有理数加减乘除混合运算基础试题含答案详解

合集下载

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,……仔细观察以上数列,则它的第11个数应该是 .【答案】89.【解析】观察发现:从第三个数开始,后边的一个数总是前边两个数的和,则第11个数是34+55=89.试题解析:第11个数是34+55=89.【考点】规律型:数字的变化类.2.将正整数依次按下表规律排成4列,根据表中的排列规律,数2014应在( )A.第672行第1列B.第672行第4列C.第671行第1列D.第671行第4列【答案】B.【解析】每行有3列,奇数开始的从左边开始排列,偶数开始的从右边开始排列.每行的最后都是3的倍数.2014÷3=671……1,所以数2014应在第672行第4列.故选B.【考点】规律型:数字的变化类.3.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数0.001293用科学计数法表示为__________ .【答案】.【解析】用科学记数法表示绝对值小于的数,只要将小数定向右移到第一个不为零的数后,若共移动位,则最后乘以即可,如本题中向右移了位,变为,在后乘以,最后.【考点】科学记数法.4.计算:= 。

【答案】.【解析】【考点】同底数幂的乘法.5.在一次水灾中,大约有个人无家可归,假如一顶帐篷占地100米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000米2。

要安置这些人,大约需要多少个这样的广场?(所有结果用科学计数法表示)【答案】(1);(2);(3).【解析】根据帐篷的数量=总人数÷每一个帐篷所容纳的人数;所占面积=帐篷数×一顶帐篷所占的面积,计算即可.试题解析:根据题意得2.5×107÷40=625000=顶帐篷,625000×100=6.25×107米2,6.25×107÷5000=个.考点: 整式的除法.6.明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【答案】C【解析】小明第四次测验的成绩是故选C.7.下列各组的两个数中,运算后的结果相等的是()A.和B.和C.和D.和【答案】B【解析】A.,,故本选项错误;B.,,故本选项正确;C.,,故本选项错误;D.,,故本选项错误.故选B.8.若规定“!”是一种数学运算符号,且则的值为()A.B.99!C.9 900D.2!【答案】C【解析】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴=100×99="9" 900,故选C.9.若规定,则的值为 .【答案】【解析】.10.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?【答案】(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.【解析】分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出平均一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得:(元).(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.11.有理数0.0050400的有效数字的个数是().A.3个B.4个C.5个D.6个【答案】C【解析】有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:有理数0.0050400的有效数字有5、0、4、0、0这5个,故选C.【考点】近似数和有效数字点评:本题是基础应用题,只需学生熟练掌握有效数字的定义,即可完成.12.计算:;【答案】-5【解析】先根据有理数的乘方法则计算,再根据有理数的乘法法则计算,最后算加减即可.解:原式.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.13.观察下列各式:31=3,32=9,33=27,34=81, 35=243,36=729…你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:3的个位数字是。

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.小华利用计算器计算0.0000001295×0.0000001295时,发现计算器的显示屏上显示如下图的结果,对这个结果表示正确的解释应该是().A.1.677025×10—14B.1.677025×1014C.(1.677025×10)—14D.1.677025×10×(—14)【答案】A.【解析】0.0000001295×0.0000001295,=0.00000000000001677025,=1.677025×10-14.故选A.【考点】计算器—有理数.2.计算:【答案】41.【解析】针对有理数的乘方、绝对值分别进行计算,然后根据实数的运算法则求得计算结果.原式=.【考点】1.有理数的乘方;2..绝对值;3.实数的运算法则.3.人一根头发的直径大约为0.00072分米,用科学记数法表示正确的是()A.B.C.D.【答案】D.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.00072第一个有效数字前有4个0(含小数点前的1个0),从而.故选D.【考点】科学记数法.4.中学数学中,我们知道加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算,如式子可写成,式子也可写成;已知式子表示为,则用表示时,=()A.6B.C.D.【答案】B.【解析】根据观察式子23=8可以变形为3=log28,2=log525也可以变形为52=25,可发现规律,根据同底数幂的乘法,可得答案.由y=log318,得3y=183x=2,32=932×3x=32+x=183y=18=32+x所以y=2+x.故选B.【考点】有理数的乘方.5.计算(1)[(x+y)2-(x-y)2]÷(2xy)(2)(3)【答案】(1)2;(2)-0.1;(3)-4.【解析】(1)原式中括号中利用完全平方公式展开,再利用多项式除以单项式法则计算即可得到结果.(2)先算积的乘方,再进行除法运算即可;(3)根据乘方、零次幂、负整数指数幂的意义进行计算即可求出答案.试题解析:(1)原式=(x2+2xy+y2-x2+2xy-y2)÷(2xy)=4xy÷(2xy)=2;(2) 原式====-0.1;(3)原式=-4+4×1-4=-4+4-4=-4【考点】1.完全平方公式;2.整式的除法;3.实数的混合运算.6.用小数表示2.014×10-3是 .【答案】0.002014.【解析】把数据2.014×10-3中2.014的小数点向左移动3位就可以得到.试题解析:2.014×10-3=0.002014.考点: 科学记数法—原数.7.已知,则=_______.【答案】-3.【解析】把变形为3-3,即可求出m的值.试题解析:∵∴m=-3.考点: 负整数指数幂.8.根据下图所示的程序计算代数式的值,若输入n的值为5,则输出的结果为()A.16B.2.5C.18.5D.13.5【答案】A【解析】由程序图可知输出的结果为3.9.明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【答案】C【解析】小明第四次测验的成绩是故选C.10.小彬从家里步行到学校需100步,他到学校的距离可能是()A.250 m B.200 m C.150 m D.50 m【答案】D【解析】0.5×100=50(m).故选D.11.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.【答案】-37【解析】原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.12.比较下列各对数的大小.(1)与;(2)与;(3)与.【答案】(1)<(2)<(3)<【解析】解:(1)因为|-4+5|=1,|-4|+|5|=9,所以|-4+5|<|-4|+|5|.(2)因为,所以.(3)因为,,所以.13.务川电视台天气预报,12月20日的气温是﹣2℃~7℃,则这一天的温差是℃【答案】9【解析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.7﹣(﹣2)=7+2=9℃.故答案为:9.【考点】有理数的减法.14.)计算:(1)(2);(3);(4).【答案】(1)-2.5;(2);(3)-15;(4)1.【解析】(1)原式==0.5+(-3)=-2.5.(2)原式==(-1)×=.(3)原式=-25+=-25+12+16-18=-15(4)原式==1【考点】有理数的运算.15.一振子从点A开始左右振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时0.22秒,则共用时多少秒?【答案】(1)5.5;(2)13.53.【解析】(1)将8次的记录相加,得到的数就是停止时所在位置距A点的距离,如果是“正”则在A点右边,如果是“负”则在A点左边;(2)将8次记录的绝对值相加就是它振运8次的距离,再乘以0.22,即可得到共用时间.试题解析:(1)+10-9+8-6+7.5-6+8-7=5.5;答:振子停止时位于A点右边5.5毫米处.(2)10+9+8+6+7.5+6+8+7=61.5,61.5×0.22=13.53(秒)答:振子共用时13.53秒.【考点】正数和负数.16.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为万元.【答案】3.397×107【解析】科学记数法的表示方法:科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:.【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.17. (-2)4表示A.(-2)×4B.(-2)×(-2)×(-2)×(-2)C.-4×4D.(-2)+(-2)+(-2)+(-2)【答案】B【解析】有理数的乘方的定义:几个相同因数的积叫做有理数的乘方.(-2)×(-2)×(-2)×(-2),故选B.【考点】有理数的乘方点评:本题属于基础应用题,只需学生熟练掌握有理数的乘方的定义,即可完成.18.按四舍五入法则取近似值:2.096≈(精确到百分位).-0.03445≈(精确到0.001).【答案】2.10,-0.034【解析】精确到百分位即是对千分位四舍五入,精确到0.001即是对0.0001位四舍五入.按四舍五入法则取近似值:2.096≈2.10(精确到百分位).-0.03445≈-0.034(精确到0.001).【考点】近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握取近似数的方法,即可完成.19.下表是小明记录的10月份某一周内每天中午12时的气温的变化情况(气温比前一天上升记为正数,下降记为负数)星期一二三四五六日(2)本周的最高气温与最低气温相差多少摄氏度?【答案】(1)由题意得【解析】(1)根据气温比前一天上升记为正数,下降记为负数即可依次计算出各天的实际气温;(2)根据(1)中得到的结果即可计算出本周的最高气温与最低气温的差.(1)由题意得13111614131716【考点】有理数的减法法则的应用点评:解题的关键是读懂气温比前一天上升记为正数,下降记为负数,分别计算出各天的实际气温.20.研究下列算式,你会发现什么规律?……问题探究(1)请你找出规律并计算=_____________=( ).(2)用含有的式子表示上面的规律:_____________________________.问题解决(3)用找到的规律解决下面的问题:计算: =_______________.写出运算过程:【答案】(1)8(2)(3)【解析】1)=64=8(2)n(n+2)+1=(3)解:原式==【考点】找规律-数字的变化点评:解答本题的关键是仔细分析题意得到规律,再把这个规律应用于解题.21. 2008年全国人民共向四川地震灾区捐款约43681000000元,这笔款额用科学记数法表示(保留三个有效数字)正确的是()A.0.437×1011B.4.4×1010C.4.37×1010D.43.7×109【答案】C【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.43681000000,故选C.【考点】科学记数法的表示方法,近似数与有效数字点评:解题的关键是熟练掌握从左边第一个不为0的数开始到末尾数字为止,所有的数字都是这个数的有效数字,注意有效数字的个数与乘方的次数无关.22.钓鱼岛自古以来是中国的领土,岛屿周围的海域面积约170 000平方公里,相当于五个台湾本岛面积. 这里的“170 000”用科学记数法表示为 .【答案】【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【考点】本题考查的是科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.23.有理数3.645精确到百分位的近似数为A.3.6B.3.64C.3.7D.3.65【答案】D【解析】由题意精确到百分位就是对千分位四舍五入取近似值.有理数3.645精确到百分位的近似数为3.65,故选D.【考点】近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握四舍五入取近似值的方法,即可完成.24.计算:(1)(2)(3)(4)【答案】(1)0;(2)-1;(3)7;(4)6【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=-3+3=0;(2)原式==;(3)原式==;(4)原式==.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算的顺序,即可完成.25.若a、b互为相反数,c、d互为倒数,∣m∣=2,求+m2-3cd的值.【答案】-2【解析】由题意可得,,,再整体代入求值即可.由题意得,,则【考点】代数式求值点评:解题的关键是熟记相反数之和为0,倒数之积为1,相反数的两个数的绝对值相等.26.计算:(1)4―-3×;(2)【答案】(1)-1;(2)【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=4-6+1=-1;(2) 原式=-1-=.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算,即可完成.27.的个位数字是()A.2B.4C.6D.8【答案】C【解析】∵一个数的乘方的个位数字=这个数的个位数字的乘方的个位数字。

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)1. 小明去商店买了一本书,价格为15.5元。

他还买了两包饼干,每包饼干的价格分别为3.2元和2.8元。

请计算小明的总花费。

解答:小明购买书的花费为15.5元,两包饼干的总花费为3.2元 +2.8元 = 6元。

所以小明的总花费为15.5元 + 6元 = 21.5元。

2. 小红在超市买了一条围巾,价格为25.8元。

她付了一张50元的钞票,收到了零钱后她又决定买一盒巧克力,价格为8.5元。

请问小红收到了多少零钱?解答:小红付了50元的钞票,然后购买围巾的价格为25.8元,剩下的钱为50元 - 25.8元 = 24.2元。

小红再买巧克力花费了8.5元,所以最后收到的零钱为24.2元 - 8.5元 = 15.7元。

3. 某电商网站在活动期间推出了一款手机,原价为2399元。

今天是双11,该手机享受8折优惠。

请计算该手机的最终价格。

解答:该手机原价为2399元,打8折后的价格为2399元 * 0.8 = 1919.2元。

所以该手机的最终价格为1919.2元。

4. 甲和乙两个人一起合作完成了一项工程,工程的总付款为8400元。

根据他们的实际贡献,甲应得到总付款的3/5,那么乙应得到多少钱?解答:甲应得到的付款额为8400元 * 3/5 = 5040元。

乙应得到的付款额为总付款减去甲的付款额,即8400元 - 5040元 = 3360元。

所以乙应得到3360元。

5. 一家餐馆购买了10箱鸡蛋,每箱鸡蛋有36个。

餐馆决定将这些鸡蛋平均分给4个厨师,还剩下多少个鸡蛋?解答:这家餐馆购买的鸡蛋总数为10箱 * 36个/箱 = 360个鸡蛋。

如果要平均分给4个厨师,每个厨师得到的鸡蛋数量为360个鸡蛋 / 4 = 90个鸡蛋。

所以剩下的鸡蛋数量为360个鸡蛋 - 90个鸡蛋 * 4 = 360个鸡蛋 - 360个鸡蛋 = 0个鸡蛋。

总结:以上是关于有理数加减乘除混合运算的基础试题及其答案。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。

初二数学有理数的加减乘除以及乘方试题答案及解析

初二数学有理数的加减乘除以及乘方试题答案及解析

初二数学有理数的加减乘除以及乘方试题答案及解析1.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:18×891= ×.【答案】198×81【解析】由题, 12×231=132×21,两个数相乘等于另外两个数相乘,第二个数变顺序,个位变成百位,百位变成个位,做第一个数,第一个数变顺序后做第二个数,故18×891=198×81.按照题目给出的等式,找规律,由题, 12×231=132×21,两个数相乘等于另外两个数相乘,第二个数变顺序,个位变成百位,百位变成个位,做第一个数,第一个数变顺序后做第二个数,故18×891=198×81.【考点】找规律.2.已知空气的单位体积质量是,将用科学记数法表示 . (保留2个有效数字)【答案】【解析】科学记数法的表示方法:科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:.【考点】科学记数法,近似数和有效数字点评:解题的关键是熟练掌握有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字.注意用科学记数法表示的数,有效数字只与前面a有关,而与n的大小无关.3.计算:【答案】【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.原式.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.4.某种微粒的直径为0.000001027mm,用科学记数法表示是_____________.【答案】1.027×10-6【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.0.000001027mm【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.5.先阅读,再解题:因为, , ……所以.参照上述解法计算:【答案】【解析】根据题意可知:【考点】规律探究题点评:本题难度较大,主要考查学生分析探究并总结出一般规律,运用规律解答计算。

初三数学有理数的加减乘除以及乘方试题答案及解析

初三数学有理数的加减乘除以及乘方试题答案及解析

初三数学有理数的加减乘除以及乘方试题答案及解析1. 2014的倒数是()A.B.C.D.【答案】A.【解析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以,2014的倒数为. 故选A.【考点】倒数.2. |-2|=【答案】2.【解析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,-2的绝对值就是表示-2的点与原点的距离.试题解析:|-2)=2.【考点】绝对值.3.的结果是()A.-9B.0C.9D.-6【答案】A.【解析】有理数的乘法法则:两数相乘,同号得正,异号得负,再把绝对值相乘.因此,.故选A.【考点】有理数的乘法.4.将数据37000用科学记数法表示为3.7×10n,则n的值为()A.3B.4C.5D.6【答案】B【解析】37 000=3.7×104,所以n的值为4.故选B.【考点】科学记数法5.的倒数是A.B.C.D.【答案】A.【解析】根据倒数的定义进行解答即可.∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选A.【考点】倒数的定义.6.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为.【答案】9.39×106【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵9390000一共7位,∴9390000=9.39×106【考点】科学记数法.7. 2014年6月4日据经济日报报道:青海格尔木枸杞已进入国际市场,远销美国、欧盟、东南亚等国家和地区,出口创汇达4000000美元,将4000000美元用科学记数法表示为美元.【答案】4×106.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.所以4000000=4×106.故答案是4×106.【考点】科学记数法.8.如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动 28 次后该点到原点的距离不小于41【答案】28.【解析】解:由题意可得:移动1次后该点对应的数为0+1=1,到原点的距离为1;移动2次后该点对应的数为1﹣3=﹣2,到原点的距离为2;移动3次后该点对应的数为﹣2+6=4,到原点的距离为4;移动4次后该点对应的数为4﹣9=﹣5,到原点的距离为5;移动5次后该点对应的数为﹣5+12=7,到原点的距离为7;移动6次后该点对应的数为7﹣15=﹣8,到原点的距离为8;…∴移动(2n﹣1)次后该点到原点的距离为3n﹣2;移动2n次后该点到原点的距离为3n﹣1.①当3n﹣2≥41时,解得:n≥∵n是正整数,∴n最小值为15,此时移动了29次.②当3n﹣1≥41时,解得:n≥14.∵n是正整数,∴n最小值为14,此时移动了28次.纵上所述:至少移动28次后该点到原点的距离不小于41.故答案为:28.【考点】规律型:图形的变化类;数轴9.某市在一次扶贫助残活动中,共捐款3 580 000元,将3 580 000用科学记数法表示为()A.B.C.D.【答案】B.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵3 580 000一共7位,∴3 580 000=3.58×106故选B.【考点】科学记数法.10.截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为元.【答案】1.853×1011.【解析】首先将4103.7万平方米=41037000平方米,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.试题解析:将1853亿元=185300000000元用科学记数法表示为:1.853×1011.【考点】科学记数法—表示较大的数.11.据统计,今年泰安市中考报名确认考生人数是96 200人,用科学记数法表示96 200为A.B.C.D.【答案】A.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.∴96200=9.62×104.故选A.【考点】科学记数法—表示较大的数.12.一列数……,其中,则__________.【答案】【解析】分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.试题解析:a1=-1,a2== a3==2 a4=="-1" …由此可以看出三个数字一循环,2004÷3="671" …1,则a1+a2+a3+…+a2014=671×(-1++2)+(-1)=.故答案为:.【考点】规律性:数字的变化类.13.环境监测中PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000001米,那么数据0.0000025用科学记数法可以表示为()A.B.C.D.【答案】C.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以:0.0000025=2.5×10-6;故选:C.【考点】科学记数法—表示较小的数.14.2014年5月4日,在“百度搜索”的“手机型号排行榜”中显示,排名第一位的是苹果iphone5S,关注指数为46590,将46590用科学记数法表示为()A.B.C.D.【答案】B.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵46 590一共5位,∴46 590=4.659×104 .故选B.【考点】科学记数法.15.把数字18200000用科学记数法表示为【答案】1.82×107.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将18200000用科学记数法表示为1.82×107.故答案是1.82×107.【考点】科学记数法—表示较大的数.16.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学计数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=-2 x + m 的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y = x2中偶函数的个数为2个.A.1B.2C.3D.4【答案】C.【解析】①若代数式有意义,则x的取值范围为x<1且x≠0.故本选项错误;②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学计数法表示为3.03×108元;该选项正确;③若反比例函数(m为常数),当x>0时,y随x增大而增大,则m<0.所以一次函数y=-2x+m的图象一定不经过第一象限.该选项正确;④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.该选项正确;故选C.考点: 命题.17.第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务.将13000用科学记数法表示为.【答案】1.3×104.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.试题解析:13000=1.3×104.故答案是:1.3×104.考点: 科学记数法—表示较大的数.18.计算:.【答案】.【解析】先乘方,后乘除,最后算加减.注意任何非零数的零次方都为1.试题解析:故答案是:.【考点】实数的混合运算.19.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为【】A.2.1×109B.0.21×109C.2.1×108D.21×107【答案】C。

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)数学练(一)有理数加减法运算练一、加减法法则、运算律的复A。

同号两数相加,取相同的符号,并把绝对值相加。

例如:(–3)+(–9)=(–12),85+(+15)=100.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

例如:(–45) +(+23)=–22,(–1.35)+6.35=5.一个数同相加,仍得这个数。

例如:(–9)+ 0=–9,0 +(+15)=15.B。

加法交换律:a + b = b + a,加法结合律:(a + b) + c = a + (b + c)。

例如:(–1.76)+(–19.15)+ (–8.24)=-29.15,23+(–17)+(+7)+(–13)=0.3)+(–2)+5+(–8)=–2,(–4)+(+5)=1.C。

有理数的减法可以转化为正数来进行,转化的“桥梁”是减号(正号可以省略)或是加上被减数的相反数。

例如:a–b=a+(-b)。

即(–3)–(–5)=2,3–13–(–1)+(–5)=6.D。

加减混合运算可以统一为加法运算。

即a + b–c = a + b +(-c)。

例如:(–3)–(+5)+(–4)–(–10)=–2,1–4 + 3–5=–5,2.4 + 3.5–4.6 + 3.5=4.8,3–2+5–8=–2.二、综合提高题。

A XXX their blood pressure once a day in the afternoon。

The table below XXX blood pressure was 160 units last Sunday。

What is the XXX Friday?XXXXXX blood pressure (compared to us day) +30 units -20 units +17 units +18 units -20 unitsXXX: 160 + 30 - 20 + 17 + 18 - 20 = 185 units.Math Exercise 2: XXXA。

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入人群和新参加工作的大学生住房的需求,将36 000 000用科学记数法表示应是()A.B.C.D.【答案】A.【解析】科学计数法的定义:将一个数字表示成(×10的n次幂的形式),其中1≤<10,n表示整数.对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数;本题中第一个数为3,3后面有7位数.故选A.【考点】科学计数法.2.若正整数使得在计算的过程中,各数位均不产生进位现象,则称为“本位数”.例如:2和30是“本位数”,而5和91不是“本位数”.在不超过100的所有本位数中,全体奇数的和为 .【答案】64.【解析】先确定出所有大于0且小于100的“本位数”,再确定奇数后,再求和.试题解析:所有大于0且小于100的“本位数”有:1、2、10、11、12、20、21、22、30、31、32共有11个,但奇数只有:1,11,21,31四个,故和为1+11+21+31=64.【考点】有理数的概念与运算.3.()A.2B.C.D.【答案】B.【解析】.故选B.考点: 1.负整数指数幂;2.积的乘方.4.如果a-3与a+1互为相反数,那么a= .【答案】1【解析】若a-3与a+1互为相反数,则a-3+a+1=0,解得a=1.5.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.【答案】-37【解析】原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.6.已知:且,求的值.【答案】-125【解析】解:因为=3,所以=±3.因为=2,所以=±2.又因为,所以=-3,=±2.所以或.7.某股民上周五收盘时买进某公司股票1000股,每股27元.股票交易时间是周一到周五上午9:30-11:30,下午1:00-3:00. 下表为本周内每日股票的涨跌情况:(单价:元)星期一二三四五(1)根据上表填空:星期三收盘时,每股是元;本周内最高价是每股元,最低价是每股元;(2)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期五收盘时才将股票全部卖出,请算算他本周的收益如何.【答案】(1)34.5,35.5,28;(2)889.5元.【解析】(1)先根据题意列出式子解出结果即可;(2)先算出刚买股票后去掉手续费剩余的钱是多少,然后再算出周五卖出股票后所剩的钱,最后再减去当时的钱,剩下的钱就是所收益的.试题解析:(1)根据题意得:每股价(元);最高价(元);最低价(元).(2)∵27×1000×(1+0.15%)=27000×(1+0.15%)=27040.5(元),28×1000-28×1000×0.15%-28×1000×0.1%=28000-28000×0.15%-28000×0.1%=28000-42-28=27930(元),∴他本周的收益为27930-27040.5=889.5(元)【考点】有理数的混合运算.8.已知,,则、、按从小到大的顺序排列为()A.B.C.D.【答案】B.【解析】∵,,∴,,∴.故选B.【考点】有理数大小比较.9.如果三个有理数的积是负数,那么这三个有理数中().A.只有一个负数B.有两个负数C.三个都是负数D.有一个或三个负数【答案】D【解析】几个不相等0的数相乘,积得符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正.解:如果三个有理数的积是负数,那么这三个有理数中有一个或三个负数,故选D.【考点】有理数乘法的符号法则点评:本题属于基础应用题,只需学生熟练掌握有理数乘法的符号法则,即可完成.10.有理数0.0050400的有效数字的个数是().A.3个B.4个C.5个D.6个【答案】C【解析】有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:有理数0.0050400的有效数字有5、0、4、0、0这5个,故选C.【考点】近似数和有效数字点评:本题是基础应用题,只需学生熟练掌握有效数字的定义,即可完成.11.计算:(1)(2)(3)【答案】(1);(2);(3)【解析】(1)先算有理数的乘方,再算加减即可;(2)先算幂的乘方、同底数幂的乘法,再合并同类项即可;(3)先根据完全平方公式、多项式乘多项式法则去括号,再合并同类项即可.(1)原式;(2)原式;(3)原式.【考点】有理数的乘方,整式的化简点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是【】美元.A.1.5×104B.1.5×105C.1.5×1012D.1.5×1013【答案】C【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.15000亿,故选C.【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.13.(1);(2)解方程:【答案】(1)101;(2)【解析】(1)有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算;(2)解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1(1);(2).【考点】有理数的混合运算,解一元一次方程点评:有理数的混合运算及解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.14.在,,,这四个数中,最大的数比最小的数要大A.13B.10C.8D.5【答案】A【解析】先根据有理数的乘方法则计算出各个数的值,再用最大的数减最小的数即可.∵=-1,=1,=-4,=9∴最大的数比最小的数要大故选A.【考点】有理数的乘方,有理数的减法点评:解题的关键是熟记正数的任何次幂均为正数,负数的奇数次幂为负,负数的偶数次幂为正.15.若x=(-4),则x=【答案】±4【解析】先计算出(-4)=16,再根据有理数的乘方法则即可求得结果.x=(-4)x=16x=±4.【考点】有理数的乘方点评:解题的关键是熟练掌握互为相反数的两个数的平方相同.16.据科学家估计,地球的年龄大约是4600000000年,这个数用科学记数法表示为A.4.6×108B.46×108C.4.6×109D.0.46×1010【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字.所以4600000000=4.6×109【考点】科学计数法点评:任何一个数都可以用科学记数法表示成a×10n(1≤|a|<10,n是整数)的形式,表示时关键要正确确定a的值以及n的值17.计算:(1)-2+6÷(-2)×;(2)(-2)3-(1-)×.【答案】(1)-;(2)-12【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=-2+6×(-)×=-2-=-;(2)原式=-8-×6=-8-4=-12.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算,即可完成.18.下列式子中,正确的是A.5-|-5|=10B.(-1)99= -99C.-102 = (-10)×(-10)D.-(-22)=4【答案】D【解析】解:A中,5-|-5|=0B中,(-1)99= -1C中,-102 = -100,故不选D中,正确故选D【考点】绝对值,平方的符号点评:负数的绝对值是其相反数,正数的绝对值是其本身。

有理数的混合运算计算题(50题)(解析版)

有理数的混合运算计算题(50题)(解析版)

有理数的混合运算的计算题(50题)1.(2022秋•靖西市期末)计算:(1)5﹣(+4)﹣(﹣2)+(﹣3);(2)6÷(﹣3)﹣(―12)×(﹣4)﹣22.【分析】(1)先把减法转化为加法,然后根据有理数加法计算即可;(2)根据有理数的乘方、有理数的乘除法和减法计算即可.【解答】解:(1)5﹣(+4)﹣(﹣2)+(﹣3)=5+(﹣4)+2+(﹣3)=0;(2)6÷(﹣3)﹣(―12)×(﹣4)﹣22一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.=(﹣2)﹣2﹣4=﹣8.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.2.(2022秋•大竹县校级期末)计算:(1)(―12+16―38)×(﹣24)(2)﹣13﹣2×[2﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12﹣4+9=8+9=17;(2)原式=﹣1﹣2×(﹣7)=﹣1+14=13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2023•梧州二模)计算:(﹣3)×2+|﹣4|﹣(﹣2)3.【分析】先计算乘法、绝对值和有理数的乘方,再计算加减.【解答】解:(﹣3)×2+|﹣4|﹣(﹣2)3=﹣6+4﹣(﹣8)=﹣6+4+8=6.【点评】本题考查了有理数的混合运算,掌握有理数的混合运算顺序:先算乘方,再算乘除,最后计算加减,如果有括号,先计算括号里面的是关键.4.(2022秋•长顺县期末)计算(―1)3―(―1)+(―6)÷(―12 ).【分析】先算乘方,再算除法,最后算加减法即可.【解答】解:(―1)3―(―1)+(―6)÷(―1 2 )=(﹣1)+1+(﹣6)×(﹣2)=(﹣1)+1+12=12.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•兴宁区校级模拟)计算:(﹣2+4)×3+(﹣2)2÷4.【分析】先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(﹣2+4)×3+(﹣2)2÷4=2×3+4÷4=6+1=7.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.6.(2023•钦州一模)计算:﹣(﹣2)+22×(1﹣4).【分析】先计算乘方和括号内的运算,再计算乘法,最后计算减法即可.【解答】解:原式=2+4×(﹣3)=2﹣12=﹣10.7.(2023春•松江区期末)计算:(516―14)×(―4)2―32+14.【分析】先算括号内的和乘方,再算乘除法,最后算加法即可.【解答】解:原式=116×16﹣9+14=1﹣9+1 4=―31 4.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.(2022秋•海丰县期末)计算:﹣6÷2+(13―34)×12+(﹣3)2【分析】根据有理数混合运算顺序和运算法则计算可得.【解答】解:原式=﹣3+4﹣9+9=1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.9.(2023春•黄浦区期中)计算:229×(―1)9―(―115)2÷(―0.9)2.【分析】先算乘方,再算乘除,最后算加减.【解答】解:229×(―1)9―(―115)2÷(―0.9)2=209×(﹣1)―3625÷0.81=―209―169=―369=﹣4.【点评】本题考查了有理数的混合运算,掌握运算顺序和运算法则是解题的关键.10.(2023春•杨浦区期末)计算:―32―(23―32)÷|―16|.【分析】先算乘方,再化简绝对值算除法,最后算加减.【解答】解:原式=﹣9﹣(23―32)÷16=﹣9﹣(23―32)×6=﹣9﹣(23×6―32×6)=﹣9﹣(4﹣9)=﹣9﹣(﹣5)=﹣9+5=﹣4.【点评】本题考查了实数的运算,掌握实数的运算法则、运算律和运算顺序是解决本题的关键.11.(2023•七星区校级模拟)计算:(﹣2)3+|﹣8|+(﹣36)÷(﹣3).【分析】原式先算乘方及绝对值,再算除法,最后算加法即可得到结果.【解答】解:原式=﹣8+8+12=12.【点评】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.12.(2023春•青秀区校级月考)计算:23×(―12+1)÷(2―3).【分析】先计算乘方和括号内的式子,然后按照乘除混合运算顺序计算即可.【解答】解:原式=8×12÷(―1)=4×(﹣1)=﹣4.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.(2022秋•西宁期末)计算:―14―16×[2―(―3)2].【分析】根据有理数的混合运算的顺序计算.【解答】解:―14―16×[2―(―3)2]=﹣1―16×(2﹣9)=﹣1―16×(﹣7)=﹣1+7 6=1 6.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.14.(2023春•长宁区期末)计算:(2―0.4)×416÷(―123)―14.【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(2―0.4)×416÷(―123)―14=1.6×256×(―35)﹣1=85×256×(―35)﹣1=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法:先乘方、再乘除、最后加减.15.(2022秋•宁明县期末)―22+|5―8|+24÷(―3)×13【分析】先乘方和括号里的,再乘除,最后加减.【解答】解:―22+|5―8|+24÷(―3)×13=―4+3+24×(―13)×13=―1―83 =―113.【点评】本题考查的是有理数的混合运算的能力,要注意运算顺序及符号的处理.16.(2023•大连一模)计算:(―2)3―(16+38―0.75)×|―24|.【分析】先算括号里面的,再算乘方,乘法,最后算加减即可.【解答】解:原式=﹣8﹣(16+38―0.75)×24=﹣8﹣(16×24+38×24―34×24)=﹣8﹣(4+9﹣18)=﹣8﹣(﹣5)=﹣3.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.17.(2023春•长宁区期末)计算:―22+(―43)―13×[(―2)3+1].【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘除,后计算加减,有括号的先计算括号内的,据此解答即可.【解答】解:原式=﹣4―43―13×(―8+1)=―4―43―13×(―7) =―4―43+73=―4+(73―43) =﹣4+1=﹣3.【点评】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.18.(2023•兰陵县二模)计算:﹣16÷(﹣2)3﹣22×|―12|+(﹣1)2023.【分析】根据有理数的混合运算法则计算即可.【解答】解:―16÷(―2)3―22×|―12|+(―1)2023=―16÷(―8)―4×12―1 =2﹣2﹣1=﹣1.【点评】本题主要考查了有理数的混合运算,掌握相应的运算法则是解答本题的关键.19.(2023春•普陀区期末)计算:―32+(―214)÷32+(38―512)×24.【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(―94)×23+38×24―512×24=﹣9+(―32)+9﹣10=﹣9+9―32―10=﹣1112.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.20.(2023•桂平市三模)计算:―32×|―29|+(―1)2023―5+(―54).【分析】先根据平方运算、绝对值运算、(﹣1)n 计算,再由有理数加减运算法则求解即可得到答案.【解答】解:―32×|―29|+(―1)2023―5+(―54)=―9×29―1―5―54=―2―1―5―54=―(2+1+5+54) =―914.【点评】本题考查了有理数加减混合运算,平方运算、绝对值运算、(﹣1)n 计算,掌握相关运算法则是解决问题的关键.21.(2023春•普陀区期末)计算:―32+(―214)÷32+(38―512)×24.【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(―94)×23+38×24―512×24=﹣9+(―32)+9﹣10=﹣9+9―32―10=﹣1112.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.22.(2023春•黄浦区期中)计算:(―1112+34)×(―42)+(―213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(―1112+912)×(﹣16)―73×27=―16×(﹣16)―23=83―23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(2022秋•大冶市期末)计算:﹣14+[4﹣(38+16―34)×24]÷5.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:﹣14+[4﹣(38+16―34)×24]÷5=﹣1+[4―38×24―16×24+34×24]÷5=﹣1+[4﹣9﹣4+18]÷5=﹣1+9÷5=﹣1+1.8=0.8【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.计算:﹣14﹣(0.5﹣1)÷13×[5﹣(﹣3)2].【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣(―12)×3×(﹣4)=﹣1﹣6=﹣7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.计算:|4﹣412|+(―12+23―16)÷112―22―(+5).【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=|―12|+(―12+23―16)×12﹣4﹣5=12―6+8﹣2﹣4﹣5=﹣812.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(2022秋•汝阳县期末)―14―(1―0.5)×(―113)×[2―(―3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1―12×(―43)×(2﹣9)=﹣1―143=―173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.27.(2022秋•滕州市校级期末)计算(1)(―79+56―34)×(﹣36);(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和括号内的式子、再算乘法、最后算减法即可.【解答】解:(1)(―79+56―34)×(﹣36)=―79×(﹣36)+56×(﹣36)―34×(﹣36)=28+(﹣30)+27=25;(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|=﹣1―12×13×|1﹣25|=﹣1―12×13×24=﹣1﹣4=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.28.(2022秋•禹城市期中)计算(1)36﹣27×(73―119+227)(2)﹣72+2×(﹣3)2﹣(﹣6)÷(―13)2.【分析】(1)利用乘法分配律化简即可;(2)先乘方,再乘除,最后算加减即可;【解答】解:(1)原式=36﹣63+33﹣2=4.(2)原式=﹣49+2×9﹣(﹣6)×9=﹣49+18+54=﹣31+54=23加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则进行计算,有时可以利用运算律来简化运算.29.(2022秋•武昌区期末)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)―24―(13―1)×13[6―(―3)].【分析】(1)利用有理数的加减运算的法则进行解答即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10)=﹣7﹣5﹣4+10=﹣6;(2)―24―(13―1)×13[6―(―3)]=﹣16﹣(―23)×13×9=﹣16+2=﹣14.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.30.(2022秋•洛江区期末)计算:(1)(12―23―34)×(﹣24).(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)利用乘法分配律展开,再进一步计算即可;(2)先计算乘方和括号内运算,再计算乘法,最后计算加法即可.【解答】解:(1)原式=12×(﹣24)―23×(﹣24)―34×(﹣24)=﹣12+16+18=22;(2)原式=﹣1―12×13×(2﹣9)=﹣1―16×(﹣7)=﹣1+76=16.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.31.(2022秋•运城期末)计算:(1)(―1)2023―12×14+|―3|;(2)―32÷(―2)2×|―113|×6+(―2)3.【分析】(1)先进行乘方,乘法,去绝对值运算,再进行加减运算;(2)先进行乘方,去绝对值运算,再进行乘除运算,最后算加减.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)原式=―9÷4×43×6―8=―9×14×43×6―8=﹣18﹣8=﹣26.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是关键.32.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(―13)2+(34―16+38)÷(―124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34―16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.33.(2022秋•庐江县期中)计算:(1)―12÷3×[3﹣(﹣3)2];(2)﹣52×|1―1615|―|―13|+34×[(―1)3―7].【分析】(1)先算乘方和括号内的式子,然后计算括号外的乘除法即可;(2)先算乘方和括号内的式子,然后计算括号外的乘法,最后算加减法即可.【解答】解:(1)―12÷3×[3﹣(﹣3)2]=―12×13×(3﹣9)=―16×(﹣6)=1;(2)﹣52×|1―1615|―|―13|+34×[(―1)3―7]=﹣25×115―13+34×(﹣1﹣7)=―53―13+34×(﹣8)=―53―13+(﹣6)=﹣8.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.34.(2022秋•鞍山期末)计算:(1)(134―78―712)÷(―78)+(―34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134―78―712)÷(―78)+(―34)=(74―78―712)×(―87)+(―34)=74×(―87)―78×(―87)―712(―87)―34=﹣2+1+23―34=―1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(―12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•花山区校级期中)计算(1)32+5×(﹣6)﹣(﹣4)2÷(﹣8);(2)﹣22×|﹣3|+(﹣6)2×(―512)﹣|+18|÷(―12)3.【分析】(1)先算乘方,再算乘除法,最后算加减;(2)先算乘方化简绝对值,再算乘除法,最后算加减.【解答】解:(1)原式=9+5×(﹣6)﹣16÷(﹣8)=9﹣30+2=﹣19;(2)原式=﹣4×3+36×(―512)―18÷(―18)=﹣12﹣15+1=﹣26.【点评】本题考查了有理数数的混合运算,掌握有理数的运算法则、运算律及运算顺序是解决本题的关键.36.(2022秋•安陆市期中)计算:(1)﹣15+(﹣23)+32;(2)(﹣2)2×3﹣(﹣2)3÷4;(3)(―79+56―34)×(﹣36);(4)75×(13―12)×37÷54.【分析】(1)按照有理数加减法法则进行计算即可;(2)先乘方,再乘除,最后算减法即可;(3)运用乘法分配律进行计算即可;(4)先算括号,再进行乘除计算即可.【解答】解:(1)原式=﹣15﹣23+32=﹣38+32=﹣6;(2)原式=4×3﹣(﹣8)÷4=12﹣(﹣2)=14;(3)原式=―79×(―36)+56×(―36)―34×(―36)=28﹣30+27=25;(4)原式=75×(26―36)×37÷54=75×(―16)×37÷54=―110×45=―2 25.【点评】本题考查了有理数的混合运算,熟练有理数的混合运算法则是解题的关键.37.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34―13―56)×(﹣12);(4)﹣12021﹣(―13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(―54)×3=15;(3)(34―13―56)×(﹣12)=34×(﹣12)―13×(﹣12)―56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(―13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(―13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(―13)+1=―1 3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.38.(2022秋•单县期中)计算:(1)24+(﹣14)﹣(﹣16)+8;(2)(﹣81)÷94×49÷(﹣16);(3)﹣42﹣3×22×(13―12)÷(﹣113).【分析】(1)利用有理数的加减运算计算;(2)先把除法变成乘法,再计算;(3)先算乘方和括号,再算乘除,最后算加减.【解答】解:(1)24+(﹣14)﹣(﹣16)+8=24﹣14+16+8=10+16+8=34;(2)(﹣81)÷94×49÷(﹣16)=(﹣81)×49×49×(―116)=1;(3)﹣42﹣3×22×(13―12)÷(﹣113)=﹣16﹣3×4×(―16)×(―34)=﹣16―3 2=﹣171 2.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的法则和运算顺序.39.(2022秋•德州期中)计算:(1)―14―16×[3+(﹣3)2]÷(﹣112);(2)(―12+23―56)÷(―118);(3)(512+34―58+712)÷(―724)―227;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2].【分析】(1)先算乘方,再算乘除,有括号先算括号里面的,最后算加减运算;(2)把除变成乘,去括号,再相乘,再加减运算;(3)把除变成乘,去括号,再相乘,再加减运算;(4)先算乘方和小括号,再算乘除,最后加减运算.【解答】解:(1)―14―16×[3+(﹣3)2]÷(﹣112)=﹣1―16×(3+9)×(―23)=﹣1―16×12×(―23)=﹣1+4 3=1 3;(2)(―12+23―56)÷(―118)=(―12+23―56)×(﹣18)=(―12)×(﹣18)+23×(﹣18)―56×(﹣18)=9﹣12+15=﹣3+15(3)(512+34―58+712)÷(―724)―227=(512+34―58+712)×(―247)―227=(―107)―187+157―2―227=﹣4+157―227―2=﹣4﹣1﹣2=﹣7;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2]=﹣1―12×12×(2﹣9)=﹣1―12×12×(﹣7)=﹣1+7 4=3 4.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和混合运算的顺序.40.(2022秋•(1)﹣9﹣5﹣(﹣12)+(﹣3);(2)―14―16×[3―(―3)2];(3)(―60)×(34―56+112);(4)16÷(―2)2―(―12)3×(―4).【分析】(1)先化简符号,再算加减法;(2)先算乘方和括号内的,再算乘法,最后计算加减法;(3)利用乘法分配律展开计算;(4)先算乘方,再算乘除,最后计算加减.【解答】解:(1)﹣9﹣5﹣(﹣12)+(﹣3)=﹣9﹣5+12﹣3(2)―14―16×[3―(―3)2]=―1―16×(3―9) =―1―16×(―6) =﹣1+1=0;(3)(―60)×(34―56+112)=(―60)×34―(―60)×56+(―60)×112 =﹣45+50﹣5=0;(4)16÷(―2)2―(―12)3×(―4)=16÷4―(―18)×(―4) =4―12=72.加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用运算律来简化运算.41.(2022秋•新野县期中)计算题:(1)(―1)5+5÷(―14)―(1―4);(2)―22+313×(―65)+1÷(―14)2;(3)(75―2110―2815)÷(―710)+(―83);(4)[323÷(―2)―114×(―0.2)2÷110]÷(―13)―23.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;(3)将除法变为乘法,根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(―1)5+5÷(―14)―(1―4)=﹣1+5×(﹣4)+3=﹣1﹣20+3=﹣18;(2)―22+313×(―65)+1÷(―14)2=﹣4+103×(―65)+1×16=﹣4﹣4+16=8;(3)(75―2110―2815)÷(―710)+(―83)=(75―2110―2815)×(―107)+(―83) =75×(―107)―2110×(―107)―2815×(―107)+(―83)=―2+3+83+(―83) =1;(4)[323÷(―2)―114×(―0.2)2÷110]÷(―13)―23=[113×(―12)―54×(15)2×10]×(―3)―8 =[―116―120×10]×(―3)―8 =―116×(﹣3)―120×10×(﹣3)﹣8=112+32―8=﹣1.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.42.计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(―35)×53;(3)﹣22×7﹣(﹣3)×6+5;(4)(113+18―2.75)×(﹣24)+(﹣1)2014+(﹣3)3.【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×53×53=―1259;(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=―43×24―18×24+114×24+1﹣27=﹣32﹣3+66﹣26=5.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.43.计算:(1)(18―13+16)×(―24);(2)|―2|×(―1)2013―3÷12×2;(3)―12―(1―0.5)×13×[2―(―3)]2;(4)7×(―36)×(―87)×16.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)―13×(﹣24)+16×(﹣24)=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1―12×13×25=﹣1+7 6=―31 6;(4)原式=48.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.44.(2022秋•崇川区月考)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)314+(﹣235)+534+(﹣825);(3)(23―110+16―25)÷(―130);(4)﹣12020+(﹣2)3×(―12)﹣|﹣1﹣6|.【分析】(1)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(2)利用有理数加法的运算律解答即可;(3)将有理数的除法转换成乘法后,利用乘法的分配律解答即可;(4)先算乘方,再算乘法,最后算加减.【解答】解:(1)原式=﹣20+3+5﹣7=﹣(20+7)+(3+5)=﹣27+8=﹣19;(2)原式=(314+534)+(﹣235―825)=9+(﹣11)=﹣2;(3)原式=(23―110+16―25)×(﹣30)=23×(﹣30)―110×(﹣30)+16×(﹣30)―25×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12)=﹣20+3﹣5+12=(﹣20﹣5)+(3+12)=﹣25+15=﹣10;(4)原式=﹣1+(﹣8)×(―12)―|﹣7|=﹣1+4﹣7=(﹣1﹣7)+4=﹣8+4=﹣4.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.45.(2022秋•邗江区月考)计算:(1)(―12―13+34)×(―60);(2)392324×(―12);(3)(―11)×(―25)+(―11)×235―(―11)×15;(4)―14―(1―0.5)×13×[2―(―2)2].【分析】(1)利用乘法的分配律解答即可;(2)将带分数适当变形后利用乘法的分配律解答即可;(3)利用乘法的分配律解答即可;(4)利用有理数的混合运算的法则:先算乘方,括号内的,再算乘法,最后算减法.【解答】解:(1)原式=―12×(﹣60)―13×(﹣60)+34×(―60)=30+20﹣45=50﹣45=5;(2)原式=(40―124)×(﹣12)=40×(﹣12)―124×(﹣12)=﹣480+1 2=﹣4791 2;(3)原式=(﹣11)×(―25+25―15)=(﹣11)×2=﹣22;(3)原式=﹣1―12×13×(2﹣4)=﹣1―12×13×(﹣2)=﹣1+1 3=―2 3.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.46.(2022秋•衡南县期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(―45)×13+(―45)×2﹣(―45)×5(3)﹣22+5×(﹣3)﹣(﹣4)÷4(4)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)从左向右依次计算即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)首先计算乘方和乘除法,然后从左向右依次计算,求出算式的值是多少即可.(4)首先计算乘方和括号里面的运算,然后计算乘法和减法,求出算式的值是多少即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣34+18﹣13=﹣29(2)(―45)×13+(―45)×2﹣(―45)×5=(―45)×(13+2﹣5)=(―45)×10=﹣8(3)﹣22+5×(﹣3)﹣(﹣4)÷4=﹣4﹣15+1=﹣18(4)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2]=﹣1―16×(﹣7)=﹣1+7 6=1 6【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.47.(2022秋•魏都区校级月考)计算:(1)(+32)―512―52+(―712);(2)9+5×(﹣3)﹣(﹣2)2÷4;(3)(56+14―512―38)×(﹣24);(4)﹣14﹣1÷6×[3﹣(﹣3)2].【分析】(1)将有理数的加减混合运算统一成加法后,利用有理数的加法的运算律解答即可;(2)先算乘方,再算乘除,最后算加减;(3)利用乘法的分配律解答即可;(4)先算乘方与括号内的,再算乘除,最后做减法.【解答】解:(1)原式=32―512―52―712=(32―52)﹣(512+712)=﹣1﹣1=﹣2;(2)原式=9+(﹣15)﹣4÷4=9﹣15﹣1=﹣6﹣1=﹣7;(3)原式=56×(﹣24)+14×(﹣24)―512×(﹣24)―38×(﹣24)=﹣20﹣6+10+9=﹣26+19=﹣7;(4)原式=﹣1﹣1×16×(3﹣9)=﹣1﹣1×16×(﹣6)=﹣1﹣(﹣1)=0.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算法则运算是解题的关键.48.(2022秋•兰山区校级月考)计算.(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213―(+1013)+(﹣815)﹣(+325);(3)﹣12+|﹣8|÷(3﹣5)﹣(﹣2)3;(4)(―13+56―38)×(﹣24);(5)(14+16―12)×12+(﹣2)3÷(﹣4).【分析】(1)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(2)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(3)先算乘方与括号内的,再算加减即可;(4)利用乘方的分配律解答即可;(5)利用乘方的分配律解答,先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=3﹣63+259+41=(3+259+41)﹣63=303﹣63=240;(2)原式=213―1013―815―325=(213―1013)+(﹣815―325)=﹣8﹣113 5=﹣193 5;(3)原式=﹣1+8÷(﹣2)﹣(﹣8)=﹣1+(﹣4)+8=﹣5+8=3;(4)原式=―13×(﹣24)+56×(﹣24)―38×(﹣24)=8+(﹣20)+9=17﹣20=﹣3;(5)原式=14×12+16×12―12×12+(﹣8)÷(﹣4)=(3+2+2)﹣6=7﹣6=1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.49.(2022秋•宜兴市月考)计算:(1)(﹣2)×(﹣4)﹣(﹣5)×10;(2)7÷(―712)×(12―13);(3)﹣14+3×(﹣2)2﹣(﹣2)3.(4)112×57―(―57)×212+(―12)÷125;(5)(15―14―512)×60;(6)(―1.25)×25―23÷(―113)2.【分析】(1)先算乘法,再算减法即可;(2)先计算括号内的式子,然后计算乘除法即可;(3(4)先变形,然后根据乘法分配律计算即可;(5)根据乘法分配律计算即可;(6)先算乘方,再算乘除法,最后算减法即可.【解答】解:(1)(﹣2)×(﹣4)﹣(﹣5)×10=8+50=58;(2)7÷(―712)×(12―13)=7×(―127)×16=﹣2;(3)﹣14+3×(﹣2)2﹣(﹣2)3=﹣1+3×4﹣(﹣8)=19;(4)112×57―(―57)×212+(―12)÷125=32×57+57×52―12×57=(32+52―12)×57=72×57=52;(5)(15―14―512)×60=15×60―14×60―512×60=12﹣15﹣25=﹣28;(6)(―1.25)×25―23÷(―113)2=(―54)×25―8÷169=―12―8×916 =―12―92=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.50.(2022秋•渝中区校级月考)有理数的计算:(1)﹣42×|12―1|﹣(﹣5)+2;(2)(﹣56)×(﹣1516)÷(﹣134)×47;(3)﹣12020﹣[(﹣3)2×(―23)﹣(﹣7)×17];(4)(―34―59+712)÷136;(5)314×5+6×(﹣314)﹣(﹣3)×(﹣314);(6)(13―15)+(―15)2+|―13|+(﹣1)4+(0.25)2013×42014.【分析】(1)先算乘方和去绝对值,然后算乘法,最后算加减即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和中括号内的式子,然后计算括号外的减法即可;(4)先把除法转化为乘法,然后根据乘法分配律计算即可;(5)先变形,然后根据乘法分配律计算即可;(6)先算乘方和括号内的式子,然后计算括号外的乘法,最后算加法即可.【解答】解:(1)﹣42×|12―1|﹣(﹣5)+2=﹣16×12+5+2=﹣8+5+2=﹣1;(2)(﹣56)×(﹣1516)÷(﹣134)×47=﹣56×2116×47×47=﹣24;(3)﹣12020﹣[(﹣3)2×(―23)﹣(﹣7)×17]=﹣1﹣[9×(―23)+1]=﹣1﹣(﹣6+1)=﹣1﹣(﹣5)=﹣1+5=4;(4)(―34―59+712)÷136=(―34―59+712)×36=―34×36―59×36+712×36=﹣27﹣20+21=﹣26;(5)314×5+6×(﹣314)﹣(﹣3)×(﹣314)=314×5﹣6×314―3×314=314×(5﹣6﹣3)=134×(﹣4)=﹣13;(6)(13―15)+(―15)2+|―13|+(﹣1)4+(0.25)2013×42014=215+125+13+1+(0.25×4)2013×4=215+125+13+1+12013×4=215+125+13+1+1×4=215+125+13+1+4=1075+375+2575+1+4=538 75.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。

专题123 有理数的混合运算(基础检测)(解析版)

专题123 有理数的混合运算(基础检测)(解析版)

专题1.23 有理数的混合运算(基础检测)一、单选题1.下列计算正确的是( )A .﹣2+(+7)=﹣5B .3÷(﹣4)=-43C .5×54=55D ±3【答案】C 【分析】A 、根据有理数加法法则计算判断即可;B 、根据有理数除法法则计算判断即可;C 、根据同底数幂的乘法运算法则计算判断即可;D 、根据算术平方根的概念判断即可.【详解】解:A 、原式=-2+7=5,计算不正确;B 、原式=34-,计算不正确; C 、原式=5×54=55,计算正确;D 、原式=3,计算不正确.故选:C .【点睛】此题考查了有理数加法、同底数幂的运算法则、算术平方根的运算,掌握其运算法则是解决此题关键.2.8888888888888888+++++++=( )A .864B .648C .98D .4【答案】C【分析】根据同底数幂的乘法可以解答本题.【详解】解:8888888888888888+++++++=888⨯=98故选:C .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 3.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .|3|3--=C .363(6)9--=-+-=-D .144(2)82⎛⎫÷-=⨯-=- ⎪⎝⎭ 【答案】B【分析】根据有理数的四则运算法则以及绝对值的意义,逐一判断选项,即可.【详解】A. (2)(3)236-⨯-=⨯=,原式正确,不符合题意,B. |3|3--=-,原式错误,符合题意,C. 363(6)9--=-+-=-,原式正确,不符合题意,D. 144(2)82⎛⎫÷-=⨯-=- ⎪⎝⎭,原式正确,不符合题意. 故选B .【点睛】本题主要考查有理数的四则运算以及绝对值的意义,熟练掌握有理数的四则运算法则,是解题的关键.4.在计算11132⎛⎫÷- ⎪⎝⎭时,下列四个过程:①原式116=÷;②原式111132=÷-÷;③原式()623=÷-;④原式()132=⨯-,其中正确的是( )A .①B .②C .③D .④【答案】C【分析】先做括号内的加法,再算括号外的除法求出结果,然后分别计算四个过程的结果,同原式结果比较即可. 【详解】解:111116326⎛⎫⎛⎫÷-=÷-=- ⎪ ⎪⎝⎭⎝⎭ ①原式116=÷=6;不符合题意;②原式111132=÷-÷=3-2=1;不符合题意; ③原式()623=÷-=-6,同原式结果相同;符合题意;④原式()132=⨯-=1,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.5.已知m 是最小的正整数,n 是最大的负整数,a ,b 互为相反数,x ,y 互为倒数,则23m n a b xy +++-的值是( )A .2-B .1-C .0D .1【答案】B【分析】根据题意,分别求出各字母的值或关系,再整体代入求值即可.【详解】由题可得:1101m n a b xy ==-+==,,,,则原式=()3211011+-+-=-故选:B .【点睛】本题考查有理数,相反数的定义,倒数的定义,准确求出各字母的值或关系是解题关键. 6.一部手机原价4000元,价格先上调10%,再下调10%出售,现价和原价相比,结论正确的是( ) A .现价比原价高40元B .原价比现价高40元C .价格相同D .无法比较【答案】B【分析】根据题意,可以计算出现价,然后和原价比较大小,即可解答本题.【详解】解:4000×(1+10%)×(1-10%)=3960元,4000-3960=40元,即原价比现价高40元,故选B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.二、填空题7.计算:﹣22+(﹣2)2﹣(﹣1)3=_____.【答案】1【分析】根据有理数的乘方和有理数的加减法可以解答本题.【详解】解:()()232221-+---=﹣4+4﹣(﹣1)=﹣4+4+1=1,故答案为:1.【点睛】本题考查有理数的乘方运算,熟练掌握运算法则是解题的关键.8.定义一种新运算:2&2a b a b =-,则(1)3 &-=_______.【答案】1-【分析】根据定义的运算列式求解,注意运算顺序,先算乘方,然后算乘除,最后算加减.【详解】解:2(1)&32(1)3231 -=⨯--=-=-故答案为:-1.【点睛】本题考查有理数的运算,掌握有理数混合运算顺序和计算法则正确计算是解题关键.9.按照如下图所示的操作步骤,若输出的值为4,则输入x 的值为______.【答案】1或-5【分析】根据输出结果,按有理数运算法则,逆向计算即可. 【详解】输出的结果为4,∴按操作步骤逆向计算,第一步:4+5=9,第二步:()293=±,第三步:32x ±=+,第四步:解得1x =或5x =-,故答案为:1或-5.【点睛】本题考查了有理数运算求值,弄清题中的运算程序是解题关键.10.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价是____元.【答案】1980【分析】根据题意列出算式,计算即可求出值.【详解】解:根据题意得:2000×(1+10%)×(1-10%)=2000×1.1×0.9=1980,则现在的售价是1980元.故答案为:1980.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.现在定义两种运算:“☑”,“☒”,对于任意两个整数a 、b ,a ☑b=a+b-1,a ☒b=a×b-1,求(6☒8)☑(-2)=_______.【答案】44【分析】根据题意列出有理数混合运算的式子,再计算即可.【详解】解:∵a ☑b=a+b-1,a ☒b=a×b-1, ∴(6☒8)☑(-2)=(6×8-1)☑(-2)=47☑(-2)=47-2-1=44故答案为:44.【点睛】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.12.已知4个有理数:﹣1、﹣2、﹣3、﹣4,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是_____.【答案】()()()()1234-+-+-⨯-⎡⎤⎣⎦.【分析】根据题意可以写出相应的式子,本题得以解决.【详解】解:由题意可得,()()()()()()12346424,-+-+-⨯-=-⨯-=⎡⎤⎣⎦故答案为:()()()()1234-+-+-⨯-⎡⎤⎣⎦.【点睛】本题考查的是有理数的加减乘除的混合运算,掌握运算方法与运算的顺序是解题的关键. 13.已知|a 4=,5b =,且a b <, 则a-b a+b的值为__________. 【答案】19-或-9 【分析】根据题意求出a 与b 的值,即可确定出a b a b-+的值. 【详解】∵|a|=4,|b|=5,且a <b ,∴a =4,b =5或a =−4,b =5, 则a b a b -+=451459-=-+或45945a b a b ---==-+-+ 故答案为:19-或-9. 【点睛】此题考查了有理数的混合运算,熟练掌握绝对值的定义及有理数运算法则是解本题的关键. 14.某高山上的温度从山脚处开始每升高100米,降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______________℃.【答案】25【分析】根据题意得从山脚开始每上升100米温度就会下降0。

七年级上册《数学》有理数的加减乘除混合运算练习题(含答案)

七年级上册《数学》有理数的加减乘除混合运算练习题(含答案)

有理数的加减乘除混合运算练习题一、能力提升1.下列等式成立的是()A.(-5)÷(1-2)=(-5)÷(-1)B.1÷(-2 021)=(-2 021)÷1C.(-5)×6÷=(-5)×÷6D.(-7)÷=(-7)÷-7÷(-1)2.在算式4-|-3□5|中的□所在位置,为使计算出的值最小,应填入的运算符号是()A.+B.-C.×D.÷3.一个容器装有1 L水,按照如下要求把水倒出:第1次倒出 L水,第2次倒出的水量是 L的,第3次倒出的水量是 L的,第4次倒出的水量是 L的,……按照这种倒水的方法,倒了10次后容器内剩余的水量是()A. LB. LC. LD. L4.用计算器计算:(-2.3)÷0.8×(-3)=.5.已知a=-1,b=,c=-20,则(a-b)÷c的值是.6.现有四个有理数-1,-3,4,4,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果为24,请写出这样的一个算式: .7.已知=3,=10,=15,……观察上面的计算过程,寻找规律并计算=.8.计算:(1);(2)×18-1.45×6+3.95×6.9.市场销售人员把某一天两种冰箱的销售情况制成表格如下:种类售价/元盈利/%甲种冰箱1500 25乙种冰箱1500 -25已知这两种冰箱各售出一台,根据以上信息,请你判断商家是盈利还是亏本.若盈利,盈利了多少?若亏本,亏本了多少?10.下面是小明计算-20÷的解题过程,他的计算正确吗?如果不正确,请改正.-20÷=-20÷=-20÷1=-2011.前进的道路:从起点——数字1出发,顺次经过每一个分岔口,选择+、-、×、÷四种运算之一进行运算,到达目的地时结果要恰好是10.你能找到前进的道路吗?道路不止一条,请你至少找出3条,并列出你的算式.12.已知有理数a,b,c满足=1,求的值.二、创新应用13.阅读下题解答:计算:分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(-24)=-16+18-21=-19.所以原式=-.根据阅读材料提供的方法,完成下面的计算:.答案:一、能力提升1.A2.C根据算式的特点,要使计算出的值最小,需使|-3□5|的值最大,故应填入“×”号.3.D4.8.6255.当a=-1,b=,c=-20时,(a-b)÷c=÷(-20)=÷(-20)=.6.答案不唯一,如:(4+4)×(-3)÷(-1)=247.210由题意可知,=210.8.解:(1)===-2+3-=1-.(2)×18-1.45×6+3.95×6=14-15+7-=6+=21.9.解:1500÷(1+25%)=1200(元),1500÷(1-25%)=2000(元).1200+2 000=3 200(元),1500×2=3000(元).3000-3200=-200(元).因此亏本了,亏本了200元.10.解:小明的计算不正确.原式=-20×5×5=-500.11.解:答案不唯一,如(1)[1-(-2)]×3+(-4)+5=10;(2)[1-(-2)]÷3-(-4)+5=10;(3)[1-(-2)+3+(-4)]×5=10;(4)1×(-2)+3-(-4)+5=10.12.解:由=1,得a,b,c必为一负二正,所以=-1.二、创新应用13.解:=×(-42)=-21+14-30+112=75.故原式=.。

有理数加减乘除混合运算基础试题[含答案解析]

有理数加减乘除混合运算基础试题[含答案解析]

WORD格式WORD 整理版数学练习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。

A.△同号两数相加,取___相同的符号_______________,并把__绝对值相加__________________________。

1、(– 3)+(–9)2、85+ ( +15)-12 1003、(–31)+(–32)4、(– 3.5) +(– 5 2)6 3 35 1-6 -96 6△绝对值不相等的异号两数相加,取 _绝对值较大的加数的符号 ________________________, 并用 ________较大的绝对值减去较小的绝对值____________ _____________. 互为 __________________ 的两个数相加得 0。

1、 (– 45) +( +23)2、(– 1.35) +6.353、 2 1 +(– 2.25)4、(– 9) +74△一个数同0 相加,仍得 ___这个数 __________ 。

1、(– 9)+ 0=___-9___________;2、 0 +( +15 ) =____15_________ 。

B.加法交换律: a + b = ____b+a_______ 加法结合律: (a + b) + c = ____a+(b+c)___________1、(– 1.76) +(– 19.15) + ( – 8.24)2、 23+(– 17) +(+7 ) +(– 13)3、(+3 1)+(–23)+5 3 +(–82)4、2+ 2+(–2)4 5 4 5 5 11 5C.有理数的减法可以转化为__正数 ___来进行,转化的“桥梁”是 ____(正号可以省略)或是(有理数减法法则)。

_____。

△减法法则:减去一个数,等于______加上这个数的相反数_________________________ 。

即 a– b = a +( -b )WORD格式专业资料学习参考WORD 格式WORD 整理版1、(– 3)–(– 5)2、3 1 –(–13)3、 0–(–7)4 4D.加减混合运算可以统一为____加法 ___运算。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.用科学记数法表示0.000000063是【答案】6.3×10-8.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.试题解析:0.000000063=6.3×10-8.【考点】科学记数法—表示较小的数.2.(1)(2)(3)(4)【答案】(1)-14;(2)-5;(3)-17;(4)-4.【解析】(1)利用乘法对加法的分配律,把括号展开即可求出答案;(2)根据有理数的运算法则“先算乘方,再算乘除,最后算加减,括号优先”进行计算,即可求出答案;(3)先算乘方,再算乘除,最后算加减即可求解;(4)先算出乘方,再算括号和绝对值,接着算除法和乘法,最后算加减即可求出该题的答案.试题解析:(1)原式==-30+16=-14;(2)原式=(-1)×(-5)÷(9-10)=(-1)×(-5)÷(-1)=5÷(-1)=-5;(3)原式=16×(-)-5=-12-5=-17;(4)原式=-1-÷3×|3-9|=-1-××6=-1-3=-4。

【考点】有理数的混合运算.3.在一次水灾中,大约有个人无家可归,假如一顶帐篷占地100米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000米2。

要安置这些人,大约需要多少个这样的广场?(所有结果用科学计数法表示)【答案】(1);(2);(3).【解析】根据帐篷的数量=总人数÷每一个帐篷所容纳的人数;所占面积=帐篷数×一顶帐篷所占的面积,计算即可.试题解析:根据题意得2.5×107÷40=625000=顶帐篷,625000×100=6.25×107米2,6.25×107÷5000=个.考点: 整式的除法.4.下列运算正确的是()A.B.C.D.=8【答案】B【解析】,A错;,C错;,D错.只有B是正确的.5.计算的值是()A.0B.C.D.【答案】B【解析】6.已知互为相反数,互为倒数,的绝对值是,求的值.【答案】7【解析】解:由已知可得,,,.当时,;当时,.7.计算:;【答案】【解析】先根据有理数的除法法则统一为乘,再根据有理数的乘法法则计算,最后算减即可得到结果.解:原式.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.8. (-2)0=_________,=___________,(-3)-1=___________.【答案】1,2,【解析】(-2)0=1,(任何数的0次都为1)=2;(-3)-1=【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。

九年级中考数学专题练习有理数的加减乘除混合运算(含解析)

九年级中考数学专题练习有理数的加减乘除混合运算(含解析)

中考数学专题练习-有理数的加减乘除混合运算(含解析)一、单选题1.计算﹣×3的结果是()A. 0B. 1C. ﹣2D. ﹣12.计算2﹣(﹣3)×4的结果是()A. 20B. -10C. 14D. -203.若-3减去一个有理数的差是-6,则-3乘以这个有理数的积是()A. 9B. -9C. 6D. -64.下列计算正确的是()A. ﹣3﹣(﹣3)=﹣6B. ﹣3﹣3=0 C. ﹣3÷3×3=﹣3 D. ﹣3÷3÷3=﹣35.把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是()A. -5-3+1-5B. 5-3-1-5C. 5+3+1-5 D. 5-3+1-56.把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略加号的形式是()A. ﹣8+4﹣5+2B. ﹣8﹣4﹣5+2 C. ﹣8﹣4+5+2 D. 8﹣4﹣5+27.-5÷(-5)-(-7)=()A. 8B. -2.5C. -6D. 78.下列计算正确的是()A. ﹣3÷3×3=﹣3B. ﹣3﹣3=0 C. ﹣3﹣(﹣3)=﹣6 D. ﹣3÷3÷3=﹣39.计算-16÷(-2)3-22×(-),结果应是()A. 0B. -4C. -3D. 410.下列计算正确的是()A. 23=6B. ﹣5+0=0 C. (﹣8)÷(﹣4)=2 D. ﹣5﹣2=﹣311.计算3×(-2) 的结果是( )A. 5B. -5C. 6D. -612.规定符号⊗的意义为:a⊗b=,那么﹣3⊗4等于()A.B. -C.D. -13.-2-(-6)÷(-3)=()A. 5B. 3C. 2D. -414.下列式子中,不能成立的是()A. ﹣(﹣2)=2B. ﹣|﹣2|=﹣2 C. 23=6D. (﹣2)2=4二、填空题15.一台组装电脑的成本价是4000元,如果商家以5200元的价格卖给顾客,那么商家的盈利率为________16.对于有理数a,b(a≠0)定义运算“@”如下:a@b=(a+b)÷a×b,则﹣3@6=________17.计算:①1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2019+2019+2019﹣2019﹣2019+2019=________ ;②1﹣22+32﹣42+52﹣…﹣962+972﹣982+992=________18.若规定:=a+b﹣c﹣d,则的值是________.19.为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的运价为3公里以内10元;超出3公里后每公里2元;单程超过15公里,超过部分每公里3元.小周要到离家10公里的博物馆参观,若他往返都乘坐纯电动出租车,共需付车费________ 元.三、计算题20.计算:(1)(﹣1)2019×5﹣23 × ;(2)﹣10+4×(﹣3)2+(﹣6)÷(﹣3)+|﹣7|21.计算:﹣12019+24÷(﹣2)3﹣32×()2 .22.计算:(1)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣()2];(2)(﹣24)×(﹣+)+(﹣2)3 .23.计算:(1)12﹣(﹣18)+(﹣7)﹣15(2)(+1 ﹣0.75)×(﹣24)24.计算(1)24+(—14)+(—16)+8(2)(3)(-0.25)×1.25×(-4)×(-8)(4)(5)(-5)×6+(-125)÷(-5)(6)25.(+ ﹣)÷(﹣)四、解答题26.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知a,b互为相反数,c,d互为倒数,|m|=3,则+1+m﹣cd的值为多少?27.一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?五、综合题28.计算(1)﹣6.5+(﹣3.3)﹣(﹣2.5)﹣(+4.7)(2)17﹣8÷(﹣22)+4×(﹣3)29.阅读与理解在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a⊕b⊕c= (|a﹣b﹣c|+a+b+c).如:(﹣1)⊕2⊕3=﹣[|﹣1﹣2﹣3|+(﹣1)+2+3]=5解答下列问题:(1)计算:3⊕(﹣2)⊕(﹣3)的值;(2)在﹣,﹣,﹣,…,﹣,0,,,,…,这15个数中,任意取三个数作为a,b,c的值,进行“a⊕b⊕c”运算,求在所有计算结果中的最大值.答案解析部分一、单选题1.计算﹣×3的结果是()A. 0B. 1C. ﹣2D. ﹣1【答案】D【考点】有理数的混合运算【解析】【解答】解:原式= ﹣=﹣1.故选D【分析】原式先计算乘法运算,再计算加减运算即可得到结果.2.计算2﹣(﹣3)×4的结果是()A. 20B. -10C. 14D. -20 【答案】C【考点】有理数的混合运算【解析】【解答】解:原式=2+12=14,故选C【分析】原式先计算乘法运算,再计算加减运算即可得到结果.3.若-3减去一个有理数的差是-6,则-3乘以这个有理数的积是()A. 9B. -9C. 6D. -6【答案】B【考点】有理数的混合运算【解析】【分析】先根据题意计算出这个有理数,再根据有理数的乘法法则计算【解答】由题意得,这个有理数是-3-(-6)=-3+6=3,则-3乘以这个有理数的积是-3×3=-9.故选B.【点评】本题是基础应用题,只需学生熟练掌握有理数的减法、乘法法则,即可完成。

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.用科学记数法表示为 ( )A.B.C.D.【答案】A.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.所以:0.00813=8.13×10-3.故选A.【考点】科学记数法—表示较小的数.2.若家用电冰箱冷藏室的温度是4℃,冷冻室比冷藏室的温度低22℃,则冷冻室的温度为()A.-18℃B.18℃C.-26℃D.26℃【答案】A【解析】此题比较简单,直接就可以列出算式,然后根据有理数减法就可以求出结果.根据题意可以列出算式:4-22,根据算式结果就可以知道冷冻室的温度.解:∵4-22=-18,∴冷冻室的温度为-18℃..【考点】有理数的减法.3.为了传承和弘扬港口文化,我市将投入6000万元建设一座港口博物馆,其中“6000万”用科学记数法表示为()A.0.6×108B.6×108C.6×107D.60×106【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将6000万用科学记数法表示为:6×107.故选:C.4.下列运算结果为负数的是()A.-11×(-2)B.0×(-1)×7C.(-6)-(-4)D.(-7)+18【答案】C【解析】A结果为22,B结果为0,C结果为-2,D结果为11,所以结果为负数的是C.5.根据下图所示的程序计算代数式的值,若输入n的值为5,则输出的结果为()A.16B.2.5C.18.5D.13.5【答案】A【解析】由程序图可知输出的结果为3.6.计算:_________.【答案】-37【解析】.7.某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 .【答案】78分【解析】(分)8.在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1B.2C.3D.无数个【答案】C【解析】个数一的立方等于本身的数有1,,0,共3个.9.小明近期几次数学测试成绩如下:第一次分,第二次比第一次高分,第三次比第二次低分,第四次又比第三次高分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【答案】C【解析】小明第四次测验的成绩是故选C.10.把(-2)-(-10)+(-6)-(+5)写成省略加号和的形式为A.-2+10-6-5B.-2-10-6+5C.-2+10-6+5D.2+10-6-5【答案】A【解析】先根据有理数的减法法则统一为加,即可写成省略加号和的形式.(-2)-(-10)+(-6)-(+5)=(-2)+10+(-6)+(-5)=-2+10-6-5,故选A.【考点】有理数的加法点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.11. (2×102) 3 = ( ).A.2×106B.5×106C.8×106D.8×102【答案】C【解析】积的乘方法则:积的乘方,把每个因式分别乘方,再把所得的幂相乘.,故选C.【考点】积的乘方点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.计算【答案】(1) -4 (2) -13【解析】【考点】实数运算点评:本题难度较低,主要考查学生对实数运算的掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 学 练 习(一)
〔有理数加减法运算练习〕
一、加减法法则、运算律的复习。

A .△同号两数相加,取___相同的符号_______________,并把__绝对值相加__________________________。

1、(–3)+(–9)
2、85+(+15) -12 100
3、(–361)+(–33
2) 4、(–3.5)+(–532

-66
5 -961
△绝对值不相等的异号两数相加,取_绝对值较大的加数的符号________________________,并用________较大的绝对值减去较小的绝对值____________ _____________. 互为__________________的两个数相加得0。

1、(–45) +(+23)
2、(–1.35)+6.35
3、4
1
2+(–2.25) 4、(–9)+7
△ 一个数同0相加,仍得___这个数__________。

1、(–9)+ 0=___-9___________;
2、0 +(+15)=____15_________。

B 1、(–1.76)+(–19.15)+ (–8.24) 2、23+(–17)+(+7)+(–13)
3、(+ 341)+(–253)+ 543+(–852)
4、52+112+(–5
2

C .有理数的减法可以转化为__正数___来进行,转化的“桥梁”是____(正号可以省略)或是(有理数减法法则)。

_____。

△减法法则:减去一个数,等于______加上这个数的相反数_________________________。

1、(–3)–(–5) 2、341–(–14
3
) 3、0–(–7)
D .加减混合运算可以统一为____加法___1、(–3)–(+5)+(–4)–(–10) 2、341–(+5)–(–14
3
)+(–5)
1、 1–4 + 3–5
2、–2.4 + 3.5–4.6 + 3.5
3、 381–253 + 58
7–852
二、综合提高题。

1、一个病人每天下午需要测量一次血压,下表是病人星期一至星期五收缩压的变化情况,该病人上个星期日的收缩压为160单位。

请算出星期五该病人的收缩压。

160+30-20+17+18-20=185
数 学 练 习 (二)
(乘除法法则、运算律的复习)
一、乘除法法则、运算律的复习。

A.有理数的乘法法则:两数相乘,同号得_正_______,异号得____负___,并把____绝对值相乘_______________。

任何数同0相乘,都得____0__。

1、(–4)×(–9)
2、(–52)×8
1
3、(–6)×0
4、(–253)×13
5
1、 3的倒数是______,相反数是____,绝对值是____。

2、–4的倒数是____,相反数是____,绝对值是____。

1、 -3.5的倒数是_____,相反数是____,绝对值是____。

C.多个__________的数相乘,负因数的个数是________时,积是正数;负因数的个数是________时,积是负数。


个数相乘,如果其中有因数为0,积等于_________。

1.(–5)×8×(–7)
2.(–6)×(–5)×(–7)
3.(–12)×2.45×0×9×100
D 1、100×(0.7–103–254+ 0.03) 3、(–11)×52+(–11)×95
3
E.有理数的除法可以转化为_______来进行,转化的“桥梁”是____________。

除法法则一:除以一个不等于0的数,等于____________________________________。

除法法则二:两数相除,同号得_____,异号得_____,并把绝对值相_______. 0除以任何一个不等于0的数,都得____.
1. (–18)÷(–9)
2. (–63)÷(7)
3. 0÷(–105)
4. 1÷(–9)
F.有理数加减乘除混合运算,无括号时,“先________,后_________”,有括号时,先算括号内的,同级运算,从
_____到______. 计算时注意符号的确定,还要灵活应用运算律使运算简便。

二、加减乘除混合运算练习。

1. 3×(–9)+7×(–9)
2. 20–15÷(–5)
3. [65÷(–21–31)+281
]÷(–18
1)
4. 冰箱开始启动时内部温度为10℃,如果每小时冰箱内部的温度降低5℃,那么3小时后冰箱内部的温度是多少?
5.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”号表示成绩大于18秒,“–”号表示成绩小于18秒。

这个小组女生的达标率为多少?平均成绩为多少?
数 学 练 习(三)
(有理数的乘方)
一、填空。

1、53
中,3是________,2是 _______,幂是_________.
2、 -53
的底数是______,指数是______,读作________________,计算结果是_______. 3、

54
表示___________________________.结果是________.
4、 地球离太阳约有150 000 000万千米,用科学记数法表示为___________万千米.
5、 近似数3.04,精确到______位,有_______个有效数字。

6、 3.78×
107
是________位数。

7、 若a 为大于1的有理数,则 a ,
a
1, a
2
三者按照从小到大的顺序列为_______________.
8、 用四舍五入法得到的近似值0.380精确到________位,48.68万精确到_________位。

10、1.8亿精确到_________位,有效数字为_______________。

11、代数式( a + 2 )
2
+ 5取得最小值时的 a 的值为___________.
12、如果有理数a ,b 满足︱a -b ︱=b -a ,︱a ︱=2,︱b ︱=1,则( a + b )3
=__________.
二、 选择。

13、一个数的平方一定是( )
A.正数
B.负数
C.非正数
D.非负数 14、下面用科学记数法表示106 000,其中正确的是( )
A.1.06×
10
5
B.10.6×
10
5
C.1.06×
10
6
D.1.06×
107
15、︱x -21︱+ ( 2y+1 )2
=0 , 则x 2+y 3的值是( )
A .83 B. 81 C. -8
1 D. -83
16、若( b+1 )
2
+3︱a -2︱=0, 则a -2b 的值是( )
A. -4
B.0
C.4
D.2 三、 计算。

17、-10 + 8÷( -2 )2
-(-4)×(-3)
18、-49 + 2×( -3 )2+ ( -6 ) ÷ ( -
9
1
)
19、有一组数:(1,1,1),(2,4,8),(3,9,27),(4,16,64),…求第100组的三个数的和。

20、一杯饮料,第一次倒去一半,第二次倒去剩下的一半,……如此倒下去,第八次后剩下的饮料是原来的几分之几?。

相关文档
最新文档