常量与变量考试题
(841)变量之变量和常量专项练习40题(有答案)20页 ok
变量之间的关系--常量和变量40题1.下列给出的式子中,x是自变量的是()A.x=5B.2x+y=0C.2y2=4x+3D.y=3x﹣12.假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是()①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A.1个B.2个C.3个D.4个3.弹簧挂重物会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系.x01234…y88.599.510…下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm4.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是()012345x/kg2020.52121.52222.5y/cmA.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm5.某款贴图的成本价为1.5元,销售商对其销量与定价的关系进行了调查,结果如下:定价/元 1.82 2.3 2.5 2.83销量/个202530262218你认为其因变量为()A.成本价B.定价C.销量D.以上说法都不正确6.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.甲以每小时20km的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=20t 来表示,则下列说法正确的是()A.数20和s,t都是变量B.s是常量,数20和t是变量C.数20是常量,s和t是变量D.t是常量,数20和s是变量8.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为23.5cm9.将一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的圆柱体,在这个过程中不改变的是()A.圆柱的高B.圆柱的侧面积C.圆柱的体积D.圆柱的底面积10.自由下落物体下落的高度h与下落的时间t之间的关系为h=gt2(g=9.8m/s2),在这个变化中,变量为()A.h,tB.h,g C.t,g D.t11.我们知道,在弹性限度内,弹簧挂上重物后会伸长.已知一根弹簧的长度(cm)与所挂重物的质量(kg)之间的关系如下表,则下列说法错误的是()重物的质量(kg)0123451212.51313.51414.5弹簧的长度(cm)A.在这一变化过程中,重物的质量是自变量,弹簧的长度是因变量B.当所挂重物的质量是4kg时,弹簧的长度是14cmC.在弹性限度内,当所挂重物的质量是6kg时,弹簧的长度是16cmD.当不挂重物时,弹簧的长度应为12cm12.1﹣6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x(月)之间的关系如表所示,则6个月大的婴儿的体重为()月龄/(月)12345体重/(克)47005400610068007500A.7600克B.7800克C.8200克D.8500克13.某校初一数学兴趣小组利用同一块木板,测量小车从不同高度沿斜放的木板从顶部滑到底部所用的时间,支撑物的高度h(cm)与小车下滑时间t(s)之间的关系如表所示:10203040506070支撑物高度h/cm4.23 3.00 2.45 2.13 1.89 1.71 1.59小车下滑时间t/s根据表格提供的信息,下列说法错误的是()A.支撑物的高度为40cm,小车下滑时间为2.13sB.支撑物高度h越大,小车下滑时间t越小C.若小车下滑时间为2s,则支撑物高度在40cm至50cm之间D.若支撑物的高度为80cm,则小车下滑时间可以使小于1.59s的任意值14.下表是我国从1949年到1999年的人口统计数据(精确到0.01亿)时间(年)194919591969197919891999人口(亿) 5.42 6.728.079.7511.0712.59从表中获取的信息:(1)人口随时间的变化而变化,时间是自变量,人口是因变量;(2)1979﹣1989年10年间人口增长最慢;(3)1949﹣1979这30年的增长逐渐加大,1979﹣1999这20年的增长先减小后增大;(4)人口增长速度最大的十年达到约20%,其中正确的有()A.4个B.3个C.2个D.1个15.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,结果如下():定价(元)100110120130140150销量(个)801001101008060A.定价是常量,销量是变量B.定价是变量,销量是不变量C.定价与销售量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量16.在男子1000米的长跑中,运动员的平均速度v=,则这个关系式中自变量是.17.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)表中是自变量,是因变量;(2)你预计该地区从年起入学儿童的人数不超过1000人.18.大家知道,冰层越厚,所承受的压力越大,这其中自变量是,因变量是.19.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:数量(千克)0.51 1.52 2.53 3.5…售价(元) 1.53 4.567.5910.5…上表反映了个变量之间的关系,其中,自变量是;因变量是.20.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,在这个变化过程中,自变量是.21.如图所示,△ABC的底边BC上的高是6cm,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.在这个变化过程中,变量是,常量是.22.学校食堂现库存粮食21000kg,平均每天用粮食200kg,那么剩余库存粮食y kg,食用的天数为x,其中常量是,变量是.23.下表反映的是y与x的对应关系(x,y取正整数),根据表格中已有的规律,将表格填充完整.x123456789y251017263724.下表所列为某商店薄利多销的情况.某商品原价为560元,随着不同幅度的降价,日销量(单位为件)发生相应的变化(如表):降价(元)5101520253035日销量(件)780810840870900930960这个表反映了个变量之间的关系,是自变量,是因变量.从表中可以看出每降价5元,日销量增加件,从而可以估计降价之前的日销量为件,如果售价为500元时,日销量为件.25.据国家统计局统计,新中国成立以来至2000年,我国各项税收收入合计见表.年份19501955196196519719751981985199019952000税收收入/亿48.98127.45203.65204.30281.20402.77571.702040.792821.866038.0412581.51从表中可以得出:新中国成立以来我国的税收收人总体趋势是,其中,年与5年前相比,增长百分数最大;年与5年前相比,增长百分数最小;2000年与1950年相比,税收收入增长了倍(保留一位小数).26.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为方.月用水量不超过12方部分超过12方不超过18吨部分超过18方部分收费标准(元/方)2 2.5327.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是,因变量是.28.面积是36cm2的三角形,其底边长a(cm)及高线长h(cm)之间的关系为72=ah,其中常量是,变量是.当底边长a分别为4cm,8cm时,相应的高线长h的值分别为.29.某方程的两个未知数之间的关系为y=﹣3x2+5,变量是,常量是.30.我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果t表示温度,h表示距地面的高度,则是变量.31.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.所挂物体质量x/kg012345弹簧长度y/cm182022242628(1)上述反映了哪两个变量之问的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg时,弹簧有多长?不挂重物呢?(3)若所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?32.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?33.下表是达州某电器厂2014年上半年每个月的产量:x/月123456y/台100001000012000130001400018000(1)根据表格中的数据,你能否根据x的变化,得到y的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2014年前半年的平均月产量是多少?34.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?35.如图所示,用长为20的铁丝焊接成一个长方形,设长方形的一边为x,面积为y,随着x 的变化,y的值也随之变化.(1)写出y与x之间的关系式,并指出在这个变化中,哪个是自变量?哪个是因变量?(2)用表格表示当x从1变化到9时(每次增加1),y的相应值;x123456789y(3)当x为何值时,y的值最大?36.已知x为实数.y、z与x的关系如表格所示:根据上述表格中的数字变化规律,解答下列问题:(1)当x为何值时,y=430?(2)当x为何值时,y=z?x y z………330×3+702×1×8430×4+702×2×9530×5+702×3×10630×6+702×4×11………37.如表是某报纸公布的世界人口数据情况:年份195719741987199920102025人口数30亿40亿50亿60亿70亿80亿(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口总数,那么随着x的变化,y的变化趋势是怎样的?38.声音在空气甲的传播速度y(m/s)(简称音速)随气温x(℃)的变化而变化,下表列出了一组不同气温时的音速.气温x/℃05101520音速y/(m/s)331334337340343(1)当x的值逐渐增大时,y的变化趋势是什么?(2)x每增加5℃,y的变化情况相同吗?(3)估计气温为25℃时音速是多少.39.指出下列问题中的变量和常量:某市的自来水价为4元/t,现要抽取若干户居民调查水费支出情况,记某户月用水量为x t,月应交水费为y元.40.已知直线m,n之间的距离是3,△ABC的顶点A在直线m上,边BC在直线n上,求△ABC的面积S和BC边的长x之间的关系式,并指出其中的变量和常量.变量之间的关系--常量和变量40题答案:1【分析】根据函数的定义,可得答案.【解答】解:y=3x﹣1,中y随x的变化而变化,x是自变量,y是x的函数,故选:D.2.【分析】根据常量和变量的定义解答即可.【解答】解:∵汽车匀速行驶在高速公路上,速度是常量,随着时间的变化,行驶时间,行驶路程,剩余油量随之变化,∴②行驶时间;③行驶路程;④汽车油箱中的剩余油量是变量.故选C.3.【分析】根据变量、自变量、因变量的定义以及表格中的数据即可判断;【解答】解:A、正确.x与y都是变量,x是自变量,y是因变量;B、正确.所挂物体为6kg,弹簧长度为11cm;C、正确.物体每增加1kg,弹簧长度就增加0.5cm;D、错误,弹簧长度最长为20cm;故选D.4.【分析】根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.【解答】解:A、弹簧不挂重物时的长度为20cm,此选项符合题意;B、x与y都是变量,且x是自变量,y是因变量,此选项不符合题意;C、随着所挂物体的重量增加,弹簧长度逐渐边长,此选项不符合题意;D、所挂物体的重量每增加1kg,弹簧长度增加0.5cm,此选项不符合题意.故选A.5.【分析】在式子中销量随定价的值的变化而变化,销量是定价的函数,因而因变量是销量.【解答】解:在式子中销量随定价的值的变化而变化,销量是定价的函数,因而因变量是销量.故选:C.6.【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.7.【分析】根据变量和常量的定义即可判断.【解答】解:在s=20t中,数20是常量,s和t是变量,故选C.8.【分析】根据自变量、因变量的含义,以及弹簧的长度y(cm)与所挂的物体的质量x(kg)之间的关系逐一判断即可.【解答】解:∵弹簧不挂重物时的长度为20cm,∴选项A不正确;∵x与y都是变量,且x是自变量,y是因变量,∴选项B正确;∵20.5﹣20=0.5(cm),21﹣20.5=0.5(cm),21.5﹣21=0.5(cm),22﹣21.5=0.5(cm),22.5﹣22=0.5(cm),∴物体质量每增加1kg,弹簧长度y增加0.5cm,∴选项C正确;∵22.5+0.5×(7﹣5)=22.5+1=23.5(cm)∴所挂物体质量为7kg时,弹簧长度为23.5cm,∴选项D正确.故选:A.9.【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是不发生变化的量,可得答案.【解答】解:一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的圆柱体,在这个过程中不改变的是圆柱的体积,圆柱的侧面积变化,底面积变化,高不变化,故选:C.10.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.【解答】解:在这个变化中,变量为h、t.故选:A、11.【分析】根据表格数据可得y与x成一次函数关系,设y=kx+b,取两点代入可得出y与x 的关系式,进而分析得出答案.【解答】解:由表格可得:y随x的增大而增大;在这一变化过程中,重物的质量是自变量,弹簧的长度是因变量,故选项A正确,不合题意;设y=kx+b,将点(0,12),(2,13)代入可得:,解得:.故y=x+12,当x=4时,y=14cm,故选项B正确,不合题意;当x=6时,y=15cm,故选项C错误,符合题意;当x=0时,y=12cm,即弹簧不挂物体时的长度是12cm,故选项D正确,不合题意.故选:C.12.【分析】婴儿出生体重为4000克,从表格上看:1月体重为4700克,所以每月增长的体重为700克,再由表格依次计算其他月份的体重得出结论.【解答】解:∵婴儿每月增长的体重相同为700克,∴6个月大的婴儿的体重为:700+7500=8200,故选C.13.【分析】根据函数的表示方法对各选项进行逐一分析即可.【解答】解:A、由图可知,当h=40cm时,t=2.13s,故A正确;B、支撑物高度h越大,小车下滑时间t越小,故B正确;C、若小车下滑时间为2s,则支撑物高度在40cm至50cm之间,故C正确;D、若支撑物的高度为80cm,则小车下滑时间可以使小于1.59s,但不是任意值,故D错误.故选D.14.【分析】由常量与变量的定义可判断(1),再求出每十年的增长率即可判断(2)(3)(4).【解答】解:由表可知,时间和人口总数都在变化,它们都是变量,其中我国人口总数是随时间的变化而变化,时间是自变量,人口是因变量,(1)正确;∵1949~1959年人口增长率为×100%≈23.99%,1959~1969年人口增长率为×100%≈20.09%,1969~1979年人口增长率为×100%≈20.82%,1979~1989年人口增长率为×100%≈13.54%,1989~1999年人口增长率为×100%≈13.73%,∴1979﹣1989年10年间人口增长最慢,故(2)正确;1949﹣1979这30年的增长先减小再增大,故(3)错误;人口增长速度最大的十年达到约24%,故(4)错误;故选:C.15.【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:定价与销售量都是变量,定价是自变量,销量是因变量,故C正确;故选:C.16.【分析】根据函数的定义:设x和y是两个变量,对于x的每一个值,y都有唯一确定的值和它对应,我们就说y是x的函数,其中x是自变量.据此解答即可.【解答】解:在女子3000米的长跑中,运动员的平均速度v=,则这个关系式中自变量是t,故答案为:t.17.【分析】(1)因为该表格中的数据近似地呈现了某地区入学儿童人数随年份的变化趋势,所以年份是自变量,入学儿童人数是因变量;(2)由表中的数据可知,每年的入学儿童人数都比上一年减少190人,由题意可列式子(2520﹣1000)÷190=8,进而可求出答案.【解答】解:(1)年份是自变量,入学儿童人数是因变量;(2)因为每年的入学儿童人数都比上一年减少190人,∴(2520﹣1000)÷190=8,所以2008年起入学儿童的人数不超过1000人.18.【分析】根据常量与变量,即可解答.【解答】解:大家知道,冰层越厚,所承受的压力越大,这其中自变量是冰层的厚度,因变量是冰层所承受的压力;故答案为:冰层的厚度,冰层所承受的压力.19.【分析】首先根据表格,可得上表反映了两个变量(香蕉数量和售价)之间的关系;然后根据自变量、因变量的含义,判断出自变量、因变量各是哪个即可.【解答】解:∵香蕉的售价随着香蕉数量的变化而变化,∴上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价.故答案为:两、香蕉数量、售价.20.【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:该公司的销售收入随销售量的变化而变化,在这个变化过程中,自变量是销售量,故答案为:销售量.21.【分析】直接利用常量与变量的定义分别得出答案.【解答】解:在这个变化过程中,自变量是BC,常量是:6cm.故答案为:BC,6cm.22.【分析】根据:剩余库存粮食=现库存粮食﹣平均每天用粮食×食用的天数,列出函数关系式,根据常量与变量定义可得.【解答】解:根据题意,y=21000﹣200x,∴21000,﹣200是常量,x、y是变量,故答案为:21000、﹣200;x、y.23.【分析】根据表格,分析数据可得y与x之间的关系是y=x2+1;将x的值代入关系式即可求得y的值.【解答】解:由表可得:y与x的关系式为:y=x2+1;故当x=7时,y=50;当x=8时,y=65;当x=9时,y=82.24.【分析】根据函数的定义即可确定自变量与因变量;从表中可以看出每降价5元,日销量增加30件,则日销量与降价之间的关系为:日销量=750+(原价﹣售价)÷5×30;将已知数据代入上式即可求得要求的量.【解答】解:∵日销量随降价的改变而改变,∴降价(元)是自变量,日销量是因变量.从表中可:日销量与降价之间的关系为:日销量=750+(原价﹣售价)÷5×30;则可以估计降价之前的日销量为780﹣30=750件,售价为500元时,日销量=750+(560﹣500)÷5×30=1110件.25.【分析】由表中的数据,分别算出与5年前相比,增长百分数,进一步比较得出答案即可.【解答】解:(127.45﹣48.98)÷48.98≈160.2%;(203.65﹣127.45)÷127.45≈59.8%;(204.30﹣203.65)÷203.65≈0.3%;(281.20﹣204.30)÷204.30≈37.6%;(402.77﹣281.20)÷281.20≈43.2%;(571.70﹣402.77)÷402.77≈41.9%;(2040.79﹣571.70)÷571.70≈257.0%;(2821.86﹣2040.79)÷2040.79≈38.3%;(6038.04﹣2821.86)÷2821.86≈114.0%;(12581.51﹣6038.04)÷6038.04≈108.4%;(12581.51﹣48.98)÷48.98≈255.9(倍);新中国成立以来我国的税收收人总体趋势是上升,其中,1985年与5年前相比,增长百分数最大;1965年与5年前相比,增长百分数最小;2000年与1950年相比,税收收入增长了25587.0倍.故答案为:上升;1985;1965;255.9.26.【分析】根据题意可知:先判断出该用户用的水与18方的关系,再设用水x方,水费为y 元,继而求得关系式为y=39+3(x﹣18);将y=45时,代入上式即可求得所用水的方数.【解答】解:∵45>12×2+6×2.5=39,∴用户5月份交水费45元可知5月用水超过了18方,设用水x方,水费为y元,则关系式为y=39+3(x﹣18).当y=45时,x=20,即用水20方.故答案为:20.27.【分析】根据自变量、因变量的含义,判断出自变量、因变量各是哪个即可.【解答】解:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.故答案为:圆锥的高,圆锥的体积.28.【分析】根据在事物的变化过程中数值不变的量是常量,数值发生变化的量是变量,可得答案;根据自变量与函数值的对应关系,可得相应的函数值.【解答】解:面积是36cm2的三角形,其底边长a(cm)及高线长h(cm)之间的关系为72=ah,其中常量是72cm,变量是a、h,当a=4时,h==18;当a=8时,h==9.故答案为:72cm;a,h;18cm,9cm.29.【分析】根据常量与变量定义即可得知.【解答】解:变量是x、y,常量是﹣3、5,故答案为:x、y,﹣3、5.30.【分析】常量就是在一个变化过程中,数值不发生变化的量,发生变化的量是变量,根据定义即可判断.【解答】解:∵高空中的温度t是随着距地面高度h的变化而变化的,∴变量是:t,h;故答案为:t,h.31.【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)由表可知,当物体的质量为3kg时,弹簧的长度是24cm;不挂重物时,弹簧的长度是18cm;(3)由表中的数据可知,x=0时,y=18,并且每增加1千克的质量,长度增加2cm,依此可求所挂重物为6千克时(在允许范围内)时的弹簧长度.【解答】解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为6千克时(在允许范围内)时的弹簧长度=18+2×6=30厘米.32.【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案.【解答】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为:每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才会亏损;故答案为:观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.33.【分析】(1)根据表格数据可得y随x的增大而增大;(2)根据表格数据可得1、2月份的月产量均为10000,保持不变;3月,4月、5月三个月的产量在匀速增多,每月增加1000台,6月份产量最高;(3)前半年的平均月产量把1到6月份的总产量除以6即可.【解答】解:(1)随着月份x的增大,月产量y在逐渐增加;(2)1月、2月两个月的月产量不变,3月,4月、5月三个月的产量在匀速增多,6月份产量最高;(3)2014年前半年的平均月产量:(10000+10000+12000+13000+14000+18000)÷6≈12833(台).34.【分析】准确理解函数的概念:在运动变化过程中有两个变量x和y,对于x的每一个值,y都有唯一确定的值与之对应,y是x的函数,x是自变量.【解答】解:(1)提出概念所用的时间x和对概念接受能力y两个变量;(2)当x=10时,y=59,所以时间是10分钟时,学生的接受能力是59.(3)当x=13时,y的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强.(4)由表中数据可知:当2<x<13时,y值逐渐增大,学生的接受能力逐步增强;当13<x <20时,y值逐渐减小,学生的接受能力逐步降低.35.【分析】(1)根据周长的等量关系可得长方形的另一边为10﹣x,那么面积=x(10﹣x),自变量是x,应变量是函数值y;(2)把相关x的值代入(1)中的函数解析式求值即可;(3)根据(2)所得的结论可得x为何值时,y的值最大.【解答】解:(1)y=(20÷2﹣x)×x=(10﹣x)×x=10x﹣x2;x是自变量,y是因变量.(2)所填数值依次为:9,16,21,24,25,24,21,16,9;(3)由(2)可以看出:当x为5时,y的值最大.36.【分析】由图片中的信息可得出:当x为n(n≥3)时,y应该表示为30×n+70,z就应该表述为2×(n﹣2)(5+n);那么由此可得出(1)(2)中所求的值.【解答】解:∵y=30×x+70,z=2×(x﹣2)(5+x)(1)当x=12时,y=30×12+70=430;(2)∵y=z,即30×x+70=2×(x﹣2)(5+x),解得:x=﹣3或15.37.【分析】(1)年份和人口数都在变化,据此得到;(2)根据人口的变化写出变化趋势即可;【解答】解:(1)表中有两个变量,分别是年份和人口数;(2)用x表示年份,用y表示世界人口总数,那么随着x的变化,y的变化趋势是增大.38.【分析】(1)观察图表数据,气温每升高5℃,音速增加3,然后写出x的表达式即可得到结论;(2)观察图表数据,气温每升高5℃,音速增加3,于是得到结论;(3)把气温代入代数式求出音速,再根据路程=速度×时间计算即可得解.【解答】解:(1)根据题意得y=0.6x+331,∴当x的值逐渐增大时,y的变化趋势是y随x的增大而增大;(2)图表数据,气温x每升高5℃,音速y增加3;(3)当x=25时,0.6x+331=0.6×25+331=346,答:气温为25℃时音速是346(m/s).39.【分析】根据应交水费=自来水价×用水量列出函数关系式,根据变量和常量的定义解答.【解答】解:依题意得:y=4x(x≥0).该函数式中,变量是x、y,常量是4.40.【分析】直接利用三角形面积求法得出S与x的关系式,进而得出常量与变量.【解答】解:由题意可得:S=x,变量是:S,x;常量是.淘宝:眞学堂。
专题5.1变量与常量(原卷版)【浙教版】
专题5.1变量与常量姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021春•定州市期末)在圆的周长2C R π=中,常量与变量分别是()A .2是常量,C 、π、R 是变量B .2π是常量,C 、R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量2.(2021春•成华区期末)汽车以每小时100千米的速度匀速行驶,行驶的路程随时间的变化而变化,在这个变化过程中,自变量是()A .汽车B .路程C .速度D .时间3.(2021春•济南期末)在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A .变量只有速度vB .变量只有时间tC .速度v 和时间t 都是变量D .速度v 、时间t 、路程s 都是常量4.(2021春•饶平县校级期末)如果用总长为60m 的篱笆围成一个长方形场地,设长方形的面积为2()S m 周长为()p m ,一边长为()a m ,那么S 、p 、a 中,常量是()A .aB .pC .SD .p ,a5.(2021春•开福区校级月考)一本笔记本5元,买x 本共付y 元,则常量和变量分别是()A .常量:5;变量:xB .常量:5;变量:yC .常量:5;变量:x ,yD .常量:x ,y ;变量:56.(2021春•莱州市期末)在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A .水的温度B .太阳光强弱C .太阳照射时间D .热水器的容积7.(2021春•雨花区期中)把15本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本,则下列判断错误的是()A .15是常量B .15是变量C .x 是变量D .y 是变量8.(2019秋•东阿县期末)李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A .金额B .数量C .单价D .金额和数量9.(2021春•郏县期末)某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/C ︒20-10-0102030声速//m s318324330336342348下列说法错误的是()A .在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20C ︒时,声音5s 可以传播1740mD .当温度每升高10C ︒,声速增加6/m s10.(2020春•定边县期末)已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示,下列说法错误的是()温度/C ︒20-10-0102030传播速度/(/)m s 318324330336342348A .自变量是温度,因变量是传播速度B .温度越高,传播速度越快C .当温度为10C ︒时,声音5s 可以传播1650m D .温度每升高10C ︒,传播速度增加6/m s二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021春•伍家岗区期末)若改变正方形的边长x ,则正方形面积y 随之改变.在这个问题中,是自变量.12.当圆的半径r由小变大时,它的面积S也越来越大,它们之间的变化关系为2S rπ=,在这个变化过程中,自变量为,因变量为,常量为.13.(2021春•历城区期末)自变量x与因变量y的关系如图,当x每增加1时,y增加.14.(2021春•渠县期末)每个同学购买一本课本,课本的单价是4.5元,总金额为y(元),学生数为n(个),则变量是,常量是.15.(2019春•雁塔区校级期中)我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果t表示某高空中的温度,h表示距地面的高度,则是自变量.16.一个水库当水深10米时的蓄水量是水深5米时的蓄水量的2.5倍,从10米到20米,水深每增加5米,蓄水量就增加一倍,当水深为25米,30米时,蓄水量分别是水深5米时蓄水量的15倍,25倍.这个问题中,自变量和因变量是.17.(2019春•岐山县期中)某种树木的分枝生长规律如图所示,则预计到第6年时,树木的分枝数为,其中自变量是,因变量是.年份第一年第二年第三年第四年第五年分枝数1123518.(2018春•张店区期末)如图,圆柱的高是3cm,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是,因变量是;cm.(2)当底面半径由1cm变化到10cm时,圆柱的体积增加了3三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2021春•济南期末)如图是一位病人的体温记录图,看图回答下列问题:(1)自变量是,因变量是;(2)护士每隔小时给病人量一次体温;(3)这位病人的最高体温是摄氏度,最低体温是摄氏度;(4)他在4月8日12时的体温是摄氏度.20.已知数a 比数b 的平方大1.(1)填写下表:b 3-2-0.5-01335100a(2)请指出问题中的常量和变量,并写出a 与b 之间的关系式.21.科学家认为二氧化碳2()CO 的释放量越来越多是全球变暖的原因之一.下表是1950~1990年全世界所释放的二氧化碳量:年份195019601970198019902CO 释放量/百万吨60029475149891928722588(1)上表反映的是哪两个变量之间的关系?(2)说一说这两个变量之间的关系.22.(2021春•饶平县校级期末)希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.23.(2018春•海原县校级期末)植物呼吸作用受温度影响很大,观察如图,回答问题:(1)此图反映的自变量和因变量分别是什么?(2)温度在什么范围内时豌豆苗的呼吸强度逐渐变强?在什么范围内逐渐减弱?(3)要使豌豆呼吸作用最强,应控制在什么温度左右?要抑制豌豆的呼吸应控制在什么温度左右?24.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系吗?。
翼教版八年级数学下册常量和变量测试题
第二十章函数20.1 常量和变量一、选择题1.半径是R的圆的周长C=2πR,下列说法正确的是 ( )A.C,π,R是变量 B.C是变量,2,π,R是常量C.R是变量,2,π,C是常量 D.C,R是变量,2,π是常量1ah,若h为定值,则式子中的变量为 ( ) 2.在△ABC中,它的底边为a,底边上的高为h,则三角形的面积S=2A.S,a,h B.a,h C.S,a D.以上答案均不对3.市场上出售一种水果,水果的总售价与所售水果数量之间的关系如下表:上表中的变量情况是 ( )A.仅有一个变量,是所售水果数量B.仅有一个变量,是总售价C.有两个变量,一个是所售水果数量,另一个是总售价D.均为常量,无变量二、填空题4.长方形的长和宽分别是a与b,周长C=2(a+b),其中常量是,变量是。
5.正多边形的内角和公式a=(n-2)×180°(a是多边形的内角和,n是正多边形的边数),则其中的变量是,常量是。
1πr2h,当底面半径r一定时,变量为.6.圆锥体积V与圆锥底面半径r、圆锥高h之间存在关系式V=3三、解答题7.某市出租车起步价为5元,2公里以后每公里收费为1.2元,如果出租车行驶里程为x千米(x≥2),乘客所付车费为y元,则怎样用含有行驶里程数x的代数式表示乘客所付车费y?其中常量是什么?变量是什么?D CBA8.如图,射线BD ⊥线段AB ,点C 为射线BD 上一个动点,点C 在射线BD 上运动过程中,哪些量是常量?哪些量是变量?9.如图,△ABC 中,AB =AC =13,BC =10,点P 为线段BC 上一动点,PE ⊥AB 于点E ,PF ⊥AC 于点F ,请说明PE +PFF EP CB A的值是常量.易错专题:求二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一没有限定自变量的取值范围求最值1.函数y=-(x+1)2+5的最大值为________.2.已知二次函数y=3x2-12x+13,则函数值y的最小值是【方法12】( )A.3 B.2 C.1 D.-13.函数y=x(2-3x),当x为何值时,函数有最大值还是最小值?并求出最值.◆类型二限定自变量的取值范围求最值4.在二次函数y=x2-2x-3中,当0≤x≤3时,y的最大值和最小值分别是【方法12】( )A.0,-4 B.0,-3 C.-3,-4 D.0,05.已知0≤x ≤32,则函数y =x 2+x +1( )A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值6.已知二次函数y =-2x 2-4x +1,当-5≤x ≤0时,它的最大值与最小值分别是( )A .1,-29B .3,-29C .3,1D .1,-37.已知0≤x ≤12,那么函数y =-2x 2+8x -6的最大值是________.◆类型三 限定自变量的取值范围求函数值的范围8.从y =2x 2-3的图像上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤19.(贵阳中考)已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <310.二次函数y =x 2-x +m(m 为常数)的图像如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA.y<0 B.0<y<m C.y>m D.y=m11.二次函数y=2x2-6x+1,当0≤x≤5时,y的取值范围是______________.◆类型四已知函数的最值,求自变量的取值范围或待定系数的值12.当二次函数y=x2+4x+9取最小值时,x的值为( )A.-2 B.1 C.2 D.913.已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为( )A.3 B.-1 C.4 D.4或-114.已知y=-x2+(a-3)x+1是关于x的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是( )A.a=9 B.a=5 C.a≤9 D.a≤515.已知a≥4,当1≤x≤3时,函数y=2x2-3ax+4的最小值是-23,则a=________.16.若二次函数y=x2+ax+5的图像关于直线x=-2对称,已知当m≤x≤0时,y有最大值5,最小值1,则m的取值范围是_____________.参考答案与解析 1.5 2.C3.解:∵y =x (2-3x )=-3⎝ ⎛⎭⎪⎫x 2-23x =-3⎝ ⎛⎭⎪⎫x -132+13,∴该抛物线的顶点坐标是⎝ ⎛⎭⎪⎫13,13.∵-3<0,∴该抛物线的开口方向向下,∴当x =13时,该函数有最大值,最大值是13.4.A 5.C6.B 解析:首先看自变量的取值范围-5≤x ≤0是否包含了顶点的横坐标.由于y =-2x 2-4x +1=-2(x +1)2+3,其图像的顶点坐标为(-1,3),所以在-5≤x ≤0范围内,当x =-1时,y 取最大值,最大值为3;当x =-5时,y 取最小值,最小值为y =-2×(-5)2-4×(-5)+1=-29.故选B.7.-2.5 解析:∵y =-2x 2+8x -6=-2(x -2)2+2,∴该抛物线的对称轴是直线x =2,当x <2,y随x 的增大而增大.又∵0≤x ≤12,∴当x =12时,y 取最大值,y 最大=-2×⎝ ⎛⎭⎪⎫12-22+2=-2.5.8.C9.B 解析:当x =2时,y =-4+4+3=3.∵y =-x 2+2x +3=-(x -1)2+4,∴当x >1时,y 随x 的增大而减小,∴当x ≥2时,y 的取值范围是y ≤3.故选B.10.C 解析:当x =a 时,y <0,则a 的范围是x 1<a <x 2,又对称轴是直线x =12,所以a -1<0.当x <12时,y 随x 的增大而减小,当x =0时函数值是m .因此当x =a -1<0时,函数值y 一定大于m . 11.-72≤y ≤21 解析:二次函数y =2x 2-6x +1的图像的对称轴为直线x =32.在0≤x ≤5范围内,当x=32时,y 取最小值,y 最小=-72;当x =5时,y 取最大值,y 最大=21.所以当0≤x ≤5时,y 的取值范围是-72≤y ≤21.12.A13.C 解析:∵二次函数y =ax 2+4x +a -1有最小值2,∴a >0,y 最小值=4ac -b 24a =4a (a -1)-424a=2,整理得a 2-3a -4=0,解得a =-1或4.∵a >0,∴a =4.故选C.14.D 解析:第一种情况:当二次函数的对称轴不在1≤x ≤5内时,∵在1≤x ≤5时,y 在x =1时取得最大值,∴对称轴一定在1≤x ≤5的左边,∴对称轴直线x =a -32<1,即a <5;第二种情况:当对称轴在1≤x ≤5内时,∵-1<0,∴对称轴一定是在顶点处取得最大值,即对称轴为直线x =1,∴a -32=1,即a =5.综上所述,a≤5.故选D.15.5 解析:抛物线的对称轴为直线x=3a4.∵a≥4,∴x=3a4≥3.∵抛物线开口向上,在对称轴的左侧,y随x的增大而减小,∴当1≤x≤3时,函数取最小值-23时,x=3.把x=3代入y=2x2-3ax+4中,得18-9a+4=-23,解得a=5.16.-4≤m≤-2 解析:∵二次函数图像关于直线x=-2对称,∴-a2×1=-2,∴a=4,∴y=x2+4x +5=(x+2)2+1.当y=1时,x=-2;当y=5时,x=0或-4.∵当m≤x≤0时,y有最大值5,最小值1,∴-4≤m≤-2.。
初中数学八年级下常量与变量专项训练题集一
初中数学八年级下常量与变量专项训练题集一一、单选题1、在圆的周长公式C=2πr中,下列说法错误的是A、C,π,r是变量,2是常量B、C,r是变量,2π是常量C、r是自变量,C是r的函数D、将C=2πr写成,则可看作C是自变量,r是C的函数2、一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分(如图),与剩余木板的面积y(m2)与x(m)的关系式为(0≤x<5)[ ]A、y=2xB、y=5xC、y=10﹣2xD、y=10﹣x3、汽车在匀速行驶的过程中,若用s表示路程,v表示速度,t表示时间,那么对于等式s=vt,下列说法正确的是()A、s与v是变量,t是常量B、t与s是变量,v是常量C、t与v是变量,s是常量D、s、v、t三个都是变量4、重百大楼的销售量随商品价格的高低而变化,在这个变化过程中,自变量是()A、销售量B、顾客C、商品D、商品的价格5、下列关于圆的面积S与半径R之间的函数关系式S=πR2,有关常量和变量的说法正确的是()A、S,R2是变量,π是常量B、S,R是变量,2是常量C、S,R是变量,π是常量D、S,R是变量,π和2是常量6、在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是[ ]A、太阳光强弱B、水的温度C、所晒时间D、热水器7、以固定的速度v0(米/秒),向上抛一个小球,小球的高度h(米)与小球运动的时间t(秒)之间的关系式是h=v0t-4.9t2,在这个关系式中,常量、变量分别是( )A、常量4.9,变量t、hB、常量v0,变量t、hC、常量v0、-4.9,变量t、hD、常量4.9,变量v0、t、h8、弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是[ ] A、弹簧的长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量B、如果物体的质量为xkg,那么弹簧的长度ycm可以表示为y=12+0.5xC、在弹簧能承受的范围内,当物体的质量为7kg时,弹簧的长度为16cmD、在没挂物体时,弹簧的长度为12cm9、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是()A、沙漠B、体温C、时间D、骆驼10、在圆的面积计算公式S=∏R2中,变量是()A、SB、RC、∏,RD、S,R11、圆的周长公式C=2πR中,下列说法正确的是()A、π、R是自变量,2是常量B、C是因变量,R是自变量,2π为常量C、R为自变量,2π、C为常量D、C是自变量,R为因变量,2π为常量12、在圆的周长C=2πR中,常量与变量分别是()A、2是常量,B、π、R是变量C、2π是常量,D、R是变量13、人的身高h随时间t的变化而变化,那么下列说法正确的是()A、h,t都是不变量B、t是自变量,h是因变量C、h,t都是自变量D、h是自变量,t是因变量14、已知y与x之间有下列关系:y=x2-1.显然,当x=1时,y=9;当x=2时,y=3.在这个等式中()A、x是变量,y是常量B、x是变量,y是常量C、x是常量,y是变量D、x是变量,y是变量15、在圆的周长公式C=2πr中,下列说法错误的是()A、C,π,r是变量,2是常量B、C,r是变量,2π是常量C、r是自变量,C是r的函数D、将C=2πr写成r=,则可看作C是自变量,r是C的函数16、从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A、物体B、速度C、时间D、空气二、填空题1、一根蜡烛原长a(cm),点燃后燃烧的时间为t(分钟),所剩余的蜡烛的长y(cm),其中是变量的(),常量是()。
七年级数学上册《第五章 生活中的常量与变量》同步练习题及答案(青岛版)
七年级数学上册《第五章生活中的常量与变量》同步练习题及答案(青岛版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是( )A.y,t和100都是变量B.100和y都是常量C.y和t是变量D.100和t都是常量2.在圆的周长C=2πr中,常量与变量分别是( )A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.D.2是常量,C、r是变量3.人的身高h随时间t的变化而变化,那么下列说法正确的是( )A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量D.h是自变量,t是因变量①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断中,正确的有( )A.1个B.2个C.3个D.4个5.下表是某报纸公布的世界人口数情况:年份1957 1974 1987 1999 2010人口数30亿40亿50亿60亿70亿上表中的变量是( )A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm7.某物体一天中的温度是时间t的函数:T(t)=t3-3t+60,时间单位是小时,温度单位为℃,t=0表示12:00,其后t的取值为正,则上午8时的温度为( )A.8℃B.112℃C.58℃D.18℃8.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a 是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断中,正确的有( )A.1个B.2个C.3个D.4个二、填空题9.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,填写下表.份数/份 1 2 3 4 …价钱/元…在这个问题中, 是常量;是变量.10.圆柱的高是6cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也随之发生变化.在这个变化过程中,自变量是_____,因变量是_____.11.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=0.12.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是________,因变量是________,当t=________时,V=0.13.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.气温x/℃0 5 10 15 20声速y/(m/s) 331 334 337 340 343上表中是自变量, 是因变量.照此规律可以发现,当气温x为℃时,声速y达到346 m/s.14.如图,一个四棱柱的底面是一个边长为10 cm的正方形.当它的高变化时,体积也随着变化.(1)若高为h(cm),体积v(cm3),则v与h之间的关系式为 .(2)变量是;常量是 .三、解答题15.已知高度每增加1000米,气温下降6℃,如果某地面气温为22℃(1)分别计算出该地1000米、2000米高空的气温.(2)若h米高空的气温为T,试写出T与h的关系,并指出关系式中的常量和变量.16.一种树苗的高度用h表示,树苗生长的年数用a表示,测得有关数据如下表:(树苗原高100 cm)年数a 高度h/cm1 100+52 100+103 100+154 100+20……(1)试用年数a的代数式表示h;(2)此树苗需多少年就可长到200 cm高?17.一种手机卡的缴费方式为:每月必须缴纳月租费20元,另外每通话1 min要缴费0.2元.(1)如果每月通话时间为x(min),每月缴费y(元),请用含x的代数式表示y.(2)在这个问题中,哪些是常量?哪些是变量?(3)当一个月通话时间为200 min时,应缴费多少元?(4)当某月缴费56元时,此人该月通话时间为多少分钟?18.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.19.在烧水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”试验时记录的数据: 时间/min 0 2 4 6 8 10 12 14 …温度/℃30 44 58 72 86 100 100 100 …(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8 min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?20.父亲告诉小明:“距离地面越高,气温越低.”并给小明出示了下面的表格:距离地面高度/km 0 1 2 3 4 5气温/℃20 14 8 2 -4 -10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6 km的高空气温是多少吗?答案1.C2.B3.B4.B5.C6.B7.A8.B9.答案为:0.4;0.8;1.2;1.6;0.4;x,y10.答案为:自变量是:r,因变量是:V.11.答案为:t,V,15.12.答案为:t,V,15.13.答案为:气温;声速;25.14.答案为:v=100h;四棱柱的高、体积,四棱柱的底面边长.15.解:∵离地面距离每升高1 km,气温下降6℃∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T=22﹣6h;(1)把h=1km代入T=22﹣6h=16把h=2km代入T=22﹣6h=22﹣12=10答:该地1000米、2000米高空的气温分别为16℃、10℃;(2)T=22﹣6h,其中22,6是常量,T,h是变量.16.解:(1)由表可知h=100+5a.(2)当h=200 cm时,有200=100+5a,解得a=20.答:此树苗需20年就可长到200 cm高.17.解:(1)每月缴费y(元)与通话时间x(min)的关系式为y=15x+20.(2)在这个问题中,月租费20元和每分钟通话费15元是常量,每月通话时间x(min)与每月缴费y(元)是变量.(3)当x=200时,y=15×200+20=60(元).因此当一个月通话时间为200 min时,应缴费60元.(4)当y=56时,15x+20=56,解得x=180.因此当某月缴费为56元时,此人该月通话时间为180 min.18.解:(1)x,t;y;(2)19.5.19.解:(1)上表反映了水的温度与时间的关系,时间是自变量,水的温度是因变量.(2)水的温度随着时间的增加而增加,到100 ℃时恒定.(3)时间每推移2 min,水的温度增加14 ℃,到10 min时恒定.(4)时间为8 min时,水的温度是86 ℃,时间为9 min时,水的温度是93 ℃.(5)根据表格,时间为16 min和18 min时水的温度均为100 ℃.(6)为了节约能源,应在第10 min后停止烧水.20.解:(1)反映了距离地面高度与气温之间的关系.距离地面高度是自变量,气温是因变量.(2)随着h的升高,t逐渐降低.(3)观察表格,可得距离地面高度每上升1 km,气温下降6 ℃.当距离地面5 km时,气温为-10 ℃,故当距离地面6 km时,气温为-16 ℃.。
常量和变量的题目
常温和变温的题目
一、以下哪个是常量的例子?
A. 今天的日期
B. 明天的天气
C. 圆周率π的值
D. 用户输入的年龄
(答案)C
二、在编程中,变量通常用于存储什么?
A. 固定不变的数据
B. 临时或可变的数据
C. 程序的指令
D. 程序的注释
(答案)B
三、下列哪个选项描述的是变量?
A. 地球的自转周期
B. 水的沸点温度
C. 用户在网站上输入的密码
D. 光速在真空中的速度
(答案)C
四、在物理公式中,哪些符号通常代表常量?
A. v(速度)
B. m(质量)
C. G(万有引力常数)
D. t(时间)
(答案)C
五、下列哪个不是变量在程序中的常见用途?
A. 存储计算结果
B. 记录用户输入
C. 控制循环次数
D. 定义程序的语言
(答案)D
六、在化学实验中,哪个量可以被视为常量?
A. 反应物的初始质量
B. 实验室的室温
C. 反应过程中产生的气体体积
D. 加入催化剂的量(假设催化剂不消耗)
(答案)D
七、下列哪个是程序设计中,变量命名的不推荐做法?
A. 使用有意义的名称
B. 使用简短的名称以提高编码速度
C. 避免使用保留字作为变量名
D. 遵循一致的命名规范
(答案)B
八、在经济学中,哪个变量通常随着市场条件的变化而变化?
A. 货币的面值
B. 国家的GDP增长率
C. 物理学中的光速
D. 公司的注册资本
(答案)B。
常量与变量练习题
1.圆周长公式C=2πR 中,下列说法正确的是( )(A)π、R 是变量,2为常量 (B)C 、R 为变量,2、π为常量(C)R 为变量,2、π、C 为常量 (D)C 为变量,2、π、R 为常量2、一辆汽车以40千米/小时的速度行驶,写出行驶路程s(千米)与行驶时间t(时)的关系式。
关系式为____________( 是自变量, 是因变量);一辆汽车行驶5小时,写出行驶路程s(千米)与行驶速度v(千米/小时)之间的关系式。
关系式为 ____________( 是自变量, 是因变量)3、写出下列函数关系式,并指出关系式中的自变量与因变量:⑴ 每个同学购一本代数教科书,书的单价是2元,总金额Y (元)与学生数n (个)的函数关系式;关系式为 ( 是自变量, 是因变量)⑵ 计划购买50元的乒乓球,所能购买的总数n (个)与单价a (元)的函数关系式.关系式为( 是自变量, 是因变量)(3)、用长20m 的篱笆围成一个矩形,则矩形的面积S 与它一边的长x 的关系是什么?关系式为( 是自变量, 是因变量)4、用长20m 的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成,⑴ 写出矩形面积S (m 2)与平行于墙的一边长x (m )的关系式;关系式为________( 是自变量, 是因变量)⑵ 写出矩形面积S (m 2)与垂直于墙的一边长x (m )的关系式.关系式为 ____________( 是自变量, 是因变量)5:指出下列变化关系中,哪些x 是y 的函数,哪些不是,说出你的理由。
(A ) y =x +1 (B )y =2x 2+3x -2 xy=2 ②x+y=5 ③|y|=3x+16:写出下列函数关系式:并指出其中的常量与变量。
(1)底边长为10的三角形的面积y 与高x 之间的关系式;(2)某种弹簧原长20厘米,每挂重物1千克,伸长0.2厘米,挂上重物后的长度y(厘米)与所挂上的重物x(千克)之间的关系式;(3)某种饮水机盛满20升水,打开阀门每分钟可流出0.2升水,饮水机中剩余水量y(升)与放水时间x(分)之间的关系式。
第01讲常量与变量(3类题型)(原卷版)
课程标准学习目标知识点01:变量与常量的含义要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t ,速度60千米/时是常量,时间t 和里程s 为变量.【即学即练1】1、(2023秋•浙江萧山校级月考)球的体积是V ,球的半径为R ,则V =πR 3,其中变量和常量分别是( )A .变量是V ,R ;常量是,πB .变量是R ,π;常量是C.变量是V,R,π;常量是D.变量是V,R3;常量是π题型01 用表格表示变量间的关系A.金额B.单价C.数量D.金额和数量根据以上信息,可以得到y与x之间的关系式为.4.(2023春·河南周口·七年级校考阶段练习)用一根长26cm的铁丝首尾相连围成一个长方形,长方形的长A.B.C.D.2.(2023秋·陕西榆林·八年级校考开学考试)骑自行车是一种健康自然的运动旅游方式,长期坚持骑自行车可增强心血管功能,提高人体新陈代谢和免疫力.如图是骑行爱好者老刘某天骑自行车行驶路程(km)与时间(h)的关系图象,观察图象得到下列信息,其中错误..的是()A.点P表示老刘出发5h,他一共骑行80km B.老刘实际骑行时间为5hC.0~2h老刘的骑行速度为15km/h D.老刘的骑行在0~2h的速度比3~5h的速度慢3.(2023春·辽宁锦州·七年级统考期中)如图是小乐从学校到家里行进的路程s(米)与时间t(分)之间关系的图象.观察图象,从中得到如下信息:①学校离小乐家1000米;②小乐用了20分钟到家;③小乐前10分钟走了路程的一半;④小乐后10分钟比前10分钟走得快,其中正确的有(填序号).4.(2024春·六年级课时练习)一港口受潮汐的影响,某天24小时港内的水深大致如图,港口规定:为了保证航行安全,只有当船底与水底间的距离不少于4米时,才能进出该港.一艘吃水深度(即船底与水面的距离)为2米的轮船进出该港的时间最多为(单位:时)小时.5.(2023春·甘肃张掖·七年级校考期末)如图中的折线ABC是甲地向乙地打长途所需要付的费y(元)与通话时间t(分钟)之间的关系的图像.(1)通话1分钟,要付 费多少元?通话5分钟要付多少 费?(2)如果通话3分钟以上, 费y (元)与时间t (分钟)的关系式是()2.53y t =+-,那么通话4分钟的 费是多少元?A 夯实基础1.(2023春·云南·七年级统考期中)在圆面积公式2πS r =中,常量与变量分别是( )A .常量是π,变量是S ,rB .常量是2,变量是S ,π,rC .常量是S ,变量是π,rD .常量是r ,变量是S ,π2.(2023秋·广东广州·九年级广州大学附属中学校考开学考试)下列各图象中,y 不是x 的函数的是( )A .B .C .D .3.(2023春·陕西榆林·七年级校考期中)一个长方体的底面是边长为8cm 的正方形,当高为()cm h 时,体积为()3cm v ,则v 与h 的关系式是 . 4.(2023春·贵州毕节·七年级校联考期中)宋代词人蒋捷曾在《一剪梅·舟过吴江》中提到:“流光容易把人抛.红了樱桃,绿了芭蕉”.昭通鲁甸樱桃上市后,每千克樱桃16元,则购买樱桃的费用y (元)与樱桃重A .31y n =+B .31y n =-C .21y n =+D .21y n =-根据以上信息,可以得到y与x之间的关系式为.5(2023秋·浙江宁波·七年级统考开学考试)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同(1)甲、乙两地之间的距离是___________千米.(1)在这个关系式中,因变量、常量分别是什么?5.(2023春·陕西榆林·七年级校考期中)按如图所示的方式摆放餐桌和椅子,1张餐桌摆6把椅子,2张餐桌摆10把椅子,3张餐桌摆14把椅子…,其中餐桌的数量用x(张)表示,椅子的数量用y(把)表示,椅子的数量随着餐桌数量的变化而变化.(1)题中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请写出椅子的数量y(把)和餐桌的数量x(张)之间的关系式;(3)按如图所示的方式摆放餐桌和椅子,能否刚好坐80人?请说明理由.6.(2023春·四川达州·七年级校考期中)如图,已知自行车与摩托车从甲地开往乙地,OA与BC分别表示它们与甲地距离,(千米)与时间t(小时)的关系,则:(1)摩托车每小时走________千米,自行车每小时走_________千米;(2)摩托车出发后多少小时,它们相遇?(3)摩托车出发后多少小时,他们相距20千米?。
常量和变量试题
常量和变量试题一、填空题1、在Visual Basic表达式中,对于没有赋值的数值型变量,系统将其当做_______进行计算。
2、在Visaul Basic中对于没有赋值的字符型变量,系统将其当做_______进行计算。
3、在Visaul Basic中对于没有赋值的布尔型变量,系统将其当做______进行计算。
4、在Visaul Basic中对于没有赋值的日期型变量,系统将其当做______进行计算。
5、如果在声明变量时没有说明变量的数据类型,则该变量将被默认为是______类型。
6、在过程内用______声明的变量为静态变量,在执行一个过程结束时,过程中所用到的Static变量的值会保留,下次再调用此过程时,变量的初值是上次调用结束时被保留的值7、______类型也称变体类型,是一种通用的、可变的数据类型,它可表示或存储任何一种数据类型。
8、在模块文件中的声明部分用______或______定义的变量为模块级变量。
9、局部变量的声明部分用______或______定义的变量为过程级变量。
10、用Dim a ,b as string 定义的b 变量类型是___。
11、执行下面的程序段后,变量S的值为_______。
S=5For i =2.6 To 4.9 Step 0.6S=S十1Next i12、在Visual BASIC程序中定义全局变量ab的语句是_______。
13、声明符号常量需使用__________语句。
14、使用__________语句,可声明长度为15字节的字符串变量Str1。
15、在变量名后面加上类型符号可标识变量类型。
单精度型的类型符号是__________。
16、自定义数据类型须在模块的__________中进行声明。
17、执行以下程序段后,其中d的值是________ ,而g的值是___________ 。
a$=“1”:b$=“2”c=Val(a$)+Val(b$)d=Val(a$+b$)g=c+d二、选择题1.下面的变量名合法的是 ( )A)k_name B)k ame C)name D)k-name2.设有如下变量声明Dim time1 As Date,为变量time1正确赋值的表达式是 ( )A)time1 = #11:34:04 #B)time1 = Format(Time,"yy:mm:dd")C)time1 = #"11:34:04"#D)time1 = Format("hh:mm:ss",Time)3.下列可以作为Visual BASIC变量名的是 ( )A、-degreeB、5*xC、endD、flag14. 关于货币型数据的说明,正确的是 ( )A) 货币型数据有时可以表示成整型数据B) 货币型数据与浮点型数据完全一样C) 货币型数据是由数字和小数点组成的字符串D) 货币型数据是小数点位置固定的实型数5. 如果一个变量未经定义就直接使用,则该变量的类型为 ( )A) IntegerB) ByteC) BooleanD) Variant6.根据变量的作用域,可以将变量分为3类,分别为 ( )A) 局部变量、模块变量和全局变量B) 局部变量、模块变量和标准变量C) 局部变量、模块变量和窗体变量D) 局部变量、标准变量和全局变量7.下面的数组声明语句中正确的是 ( )A) Dim gg[1,5] As StringB) Dim gg[1 To 5,1 To 5] As StringC) Dim gg(1 To 5) As StringD) Dim gg[1 :5,1: 5] As String8.以下声明语句中错误的是A)Const var1=123 B)Dim var2 = ABCC)DefInt a-z D)Static var3 As Integer9.下列符号中哪个是VB程序中合法的变量名()A、ab7B、7abC、IfD、a*bc10.如果Bln1是逻辑变量,下面赋值语句中正确的是___。
(完整版)常量与变量试题与答案.docx
(完整版)常量与变量试题与答案.docx一、选择题(共14 小题)1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是()A、沙漠B、体温C、时间D、骆驼2、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A、明明B、电话费C、时间D、爷爷3、从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A、物体B、速度C、时间D、空气4、对于圆的周长公式C=2πR,下列说法正确的是()A、π、R 是变量, 2 是常量B、 R是变量,π是常量C、 C 是变量,π、 R 是常量D、 R 是变量, 2、π是常量5、在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A、太阳光强弱B、水的温度C、所晒时间D、热水器6、重百大楼的销售量随商品价格的高低而变化,在这个变化过程中,自变量是()A、销售量B、顾客C、商品D、商品的价格7、在△ ABC 中,它的底边是a,底边上的高是h,则三角形面积S= ah,当 a 为定长时,在此式中()A、 S, h 是变量,,a是常量B、 S, h, a 是变量,是常量C、 S,h 是变量,, S 是常量D、 S 是变量,,a, h 是常量8、人的身高 h 随时间 t的变化而变化,那么下列说法正确的是()A、 h, t 都是不变量B、 t 是自变量, h 是因变量C、 h ,t 都是自变量2D、 h 是自变量, t 是因变量9、在圆的面积计算公式中,变量是()S=πRA、 SB、 RC、π, RD、 S, R10、某人要在规定的时间内加工100个零件,则工作效率η与时间 t 之间的关系中,下列说法正确的是()A、数 100 和η,t 都是变量B、数 100 和η都是常量C、η和 t 是变量D、数 100 和 t 都是常量11、小明给在北京的姑姑打电话,电话费随时间的变化而变化,在这个问题中,因变量是()A、时间B、电话费C、电话D、距离12、在圆的周长公式C=2πr中,下列说法错误的是()A、 C,π, r 是变量, 2 是常量B、 C, r 是变量,2π是常量C 、 r 是自变量, C 是 r 的函数D 、将C=2πr 写成 r= ,则可看作 C 是自变量, r 是 C 的函数13、某超市某种商品的单价为70 元 / 件,若买 x 件该商品的总价为y 元,则其中的常量是()A 、 70B 、 xC 、 yD 、不确定14 、设半径为 r 的圆的面积为2,下列说法错误的是()S ,则S=πrA 、变量是 S 和 r ,B 、常量是π和 2C 、用 S 表示 r 为 r=D 、常量是π二、填空题(共 15 小题)15 、( 1999?杭州)圆的半径为 r ,圆的面积 S 与半径 r 之间有如下关系: 2.在这关系中,常量是 _________ .S=πr16 、在圆的周长公式C=2πr 中,变量是_________, _________ ,常量是 _________ . 2中,常量是 _________ .17、在圆的面积公式S=πR18 、在公式 s=v 0t+2t 2( v_________ ,变量是_________ .0 为已知数)中,常量是19 、在匀速运动公式 s=vt 中, v 表示速度, t 表示时间, s 表示在时间 t 内所走的路程,则变量是 _________,常量是_________ .20 、某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中 _________是自变量, _________是因变量.21 、在公式 s=50t 中常量是 _________ ,变量是 _________ .22 、在 y=ax 2+h ( a 、 h 是常量)中,因变量是_________ .23 、多边形内角和α与边数之间的关系是α=( n ﹣2)× 180゜,这个关系式中的变量是 _________ ,常量(不变的量)是_________ .24 、在匀速运动公式 S=3t 中, 3 表示速度, t 表示时间, S 表示在时间 t 内所走的路程,则变量是 _________,常量是 _________ .25 、在关系式 V=30﹣ 2t 中, V 随着 t 的变化而变化,其中自变量是 _________ ,因变量是_________ ,当 t=_________ 时, V=0.26 、直角三角形两锐角的度数分别为 x ,y ,其关系式为 y=90﹣ x ,其中变量为_________ ,常量为_________.27、圆柱的高是 6cm ,当圆柱的底面半径 r 由小到大变化时,圆柱的体积 V 也随之发生变化.在这个变化过程中,自变量是_________ ,因变量是_________ .28 、一般地,在一个变化过程中,如果有两个变量 x 与 y ,并且对于 x 的每一个确定的值, y 都有唯一确定的值与其对应,那么就是说 x 是 _________ , y 是 x 的 _________ .29 、圆的面积 S 与半径2,其中自变量是 _________ .R 之间的关系式是S=πR答案与评分标准一、选择题(共14 小题)1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是()A、沙漠B、体温C、时间D、骆驼考点:常量与变量。
(完整版)常量与变量试题与答案
一、选择题(共14小题)1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是()A、沙漠B、体温C、时间D、骆驼2、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A、明明B、电话费C、时间D、爷爷3、从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A、物体B、速度C、时间D、空气4、对于圆的周长公式C=2πR,下列说法正确的是()A、π、R是变量,2是常量B、R是变量,π是常量C、C是变量,π、R是常量D、R是变量,2、π是常量5、在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A、太阳光强弱B、水的温度C、所晒时间D、热水器6、重百大楼的销售量随商品价格的高低而变化,在这个变化过程中,自变量是()A、销售量B、顾客C、商品D、商品的价格7、在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中()A、S,h是变量,,a是常量B、S,h,a是变量,是常量C、S,h是变量,,S是常量D、S是变量,,a,h是常量8、人的身高h随时间t的变化而变化,那么下列说法正确的是()A、h,t都是不变量B、t是自变量,h是因变量C、h,t都是自变量D、h是自变量,t是因变量9、在圆的面积计算公式S=πR2中,变量是()A、SB、RC、π,RD、S,R10、某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A、数100和η,t都是变量B、数100和η都是常量C、η和t是变量D、数100和t都是常量11、小明给在北京的姑姑打电话,电话费随时间的变化而变化,在这个问题中,因变量是()A、时间B、电话费C、电话D、距离12、在圆的周长公式C=2πr中,下列说法错误的是()A、C,π,r是变量,2是常量B、C,r是变量,2π是常量C、r是自变量,C是r的函数D、将C=2πr写成r=,则可看作C是自变量,r是C的函数13、某超市某种商品的单价为70元/件,若买x件该商品的总价为y元,则其中的常量是()A、70B、xC、yD、不确定14、设半径为r的圆的面积为S,则S=πr2,下列说法错误的是()A、变量是S和r,B、常量是π和2C、用S表示r为r=D、常量是π二、填空题(共15小题)15、(1999•杭州)圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是_________.16、在圆的周长公式C=2πr中,变量是_________,_________,常量是_________.17、在圆的面积公式S=πR2中,常量是_________.18、在公式s=v0t+2t2(v0为已知数)中,常量是_________,变量是_________.19、在匀速运动公式s=vt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是_________,常量是_________.20、某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中_________是自变量,_________是因变量.21、在公式s=50t中常量是_________,变量是_________.22、在y=ax2+h(a、h是常量)中,因变量是_________.23、多边形内角和α与边数之间的关系是α=(n﹣2)×180゜,这个关系式中的变量是_________,常量(不变的量)是_________.24、在匀速运动公式S=3t中,3表示速度,t表示时间,S表示在时间t内所走的路程,则变量是_________,常量是_________.25、在关系式V=30﹣2t中,V随着t的变化而变化,其中自变量是_________,因变量是_________,当t= _________时,V=0.26、直角三角形两锐角的度数分别为x,y,其关系式为y=90﹣x,其中变量为_________,常量为_________.27、圆柱的高是6cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也随之发生变化.在这个变化过程中,自变量是_________,因变量是_________.28、一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就是说x是_________,y是x的_________.29、圆的面积S与半径R之间的关系式是S=πR2,其中自变量是_________.答案与评分标准一、选择题(共14小题)1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是()A、沙漠B、体温C、时间D、骆驼考点:常量与变量。
初二数学常量与变量试题
初二数学常量与变量试题1.圆的面积S与半径R的关系是______,其中常量是______,变量是_______.【答案】S=R2,,S和R【解析】先根据圆的面积列出函数关系式,再根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.圆的面积S与半径R的关系是S=R2,其中常量是,变量是S和R.【考点】本题主要考查了函数的定义点评:函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2.半径是R的圆周长C=2R,下列说法正确的是()A.C,,R是变量,2是常量B.C是变量,2,,R是常量C.R是变量,2,,C是常量D.C,R是变量,2,是常量【答案】D【解析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.∵在圆的周长公式C=2πR中,C与R是改变的,2,π是不变的,∴变量是C,R,常量是2,π,故选D.【考点】本题主要考查了函数的定义点评:函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.3.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量,上述判断正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此依次分析各小题即可.由题意,当a是常量时,y也是变量;当a是变量时,y也是变量,则①④判断正确,故选B.【考点】本题主要考查了函数的定义点评:函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.等腰三角形的顶角为y,底角为x.(1)用含x的式子表示y;(2)指出(1)中式子里的常量与变量.【答案】(1)y=180°-2x;(2)常量180,-2;变量x,y【解析】根据等腰三角形的两个底角相等以及三角形的内角和为180°,即可得到用含x的式子表示y的关系式,再根据函数的意义可知:变量是改变的量,常量是不变的量,从而得到式子里的常量与变量.由题意得:(1)用含x的式子表示y;y=180°-2x;(2)在y=180°-2x中,x,y是改变的,180,-2是不变的,则变量是x,y,常量是180,-2。
(完整版)常量与变量练习题
1 •圆周长公式C=2n R中,下列说法正确的是()(A)n、R是变量,2为常量(B)C 、R为变量,2、n为常量(C)R为变量,2、n、C为常量(D)C为变量,2、n、R为常量2、一辆汽车以40千米/小时的速度行驶,写出行驶路程s(千米)与行驶时间t(时)的关系式。
关系式为_______________________ (____ 是自变量,______ 是因变量);一辆汽车行驶5小时,写出行驶路程s (千米)与行驶速度v(千米/小时)之间的关系式。
关系式为_________________ ___________________ _____ ( ____ 是自变量,______ 是因变量)3、写出下列函数关系式,并指出关系式中的自变量与因变量:⑴每个同学购一本代数教科书,书的单价是2元,总金额Y (元)与学生数n (个)的函数关系式;关系式为________________ (______ 是自变量,________ 是因变量⑵ 计划购买50元的乒乓球,所能购买的总数n (个)与单价 a (元)的函数关系式•关系式为( ___ 是自变量,______ 是因变量)(3)、用长20m的篱笆围成一个矩形,则矩形的面积S与它一边的长x的关系是什么?关系式为(___ 是自变量,______ 是因变量)4、用长的篱笆围成矩形莎矩形一边靠墙,另三边用篱笆围成,⑴ 写出矩形面积S (m )与平行于墙的一边长x (m)的关系式;关系式为(是自变量,是因变量)⑵ 写出矩形面积s( m)与垂直于墙的一边长x (m的关系式•关系式为 ___________________ ________________________ (______ 是自变量, ______ 是因变量)5:指出下列变化关系中,哪些x是y的函数,哪些不是,说出你的理由。
(A )y = x + 1 ( B )y= 2x2+ 3x —2 xy=2 ②x+y=5 ③ |y|=3x+16:写出下列函数关系式:并指出其中的常量与变量。
常量与变量测试卷
常量与变量测试卷1、一边固定为acm 的三角形面积S(cm 2)与固定边上的高h (cm )之间的关系是S= 21ah , 变量是 常量是 。
2、用总长为80m 的篱笆围成一个矩形场地,若矩形的面积和一边的长分别用y 与x 来表示,那么它们之间的关系式为y=x(40-x),在这个式子中,常量是 ,变量是 .3、某同学在做电学实验时,记录下电压(伏特)与电流(安培)有如下对应关系:A 10.5B 6C 80D 184、三角形的一条边长为a ,这条边上的高为h ,h 为常量,已知当a=6时,三角形面积S=12,则当a=4时,S 的值为( )A 4B 6C 8D 105、扇形的面积公式:S=n πr 2/360,其中r 表示扇形的半径,n 表示扇形圆心角的度数,S 表示扇形的面积。
(1)求半径为3,不同圆心角度数的扇形面积过程中,哪些是变量,哪些是常量。
(2)半径为3,n 分别取45,225,240,216时,求出相应的S 的值。
10、如图,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化。
(1) 指出问题中的变量与常量; (2) 当高为7cm 时,棱柱的体积;(3) 棱柱的高由1cm 变化到50cm 时,它的体积由 变化成 。
§7.2 认识函数(1)1、无线市话小灵通的通话收费标准为:前3分钟(不足3分钟按3分钟计)为0.2元,3分钟后每分钟收0.1元,则一次通话时间x 分钟(x>3)与这次通话的费用y (元)之间的关系式为 。
2、把方程xy=3x-5y 改成用x 的代数式表示y 的函数形式为 ,当x=5时,y 的值为 。
3、某中学要在校园内划出一块面积是100cm 2的矩形土地做花圃,设这个矩形的相邻两边的长分别为xm 和ym ,那么y 关于x 的函数关系式可表示为( ). A y=100x B y= 100 – x C y=50 – x D4、一个正方形的周长p (cm )与这个正方形的面积S (cm 2)之间的关系为( )。
常量与变量练习题
课堂练习题
姓名:评价:
1.每份报纸的单价为2元,则总金额y(元)与购买的份数x(份)的关系式可以表示为,其中的变量是,常量是。
2.小王给远在广州的爷爷打电话,电话费随着时间的变化而变化,在这个问题中,变量是()
A 小王,爷爷
B 电话费,时间
C 时间
D 爷爷
3.如图正方形的周长c与边长为x的关系式为变量是:
常量是:
4.在圆的周长公式C= 2 πR 中,下列说法正确的是( )。
(A)C、π、R 是变量,2 是常量
(B)R 是变量,C、2π是常量
(C) C 是变量,2 πR 是常量
(D)C、R 是变量,2π是常量
5.矩形的长为6cm,它的面积(s)与宽(x)的关系式为常量为,变量为。
6.学校组织学生去博物馆参观,门票为20元/人,若前往的学生为x人,学生需要付门票金额为y元,则y与x的关系式为,常量为变量为。
7.小明购买光盘,每张光盘10元,写出金额(y)元与购买的张数(x)的关系式,并指出其中的常量与变量。
8.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中的常量与变量。
19.1.1.1常量与变量+同步练习2023-2024学年人教版数学八年级下册
第十九章 一次函数19.1 函数 第1课时 常量与变量1.把20本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入a 本,第二个抽屉放入b 本,则下列判断错误的是( ) A.20是变量 B.a 是变量 C.b 是变量 D.20是常量2.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的变量是( )A.金额B.数量C.单价D.金额和数量3.某超市进一批苹果,某日按照早、中、晚三个时间段销售,销售情况如下表,在该变化过程中,常量是( ) 时间段 销售量 收入 早 100500 中 150 750 晚80400A.销售量B.收入C.单价以上都是4.[2023廊坊安次区期末]某工厂有一个容积为280立方米的水池,现用3台抽水机从蓄满水的池中同时抽水,已知每台抽水机每小时抽水15立方米.水池中的水量随抽水时间的变化而变化.(1)在这一变化过程中哪些是常量?哪些是变量? (2)抽水两小时后,池中还有水 立方米.5.填空:(1)某人以a米/分的速度经t分时间跑了s米,则s与t的关系式为,其中常量是,变量是.(2)在t分内,不同的人以不同的速度a米/分跑了s米,其中常量是,变量是.(3)s米的路程不同的人以不同的速度a米/分各需跑的时间为t分,其中常量是,变量是.(4)根据以上三句叙述,写出一句关于常量与变量的结论:.6.[2023山西改编]如图,一种弹簧秤能称不超过10 kg的物体,不挂物体时弹簧的长为12 cm,所挂物体每增加1 kg,弹簧伸长0.5 cm,在弹性限度内,挂物体后弹簧的长度为y (cm),所挂物体的质量为x(kg),则变量x,y之间的关系式为()A.y=12-0.5xB.y=12+0.5xC.y=10+0.5xD.y=0.5x7.果子成熟后从树上落到地面,它下落的高度与经过的时间有如下的关系:时间/秒0.5 0.6 0.7 0.8 0.9 1下落的高度/米5×0.25 5×0.36 5×0.49 5×0.64 5×0.81 5× 18.[2023长春朝阳区期末]某科技小组在网上获取了声音在空气中传播的速度与空气的温度之间的关系的一些数据如表所示.下列说法:①空气的温度越高声音传播的速度越快;②声速y与温度x之间的关系式可以是y=-0.6x+330;③温度每升高10 ℃,声速增加6 m/s,正确的有.温度x/℃-20 -10 0 10 20 30声速y/(m/s)318 324 330 336 342 348 (1)写出变量y与x之间的关系式.(2)求x,y的取值范围.10. [2023西安碑林区期末]某中学数学兴趣小组准备围建一个长方形苗圃园ABCD,其中一边靠墙,另外三边是由长度为40 m的篱笆围成的.如图,已知墙EF长为25 m,设这个苗圃园垂直于墙的一边AB长为x(7.5 m<x<20 m),BC的长度为l,苗圃园的面积为S.(1)BC的长度l与AB的长度x的关系式为.(2)当x=8 m时,BC的长度l=m,苗圃园的面积S=m2.11. [2023南昌东湖区期末]泰和工农兵大道安装的护栏平面示意图如图所示,假如每根立柱宽为0.2米,立柱间距为3米.(1)将表格补充完整.立柱根数/根 1 2 3 4 5 …护栏总长度/米0.2 3.4 9.8 …(2(3)设有x根立柱,护栏总长度为y米,则y与x之间的关系式是什么?(4)求护栏总长度为61米时立柱的根数.12.用大小相同的黑白两种颜色的菱形纸片按照黑色纸片个数逐渐增加1的规律拼成如图所示的图案,已知“”的长对角线长为√3.(1)第4个图案中白色纸片的个数是,图案的总长度为.(2)如果第n个图案中有y个白色纸片,写出y与n的关系式,并写出第n个图案的总长度l.(3)当总长度为17√3时,求出此时图案中分别有多少个白色纸片和黑色纸片.13.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系吗?14.用同样大小的黑色棋子按如图所示的规律摆放.(1)指出这个变化过程中的变量.(2)设第n(n为正整数)个图形中,黑色棋子的枚数为W,请你写出W与n之间的关系式.(3)第5个图形中有多少枚黑色棋子?(4)是否存在恰好有2 023枚黑色棋子的图形?为什么?参考答案1.A2.D3.C4.解:(1)在这一变化过程中,水池的容积、抽水机的台数、每台抽水机每小时抽水的体积是常量;抽水时间、水池中的水量是变量.(2)1905.(1)s=at;速度a;时间t和路程s(2)时间t;速度a和路程s(3)路程s;速度a和时间t(4)常量和变量在一个过程中相对存在(合理即可)6.B7.208.①③9.解:(1)由题意可得2x+y=10,所以y=10-2x.(2)由x,y均为线段的长,可得x>0,y>0,即10-2x>0.再由三角形三边关系,得2x>y,即2x>10-2x,所以自变量x应满足{x>0,10-2x>0,2x>10-2x,解这个不等式组,得52<x<5.所以0<10-2x<5,即0<y<5.所以x的取值范围为52<x<5,y的取值范围为0<y<5.10.(1)l=40-2x(2)24;19211.解:(1)6.6;13(2)在这个变化过程中,常量是每根立柱的宽度和立柱间距,变量是立柱根数和护栏总长度. (3)由题意得y与x之间的关系式为y=(0.2+3)x-3=3.2x-3.(4)由(3)得当y=61时,3.2x-3=61,解得x=20.答:护栏总长度为61米时立柱的根数为20.12.解:(1)13;9√3(2)如果第n个图案中有y个白色纸片,那么y与n的关系式为y=1+3n,第n个图案的总长度l=√3+2√3n.(3)由(2)得当总长度为17√3时,17√3=√3+2√3n,解得n=8,∴此时白色纸片有1+3×8=25(个),黑色纸片有8个.13.解:(1)观察图形:x=1时,y=6;x=2时,y=10;x=3时,y=14;...可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x-1)=(4x+2)个座位.故可坐人数y=4x+2,∴题中有2个变量.(2)能,两个变量之间的关系为y=4x+2.14.(1)【解】变量是图形的序号与黑色棋子的枚数.(2)【解】W与n之间的关系式为W=3n+3(n为正整数).(3)【解】当n=5时,W=3n+3=3×5+3=18,∴第5个图形中有18枚黑色棋子..(4)【解】不存在.理由:设第m个图形有2 023枚黑色棋子,则3m+3=2 023,解得m=67313不合题意.∵m为正整数,∴m=67313∴不存在恰好有2 023枚黑色棋子的图形.。
(完整版)计算机二级c常量与变量习题
常量和变量
1、以下选项中可作为C语言合法常量的是
A)-80. B)-080 C)-8e1.0 D)-80.0e
2、以下选项中可作为C语言合法整数的是
A) -034 B) 0386 C) 0Xffa D) x2a2
3、以下选项中可作为C语言合法常量的是
A) e5 B) -3.0e5 C) 5e0.5 D) oxaa
4、以下选项中可作为C语言合法常量的是
A) -0xa B) -037 C) ox3a D) .123
5、下列变量定义中合法的是
A) short _a=1.le-1; B) double b=1+5e2.5;
C) long double=0xfdaL; D) float 2_and=1-e-3;
6、下列变量定义中不合法的是
A) int a=b=1; B) int a=5.8;
C) double x=5; D) char c=100;
知识点
整型:八进制数由数字0开头,后跟数字0~7表示,不能出现8和9。
十六进制整数:由0x开头,后跟0~9,a~f (A~F)表示.
八进制和十六进制数只能是正整数!不能表示负数和小数。
实型:小数形式:(必须有小数点)如 .123 , 123. 也是正确的
指数形式: e前e后必须有数字,且e后 (指数) 必须为整数
字符型:用ASCII码存放,可以和整形相互赋值及混合运算。
变量:在定义的时候不能连续赋值,多个变量必须用逗号隔开。
定义完以后可以连续赋值。
答案
1--5、ACBDA 6、A。
人教版八年级下册知识点试题精选-一次函数之常量与变量
一次函数之常量与变量一.选择题(共20小题)1.对于圆的周长公式C=2πR,下列说法中,正确的是()A.2π是变量B.2πR是常量C.C是R的函数D.该函数没有定义域2.下列说法正确的是()A.常量是指永远不变的量B.具体的数一定是常量C.字母一定表示变量D.球的体积公式中,变量是π,r3.圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量D.C是自变量,R为因变量,2π为常量4.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量5.在圆面积公式S=πR2,R是半径,则变量是()A.S,πB.π,R C.S,R,π D.S,R6.某超市某种商品的单价为70元/件,若买x件该商品的总价为y元,则其中的常量是()A.70 B.x C.y D.不确定7.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气8.甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中,错误的是()A.s是变量B.t是变量 C.v是变量D.s是常量9.下列关于圆的周长C与半径r之间的关系式C=2πr中,说法正确的是()A.C、r是变量,π是常量B.r、π是变量,2是常量C.C、r是变量,2是常量D.C、r是变量,2π是常量10.重百大楼的销售量随商品价格的高低而变化,在这个变化过程中,自变量是()A.销售量B.顾客C.商品D.商品的价格11.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2 B.常量是2C.用C表示r为 D.变量是C和r12.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A.明明B.电话费C.时间D.爷爷13.生活中太阳能热水器已经慢慢普及使用.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒太阳时间的长短而变化,这个问题中因变量是()A.太阳光的强弱B.水的温度C.晒太阳的时间D.热水器14.弹簧挂重物后会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6 kg,弹簧长度为11 cmC.物体每增加1 kg,弹簧长度就增加0.5 cmD.挂30 kg物体时,弹簧长度一定比原长增加15 cm15.当圆的半径发生变化时,面积也发生变化,圆面积S与半径r的关系为S=πr2.下面的说法中,正确的是()A.S,π,r都是变量B.只有r是变量C.S,r是变量,π是常量D.S,π,r都是常量16.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R是常量C.R是自变量D.π和R是都是常量17.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹簧范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹簧范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米18.下列给出的式子中,x是自变量的是()A.x=5 B.2x+y=0 C.2y2=4x+3 D.y=3x﹣119.某款贴图的成本价为1.5元,销售商对其销量与定价的关系进行了调查,结果如下:你认为其因变量为()A.成本价B.定价C.销量D.以上说法都不正确20.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s二.填空题(共20小题)21.饮食店里快餐每盒5元,买n盒需付S元,则其中常量是,变量是.22.在公式s=50t中常量是,变量是.23.圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是变量是.24.球的表面积S与半径R之间的关系是S=4πR2.对于各种不同大小的圆,请指出公式S=4πR2中常量是,变量是.25.自学校开展建设“美丽校园”活动以来,学校广播室的宣传稿的数量剧增,据统计,每天的投稿数y与星期数n(周六、周日除外)的关系是y=﹣n2+12n+51(1≤n≤5),在这个问题中,变量是,常量是,变量是随变量的变化而变化的.26.寄一封平信的邮资为p,寄x封这种平信的总邮资为y,则y=px.其中常量是.27.汽车行驶的路程s、行驶时间t和行驶速度v之间有下列关系:s=vt.如果汽车以每时60km的速度行驶,那么在s=vt中,变量是,常量是;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是,常量是;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt 中,变量是,常量是.28.圆的面积S(cm2)与半径R(cm)的变化关系是S=πR2,在这一变化过程中,变量是,常量是.29.球的体积V(cm3)与球的半径R(cm)之间的关系式是V=,这里的变量是,常量是.30.直角三角形两锐角的度数分别为x,y,其关系式为y=90﹣x,其中变量为,常量为.31.水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径的比)为π,指出其中的变量为.32.圆的面积S与半径R之间的关系式是S=πR2,其中自变量是.33.圆面积S与半径r之间的关系式S=πr2中自变量是,因变量是,常量是.34.某方程的两个未知数之间的关系为y=﹣3x2+5,变量是,常量是.35.2B铅笔每枝0.5元,买n枝需W元,其中常量是,变量是.36.三角形的面积公式中S=ah其中底边a保持不变,则常量是,变量是.37.随着我国人口增长速度的减慢,小学入学儿童数量有所减少,下表中数据近似地呈现了某地儿童入学年份的变化趋势:则上表中的自变量是(用字母表示)38.对于圆的周长公式C=2πR,其中自变量是,因变量是.39.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:上表反映了个变量之间的关系,其中,自变量是;因变量是.40.圆的面积S与半径R的关系是,其中常量是,变量是.三.解答题(共10小题)41.我国是一个严重缺水的国家,我们都应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.5毫升.小燕子同学在洗手时,没有拧紧水龙头,当小燕子离开x(时)后水龙头滴了y(毫升)水.在这段文字中涉及的量中,哪些是常量,哪些是变量?42.海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T表示时刻,h表示水深.上述问题中,字母T,h表示的是变量还是常量,简述你的理由.43.指出下面各关系式中的常量与变量.运动员在400m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步速度v(m/s)之间的函数关系式为t=.44.在烧开水时,水温达到l00℃就会沸腾,下表是某同学做“观察水的沸腾”实验时记录的数据:(1)上表反映了哪两个量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间推移2分钟,水的温度如何变化?(4)时间为8分钟,水的温度为多少?你能得出时间为9分钟时,水的温度吗?(5)根据表格,你认为时间为16分钟和18分钟时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?45.行驶中的汽车,在刹车后由于惯性的作用,还将继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对这种汽车进行测试,测得数据如下表:回答下列问题:(1)上表反映了哪两个变量之间的关系?(2)如果刹车时车速为60千米/时,那么刹车距离是多少米?46.设路程为s km,速度为v km/h,时间t h,指出下列各式中的常量与变量.(1)v=;(2)s=45t﹣2t2;(3)vt=100.47.如表是某报纸公布的世界人口数据情况:(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口总数,那么随着x的变化,y的变化趋势是怎样的?48.已知直线m,n之间的距离是3,△ABC的顶点A在直线m上,边BC在直线n上,求△ABC的面积S和BC边的长x之间的关系式,并指出其中的变量和常量.49.指出下列问题中的变量和常量:某市的自来水价为4元/t,现要抽取若干户居民调查水费支出情况,记某户月用水量为x t,月应交水费为y元.50.希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.一次函数之常量与变量参考答案与试题解析一.选择题(共20小题)1.对于圆的周长公式C=2πR,下列说法中,正确的是()A.2π是变量B.2πR是常量C.C是R的函数D.该函数没有定义域【分析】根据函数以及常量、变量的定义即可判断.【解答】解:A、2π是一个常数,是常量,故选项错误;B、2π是一个常数,是常量,R是变量,故选项错误;C、正确;D、定义域是:R>0,故选项错误.故选C.【点评】本题考查了常量、变量的定义,正确理解定义是关键.2.下列说法正确的是()A.常量是指永远不变的量B.具体的数一定是常量C.字母一定表示变量D.球的体积公式中,变量是π,r【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:A、常量和变量是相对于变化过程而言的.可以互相转化,错误;B、具体的数一定为常量,正确;C、字母π是一个常量,错误;D、π是常量,故错误,故选B.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.3.圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量D.C是自变量,R为因变量,2π为常量【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【解答】解:圆的周长公式C=2πR中,C是因变量,R是自变量,2π为常量,故选:B.【点评】本题主要考查了常量,变量的定义,是需要识记的内容.4.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.【解答】解:在这个问题中,x是自变量,y是因变量,0.6元/千瓦时是常数.故选D.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D 中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.5.在圆面积公式S=πR2,R是半径,则变量是()A.S,πB.π,R C.S,R,π D.S,R【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行解答即可.【解答】解:在圆的面积计算公式S=πR2中,变量为S,R.故选D.【点评】此题主要考查了变量和常量,圆的面积S随半径R的变化而变化,所以S,R都是变量,其中R是自变量,S是因变量.6.某超市某种商品的单价为70元/件,若买x件该商品的总价为y元,则其中的常量是()A.70 B.x C.y D.不确定【分析】根据总价=单价×数量列式,再根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量解答.【解答】解:根据题意得,y=70x,∴常量是70.故选A.【点评】本题主要考查了常量与变量的区别,常量就是数值始终不变的量,变量是数值发生变化的量,是基础题,比较简单.7.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气【分析】根据函数的定义解答.【解答】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故本题选C.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.8.甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中,错误的是()A.s是变量B.t是变量 C.v是变量D.s是常量【分析】根据常量和变量的定义即可作出判断.【解答】解:甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=s,在这个变化过程中常量是:距离s,变量是时间t 和速度v.故选A.【点评】本题考查了常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.9.下列关于圆的周长C与半径r之间的关系式C=2πr中,说法正确的是()A.C、r是变量,π是常量B.r、π是变量,2是常量C.C、r是变量,2是常量D.C、r是变量,2π是常量【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:关于圆的周长C与半径r之间的关系式C=2πr中,C、r是变量,2π是常量.故选D.【点评】此题主要考查了常量和变量,关键是掌握变量和常量的定义.10.重百大楼的销售量随商品价格的高低而变化,在这个变化过程中,自变量是()A.销售量B.顾客C.商品D.商品的价格【分析】根据题意,销售量随商品价格的高低而变化,结合函数的定义,分析可得答案.【解答】解:根据题意,销售量随商品价格的高低而变化,则在这个变化过程中,自变量是商品的价格,故选D.【点评】本题考查函数的概念,在一个变化过程中,有两个变量x,y,对于x 的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.11.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2 B.常量是2C.用C表示r为 D.变量是C和r【分析】根据常量也称常数,是一种恒定的不可变的数值或数据项,变量是自变量和因变量的合称,对各选项分析判断后利用排除法求解.【解答】解:函数关系式C=2πr中,常量是π与2,故A选项正确,B选项错误;用C表示r为r=,故C选项正确;变量是C与r,故D选项正确.故选B.【点评】本题考查了常量与变量的定义,熟记概念是解题的关键.12.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A.明明B.电话费C.时间D.爷爷【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应.【解答】解:∵电话费随着时间的变化而变化,∴自变量是时间,因变量是电话费;故选:B.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D 中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,其中x叫自变量,y叫x的函数.13.生活中太阳能热水器已经慢慢普及使用.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒太阳时间的长短而变化,这个问题中因变量是()A.太阳光的强弱B.水的温度C.晒太阳的时间D.热水器【分析】根据函数的关系,可得答案.【解答】解:水温随所晒太阳时间的长短而变化,水温是因变量,故选:B.【点评】本题考查了变量与常量,因变量随着自变量的变化而变化.14.弹簧挂重物后会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6 kg,弹簧长度为11 cmC.物体每增加1 kg,弹簧长度就增加0.5 cmD.挂30 kg物体时,弹簧长度一定比原长增加15 cm【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:A、x与y都是变量,x是自变量,y是因变量,故A不符合题意;B、所挂物体为6 kg,弹簧长度为11 cm,故B不符合题意;C、物体每增加1 kg,弹簧长度就增加0.5 cm,故C不符合题意;D、挂30 kg物体时,弹簧长度一定比原长增加15 cm,故D符合题意故选:D.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.15.当圆的半径发生变化时,面积也发生变化,圆面积S与半径r的关系为S=πr2.下面的说法中,正确的是()A.S,π,r都是变量B.只有r是变量C.S,r是变量,π是常量D.S,π,r都是常量【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是事物变化过程中不发生变化的量,可得答案.【解答】解:圆的半径发生变化时,面积也发生变化,圆面积S与半径r的关系为S=πr2,S、r是变量,π是常量,故选:C.【点评】本题考查了常量与变量,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.16.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R是常量C.R是自变量D.π和R是都是常量【分析】根据自变量与常量、因变量的定义解答.【解答】解:S=πR2中R是自变量、S是因变量,π是常量,故选:C.【点评】本题考查了常量与变量,设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.17.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹簧范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹簧范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【分析】根据自变量、因变量的含义,以及弹簧的长度y(厘米)与所挂物体的质量x(千克)之间的关系逐一判断即可.【解答】解:∵x与y都是变量,且x是自变量,y是因变量,∴选项A正确;∵弹簧不挂重物时的长度为10cm,∴选项B不正确;∵12.5+(12.5﹣12)×(7﹣5)=12.5+1=13.5(cm)∴所挂物体质量为7千克时,弹簧长度为23.5厘米,∴选项C正确;∵10.5﹣10=0.5(厘米),11﹣10.5=0.5(厘米),11.5﹣11=0.5(lm),12﹣11.5=0.5(厘米),12.5﹣12=0.5(厘米),∴物体质量每增加1千克弹簧长度y增加0.5厘米,∴选项D正确.故选:B.【点评】此题主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则x叫自变量,y叫因变量.此题主要考查了自变量、因变量的含义和判断,要熟练掌握.18.下列给出的式子中,x是自变量的是()A.x=5 B.2x+y=0 C.2y2=4x+3 D.y=3x﹣1【分析】根据函数的定义,可得答案.【解答】解:y=3x﹣1,中y随x的变化而变化,x是自变量,y是x的函数,故选:D.【点评】本题考查了自变量,利用函数的定义是解题关键.19.某款贴图的成本价为1.5元,销售商对其销量与定价的关系进行了调查,结果如下:你认为其因变量为()A.成本价B.定价C.销量D.以上说法都不正确【分析】在式子中销量随定价的值的变化而变化,销量是定价的函数,因而因变量是销量.【解答】解:在式子中销量随定价的值的变化而变化,销量是定价的函数,因而因变量是销量.故选:C.【点评】本题主要考查了常量与变量,解决本题的关键是理解定义一定要区分是哪个量随另一个量的变化而变化.20.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.【点评】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.二.填空题(共20小题)21.饮食店里快餐每盒5元,买n盒需付S元,则其中常量是5,变量是n,S.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【解答】解:单价5元固定,是常量,付费S元随着盒数n的变化而变化,是变量,故常量是5,变量是n,s;故答案为:5;n,s;【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.22.在公式s=50t中常量是50,变量是s,t.【分析】根据常量和变量的定义,即可找出题中的常量与变量.【解答】解:在公式s=50t中,常量是:50,变量是s,t.故答案为:50,s,t.【点评】本题主要考查了常量和变量,在解题时要根据常量和变量的定义进行解答是本题的关键.23.圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是π变量是S、r.【分析】根据题意可知S,r是两个变量,π是一个常数(圆周率),是常量.【解答】解:圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是π,变量是S、r;故答案为:π;S、r.【点评】此题主要考查了常量和变量,变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,24.球的表面积S与半径R之间的关系是S=4πR2.对于各种不同大小的圆,请指出公式S=4πR2中常量是4π,变量是S和R.【分析】变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,根据定义即可确定.【解答】解:公式S=4πR2中常量是4π,变量是S和R.故答案是:4π;S和R.【点评】本题考查了常量与变量的定义,理解定义是关键.25.自学校开展建设“美丽校园”活动以来,学校广播室的宣传稿的数量剧增,据统计,每天的投稿数y与星期数n(周六、周日除外)的关系是y=﹣n2+12n+51(1≤n≤5),在这个问题中,变量是y,n,常量是﹣1,12,51,变量y是随变量n的变化而变化的.【分析】根据事物发生变化的过程中不变的量是常量,发生变化的量是变量,可得答案.【解答】解:y=﹣n2+12n+51(1≤n≤5),在这个问题中,变量是y,n,常量是﹣1,12,51,变量y是随变量n的变化而变化的,故答案为:y、n,﹣1,12,51,y、n.【点评】本题考查了常量与变量,利用了常量与变量的定义.26.寄一封平信的邮资为p,寄x封这种平信的总邮资为y,则y=px.其中常量是p.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量解答.【解答】解:∵y=px中邮资y随着信的封数x的变化而变化,∴常量为P.故答案为:P.【点评】本题主要考查了常量与变量的区别,常量就是数值始终不变的量,变量是数值发生变化的量,是基础题,比较简单.27.汽车行驶的路程s、行驶时间t和行驶速度v之间有下列关系:s=vt.如果汽车以每时60km的速度行驶,那么在s=vt中,变量是s,t,常量是60;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是s,v,常量是1;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt中,变量是v,t,常量是200.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量解答.【解答】解:汽车以每时60km的速度行驶,那么在s=vt中,变量是s,t,常量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量与函数、函数的图像水平测试题1.圆周长公式C=2πR 中,下列说法正确的是( )(A)π、R 是变量,2为常量 (B)C 、R 为变量,2、π为常量(C)R 为变量,2、π、C 为常量 (D)C 为变量,2、π、R 为常量2、一辆汽车以40千米/小时的速度行驶,写出行驶路程s(千米)与行驶时间t(时)的关系式。
关系式为____________( 是自变量, 是因变量);一辆汽车行驶5小时,写出行驶路程s(千米)与行驶速度v(千米/小时)之间的关系式。
关系式为 ____________( 是自变量, 是因变量)3、写出下列函数关系式,并指出关系式中的自变量与因变量:⑴ 每个同学购一本代数教科书,书的单价是2元,总金额Y (元)与学生数n (个)的函数关系式;关系式为 ( 是自变量, 是因变量)⑵ 计划购买50元的乒乓球,所能购买的总数n (个)与单价a (元)的函数关系式.关系式为( 是自变量, 是因变量)(3)、用长20m 的篱笆围成一个矩形,则矩形的面积S 与它一边的长x 的关系是什么?关系式为( 是自变量, 是因变量)4、用长20m 的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成,⑴ 写出矩形面积S (m 2)与平行于墙的一边长x (m )的关系式;关系式为________( 是自变量, 是因变量)⑵ 写出矩形面积S (m 2)与垂直于墙的一边长x (m )的关系式.关系式为 ____________( 是自变量, 是因变量)5:指出下列变化关系中,哪些x 是y 的函数,哪些不是,说出你的理由。
(A ) y =x +1 (B )y =2x 2+3x -2 xy=2 ②x+y=5 ③|y|=3x+16:写出下列函数关系式:并指出其中的常量与变量。
(1)底边长为10的三角形的面积y 与高x 之间的关系式;(2)某种弹簧原长20厘米,每挂重物1千克,伸长0.2厘米,挂上重物后的长度y(厘米)与所挂上的重物x(千克)之间的关系式;(3)某种饮水机盛满20升水,打开阀门每分钟可流出0.2升水,饮水机中剩余水量y(升)与放水时间x(分)之间的关系式。
(4)已知定活两便储蓄的月利率是0.0675%,国家规定,取款时,利息部分要交纳20%的利息税,如果某人存入2万元,取款时实际领到的金额y (元)与存入月数x 的函数关系式.(5)拖拉机开始工作时,油箱中有油40升,如果每小时用油4升,求油箱中剩余油量y (升)与工作时间x (时)之间的函数关系;7.如图6-2所示,长方形ABCD 的四个顶点在互相平行的两条直线上,AD=20cm ,当B 、C 在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果长方形的长AB 为x (cm ),长方形的面积)cm (y 2可以表示为_____. (3)当长AB 从25cm 变到40cm 时,长方形的面积从_____2cm 变到_____2cm .8:指出下列变化关系中,哪些x 是y 的函数,哪些不是,说出你的理由。
y =2x 2+3x ;y 2=x +1?;y 3=x ;|y|=x ;y =3; 1022=+y x ; y=542+-x x [C 组]9:某厂今年前五个月生产某种产品的月产量Q (件)关于时间t (月)的函数图象如图所示,则对这种产品来说,下列说法正确的是( ).A . 1月至3月每月产量逐月增加,4、5两月每月产量逐月减少B . 1月至3月每月产量逐月增加,4、5两月每月产量与3月持平C . 1月至3月每月产量逐月增加,4、5两个月停止生产D . 1月至3月每月产量不变,4、5两月停止生产10:小明获得了科技发明奖,他马上告诉了两个朋友.10分钟后,他们又各自告诉了另外两个朋友,再过10分钟,这些朋友又各自告诉了两个朋友.如果消息按这样的速度传下去,80分钟将有多少人知道小明获11.研究下列算式你会发现什么规律224131==+⨯;239142==+⨯;2416153==+⨯;2525164==+⨯…(1)上述算式中有哪些变量?(2)你能否将其中一个变量看成是另一个变量的函数?(3)你能将这个函数关系用表达式表示出来吗?一、填空题(每小题4分,共32分)1. 某学校计划购买50元的乒乓球,则所购买的总数n (个)与单价a (元)之间的关系是____________.2. 小华用50元钱去购买每件价格为6元的某种商品,那么他所剩余的钱y (元)与购买这种商品的件数x 之间的关系是______,其中变量是______,常量是______.3. 距离s 、速度v 和时间t 之间的关系式为s=vt ,当距离一定时,___________是常量,___________是变量;当速度一定时,____________是常量,____________是变量.4. 用火柴棒按图1的方式搭一行三角形,搭一个三角形需3根火柴棒,搭2个三角形需5根火柴棒,搭3个三角形需7根火柴棒,照这样下去,搭n 个三角形需用S 根火柴棒,那么S 与n 之间的关系式为_____________.5. 点P (x ,y )满足xy<0,则点P 在__________象限.6. 点P 1(-a ,b )与P 2关于y 轴对称,P 2与P 3关于x 轴对称,则P 3的坐标是___________,这时P 1与P 3关于___________对称.7.函数y=31-x 中自变量x 的取值范围是_____________.8. (2006年岳阳市)已知函数y =-2x+3,当x =-1时,y =____________.二、选择题(每小题4分,共32分)9. 若点P 在第二象限,且点P 到x 轴、y 轴的距离分别是4、3,则点P 的坐标为( ).A. (4,-3)B. (3,-4)C. (-3,4)D. (-4,3)10. 若点A (a ,b )在第四象限,则点B (-a-2,|b |+5)在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限11. 下列说法正确的是( ).A. 一年中时间t 是温度T 的函数B. 正方形的面积计算公式S=a 2中,S 不是变量,2是常量C. 公共汽车全线共有15个车站,其中1~5站票价为5角,6~10站票价为1元,11~15站票价为1.5元,则票价y 是乘车站数x 的函数D. 圆的周长与半径无函数关系12. 下列函数中,自变量取值范围取错的是( ).A. y=x 2中,x 取全体实数B. y=11-x 中,x ≠0 C. y=1-x 中,x ≥1 D. y=11+x 中,x ≠-1 13.在平面直角坐标系中,若点P (x-2,x )在第二象限,则x 的取值范围是( ).14.如图2 ABCD 的顶点A 、B 、C 、D 的坐标分别是(0,0)、(5,0)、(2,3),则顶点C 的坐标是( ).A. (3,7)B. (5,3)C. (7,3)D. (8,2)15. 如图3所示是冰的融化图像,则表示吸热升温的是().A. C—D段B. A—B—C段C. B—C—D段16. 星期天晚饭后,小红从家里出去散步,图4描述了她散步过程中离家的距离s(m)与散步所用时间t (min)之间的函数关系.依据图像,下面描述符合小红散步情景的是().A. 从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了B. 从家出发,到了一个公共阅报栏,看了一会儿报,就回家了C. 从家出发,一直散步(没有停留),然后回家了D. 从家出发,散了一会儿步,就找同学去了,18min后才开始返回2 4 6 8 10 12 14 16 18 t(min)图48、请分别写出满足下列的条件的函数关系式(1)自变量x的取值范围为全体实数(2)自变量t的取值范围为t≤2(3)自变量x的取值范围为x≠-3(4)当x=-2时,y=7(5)举出一个实际问题背景下的函数例子,列出其函数关系式,并指出自变量的取值范围[C组]9:x取什么值时,下列函数的函数值为0.(1) y = 3x-5 (2) y = (x-1)(x+12) (3) y =x-2x-110:一个小球由静止开始在一个斜坡上向下滚动,其速度每秒钟增加2米,到达坡底时,小球速度达到40米/秒,求:(1)小球速度v与时间t之间的函数关系式.(2)3.5秒时小球的速度.(3)几秒时小球的速度达到16米/秒?11:某风景区集体门票的收费标准是20人以内(含20人)每人25元,超过20人的部分,每人10元.(1)试写出门票费用y(元)和人数x之间的关系式.(2)如果某班共有51人到此风景区春游,问门票费用共多少元?12.观察下列算式:233)21(921+==+,2333)321(36321++==++,23333)4321(1004321+++==+++,那么第100个算式是什么?第n个呢?13:某校组织学生到距离学校6公里的光明科技馆去参观,学生王红因事没能乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准如下:(1)写出出租车行驶的里程数x≥3(公里)与费用y(元)之间的关系式;(2)王红身上仅有14元,乘出租车到科技馆的车费够不够?请说明理由.解:(1)y=8+(x-3)×1.8=1.8x+2.6 (x≥3);(2)当x=6时,y=1.8×6+2.6=13.4<14(解答应用问题要注意积累生活经验)答:y=1.8x+2.6(x≥3);车费够了.点评:在这里,8元即是出租车的“起步价”.若多一点生活经验,这类题目较易解决.。