Φδ0
Wb
Bδ0
56 气隙磁压降
直轴磁路 交轴磁路 57 定子齿磁路计算长度 58 定子齿宽 59 定子齿磁密 60 定子齿磁压降 查第2章附录图2E-3得 61 定子轭计算高度 62 定子轭磁路计算长度 63 定子轭磁密 64 定子轭磁压降 查第2章附录图2C-4得 查第2章附录图2E-3得 65 磁路齿饱和系数 66 每对极总磁压降
38 永磁体相对回复磁导率
ss
cm2
h
cm
si
cm2
h1s
cm
Ci
cm
se
cm2
sf
%
N1
铷铁棚 矩形
ap b1p a1p aBr Br20 t Br Hc20 aHc
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lj2 Lj1
cm cm cm cm cm cm cm cm cm cm cm2 % cm Ω Ω cm cm cm
T A T A/cm A T A/cm A cm T A/cm A cm A
H
第 3 页,共 6 页
0.12 0.2 0.2 0.2
0.87 0.87
0.4 0.47
1.4 0.36 0.70422
W V r/min A
% W V
℃ T
%k-1 %
KA/m
A'
Bδ'=(0.6--0.85)Br αi=0.6---0.75 λ=0.6----1.5
Da=6.1*P'*10000/αi/A'/nN/λ(开三次方) La=λ*Da
取 冲L片a厚为度整数
0.2 0.35
0涂.5漆膜冲片 气化膜或磷化膜冲片 τ=π*Da/2/p
Am Fabn Fabs bmn hmn fa' λσ Sm=(Dme--Dmi)*La Lm=π*(Dme--Dmi)*(1-α/2)/4
Baq
H cm2
A A A
Wb KJ/m3 cm2
KJ/m3
cm cm
cm2
A/cm2 cm V cm m/s cm V
V T
磁钢的平均恢复导磁率
第 4 页,共 6 页
突然起动时 瞬时堵转时
Amax
115 交轴电枢磁动势
116 换向元件电枢磁动势
117 电枢总去磁磁动势
118 最大去磁时永磁体工作点
bmh
hmh
电枢去磁磁动势标幺值
119 可逆退磁校核
大于bk=0.2
八 工作特性
120 电枢绕组铜耗
121 电刷接触电阻损耗
122 电枢铁损耗
PFe=pFe(Bj22Gj2+Bt22Gt2)(f/50)1.3
pFe—单位损耗,根据冲片材料及工作频率查出
电枢齿质量
Gt2=7.8KFelt2π/4{[De22-(Dxj2-dx2)2]-ZSS}
电枢轭质量
Gj2=7.8KFelt2*π/4[(Dxj2-dx2)2-Di22]*10-3
k
123 电刷对换向器的摩擦损耗
124 轴承摩擦和电枢对空气摩擦损耗
125 总机械损耗
2.93475E-07 32.86925187
3.5912 4.309426369
2.29183122 0
2.29183122 0.810963706 0.189036294 0.000852616
8.8772E-04 0.718237728
26.5183 5.88
6.173229459 28.5~32
0.6 0.6
1 0.36
1 54.16666667
1.4 0.8
2.5 4.385139671 0.654498458 0.135005868 4.036484279 1.747272727 1.065527066 1.223684486 0.088166387 0.000171066 3.823841793
0.7 5.65487E-06 1.25664E-06
2.30 21.3841421
110 换向元件中合成电动势 111 换向区宽度 112 换向区宽度检查
七 最大去磁校核 113 不同工作时的最大瞬时电流 114 直轴电枢磁动势
小于0.5V
bb' tk' bk=b'b+[ax+│K/2p-t1│-a/q]t'k 式中b'b=bb*De2/Dk(厘米) ax=K/Z y1----绕组节距,用换向器片数表示 t'k=tk*De2/Dk(厘米) 要求bk<.93
0.93 0.95
δ
A/cm T
cm cm cm
cm cm
第 1 页,共 6 页
计算结果 过渡用值
154.5 13
3350 19.5
5
60.94674556 187.50
9.615384615 1
铁氧体
0.4
3.1415926 π 5 短距绕组y1
320
1.1 0.2
DW470-50 130
126 总损耗
127 输入功率
128 效率
V cm
cm
A A A A A A/cm A A A
W W W W/Kg Kg Kg
W W W W W %
第 5 页,共 6 页
0.223172255 2.609356793
1.248 1.361356793
2.6094 1.248 1 5 短距绕组y=4 1.3614 2.025698908
叠片系数KFe
23 极距 24 气隙长度
永磁直流电动机电磁计算程序
符号或算式
单位
PN UN nN IN TstN
ηn=PN/UNIN*100 P'=(1+2ηn/100)/(3ηn/100)*PN E'a=(1+2ηn/100)/3*UN p
Br20 工作温度时的剩磁密度为
αbr为Br的温度系数 IL为Br的不可逆损失率 Hc20 工作温度时的矫顽力为 Hc=[1-(t-20)αBr/100](1-IL/100)Hc20 μr=Br/μ0Hc/1000 bk
序号 名称 一 额定数据
1 额定功率 2 额定电压 3 额定转速 4 额定电流 5 起动转矩倍数 二 主要尺寸及永磁体尺寸选择 6 额定效率 7 计算功率 8 感应电动势初算值 9 极对数 10 永磁体材料类型 11 预计永磁体工作温度 12 永磁体剩磁密度
13 永磁体计算矫顽力
14 永磁体相对回复磁导率 15 工作温度下退磁曲线的拐点 16 电枢铁心材料 17 电负荷预估值 18 气隙磁密预估值 19 计算极弧系数 20 长径比预估值 21 电枢直径 22 电枢长度
59 实际热负荷 60 槽型选择 61 槽口宽度
αp,取αp=αi θp,对瓦片形结构θp=αp*180° hm Lm Lef Dmi=Da+2δ+2hp Dmo=Dmi+2hm Va=πDanN/6000 合理选择 Lj=(2.0---3.0)La
漏磁系数σ Dj=Dmo+2hj
在小功率直流电动机中,通常两极的采用单叠绕 单叠绕组a=p;单波绕组a=1 Q t2=πDa/Q φδ'=αi*τ*Lef*Bδ'*10-4 N'=60aE'a/p/φδ'/nN Ns'=N'/Q
97 永磁体负载工作点
98 实际气隙磁通
计算磁能积 计算磁钢平均截面积 磁钢平均磁路长度 选择磁钢的磁积能 六 换向计算 99 电刷尺寸 电刷长Lb 电刷宽bb 电刷对数pb 100 电刷面积 101 每杆电刷数 102 电刷电流密度 103 换向器长度 104 一对电刷接触压降 105 换向器直径 106 换向器圆周速度 107 换向器片距 108 换向元件电抗电动势 漏磁导和 槽部比漏磁导 绕组端部比漏磁导 齿顶比漏磁导 109 换向元件交轴电枢反应电动势
N.m
18.73337938 9.364089451
3373.85036 80.5904222 4.132842164
2.1862 4.9641 0.440394179
3.93138779
第 6 页,共 6 页
98.32031508 98.32031508
80.5904222 0
11.55556757 577.7783785 1628.184418
3279.479971
0.316527624 0.683472376 0.610022316
57.56329193 15.6
6.928002024 6.3
0.254442814 0.123831628
(°) cm cm cm cm cm m/s
m/s cm
cm
cm Wb
A/cm A
A/mm2 mm2
mm mm2 A/mm2 A2/(cm*mm
2)
cm
第 2 页,共 6 页
瓦片型 0.69
124.2 0.7
5.0544 4.52625
5.3 6.7 9.121090515 铸钢 8.05 0.3 1.2 7.3
1.5 2.762637993
6.18 8.942637993 89.03393195
243.533932 63.44085145
129 电流校核 130 实际感应电动势 131 满载实际转速 132 起动电流 133 起动电流倍数 134 起动转矩 135 起动转矩倍数
Tn
A V r/min A
2.154883889 60
461.8141122 7.69690187
822.9619266
1.017777778 0.26666667
0.066081005
3.75
0.132551532 0.13333333
1.0539E-06
93 磁导基值
94 主磁导标幺值 95 外磁路总磁导 96 直轴电枢去磁磁动势
0.34 0.69 0.81
5.2 4.212
4.2
0.94
138.2069621 5.17023131
8.16814076 0.05
25 永磁体结构形式 26 极弧系数 27 磁瓦圆心角 28 永磁体厚度 29 永磁体轴向长度 30 电枢计算长度 31 永磁体内径 32 永磁体外径 33 电枢圆周速度 34 机座材料 35 机座长度 36 机座厚度
0.435 1.1392
1 12 1.361356793 8.6734E-04 198.5561509
相关文档
最新文档