新能源车辆的动力电池组均衡管理系统的发展现状概述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安全管理编号:LX-FS-A95831

新能源车辆的动力电池组均衡管理系统的发展现状概述

In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or

activity reaches the specified standard

编写:_________________________

审批:_________________________

时间:________年_____月_____日

A4打印/ 新修订/ 完整/ 内容可编辑

新能源车辆的动力电池组均衡管理系统的发展现状概述

使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。

新能源车辆的开发和研究已经是时代的主流,其中电动汽车受到了市场越来越多的关注,在电动汽车中,电池系统是重要组成部分,特别是锂电池在交通领域的应用,对于减少温室气体的排放、降低大气污染以及新能源的应用有着重要的意义。目前,电动汽车存在安全性低、寿命段、充电时间长和使用成本高的问题,而电池管理系统作为电池保护和管理的核心部件,作为电池和车辆管理系统以及驾驶者沟通的桥梁,电池管理系统对于电动汽车性能起着越来越关键的作用。本文介绍了电池组均衡管理的技术发展历

程、专利申请情况和涉及的主要申请人。

随着能源紧缺、城市环境污染的日益严重,替代石油的新能源在车辆的开发利用被各国政府越来越重视。而动力电池是电动汽车的核心部件,目前车辆的动力电池存在能量密度低、价格高、寿命短等缺点,而锂电池在使用一段时间以后,电池单体性能差异在整个生命周期内客观存在,直接影响到动力电池组的使用寿命,为此,需要给予动力电池能源控制和管理,使得动力电池性能得到一定的提升。

目前,美国电动车公司生产的特斯拉纯高级电动汽车(Tesla)之所以取得成功,其核心技术就是优异的电池管理技术,采用了两千多块锂电池进行串并联设计,可以维持整个电池包的工作状态以及监控每个电池单元的系统来确保电池的高性能,使得车辆具备稳定的动力性能和优良的安全性能,具有快速充电

技术,将充电时间缩短到合理的水平,在电动车领域突破了技术上的瓶颈,取得了成功,实现了从实验室转向批量生产,对汽车行业有着重大突破意义。

电池组均衡管理概述

我国《新能源汽车生产企业及产品准入管理规则》已于20xx年7月1日正式实施,其中电动汽车的开发研究已经被纳入重大项目。

目前,电池组在多次充/放电循环后各单体电池出现电压或者电量不一致的情况,因为各单体电池之间不均衡会减少电池组的所能输出的最大能量和循环寿命,进而导致电动汽车的动力性能受到较大影响。

电池组均衡管理,用于使单体电池均衡充电、放电,保持动态平衡,使电池组中各个电池都达到均衡一致的状态。其中,充电均衡一般在充电过程中后期,通过均衡电路来限制单体电池电压不高于充电截

至电压;放电均衡是在电池组放电时,通过补充电能使单体电池电压不低于放电终止电压。由于均衡管理与动力电池组的使用寿命有直接的关系,因此均衡技术是电池能量管理系统中的关键技术。

电池组均衡管理的技术

目前电池组均衡管理技术,从被动均衡和主动均衡的角度,可以将电池组均衡管理技术分为两个大类。在被动均衡中,主要是通过旁路开关和电阻对电池组多余的能量进行消耗;而在主动均衡中,均衡电路可以通过将外部能量转换后用于均衡,也可以利用电池组自身能量转移后实现均衡,还可以通过改变电池组单体之间的串并联连接关系来实现均衡,以及实现不同电池组之间的均衡。

以下针对相关电池组均衡管理技术进行分析:

2.1.旁路消耗法是利用发热电阻旁路分流,实现

单体电压过高电池的能量消耗来平衡电池组内各单体电池间容量差的目的,消除单体电池电压的个体差异对电池组运行的影响。旁路消耗法结构简单,但是能量损耗大,均衡效率低,且发热较严重。

2.2.能量转移型均衡是利用电感或电容等储能元件,把锂离子电池组中容量高的单体电池中的能量转移到容量比较低的电池上。其均衡电路往往是通过切换开关,将单体电池多余的能量由储能元件传递相邻的单体电池,从而达到均衡的目的。

2.3.是能量转换型均衡,这种均衡方法是利用电压/电流转换器件将能量从外部提供给电池组或者电池组中部分需要均衡的单体电池。由于电压/电流转换器件较为典型的就是变压器,因此该均衡方式多是利用变压器作为电池均衡电路的拓扑基础,采用分散或者集中的结构,实现单向或者双向的充电。

2.4.串/并转换充放电均衡是通过简单的变换电池组各单体电池之间的电路连接关系,使得电池组各单体电池在放电期间是相互串联的,而在充电时各单体电池相互并联,这样保证了在充电过程中各单体电池的电压一致性。

2.5.电池组多级均衡是将串联电池组分为多个电池模块,每个电池模块包括多个单体电池,分别对电池模块内部的单体电池和电池模块之间进行均衡,这种方法可以提高均衡效率和能量利用率,使所有电池能快速、平滑地实现电压均衡。

2.6.均衡模块结构设置的拓扑结构来分,可分为集中均衡(单一均衡模块利用开关网络产生输出)和独立均衡(多个均衡模块输出充电)。集中均衡运用了分时原理,通过开关组件的控制和切换,使充电过程中有额外的电流流入电压相对较低的电池中以达到

均衡充电的目的。

目前各国都在大力研发新能源汽车,电池组均衡管理技术手段已经发展到多样化,随着均衡技术的深入研究,人们对电动汽车的安全性要求也日益提高,使得电动汽车上电池组的安全性得到了进一步的重视,在实现电池组电压均衡的同时应该更加关注能量的利用效率,使其发展成为一个综合型能量管理控制技术,实现电动汽车的市场化。

同时也应该注意到,日本诸多企业在电池主动均衡和被动均衡方面的研究起步较早,并且随着时间的推移,对各均衡技术手段的研究更为深入和广泛,能够提出诸多较为新颖的均衡电路及控制方法;而国内各企业在该技术领域起步较晚,虽然也开始普遍关注电池组均衡管理技术,但是大多是在现有均衡电路的局部作出改进,而缺乏在电池组均衡手段整体上的作

相关文档
最新文档