风力发电原理

合集下载

风力发电原理

风力发电原理
类型:有传统风车、低速风力机及高速风力机
水平轴力风机图
3、垂直轴风力机
特点:凡风轮转轴与地面呈垂直状态的风力 机叫垂直抽风力机。
形式有:如s型、H型、Ф型等。 应用:虽然目前垂直轴风力机尚未大量商品
化,但是它有许多特点,如不需大型塔架、 发电机可安装在地面上、维修方便及叶片 制造简便等,研究日趋增多,各种形式不 断出现。各种形式的垂直轴风力机。
风力发电原理
主讲:
风力发电的原理:是利 用风力带动风车叶片旋 转,再透过增速机将旋 转的速度提升,来促使 发电机发电。简单的说 风力发电就是将风能转 换为机械能进而将机械 能再转换为电能的过程。
现代风力发电机采用空 气动力学原 理 ,就像 飞机的机翼一样。
风并非 " 推 " 动风轮叶片,而是吹过叶片形成叶 片正反面的压差,这种压差会产生升力,令风轮旋转 并不断横切风流 。

偏导航系统的作用
偏航系统的主要作用有两个: 1) 与风力发电机组的控制系统相互配合,使风发 电机组的风轮始终处于迎风状态,充分利用风能, 提高风力发电机组的发电效率; 2) 提供必要的锁紧力矩,以保障风力发电机组的安 全运行。
(四)发电机
发电机的作用,是利用电磁感应现象把由风轮输 出的机械能转变为电能。
依据目前的风车技术,大约是每秒三公尺 的微风速度(微风的程度),便可以开始 发电。 风力发电正在世界上形成一股热潮, 风力发电没有燃料问题,也不会产生辐射 或空气污染。
(一)风力发电设备
组成:风力发电机组包括两大部分; 一部分是风力机,由它将风能转换为机械能; 另一部分是发电机,由它将机械能转换为电能。
发电机有基本类型: 普通异步风力发电机组 双馈异步风力发电机组 直驱式同步风力发电机组(含永磁发电机和直流 励磁发电机) 混合式风力发电机组

简述风力发电原理

简述风力发电原理

简述风力发电原理风力发电是利用风能将其转化为电能的一种可再生能源。

风能是地球上存在的一种自然能源,来源于太阳能的辐射和地球自转所形成的气候系统。

风力发电利用风能的原理是通过风轮的旋转驱动发电机产生电能。

风力发电的基本原理可以简单地归纳为:风能转化为机械能,再由机械能转化为电能。

具体来说,当风吹过风轮时,风轮叶片会受到风力的作用而转动。

风轮连接着发电机的转子,当风轮转动时,转子也会跟着转动。

转子内部的磁场与定子之间的磁场产生相互作用,这种相互作用会产生电流,从而产生电能。

风力发电系统主要由风机叶片、风轮、传动系统和发电机组成。

风机叶片是收集风能的关键部件,它们的形状和数量都会影响风力发电的效率。

风轮是将风能转化为机械能的装置,一般由多个叶片组成。

传动系统将风轮的旋转转动传递给发电机。

发电机是将机械能转化为电能的关键部件,一般采用的是感应发电机。

风力发电的效率受多种因素影响。

首先是风的强度和稳定性,风速越大、越稳定,风力发电的效率就越高。

其次是风机叶片的形状和数量,设计合理的叶片能够更好地捕捉风能。

还有风轮的转速和传动系统的效率等因素也会影响风力发电的效率。

此外,地理位置也是影响风力发电效果的重要因素,选择适合的地点能够最大限度地利用风能。

风力发电作为一种清洁、可再生的能源形式,具有多个优点。

首先,风能广泛分布于全球各地,几乎每个地区都可以通过风力发电来获得电能。

其次,风力发电不会产生二氧化碳等温室气体和污染物,有利于减少环境污染和气候变化。

再次,风力发电具有可再生性,风能源源不断,不会像化石燃料一样会耗尽。

此外,风力发电还可以降低对传统能源的依赖,提高能源的多样化。

然而,风力发电也存在一些挑战和限制。

首先是风能资源的不稳定性和不可控性,风速的变化会直接影响风力发电的输出。

其次是风力发电设备的成本较高,需要大量的投资。

此外,风力发电设备对环境的影响也需要考虑,如鸟类和蝙蝠的迁徙和栖息地受到一定程度的影响。

风力发电机的原理运作

风力发电机的原理运作

风力发电机的原理运作风力发电机是一种利用风能转化为电能的装置。

它利用风的能量转动叶轮,通过传动装置将旋转的动能转化为电能。

下面我们详细介绍风力发电机的原理和运作过程。

一、风力发电机的原理1. 风的动能转换为叶轮的动能:当风经过叶轮时,叶轮所受到的风力会使其开始旋转。

这是因为风有一定的动能,当它与叶轮表面接触时,由于叶轮的形状和设计,风力会使叶轮开始转动。

2. 叶轮的转动驱动发电机:叶轮的转动会通过传动装置传递到发电机,从而驱动发电机产生电能。

传动装置通常由齿轮、轴等组成,可以将叶轮旋转的动能转换为发电机所需要的转动力。

3. 发电机的工作原理:发电机是将机械能转化为电能的关键部件。

它由转子、定子、磁场等构成。

当叶轮转动传递给发电机时,转子内的导线会受到磁场力的作用而产生电动势。

这个电动势经过适当的电路处理后,最终输出为可用的电能。

二、风力发电机的运作过程1. 风力发电机的启动:风力发电机需要一定的风速才能启动。

一般来说,需要的风速在3米/秒至5米/秒之间。

当风速达到或超过设定值时,发电机会自动启动。

2. 风力发电机的控制:发电机可以根据不同的风速自动调整叶轮的转速。

当风速过高时,会启动风速控制器,通过改变叶轮的角度来降低风力对叶轮的影响。

这种控制可以保证风力发电机在不同风速下都能正常工作,同时也可以保护发电机避免风力过大造成的损坏。

3. 风力发电机的发电:当风力发电机启动后,叶轮开始旋转,带动发电机转动。

发电机可以将机械能转化为电能,并通过输出端口输出。

这些电能可以进行储存或传输供给社会使用。

4. 风力发电机的维护和安全:风力发电机需要定期对设备进行维护和保养,以确保其正常工作。

同时,风力发电机也要注意安全问题,避免发电机受到恶劣天气或其他外部因素的影响。

三、风力发电机的优势和应用1. 可再生能源:风力发电是一种利用风能的可再生能源。

风是一种无尽的能源,而且对环境几乎没有污染。

2. 低碳环保:风力发电过程中不产生温室气体和空气污染物。

风力发电的原理是什么

风力发电的原理是什么

风力发电的原理是什么风力发电是指利用风能将风动能转换为电能的一种可再生能源发电技术。

它利用风能驱动风轮转动,将机械能转化为电能。

本文将详细介绍风力发电的原理及其工作原理。

风力发电原理风力发电的原理基于风的运动和空气的物理性质。

当地球受到太阳的照射,不同地区的气温和气压产生差异,形成气候系统。

气候系统中,气体在不同气压区域之间产生气流,形成风。

这种风能被称为风动能。

风力发电利用风动能,通过风轮转动,产生机械能,再由发电机将机械能转换为电能。

下面将详细介绍风力发电的工作过程。

风力发电的工作原理风力发电的工作原理可以归纳为以下几个步骤:1.风的捕获:风力发电机通常由三个主要部分组成:风轮、转子和发电机。

风轮是风力发电机中最重要的部分,它的作用是捕获风能。

风轮通常由多个叶片组成,通过叶片的形状和角度,能够最大程度地捕获风能。

2.风能转换:当风轮受到风的作用力时,风轮会转动。

转动的风轮会带动转子旋转,通过机械传动装置(如齿轮箱)将风轮转动的速度提高,并使其与发电机的转子同步旋转。

这样,机械能就被转化为转子的旋转动能。

3.电能转换:转子的旋转运动会激励发电机中的线圈产生感应电动势,然后通过电磁感应现象将机械能转换为电能。

发电机的输出电流经过电路控制系统处理,最终输入电网供人们使用。

4.电能传输和储存:发电后的电能经过变压器进行传输,将电压调整到合适的水平后输送到电网。

人们可以通过电网获得风力发电机产生的电能。

电能也可以通过储能设备,如电池,进行短期或长期的储存,以备不时之需。

风力发电的优势风力发电具有一系列的优势,使其成为一种重要的可再生能源发电技术:1.环保:风力发电不排放温室气体和污染物,对环境无污染,能够减少对化石燃料的依赖,有助于降低空气和水的污染。

2.可再生能源:风力是一种可再生能源,取之不尽,用之不竭。

利用风力发电可以减少对有限资源的消耗,对未来能源供应具有重要意义。

3.风力资源广泛:全球范围内都存在风力资源,且分布广泛。

风力发电机组的工作原理

风力发电机组的工作原理

风力发电机组的工作原理
风力发电机组是利用风能转换成电能的设备,是一种清洁、可再生的能源发电
方式。

它的工作原理主要包括风能转换、机械能转换和电能转换三个过程。

首先,风能转换。

当风吹过风力发电机组的叶片时,叶片受到风的作用而转动。

风的动能转化为叶片的动能,使叶片旋转。

这个过程就是风能转换的过程,也是风力发电机组能够正常工作的基础。

其次,机械能转换。

叶片的旋转带动风力发电机组的转子转动,转子与发电机
内部的磁场相互作用,产生感应电动势。

这时,机械能转化为电能的过程就开始了。

通过转子和定子之间的电磁感应作用,机械能被转化为电能。

最后,电能转换。

产生的交流电通过变压器升压后,送入电网,供给用户使用。

这个过程就是电能转换的过程,也是风力发电机组最终实现发电的过程。

总的来说,风力发电机组的工作原理就是通过风能转换、机械能转换和电能转
换三个过程,最终将风能转化为电能。

这种清洁、可再生的能源发电方式在当前的能源结构调整和环境保护中具有重要的意义。

希望通过不断的技术创新和设备升级,风力发电机组能够更加高效、稳定地工作,为人类的可持续发展做出更大的贡献。

风力发电厂工作原理

风力发电厂工作原理

风力发电厂工作原理风力发电是一种利用风能将其转化为电能的可再生能源。

风力发电厂是专门用于发电的设备,通常由风能转换系统、发电机组、电力传输系统和电力调度系统组成。

风力发电厂的工作原理是利用风能将风转化为机械能,再将机械能转化为电能。

下面将详细介绍风力发电厂的工作原理。

1. 风能转换系统风力发电厂的核心是风能转换系统,它由风轮、塔架和控制系统组成。

风轮是将风能转化为机械能的关键部件,通常由数片叶片组成。

当风吹过风轮时,风轮转动,产生机械能。

塔架是支持风轮的结构,通常较高,以便于获取更强的风能。

控制系统用于监测和调节风轮的转速和角度,以保证风能的最大利用效率。

2. 发电机组风力发电厂的发电机组是将机械能转化为电能的关键部件。

机械能通过传动系统传送给发电机,发电机将机械能转化为电能。

发电机通常由转子和定子组成,转子由风轮带动旋转,而定子则产生感应电流。

通过定子上的导线,感应电流转化为交流电能。

3. 电力传输系统发电机组产生的电能需要通过电力传输系统传送到电网中。

电力传输系统由变压器、电缆和开关设备组成。

发电机组产生的电能首先通过变压器升高电压,然后通过电缆输送到变电站或直接输送到电网。

开关设备用于控制电能的流向和分配。

4. 电力调度系统电力调度系统是风力发电厂的管理系统,它负责监测和控制发电机组的运行状态,并根据电网的需求进行电力调度。

电力调度系统可以根据电网负荷和风能状况来控制发电机组的输出功率,以保持电网的稳定运行。

总结起来,风力发电厂的工作原理是利用风能转化为机械能,再将机械能转化为电能。

通过风能转换系统将风能转化为机械能,再通过发电机组将机械能转化为电能。

最后,通过电力传输系统将电能输送到电网中,并通过电力调度系统进行管理和控制。

风力发电厂的工作原理简单清晰,具有可再生能源、环保、节能等优点,因此被广泛应用于全球各地。

随着科技的不断进步,风力发电技术也在不断提高,使得风力发电成为一种可靠、高效的清洁能源。

风力发电的构造原理

风力发电的构造原理

风力发电的构造原理把风的动能转变成机械动能,再把机械能转化为电力动能就是风力发电。

风力发电的原理是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升来促使发电机发电。

依据目前的风车技术计算出大约每秒三米的微风速度便可以开始发电。

风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料也不会产生辐射。

风力发电机的基础结构有机舱、转子叶片、低速轴、发电机、偏航装置、电子控制器及冷却元件等零部件。

机舱包括齿轮箱和发电机是风力发电机的关键设备,维护人员可以通过风力发电机塔进入机舱。

机舱左端是风力发电机转子,转子叶片捉获风并将风力传送到转子轴心。

现代六百千瓦风力发电机上每个转子叶片的测量长度大约为二十米,而且被设计得很像飞机的机翼。

转子轴心附着在风力发电机的低速轴上,风力发电机的低速轴将转子轴心与齿轮箱连接在一起。

在现代六百千瓦风力发电机上,转子转速慢至大约为19-30转每分钟,轴中有用于液压系统的导管来激发空气动力闸的运行。

齿轮箱左边是低速轴可以将高速轴的转速提高至低速轴的50倍,高速轴以1500转每分钟运转并驱动发电机,它装备有紧急机械闸以用于空气动力闸失效时或风力发电机被维修之时。

发电机通常被称为感应电机或异步发电机,在现代风力发电机上最大电力输出通常为500至1500千瓦。

偏航装置借助电动机转动机舱以使转子正对着风,偏航装置由电子控制器操作可以通过风向标来感觉风向,通常在风改变其方向时风力发电机一次只会偏转几度。

电子控制器包含一台不断监控风力发电机状态的计算机并控制偏航装置,为防止出现齿轮箱或发电机的过热等故障,该控制器可以自动停止风力发电机的转动并通过电话调制解调器来呼叫风力发电机操作员。

液压系统用于重置风力发电机的空气动力闸,冷却元件包含一个风扇以用于冷却发电机,此外它包含一个油冷却元件来用于冷却齿轮箱内的油,一些风力发电机还具有水冷发电机。

风力发电机塔载有机舱及转子,通常高的塔具有优势是因为离地面越高则风速越大。

风力发电什么原理

风力发电什么原理

风力发电什么原理
风力发电是一种利用风能将其转化为电能的发电方式。

其原理是基于风能转化为机械能的动力学原理。

当风经过风力发电机组时,风力将会使风轮旋转。

风轮连接到一个发电机,这个发电机将会将机械能转化为电能。

具体地说,风力作用下,风轮旋转时,风轮内的发电机会运转起来,通过磁铁和线圈之间的作用,相对运动产生感应电流,从而将机械能转化为电能。

风力发电需要一定的风速才能够有效工作。

通常情况下,风速需要达到一定的最低值,才能让风力发电机组开始工作。

此外,过大的风速也会对风力发电机组产生负面影响,因此还需要设定一个最大风速值,以保护设备的安全运行。

在选择风力发电站的位置时,也需要考虑到地理、气候等因素,以确保能够获得充足的风能资源。

因此,通常选择在具有较高的海拔、沿海地区或者开阔地带设置风力发电站,以获得更强的风速。

总的来说,风力发电利用风能的动力学原理,将风能转化为机械能,再转化为电能。

它是一种环保可再生的能源形式,因此在全球范围内得到了广泛应用和发展。

风力发电原理

风力发电原理

4)最大限度地将风能转换为电能,即在额定风速以下 ,可能使发电机在每1种风速时,输出的电功率达到最大, 额定风速以上时则保持输出电功率为常量;
5)风力发电机输出的电功率保持恒压恒频,有较高的 电能品质质量.
风力发电机组控制目标有很多项,控制方法多种多样, 按控制对象划分大致可分为偏航系统、发电机并网 控制系统、发电机功率控制系统、电容器控制系统 等等,其中两个核心问题是:风能的最大捕获以提高 风能转换效率以及改善电能质量问题.由风力机最大 风能捕获的运行原理可知,若风速越高,则与之相对 应的风力机转速越高.但受风电机组转速极限、功率 极限等限制,风力机转速不可能太高.
分类: 1)根据它收集风能的结构形式及在空间的布置,可
分为水平轴式或垂直轴式. 2)从塔架位置上,分为上风式和下风式;
3)还可以按桨叶数量,分为单叶片、双叶片、 三叶片、四叶片和多叶片式.
4)从桨叶和形式上分,有螺旋桨式、H型、S 型等;
5)按桨叶的工作原理分,则有升力型和阻力型 的区别.
6)以风力机的容量分,则有微型(1kW以下)、 小型(1—10kW)、中型(10—100kW)和大型 (100kw以上)机.
其中, Cp为风能利用系数(Power Coefficient),表示风
机捕获风能的能力, Cp = Pcapture / Pwind
偏导航系统的作用
偏航系统的主要作用有两个: 1) 与风力发电机组的控制系统相互配合,使风发电 机组的风轮始终处于迎风状态,充分利用风能,提高 风力发电机组的发电效率; 2) 提供必要的锁紧力矩,以保障风力发电机组的安 全运行.
(四)发电机
发电机的作用,是利用电磁感应现象把由风轮输出 的机械能转变为电能.
2、双馈式异步风力发电机组

风力发电机的工作原理

风力发电机的工作原理

风力发电机的工作原理
风力发电机的工作原理基于风能转化为机械能,再将机械能转化为电能。

其具体工作流程如下:
1.风能转化:当风力作用在风力发电机的叶片上时,叶片开始旋转,风能通过叶片转化为机械能。

2.机械能传递:叶片转动使得发电机转子旋转,转子上的磁铁与定子之间的线圈相对运动,产生电磁感应。

3.电能产生:通过电磁感应的作用,发电机产生电能,并通过变压器将低电压转换为高电压,以便输送到电网中。

4.电能存储:电能经过电网输送到消费者处,被消费者使用,也可以被存储起来以备后续使用。

总之,风力发电机利用风能转化为电能,是一种清洁能源,具有环保、可再生等诸多优点,成为全球范围内推广应用的重要能源之一。

风力发电知识点总结大全

风力发电知识点总结大全

风力发电知识点总结大全一、风力发电的原理风力发电的原理是利用风能带动风机叶片旋转,进而带动发电机产生电能。

风机通常由塔架、主轴、叶片和发电机等部件组成。

其中,风机的叶片接收到风的动能,然后带动主轴旋转,主轴通过传动装置驱动发电机产生电能。

在发电过程中,所产生的电能可以被接入电网,也可以储存到电池中供以后使用。

二、风力发电的发展历史风力发电的历史可以追溯到公元前500年的古希腊时期,当时人们已开始使用风车来抽水和磨面。

而真正意义上的现代风力发电可以追溯到19世纪末的美国,当时科学家开发出了第一台风力发电机。

20世纪70年代,丹麦成为风力发电的先锋国家,开始大规模发展风电。

自此以后,风力发电逐渐成为一种主流的可再生能源形式,并在全球范围内得到广泛应用和推广。

三、风力发电的技术分类根据风力发电机的类型和结构,风力发电可以分为多种技术分类,包括水平轴风力发电机、垂直轴风力发电机和混合式风力发电机等。

其中,水平轴风力发电机是目前应用最为广泛的一种类型,它具有结构简单、稳定性好、效率高等特点;而垂直轴风机则具有风向适应性强、噪音小等优点;混合式风力发电机则融合了水平轴和垂直轴的优点,将风能转换成电能。

四、全球风力发电的发展状况目前,全球范围内的风力发电已经成为一种重要的能源形式,并且得到了广泛的推广和应用。

根据国际能源署(IEA)的数据,截至2019年,全球累计安装的风力发电容量已达到了651.7吉瓦,其中中国、美国、德国、印度和西班牙等国家是全球风力发电的主要发展国家。

同时,全球风力发电的装机容量每年都在稳步增长,并且逐渐成为了可再生能源中的主要形式之一。

五、风力发电的优缺点风力发电作为一种清洁的可再生能源,具有许多明显的优势,比如不排放二氧化碳、占地面积小、可再生性好等。

但同时,风力发电也存在一些缺点,比如对风资源的依赖性较强、噪音污染、对鸟类的生存造成影响等问题。

因此,在发展风力发电时,需要综合考虑其优缺点,采取相应的措施来解决其中的问题。

风力发电机的工作原理

风力发电机的工作原理

风力发电机的工作原理
风力发电机是一种利用风能转化为电能的装置。

它的主要工作原理是利用风的动能驱动发电机转动,将机械能转化为电能。

风力发电机通常由风轮、发电机和塔架组成。

风轮是发电机的核心部件,它由数个叶片组成,可以根据风速的大小旋转。

当风速增大时,风轮的转速也相应增加。

当风轮旋转时,风轮上的叶片与空气碰撞,这样风力就会转化为机械能。

机械能经过传动系统传递到发电机上,使发电机转动。

发电机内部的磁场和线圈之间的相互作用,产生了感应电动势,进而将机械能转化为电能。

发电机产生的电能会通过电缆输送到电网中,供人们使用。

通常情况下,风力发电机不会直接将电能存储,而是即时地将其注入电网。

为确保风力发电机能始终正常工作,需要有风速传感器和控制系统进行监测和控制。

当风速过大或过小时,系统会自动调节叶片的角度,以保证风力发电机的工作效率和稳定性。

总之,风力发电机利用风的动能转化为机械能,然后通过发电机将机械能转化为电能。

这种以风为动力的可再生能源技术,具有环保、可持续等优点,并且已经在全球范围内广泛应用。

风力发电是什么原理

风力发电是什么原理

风力发电是什么原理
风力发电是利用风的动力将其转化为机械能,再进一步转化为电能的过程。

其工作原理主要包括以下几个步骤:
1. 风能收集:通过风力发电机的叶片,将风的运动能量转化为机械能。

当风经过叶片时,叶片会因气流的冲击而转动。

2. 机械能传输:转动的叶片通过机械传动装置(如齿轮和轴)将机械能传递给风力发电机的发电机部分。

3. 电能转化:传递到发电机的机械能会引起电磁感应作用,生成交流电。

发电机的转子通过电导磁力的作用,在导线上产生一定的电动势。

4. 输电和储存:通过电缆将发电机产生的电能输送到变压器等设备中进行升压和输送,最终接入电网,供应给用户使用。

同时,部分电能也可以通过储能装置(如蓄电池)进行储存,以备不时之需。

风力发电知识点总结

风力发电知识点总结

风力发电知识点总结一、风力发电原理风力发电利用风力驱动风力发电机,将风能转化为机械能后再转化为电能,是一种可再生能源的发电方式。

风力发电原理主要包括风的形成原理、风力发电机的工作原理和发电机组的工作原理。

1. 风的形成原理风是因地球的自转和太阳辐射造成的。

太阳光照射到地球上的不同地区和表面,使得地球表面温度不均匀,产生不同的气压区。

气压差引起气流的移动,形成了风。

这个过程是地球大气环流的基础。

2. 风力发电机的工作原理风力发电机的基本工作原理是利用风力带动叶片旋转,通过传动系统转动发电机产生电能。

当风力带动叶片旋转时,发电机的转子受到机械传动装置的带动,旋转产生电能,这个过程就是固定磁场中导体回路的运动相对于磁场产生感应电动势的原理来实现的。

3. 发电机组的工作原理发电机组是由风力发电机、传动系统和调速装置组成的。

风力发电机叶片受到风力的作用带动转子旋转,通过传动系统将机械能传递到发电机,并通过发电机产生电能。

调速装置是指通过调整叶片的角度或调整传动系统的转速来保持发电机的稳定输出,并根据风速的变化调整叶片的角度,以保持发电机的稳定运行。

二、风力发电技术风力发电技术包括风电场选址、风力发电机设备、风力发电系统和风力发电控制系统。

1. 风电场选址风电场选址是指寻找适合建设风电场的地点。

一般来说,风电场选址需要考虑多种因素,包括地形地貌、气象条件、土地利用和环境保护等。

2. 风力发电设备风力发电设备主要由风力发电机、叶片和塔架组成。

风力发电机的类型包括水平轴风力发电机和垂直轴风力发电机。

水平轴风力发电机叶片与地面平行,能够利用风能进行旋转,而垂直轴风力发电机叶片与地面垂直,能够利用风能进行旋转。

塔架主要是支撑风力发电机的结构,使其能够在空中旋转。

3. 风力发电系统风力发电系统主要由控制系统、变流器、变压器和电网等组成。

控制系统可以根据风速的不同控制风力发电机的旋转,保持其在最佳工作状态,能够提高发电效率。

风力发电机的原理

风力发电机的原理

风力发电机的原理
风力发电机的原理是利用风能转动发电机产生电能。

当风经过风轮时,由于风轮叶片的设计使风受到阻力,而风轮叶片则会受到推力,从而开始转动。

风轮转动后,通过轴将运动能量传递给发电机。

发电机由转子和定子组成。

转子是连接到风轮轴上的部件,它会随着风轮的转动而转动。

定子则是相对静止的部件,它的角度与转子相对固定。

转子的旋转会导致磁场的变化,从而在定子上感应出电压。

这种感应电压通过导线传递到变流器中,变流器会将交流电转换为直流电,以供电网使用或储存。

整个发电过程中,风力是驱动器。

风的速度越大,风轮转动的速度越快,发电的能力也就越强。

此外,风轮的设计也非常重要。

风轮的形状和叶片的数量会影响风轮的效率和发电量。

风力发电机是一种可再生能源发电方式,具有环保、清洁、无污染等优势。

它可以利用自然风资源,转化为可供人类使用的电能,对促进可持续发展和减少化石燃料的使用具有重要意义。

风电原理及结构详解

风电原理及结构详解

风电原理及结构详解
一、风电原理
风力发电是利用风能转化为电能的原理,通过风力发电机组将风能转化为电能。

当风吹向风力发电机时,风力发电机叶片受到风的冲击而旋转,从而带动发电机转动,产生电能。

通过调节发电机的输出电压和频率,可以实现并网发电,为电网提供稳定的电能。

二、风电结构
风电结构包括风力发电机组、输电线路、变电站等部分。

其中,风力发电机组是风电的核心部分,包括叶片、齿轮箱、发电机、塔筒等部分。

1. 叶片:是风力发电机组中最重要的部分之一,它能够吸收风能并将其转化为机械能,从而驱动发电机转动。

叶片的形状和材料直接影响着风能利用率和发电效率。

2. 齿轮箱:是连接叶片和发电机的中间部分,它将叶片传来的低速旋转转化为高速旋转,从而提高发电机的发电效率。

齿轮箱是风力发电机组中较为昂贵的部分,同时也是故障率较高的部分。

3. 发电机:是风力发电机组中的主要部分之一,它将机械能转化为电能。

发电机通常采用无刷双馈异步发电机或永磁同步发电机等类型。

4. 塔筒:是支撑整个风力发电机组的部分,高度一般在60-100米之间。

塔筒通常采用钢材或混凝土制成,其结构必须能够承受强风、暴雪等极端天气的影响。

5. 输电线路:是将电能从风力发电机组输送到变电站的线路,通常采用高压输电线路,以保证电能传输的稳定性和经济性。

6. 变电站:是将电能从输电线路进一步升压或降压,以满足不同地区用电需求的部分。

变电站通常包括变压器、开关柜等设备。

1。

风能发电的原理

风能发电的原理

风能发电的原理
风能发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

风力发电工作原理
把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。

风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。

风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。

然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。

机械连接与功率传递水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。

另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型。

发电类型
发电动力装置按能源的种类分为火电动力装置、水电动力装置、核电动力装置及其他能源发电动力装置。

火电动力装置由锅炉、汽轮机和发电机(惯称三大主机)及其辅助装置组成。

水电动力装置由水轮发电机组、调速器、油压装置及其他辅助装置组成。

核电动力装置由核反应堆、蒸气发生器、汽轮发电机组及其他附属设备组成。

感谢您的阅读,祝您生活愉快。

风力发电的原理与应用

风力发电的原理与应用

风力发电的原理与应用风力发电是一种利用风能转化为电能的技术,它已经成为可再生能源领域中最为重要的能源之一。

本文将介绍风力发电的基本原理和应用。

一、风力发电的原理风力发电的原理是利用风能驱动风力发电机转动,进而产生电能。

风力发电机一般由风轮、轴、发电机、塔架和控制系统等组成。

1. 风轮:风轮是风力发电机的核心部件,它由多个叶片组成,可以捕捉风能并转化为机械能。

2. 轴:轴连接着风轮和发电机,它将风轮转动的动力传递给发电机。

3. 发电机:风力发电机使用转动的机械能驱动发电,将机械能转化为电能。

常用的发电机类型包括同步发电机和异步发电机。

4. 塔架:塔架是风力发电机的支撑结构,是将风轮安装在离地面较高位置的关键部件。

5. 控制系统:风力发电机的控制系统负责监测风速、控制风轮的角度和转速等参数,以确保风力发电的安全运行。

二、风力发电的应用风力发电作为一种清洁、可再生的能源,已经在全球范围内得到广泛应用。

以下是风力发电的主要应用领域:1. 发电厂:风力发电厂是利用风能进行大规模发电的场所。

风力发电厂通常由多台风力发电机组成,并连接到电网中,实现电能的供应。

2. 农村和偏远地区电力供应:对于一些偏远地区和无法接入传统电网的农村地区,风力发电成为解决电力供应问题的有效手段。

通过建设风力发电机组,可以为这些地区提供稳定的电力供应。

3. 工业和商业领域:风力发电也被广泛应用于工业和商业领域,为大型工厂、商业建筑和商业区提供电力供应,降低能源成本并减少环境影响。

4. 家庭和小型应用:风力发电机也可以用于家庭和小型应用。

小型风力发电机可以设置在住宅或农场附近,满足个人或小型机构的电力需求。

5. 海上风电:海上风电是近年来兴起的发展方向。

由于海上风能资源更加丰富,同时避免了陆地使用和环境影响等问题,海上风电具有巨大的发展潜力。

总结:风力发电的原理是利用风能转化为电能,通过风力发电机的转动产生电能。

风力发电被广泛应用于发电厂、农村地区、工业和商业领域,以及家庭和小型应用等领域。

风力发电机组发电原理

风力发电机组发电原理

风力发电机组发电原理
一、风能捕获
风力发电机组通过风能捕获机制,将自然界中的风能转化为机械能。

当风吹过风力发电机组的叶片时,由于叶片的特殊形状和空气动力学设计,风能被捕获并驱动叶片旋转。

二、传动系统
捕获到的机械能通过风力发电机组的传动系统传递到发电机。

传动系统通常包括齿轮箱和联轴器。

齿轮箱将风力发电机组的高速旋转降低到发电机所需的中速,以便发电机能够有效地将机械能转换为电能。

三、电力转换
发电机是风力发电机组的核心部件,负责将机械能转换为电能。

发电机的工作原理基于电磁感应定律,通过磁场和导线的相对运动产生电流。

发电机产生的电能经过整流和滤波后,转换为直流电或交流电,供用户使用或并入电网。

四、发电机调节
为了保持发电机输出的稳定性和可靠性,需要对发电机的运行状态进行调节。

调节系统包括控制系统和保护系统,用于监测发电机的运行状态、控制发电机的工作点、保护发电机免受过载和短路等故障的影响。

五、并网运行
为了实现电能的输送和分配,风力发电机组需要与电网进行连接。

并网运行是指风力发电机组通过电力电子转换器等设备与电网同步运行,确保电能质量和电网安全。

同时,风力发电机组还需要遵循电网的运行和管理要求,确保其正常运行和良好的性能表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电原理及风力发电的工艺流程
发电风力发电机最初出现在十九世纪末。

自二十世纪八十年代起,这项技术不断发展并日渐成熟,适合工业应用。

近二三十年,典型的风力发电机的风轮直径不断增大,而额定功率也不断提升。

在二十一世纪00 年代初,风力发电机最具经济效益的额定输出功率范围在600 千瓦至750 千瓦之间,而风轮直径则在40 米至47 米之间。

当时所有制造商都有生产这类风力发电机。

新一代的兆瓦级风力发电机是以这类机种作为基础发展出来的。

二零零七年初,有一些制造商开始生产额定功率为几兆瓦而风轮直径达到约90 米的风力发电机(例如Vestas V90 3.0 兆瓦
风电机,Nordex N90 2.5 兆瓦风电机等等),甚至有些直径达100米( 如GE 3.6 兆瓦风电机) 。

这些大型风力发电机主要市场是欧洲。

在欧洲,适合风电的地段日渐减少,因此有逼切性安装发电能力尽量高的风力发电机。

另一类更大型的为海上应用而设计的风力发电机,已经完成设计并制成原型机。

例如RE Power 公司设计的风力发电机风轮直径达126 米,功率达5 兆瓦。

1) 风的功率
风的能量指的是风的动能。

特定质量的空气的动能可以用下列公式计算。

能量= 1/2 X 质量X ( 速度)^2
吹过特定面积的风的的功率可以用下列公式计算。

功率= 1/2 X 空气密度X 面积X ( 速度)^3
其中,
功率单位为瓦特;
空气密度单位为千克/ 立方米;
面积指气流横截面积,单位为平方米;
速度单位为米/ 秒。

在海平面高度和摄氏15 度的条件下,乾空气密度为1.225 千克/ 立方米。

空气密度随气压和温度而变。

随著高度的升高,空气密度也会下降。

於上述公式中可以看出,风的功率与速度的三次方〔立方〕成正比,并与风轮扫掠面积成正比。

不过实际上,风轮只能提取风的能量中的一部分,而非全部。

2) 风力发电机的工作原理
现代风力发电机采用空气动力学原理,就像飞机的机翼一样。

风并非" 推" 动风轮叶片,而是吹过叶片形成叶片正反面
的压差,这种压差会产生升力,令风轮旋转并不断横切风流。

风力发电机的风轮并不能提取风的所有功率。

根据Betz 定律,理论上风电机能够提取的最大功率,是风的功率的59.6% 。

大多数风电机只能提取风的功率的40% 或者更少。

风力发电机主要包含三部分∶风轮、机舱和塔杆。

大型与电网接驳的风力发电机的最常见的结构,是横轴式三叶片风轮,并安装在直立管状塔杆上。

( 上图来源:Danish Wind Industry Association)
风轮叶片由复合材料制造。

不像小型风力发电机,大型风电机的风轮转动相当慢。

比较简单的风力发电机是采用固定
速度的。

通常采用两个不同的速度- 在弱风下用低速和在强风下用高速。

这些定速风电机的感应式异步发电机能够直接发
产生电网频率的交流电。

比较新型的设计一般是可变速的(比如Vestas 公司的V52-850 千瓦风电机转速为每分钟14 转到每分钟31.4 转)。

利用可变速操作,风轮的空气动力效率可以得到改善,从而提取更多的能量,而且在弱风情况下噪音更低。

因此,变速的风电机设
计比起定速风电机,越来越受欢迎。

机舱上安装的感测器探测风向,透过转向机械装置令机舱和风轮自动转向,面向来风。

风轮的旋转运动通过齿轮变速箱传送到机舱内的发电机(如果没有齿轮变速箱则直接传送到发电机)。

在风电工业中,配有变速箱的风力发电机是很普遍的。

不过,为风电机而设计的多极直接驱动式发电机,也有显著的发展。

设於塔底的变压器(或者有些设於机舱内)可提升发电机的电压到配电网电压(香港的情况为11 千伏)。

所有风力发电机的功率输出是随著风力而变的。

强风下最常见的两种限制功率输出的方法(从而限制风轮所承受压力)是失速调节和斜角调节。

使用失速调节的风电机,超过额定风速的强风会导致通过业片的气流产生扰流,令风轮失速。

当风力过强时,业片尾部制动装置会动作,令风轮剎车。

使
用斜角调节的风电机,每片叶片能够以纵向为轴而旋转,叶
片角度随著风速不同而转变,从而改变风轮的空气动力性能。

当风力过强时,叶片转动至迎气边缘面向来风,从而令风轮剎车。

叶片中嵌入了避雷条,当叶片遭到雷击时,可将闪电中的电流引导到地下去。

上图:Vestas V52-850 千瓦风力发电机机舱内的组成部份
( 来源:Vestas)
3) 风力发电机的功率曲线
在风速很低的时候,风电机风轮会保持不动。

当到达切入风速时(通常每秒 3 到4 米),风轮开始旋转并牵引发电机开始发电。

随著风力越来越强,输出功率会增加。

当风速达到额定风速时,风电机会输出其额定功率。

之後输出功率会保留大致不变。

当风速进一步增加,达到切出风速的时候,风电机会剎车,不再输出功率,为免受损。

风力发电机的性能可以用功率曲线来表达。

功率曲线是用作显示在不同风速下(切入风速到切出风速)风电机的输出功率。

上图:V52-850 千瓦风力发电机於不同噪音级别下的工作曲线( 噪音级别可透过改变风力发电机的转速而改变)
( 来源:Vestas)
为特定地点选取合适的风力发电机,一般方法是采用风电机的功率曲线和该地点的风力资料以进行产电量估算。

(在大型风力发电机- 资源潜力部分有更多相关资讯)
4) 风力发电机的额定输出功率
风力发电机的额定输出功率是配合特定的额定风速设而定的。

由於能量与风速的立方成正比,因此,风力发电机的功
率会随风速变化会很大。

同样构造和风轮直径的风电机可以配以不同大小的发电机。

因此两座同样构造和风轮直径的风电机可能有相当不同的额定输出功率值,这取决於它的设计是配合强风地带(配较
大型发电机)或弱风地带(配较小型发电机)。

5) 风力发电机的主要种类
横轴风力发电机和竖轴风力发电机
根据叶片固定轴的方位,风力发电机可以分为横轴和竖轴两类。

横轴式风电机工作时转轴方向与风向一致,竖轴式风
电机转轴方向与风向成直角。

横轴式风电机通常需要不停地变向以保持与风向一致。

而竖轴式风电机则不必如此,因为它可以收集不同来向的风能。

横轴式风电机在世界上占主流位置。

逆风风力发电机和顺风风力发电机
逆风风电机是一种风轮面向来风的横轴式风电机。

而对於顺风风电机,来风是从风轮的背後吹来。

大多数的风力发电机是逆风式的。

单叶片、双叶片和三叶片风力发电机
叶片的数目由很多因素决定,其中包括空气动力效率、复杂度、成本、噪音、美学要求等等。

大型风力发电机可由1 、2 或者3 片叶片构成。

叶片较少的风力发电机通常需要更高的转速以提取风中的能量,因此噪音比较大。

而如果叶片太多,它们之间会相互作用而降低系统效率。

目前 3 叶片风电机是主流。

从美学角度上看,3 叶片的风电机看上去较为平衡和美观。

6) 岸上风电场
岸上风电系统可以是仅有一台风电机,或者由多台风电机器线性排列或方阵排列形成风电场。

风电场的风力发电机相互之间需要有足够的距离,以免造成过强的湍流相互影响,或由於" 尾流效应" 而严重减低後排风电机的功率输出。

为了配合运送大型设备(特别是叶片)到安装现场,须要建设道路。

另外亦须要建设输电线,把风电场的输出连接到电网接入点。

7) 世界各地的风力发电装置
到2005 年底,世界总风力发电装机容量达58 千兆瓦。

德国、西班牙、美国、印度和丹麦是以风力发电装机容量来算前几名的国家。

在丹麦,风能发电提供该国总用电量的20 %。


港第一台大型风力发电机是由香港电灯集团於2005 年末安装
在南丫岛上,并於2006 年二月正式启用。

该机额定输出功率为800 千瓦。

风能是可再生能源发展中最快的部分。

由1995 年到2005 年
之间的年增长率为28.5 %。

根据德国风能会(DEWI )的估计,风能发电的年增长率将保持高增长率,在2012 年或之前全球
风力发电装机容量可能达到150 千兆瓦。

相关文档
最新文档