ANSYS热分析
ansys热分析常用单元
ansys热分析常用单元
Ansys热分析包括:
稳态传热:系统温度场不随时间变化;
瞬态传热:系统温度场随时间明显变化。
热分析单元大概涉及到40种,其中纯粹用于热分析的有14种:线性:
LINK32:两维二节点热传导单元
LINK33:三维二节点热传导单元
LINK34:二节点热对流单元
LINK31:二节点热辐射单元
二维单元:
PLANE55:四节点四边形单元
PLANE77:八节点四边形单元
PLANE35:三节点三角形单元
PLANE75:四节点轴对称单元
PLANE75:八节点轴对称单元
三维实体:
SOLID87:六节点四面体单元
SOLID70:八节点六面体单元
SOLID90:二十节点六面体单元
壳:
SHELL57:四节点
点:
MASS71:质量点。
《2024年ANSYS有限元分析软件在热分析中的应用》范文
《ANSYS有限元分析软件在热分析中的应用》篇一一、引言随着科技的不断进步,ANSYS有限元分析软件在工程领域的应用越来越广泛。
其中,ANSYS在热分析方面的应用具有很高的价值,能对复杂结构的温度分布、热应力等问题进行有效的数值模拟和分析。
本文旨在深入探讨ANSYS有限元分析软件在热分析中的应用。
二、ANSYS软件及其热分析功能ANSYS是一款广泛应用于机械、电气、流体等多领域的有限元分析软件。
其强大的功能主要得益于其精细的数值计算方法和广泛的适用性。
在热分析方面,ANSYS可以模拟各种复杂的热传导、热对流和热辐射问题,为工程师提供精确的数值结果和直观的图形展示。
三、ANSYS在热分析中的应用1. 模型建立与网格划分在ANSYS中进行热分析,首先需要建立准确的模型并进行网格划分。
ANSYS提供了强大的建模工具,可以方便地建立各种复杂的模型。
同时,其网格划分功能可以根据模型的特点和需求,自动或手动进行网格的生成和优化。
这为后续的热分析提供了可靠的数值基础。
2. 材料属性设定与载荷施加在热分析中,材料属性设定和载荷施加是关键步骤。
ANSYS 提供了丰富的材料库,可以根据实际需要选择合适的材料并进行属性的设定。
同时,根据问题的需求,可以在模型上施加各种类型的热载荷,如温度、热流等。
3. 求解与结果分析完成模型建立、网格划分、材料属性设定和载荷施加后,就可以进行求解了。
ANSYS采用先进的数值计算方法,可以快速得到求解结果。
同时,ANSYS提供了丰富的后处理功能,可以对求解结果进行可视化展示和分析。
例如,可以绘制温度分布图、热流图等,帮助工程师直观地了解问题的特点。
四、ANSYS在热分析中的优势相比传统的实验方法,ANSYS在热分析中具有以下优势:1. 准确性高:ANSYS采用先进的数值计算方法,可以模拟各种复杂的热传导、热对流和热辐射问题,得到的结果更加准确可靠。
2. 效率高:相比传统的实验方法,ANSYS可以在短时间内得到求解结果,大大提高了工作效率。
《2024年ANSYS有限元分析软件在热分析中的应用》范文
《ANSYS有限元分析软件在热分析中的应用》篇一一、引言随着科技的不断进步,ANSYS有限元分析软件在工程领域的应用越来越广泛。
其中,热分析作为工程领域的一个重要部分,ANSYS软件在其中发挥了重要作用。
本文将详细探讨ANSYS有限元分析软件在热分析中的应用,包括其基本原理、应用领域、优势及挑战等方面。
二、ANSYS有限元分析软件基本原理ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、电磁场和热分析等领域。
在热分析中,ANSYS利用有限元法将复杂的连续体离散化,将求解域划分为一系列的单元体,然后通过对每个单元进行分析,从而得出整个结构的热行为特性。
三、ANSYS在热分析中的应用1. 稳态热分析稳态热分析主要用于研究物体在恒定温度场下的热行为。
通过ANSYS软件,可以建立物体的三维模型,设置材料属性、边界条件等参数,然后进行稳态热分析。
分析结果可以用于产品设计、优化和性能评估等方面。
2. 瞬态热分析瞬态热分析主要用于研究物体在温度场随时间变化情况下的热行为。
例如,在汽车发动机、电子设备等领域的热管理中,需要了解设备在运行过程中的温度变化情况。
通过ANSYS软件进行瞬态热分析,可以得出设备在不同时间点的温度分布情况,为产品设计、优化和故障诊断提供依据。
四、ANSYS在热分析中的优势1. 高精度:ANSYS软件采用先进的有限元法,可以将求解域划分为足够小的单元体,从而得出较为精确的解。
2. 多物理场耦合分析:ANSYS可以用于多物理场耦合分析,包括热-结构耦合、热-流体耦合等,能够更全面地反映实际工程问题的复杂性。
3. 丰富的材料库:ANSYS拥有丰富的材料库,可以用于模拟各种材料的热性能。
4. 强大的后处理功能:ANSYS具有强大的后处理功能,可以方便地查看和分析计算结果,为工程设计提供有力支持。
五、挑战与展望尽管ANSYS在热分析中具有诸多优势,但仍面临一些挑战。
例如,在处理大规模复杂问题时,计算资源的消耗较大;对于某些特殊材料和复杂结构的建模和分析难度较高;此外,ANSYS软件的学系成本较高,需要专业知识和技能。
《热分析ansys教程》课件
05
热分析优化设计
优化设计的基本概念
01
优化设计是一种通过数学模型和计算机技术,寻找满足特定条 件下的最优设计方案的方法。
02
优化设计的基本概念包括目标函数、设计变量、约束条件和求
解算法等。
热分析优化设计是针对热学问题,通过优化设计来提高产品的
03
热性能和降低能耗。
ANSYS优化设计的步骤
定义设计变量
网格质量检查
对生成的网格进行检查, 确保网格质量良好,没有 出现奇异点或扭曲。
边界条件的设置
确定边界条件
根据分析对象的实际情况,确定合适的边界条件,如温度、热流 率等。
设置边界条件
在ANSYS软件中,将确定的边界条件应用到几何模型上。
验证边界条件
对设置的边界条件进行验证,确保其合理性和准确性。
04
傅里叶定律
热量传递与温度梯度成正比,即热流密度与温度梯度 成正比。
牛顿冷却定律
物体表面与周围介质之间的温差与热流密度成正比。
热力学第一定律
能量守恒定律,表示系统能量的增加等于传入系统的 热量与系统对外界所做的功之和。
热分析的三种基本类型
稳态热分析
系统达到热平衡状态时的温度分布。
瞬态热分析
系统随时间变化的温度分布。
网格划分问题
网格划分不均匀
在某些区域,网格可能过于密集,而 在其他区域则可能过于稀疏,这可能 导致求解精度下降或求解失败。
网格自适应调整问题
在某些情况下,ANSYS可能无法正确 地自适应调整网格,导致求解结果不 准确。
网格划分问题
手动调整网格
手动调整网格密度,确保在关键区域有足够的网格密度。
使用更高级的网格划分工具
热分析(ansys教程)
1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。
ANSYS热分析详解
ANSYS热分析详解ANSYS是一种常用的工程仿真软件,具有强大的多物理场耦合分析能力,其中热分析是其中一个重要的应用领域。
在ANSYS中进行热分析可以帮助工程师更好地了解物体在温度变化条件下的行为,从而优化设计方案。
下面将详细介绍ANSYS热分析的原理与流程。
首先,在进行ANSYS热分析前,需要进行前期准备工作。
包括建立几何模型,定义边界条件和导入材料参数等。
在建立几何模型时,可以使用ANSYS提供的建模工具或者导入CAD文件。
然后,需要定义材料参数,如热导率、比热等。
最后,需要定义边界条件,包括外界温度、边界热流、边界散热系数等。
接下来,进行热传导分析。
热传导分析是热分析的基础,用于计算物体内部的温度分布。
在ANSYS中,可以选择稳态或者瞬态分析。
对于稳态分析,需要设置收敛准则,使计算结果达到稳定状态。
对于瞬态分析,需要设置时间步长和总的仿真时间。
在进行计算时,ANSYS会利用有限元法对物体的几何形状进行离散化处理,并通过求解热传导方程来计算温度分布。
在得到物体内部的温度分布后,可以进行热应力分析。
热应力分析是在热传导分析的基础上引入力学应力计算的过程。
在ANSYS中,可以通过多物理场耦合分析的功能来实现。
首先,需要定义材料的线性热膨胀系数和弹性模量等力学参数。
然后,可以选择求解热固结方程和弹性平衡方程,来计算物体在温度变化条件下的应力分布。
除了热应力分析,还可以进行热辐射分析。
热辐射分析是在热传导分析的基础上引入辐射传热计算的过程。
在ANSYS中,可以选择不同的辐射模型来计算物体在温度变化条件下的辐射传热。
常用的辐射模型包括黑体辐射模型和灰体辐射模型等。
通过热辐射分析可以得到物体的辐射换热通量和辐射热功率等重要参数。
最后,进行结果分析和后处理。
在ANSYS中,可以对热分析的结果进行可视化和数据分析。
可以绘制温度云图、热应力云图等,从而更好地理解物体在热变形条件下的行为。
此外,还可以导出计算结果,并进行后续的工程设计和优化。
ANSYS热分析简介1
ANSYS热分析简介1⽬录1. ANSYS热分析简介1. ANSYS热分析基于能量守恒原理的热平衡⽅程,⽤有限元的⽅法计算各节点的温度,并导出其他物理参数。
2. ANSYS热分析包括热传导、热对流和热辐射三种热传递⽅式,此外还可以分析相变、有内热源、接触热阻等问题。
3. ANSYS中耦合场的分析种类有热-结构耦合、热-流体耦合、热-电耦合、热-磁耦合、热-电-磁-结构耦合等。
4. 对于不同的零件,之间可以采⽤GLUE进⾏粘接,或者采⽤Overlap等⽅法,也可以建⽴接触。
1.1 传导传导:两个良好接触的物体之间的能量交换或⼀个物体内由于温度梯度引起的内部能量交换。
对流:在物体和周围介质之间发⽣的热交换。
由温差存在⽽引起的热量交换,可以分为⾃然对流和强对流。
对流⼀般作为⾯边界条件施加。
热对流⽤⽜顿冷却⽅程来描述。
辐射:⼀个物体或者多个物体之间通过电磁波进⾏能量交换。
热辐射指物体发射电磁能,并被其他物体吸收转变为热的热量交换过程。
物体温度越⾼,单位时间辐射的热量越多。
热传导和热对流都需要传热介质,⽽热辐射⽆需任何介质,且在真空中的效率最⾼。
可以看出辐射分析是⾼度⾮线性的。
1.2 热载荷分类(1)DOF约束:温度(2)集中载荷:热流(3)⾯载荷:热流,对流(4)体载荷:体积或者区域载荷。
1.2.1 载荷施加序号APDL含义备注1TUNIF施加均匀初始温度2IC施加⾮均匀的初始温度1.3 热分析分类1.3.1 稳态热分析如果热能的流动不随时间变化的话,热传递就成为是稳态的。
由于热能流动不随时间变化,系统的温度和热载荷也都不随时间变化。
稳态热平衡满⾜热⼒学第⼀定律。
通常在进⾏瞬态分析前,进⾏稳态分析⽤于确定初始温度分布。
对于稳态传热,⼀般只需要定义导热系数,他可以是恒定的,也可是是随温度变化的。
1.3.2 瞬态热分析瞬态热分析⽤于计算⼀个系统的随时间变化的温度场及其他热参数。
在⼯程上⼀般⽤瞬态热分析计算温度场,并将之作为热载荷进⾏应⼒分析。
ANSYS热分析详解
ANSYS热分析详解ANSYS(工程仿真软件)是一种广泛应用于工程领域的有限元分析软件。
它不仅可以进行结构力学分析,还可以进行热分析。
热分析是通过数值模拟来研究物体在不同温度和热载荷条件下的热行为。
下面将详细介绍ANSYS热分析的一般步骤和常见应用。
热分析的步骤通常包括几个关键步骤:1.几何建模:通过ANSYS软件创建物体的三维几何模型。
可以使用软件内置的几何建模工具或从其他CAD软件导入几何模型。
2.材料定义:选择适当的材料,并在ANSYS中定义其热特性,如导热系数、比热容和线膨胀系数等。
3.网格划分:将几何模型分割成许多小单元,称为有限元。
每个有限元具有一组方程来描述其热行为。
网格划分的质量直接影响到最终结果的准确性,因此需要仔细选择合适的网格划分方法。
4.边界条件:指定物体的边界条件,如温度、热流、辐射、对流等。
这些边界条件会影响物体的热传导和热平衡。
5.求解:通过解决一组非线性偏微分方程来计算物体的温度分布。
ANSYS使用有限元方法来求解这些方程,并返回物体在不同点上的温度值。
6.后处理:对计算结果进行可视化和分析。
ANSYS可以绘制温度分布图、热通量图、温度梯度图等,以帮助用户更好地理解和分析物体的热行为。
1.电子器件散热分析:在电子设备中,散热问题常常是一个关键问题。
通过ANSYS热分析,可以评估电子器件所产生的热量,以及散热器的性能,从而确保设备的可靠性和性能。
2.汽车发动机冷却分析:汽车发动机的性能和寿命受限于冷却系统的效果。
ANSYS热分析可以帮助评估不同冷却系统的性能,并优化设计以提高发动机的效率和耐久性。
3.压力容器热应力分析:在高温和高压条件下,压力容器可能会发生热应力。
ANSYS热分析可以帮助评估容器的热应力,并指导合适的设计改进。
4.太阳能热系统分析:太阳能是一种可再生能源,可以通过太阳能热系统将太阳能转化为热能。
ANSYS热分析可以帮助评估太阳能热系统的性能,并优化设计以提高能量转化效率。
ANSYS热分析指南——ANSYS稳态热分析word精品文档59页
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
《热分析ansys教程》课件
汽车发动机热分析
总结词
汽车发动机热分析用于研究发动机工作过程中的热量传递和热应力分布,以提高发动机 效率和可靠性。
详细描述
发动机是汽车的核心部件,其工作过程中会产生大量的热量。通过热分析,工程师可以 了解发动机内部的温度分布和热应力状况,优化发动机设计,提高其燃油效率和耐久性
。
建筑物的温度分布分析
热分析的基本原理
热分析是研究温度场分布、变化 和传递规律的科学,其基本原理 包括能量守恒、热传导、对流和 辐射等。
热分析的应用领域
热分析广泛应用于能源、动力、 化工、机械、电子等众多领域, 涉及传热、燃烧、材料热物性、 电子器件散热等方面。
热分析的常用软件
ANSYS是国际上最流行的热分析 软件之一,具有强大的建模、网 格划分、加载、求解和后处理功 能,广泛应用于工程实际和科学 研究。
模拟系统在稳定状态下温度分布和热流密 度的计算方法
总结词
适用于研究系统在稳定状态下的热性能和 热量传递机制。
详细描述
稳态热分析用于计算系统在稳定状态下温 度分布和热流密度,不考虑时间因素,只 考虑热平衡状态。
详细描述
在稳态热分析中,系统的温度分布和热流 密度不随时间变化,因此可以忽略时间积 分效应,简化计算过程。
施加边界条件和载荷
根据实际情况,为模型的边界施加固 定温度、热流等边界条件,以及热载 荷。
求解和结果查看
选择求解器
根据模型的大小和复杂程度,选择合适的求解器进行求解。
结果后处理与查看
查看温度分布、热流分布等结果,并进行必要的后处理,如云图显示、数据导 出等。
03
热分析的常用方法
稳态热分析
总结词
COMSOL Multiphysics
ANSYS有限元分析软件在热分析中的应用
ANSYS有限元分析软件在热分析中的应用首先是工程热传导问题的分析。
在工程实际中,热传导问题是非常常见的,比如热交换器、电子设备散热等。
ANSYS有限元分析软件可以通过建立热传导模型,对工程物体内部的温度分布、热流分布以及热传导过程进行分析。
通过这些分析,可以优化设计,提高热传导效率,降低温度梯度,从而提高工程的性能和可靠性。
其次是流体传热问题的分析。
流体传热问题是指研究物体表面与周围流体之间的热传递问题,比如热交换器的流体流动和传热、管道内的流体传热等。
ANSYS有限元分析软件提供了丰富的流体传热模块,可以对流体内部的温度分布、壁面的传热系数以及流体流动等进行分析。
通过这些分析,可以更好地了解流体传热机理,优化流体传热设备的设计,提高传热效率,降低能耗。
最后是热应力分析。
在工程实际中,热应力是很重要的工程问题,特别是对于高温工况下的工程结构。
热应力问题主要是指由于温度不均匀引起的结构内部和表面的应力和变形。
ANSYS有限元分析软件可以通过建立热应力模型,对结构的应力分布、变形和热应力引起的破坏等进行分析。
通过这些分析,可以评估结构的强度和刚度,优化结构设计,降低工程的失效风险。
总的来说,ANSYS有限元分析软件在热分析中的应用非常广泛。
无论是工程热传导问题、流体传热问题还是热应力分析,ANSYS有限元分析软件都能够提供准确的数值计算结果,帮助工程师解决复杂的热问题,优化工程设计,提高工程性能和可靠性。
ANSYS稳态热分析的基本过程和实例
ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:•前处理:建模、材料和网格•分析求解:施加载荷计算•后处理:查看结果1、建模①、确定jobname、title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。
2、施加载荷计算①、定义分析类型●如果进行新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state●如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) :a、恒定的温度通常作为自由度约束施加于温度已知的边界上。
Command Family: DGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。
注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。
此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。
ANSYS有限元分析软件在热分析中的应用
ANSYS有限元分析软件在热分析中的应用随着科学技术的不断发展,工程领域的热分析越来越重要。
热力学、热传导、热对流、辐射传热等问题是工程领域中需要解决的关键问题之一。
ANSYS有限元分析软件作为一款功能强大、使用广泛的工程分析工具,在热分析领域发挥着重要的作用。
ANSYS有限元分析软件是一种基于有限元理论的数值计算工具。
它通过将一个复杂的物理问题划分成一个个简单的子域,然后将这些子域用有限元进行离散,再通过数值计算方法求解模型的应力、应变等物理场。
在热分析中,ANSYS能够非常准确地模拟材料的温度分布、热流量分布以及传热过程等问题,为工程师提供必要的设计信息。
在热分析中,ANSYS可以解决一系列不同的问题。
首先,它可以模拟材料的温度分布。
通过定义不同的材料参数和边界条件,ANSYS可以准确地计算出材料在不同情况下的温度分布,并可以用图形的形式进行展示。
这对于工程师来说非常有用,因为他们可以根据这些温度分布来判断材料是否会出现过热或者过冷的问题,从而进行相应的调整。
其次,ANSYS还可以模拟热流量的分布。
在实际工程中,热流量的分布是一个很重要的参数。
通过分析热流量的分布情况,工程师可以判断热量的传输是否合理,从而优化设计,提高效率。
ANSYS可以非常准确地计算出热流量的分布,并提供相应的图像展示,方便工程师观察和分析。
此外,ANSYS还可以模拟热对流传热问题。
热对流传热是指通过流体的对流而传递热量的现象。
在实际工程中,热对流非常常见,比如汽车发动机的冷却系统等。
ANSYS可以根据流体的流动特性和边界条件,准确地计算出热对流传热的情况,并提供相应的结果分析。
这对于工程师来说非常重要,他们可以通过这些结果来评估流体的冷却效果是否达到设计要求。
最后,ANSYS还可以模拟辐射传热问题。
辐射传热是指通过辐射而传递热量的现象,是热传导和热对流之外的一种重要传热方式。
在一些高温环境中,辐射传热非常显著,比如高温工业炉等。
Ansys热分析教程_第三章稳态热分析
质温度。该“附加”结点同样对结果评估带来方便。
前处理:建模
表面效应单元
表面效应单元 - 介绍
• 表面效应单元可以用来施加热生成载荷。 • 当对流换热系数随温度变化时,表面效应单元很方便; 基本选项的不同设置使得评
• 热流率
– 是集中结点载荷。正的热流率表示能量流入模型。热流率同样可以施 加在关键点上。这种载荷通常用于对流和热流不能施加的情况下。施
加该载荷到热传导率有很大差距的区域上时应注意。
热载荷和边界条件的类型
• 对流
– 施加在模型外表面上的面载荷,模拟平面和周围流体之间的热量交换。
• 热流
– 同样是面载荷。使用在通过面的热流率已知的情况下。正的热流值表示热流 输入模型。
前处理:建模
定义并查看材料特性
在ANSYS中定义材料特性的选项:
– 在材料特性对话框中输入需要的数值。 – 从ANSYS材料库或用户自定义材料库中读入材料特性。
在定义了材料特性以后,也可以将材料特性写到文件中以备后 用。
前处理:建模
定义并查看材料特性
要从材料库中读入材料特性,只要指定包含所需数据的文件路径 和文件名即可。
前处理:建模
定义并查看材料特性
稳态热分析中关于材料特性的总体说明
– 对于稳态分析,热材料特性必须输入热传导率“k”-KXX, 和可选的KYY, KZZ。
– 如果用户不定义,KYY和KZZ缺省等于KXX。 – 密度(DENS)和比热(C)或热焓(ENTH)在没有质量传递的稳态热分析中不
需要。 – 随温度变化的材料导热系数k, 使得热分析为非线性。 – 与温度有关的换热系数也被处理为材料特性。
热分析(ansys教程)..
施加载荷计算(续)
c、对流 对流边界条件作为面载施加于实体的外表面,计算与
流体的热交换,它仅可施加于实体和壳模型上,对 于线模型,可以通过对流线单元LINK34考虑对流。
Command Family: SF GUI:Main Menu>Solution>-Loads-Apply>-Thermal-
热传递的方式(续)
3、热辐射
✓ 热辐射指物体发射电磁能,并被其它物体吸收转变 为热的热量交换过程。物体温度越高,单位时间辐 射的热量越多。热传导和热对流都需要有传热介质, 而热辐射无须任何介质。实质上,在真空中的热辐 射效率最高。
✓ 在工程中通常考虑两个或两个以上物体之间的辐射,
系统中每个物体同时辐射并吸收热量。它们之间的
稳态传热
➢ 如果系统的净热流率为0,即流入系统的热量加上 系统自身产生的热量等于流出系统的热量:q流入+q 生成-q流出=0,则系统处于热稳态。在稳态热分析中 任一节点的温度不随时间变化。稳态热分析的能量 平衡方程为(以矩阵形式表示):[K]{T}={Q}
➢ 式中: [K]为传导矩阵,包含导热系数、对流系数 及辐射率和形状系数;{T}为节点温度向量;{Q}为 节点热流率向量,包含热生成;
✓ ANSYS热分析基于能量守恒原理的热平衡方程,用 有限元法计算各节点的温度,并导出其它热物理参 数
✓ ANSYS热分析包括热传导、热对流及热辐射三种热 传递方式。此外,还可以分析相变、有内热源、接 触热阻等问题
ANSYS的热分析分类
❖ ANSYS的热分析分类 ✓ 稳态传热:系统的温度场不随时间变化 ✓ 瞬态传热:系统的温度场随时间明显变化 ❖ 与热有关的耦合分析 ✓ 热-结构耦合 ✓ 热-流体耦合 ✓ 热-电耦合 ✓ 热-磁耦合 ✓ 热-电-磁-结构耦合等
ansys热分析
ANSYS热分析概述ANSYS是一种通用的有限元方法(Finite Element Method,FEM)软件,可以用于热分析。
热分析是通过模拟和分析物体的温度和热流来研究热传导、热膨胀、热辐射等热现象的一种方法。
在工程设计和科学研究中,热分析在许多领域都具有重要的应用价值。
在ANSYS中,热分析可以通过添加适当的热边界条件和材料参数来实现。
热分析步骤ANSYS热分析的一般步骤如下:1.几何建模:在ANSYS中创建或导入需要进行热分析的几何模型。
可以使用ANSYS的几何建模工具来创建模型,也可以从CAD软件中导入模型。
2.材料定义:定义模型中各个部分的材料属性。
对于热分析来说,主要需要定义材料的热导率、热容等参数。
ANSYS提供了各种材料模型和材料数据库来方便用户进行材料定义。
3.网格划分:将几何模型划分成小的有限元单元,以便将其离散化为一系列小区域。
这一步骤通常由ANSYS自动完成,但也可以手动调整网格密度和精度。
4.热边界条件:根据需要为模型设置热边界条件。
热边界条件包括固定温度、热通量、对流换热等。
这些边界条件将直接影响热分析的结果。
5.求解:使用ANSYS提供的求解器对热分析进行求解。
求解过程将根据模型的几何形状、材料属性和边界条件来计算模型的温度分布和热流。
6.结果分析:对求解得到的结果进行分析和后处理。
可以通过ANSYS提供的可视化工具、图表和数据输出来展示和分析计算结果。
根据需要,可以进一步优化模型和参数。
ANSYS热分析的应用领域ANSYS热分析在许多工程和科学领域都有广泛的应用。
以下是几个常见的应用领域:1. 热传导分析热传导分析是研究物体内部温度分布和热传导过程的一种方法。
它在热处理、电路设计、能源系统等领域有重要应用。
利用ANSYS进行热传导分析可以帮助工程师优化设计,改善热传导性能。
2. 热应力分析热应力分析是研究物体在热载荷下产生的应力和变形的一种方法。
热应力分析在焊接、高温材料等领域有应用。
ansys热分析
ansys热分析ANSYS热分析引言热分析是一种在工程领域广泛应用的分析方法,它可以用来研究物体在不同温度条件下的热传导、热扩散和热辐射等问题。
ANSYS是一款被广泛应用于工程仿真的软件,其中包括了强大的热分析功能。
本文将介绍ANSYS热分析的基本原理、流程以及在不同工程领域中的应用。
一、ANSYS热分析的基本原理ANSYS热分析基于热传导和热辐射的基本原理,通过数学和物理模型来描述和分析物体在不同温度条件下的热行为。
热传导是指热能通过物质内部的分子运动传递的过程,而热辐射则是指物体通过电磁波的辐射传递热能的过程。
热分析可以帮助工程师预测和优化物体在真实工作环境下的热性能,从而提高产品的质量和可靠性。
二、ANSYS热分析的流程ANSYS热分析的流程通常包括几个基本步骤,下面将逐一介绍:1. 几何建模:在进行热分析之前,需要通过ANSYS软件进行几何建模,将待分析的物体建模成三维几何模型。
这一步骤可以使用ANSYS的几何建模工具来完成,如DesignModeler等。
2. 网格划分:在几何建模完成后,需要将几何模型分割成小的单元,如三角形或四边形等,以便进行数值计算。
这一步骤被称为网格划分或网格生成,通常使用ANSYS的网格划分工具进行。
3. 材料属性设置:在进行热分析之前,需要对物体的材料属性进行设置,如热导率、比热容等。
这些参数将影响热传导的速度和过程。
4. 边界条件设置:在热分析中,需要设置物体的边界条件,如温度边界条件、热通量边界条件等。
这些边界条件描述了物体在不同部位的热输入和输出。
5. 求解和结果分析:在完成前面的步骤后,可以使用ANSYS的求解器来求解热传导方程和辐射传热方程。
求解完成后,可以对结果进行分析,如温度分布、热流量等。
三、ANSYS热分析在不同工程领域中的应用1. 汽车工程:ANSYS热分析在汽车工程领域中有着广泛的应用。
例如,可以通过热分析来研究发动机的热耗散问题,优化散热系统的设计,提高发动机的工作效率和寿命。
《2024年ANSYS有限元分析软件在热分析中的应用》范文
《ANSYS有限元分析软件在热分析中的应用》篇一一、引言ANSYS作为一款强大的有限元分析软件,被广泛应用于各个工程领域。
在众多领域中,热分析的应用显得尤为突出。
本文旨在探讨ANSYS有限元分析软件在热分析中的应用,并对其优势及实际案例进行详细分析。
二、ANSYS有限元分析软件概述ANSYS是一款集结构、热、流体、电磁等多物理场仿真分析于一体的软件。
其中,热分析是ANSYS的重要应用领域之一。
该软件通过建立复杂的物理模型,利用有限元法对模型进行离散化处理,将连续的物理场问题转化为离散的数学问题,从而求解出模型的温度分布、热流密度等参数。
三、ANSYS在热分析中的应用1. 模型建立与网格划分在ANSYS中,首先需要根据实际需求建立物理模型。
模型可以是二维的平面模型或三维的立体模型,根据实际情况进行选择。
建立好模型后,需要进行网格划分。
网格的划分对热分析的精度和计算效率有着重要影响。
ANSYS提供了多种网格划分方法,如自动网格划分、映射网格划分等,可以根据模型的特点选择合适的网格划分方法。
2. 材料属性与边界条件设定在热分析中,需要设定材料的热学属性,如导热系数、比热容等。
同时,还需要设定边界条件,如温度、热流密度等。
这些设定对于求解模型的温度分布及热流密度等参数至关重要。
3. 求解与结果分析在完成模型建立、网格划分、材料属性及边界条件设定后,即可进行求解。
ANSYS采用有限元法进行求解,将连续的物理场问题转化为离散的数学问题,求解出模型的温度分布、热流密度等参数。
求解完成后,需要对结果进行分析。
ANSYS提供了丰富的后处理功能,如等温线图、矢量图等,可以帮助用户更好地理解分析结果。
四、ANSYS在热分析中的优势1. 多物理场仿真:ANSYS不仅可以进行单一的热分析,还可以与其他物理场如结构、流体等进行联合仿真,从而得到更全面的分析结果。
2. 强大的求解能力:ANSYS采用先进的有限元法进行求解,具有强大的求解能力,可以处理复杂的物理模型和边界条件。
Ansys电机热(Fluent)分析设置
软件操作流程
单击添加项标题
打开nsys Fluent软件
单击添加项标题
导入CD模型
单击添加项标题
设置边界条件
单击添加项标题
运行仿真
单击添加项标题
创建新的项目
单击添加项标题
设置材料属性
单击添加项标题
设置求解器
单击添加项标题
查看结果并分析
03
电机热分析基本原理
热传导基本概念
热传导:热量从高温物体向低温物体传递的过程 热传导系数:衡量材料导热能力的物理量 热传导方程:描述热传导现象的数学模型 热传导方式:传导、对流、辐射三种方式
06
电机热分析常见问题及解决方法
求解不收敛问题及解决方法
问题描述:求解 过程中出现不收 敛现象导致计算 无法进行
原因分析:可能 由于网格划分不 合理、材料属性 设置不当、边界 条件设置错误等 原因导致
解决方法:重新 划分网格调整材 料属性检查并修 正边界条件必要 时可以尝试改变 求解器设置或增 加迭代次数
热辐射:物体通过电磁波形式向外辐射热量的过程 热辐射原理:物体温度越高辐射能量越大辐射波长越短 热辐射类型:红外辐射、可见光辐射、紫外辐射等 热辐射应用:热成像、太阳能利用、热处理等
热分析基本步骤
确定分析对 象:选择需 要分析的电
机部件
建立模型: 使用nsys软 件建立电机
模型
设置材料属 性:为模型 中的材料设 置热传导、 热对流等属
05
电机热分析案例展示
案例一:单相异步电机热分析
电机类型:单相异步电机 热分析软件:nsys 热分析步骤:建立模型、设置材料属性、设置边界条件、求解、后处理 结果分析:温度异步电机热分析
电机类型:三相异步电机 热分析软件:nsys 热分析步骤:建立模型、设置材料属性、施加边界条件、求解、后处理 结果分析:温度分布、热流密度、热应力等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 简 介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位 项目国际单位 英制单位 ANSYS 代号长度m ft 时间s s 质量Kg lbm 温度 ℃o F 力N lbf 能量(热量)J BTU 功率(热流率)W BTU/sec 热流密度W/m 2 BTU/sec-ft 2 生热速率W/m 3 BTU/sec-ft 3 导热系数 W/m-℃BTU/sec-ft-o F KXX 对流系数 W/m 2-℃BTU/sec-ft 2-o F HF 密度Kg/m 3 lbm/ft 3 DENS 比热 J/Kg-℃BTU/lbm-o F C 焓J/m 3 BTU/ft 3 ENTH 二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:z 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q Δ+Δ+Δ=−式中: Q —— 热量;W —— 作功;ΔU ——系统内能;ΔKE ——系统动能;ΔPE ——系统势能;z对于大多数工程传热问题:0==PE KE ΔΔ; z通常考虑没有做功:0=W , 则:U Q Δ=; z 对于稳态热分析:0=Δ=U Q ,即流入系统的热量等于流出的热量;z 对于瞬态热分析:dtdU q =,即流入或流出的热传递速率q 等于系统内能的变化。
三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:dxdT k q −=′′,式中′′q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。
2、热对流热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量的交换。
热对流可以分为两类:自然对流和强制对流。
热对流用牛顿冷却方程来描述:)(B S T T h q −=′′,式中h 为对流换热系数(或称膜传热系数、给热系数、膜系数等),T S 为固体表面的温度,T B 为周围流体的温度。
3、热辐射热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。
物体温度越高,单位时间辐射的热量越多。
热传导和热对流都需要有传热介质,而热辐射无须任何介质。
实质上,在真空中的热辐射效率最高。
在工程中通常考虑两个或两个以上物体之间的辐射,系统中每个物体同时辐射并吸收热量。
它们之间的净热量传递可以用斯蒂芬—波尔兹曼方程来计算:q A F T T =−εσ1121424(),式中q 为热流率,ε为辐射率(黑度),σ为斯蒂芬-波尔兹曼常数,约为5.67×10-8W/m 2.K 4,A 1为辐射面1的面积,F 12为由辐射面1到辐射面2的形状系数,T 1为辐射面1的绝对温度,T 2为辐射面2的绝对温度。
由上式可以看出,包含热辐射的热分析是高度非线性的。
四、稳态传热如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q 流入+q 生成-q 流出=0,则系统处于热稳态。
在稳态热分析中任一节点的温度不随时间变化。
稳态热分析的能量平衡方程为(以矩阵形式表示)[]{}{}K T Q =式中:[]K 为传导矩阵,包含导热系数、对流系数及辐射率和形状系数;{}T 为节点温度向量; {}Q 为节点热流率向量,包含热生成;ANSYS 利用模型几何参数、材料热性能参数以及所施加的边界条件,生成[]K 、{}T 以及{}Q 。
五、瞬态传热瞬态传热过程是指一个系统的加热或冷却过程。
在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。
根据能量守恒原理,瞬态热平衡可以表达为(以矩阵形式表示):[]{}[]{}{}C TK T Q +=式中:[]K 为传导矩阵,包含导热系数、对流系数及辐射率和形状系数;[]C 为比热矩阵,考虑系统内能的增加;{}T 为节点温度向量;{} T 为温度对时间的导数; {}Q 为节点热流率向量,包含热生成。
六、线性与非线性如果有下列情况产生,则为非线性热分析:①、材料热性能随温度变化,如K(T),C(T)等;②、边界条件随温度变化,如h(T)等;③、含有非线性单元;④、考虑辐射传热非线性热分析的热平衡矩阵方程为:()[]{}()[]{}()[]C T TK T T Q T += 七、边界条件、初始条件ANSYS 热分析的边界条件或初始条件可分为七种:温度、热流率、热流密度、对流、辐射、绝热、生热。
八、热分析误差估计• 仅用于评估由于网格密度不够带来的误差;• 仅适用于SOLID 或SHELL 的热单元(只有温度一个自由度);• 基于单元边界的热流密度的不连续;• 仅对一种材料、线性、稳态热分析有效;• 使用自适应网格划分可以对误差进行控制。
第三章 稳态传热分析一、稳态传热的定义稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度、热梯度、热流率、热流密度等参数二、热分析的单元热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种:线性:LINK32 两维二节点热传导单元LINK33 三维二节点热传导单元LINK34 二节点热对流单元LINK31 二节点热辐射单元二维实体: PLANE55 四节点四边形单元PLANE77 八节点四边形单元PLANE35 三节点三角形单元PLANE75 四节点轴对称单元PLANE78 八节点轴对称单元三维实体 SOLID87 六节点四面体单元SOLID70 八节点六面体单元SOLID90 二十节点六面体单元壳SHELL57 四节点点MASS71有关单元的详细解释,请参阅《ANSYS Element Reference Guide》三、ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:•前处理:建模•求解:施加载荷计算•后处理:查看结果1、建模①、确定jobname、title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。
2、施加载荷计算①、定义分析类型z如果进行新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-statez如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) :a、恒定的温度通常作为自由度约束施加于温度已知的边界上。
Command Family: DGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。
注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。
此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。
Command Family: FGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Flowc、对流对流边界条件作为面载施加于实体的外表面,计算与流体的热交换,它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流。
Command Family: SFGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Convectiond、热流密度热流密度也是一种面载。
当通过单位面积的热流率已知或通过FLOTRAN CFD 计算得到时,可以在模型相应的外表面施加热流密度。
如果输入的值为正,代表热流流入单元。
热流密度也仅适用于实体和壳单元。
热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载进行计算。
Command Family: FGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Fluxe、生热率生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热。
它的单位是单位体积的热流率。
Command Family: BFGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Generat③、确定载荷步选项对于一个热分析,可以确定普通选项、非线性选项以及输出控制。
a. 普通选项•时间选项:虽然对于稳态热分析,时间选项并没有实际的物理意义,但它提供了一个方便的设置载荷步和载荷子步的方法。
Command: TIMEGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps•每载荷步中子步的数量或时间步大小:对于非线性分析,每一载荷步需要多个子步。