热分析(ansys教程)..
《热分析ansys教程》课件
05
热分析优化设计
优化设计的基本概念
01
优化设计是一种通过数学模型和计算机技术,寻找满足特定条 件下的最优设计方案的方法。
02
优化设计的基本概念包括目标函数、设计变量、约束条件和求
解算法等。
热分析优化设计是针对热学问题,通过优化设计来提高产品的
03
热性能和降低能耗。
ANSYS优化设计的步骤
定义设计变量
网格质量检查
对生成的网格进行检查, 确保网格质量良好,没有 出现奇异点或扭曲。
边界条件的设置
确定边界条件
根据分析对象的实际情况,确定合适的边界条件,如温度、热流 率等。
设置边界条件
在ANSYS软件中,将确定的边界条件应用到几何模型上。
验证边界条件
对设置的边界条件进行验证,确保其合理性和准确性。
04
傅里叶定律
热量传递与温度梯度成正比,即热流密度与温度梯度 成正比。
牛顿冷却定律
物体表面与周围介质之间的温差与热流密度成正比。
热力学第一定律
能量守恒定律,表示系统能量的增加等于传入系统的 热量与系统对外界所做的功之和。
热分析的三种基本类型
稳态热分析
系统达到热平衡状态时的温度分布。
瞬态热分析
系统随时间变化的温度分布。
网格划分问题
网格划分不均匀
在某些区域,网格可能过于密集,而 在其他区域则可能过于稀疏,这可能 导致求解精度下降或求解失败。
网格自适应调整问题
在某些情况下,ANSYS可能无法正确 地自适应调整网格,导致求解结果不 准确。
网格划分问题
手动调整网格
手动调整网格密度,确保在关键区域有足够的网格密度。
使用更高级的网格划分工具
热分析(ansys教程)
1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。
Ansys12.0 Mechanical教程-5热分析
Workbench -Mechanical Introduction第六章热分析概念Training Manual •本章练习稳态热分析的模拟,包括:A.几何模型B B.组件-实体接触C.热载荷D.求解选项E E.结果和后处理F.作业6.1本节描述的应用般都能在ANSYS DesignSpace Entra或更高版本中使用,除了•本节描述的应用一般都能在ANSYS DesignSpace EntraANSYS Structural提示:在S S热分析的培训中包含了包括热瞬态分析的高级分析•ANSYSTraining Manual稳态热传导基础•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:()[]{}(){}T Q T T K =•假设:–在稳态分析中不考虑瞬态影响[K]可以是个常量或是温度的函数–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数稳态热传导基础Training Manual •上述方程基于傅里叶定律:•固体内部的热流(Fourier’s Law)是[K]的基础;•热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。
A. 几何模型Training Manual •热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在DesignModeler中定义•热分析里不可以使用点质量(Point Mass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度•但在线实体的轴向仍有温度变化… 材料特性Training Manual •唯一需要的材料特性是导热性(Thermal Conductivity)•Thermal Conductivity在Engineering Data 中输Engineering Data入•温度相关的导热性以表格形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。
ANSYS热分析指南——ANSYS稳态热分析word精品文档59页
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
《热分析ansys教程》课件
汽车发动机热分析
总结词
汽车发动机热分析用于研究发动机工作过程中的热量传递和热应力分布,以提高发动机 效率和可靠性。
详细描述
发动机是汽车的核心部件,其工作过程中会产生大量的热量。通过热分析,工程师可以 了解发动机内部的温度分布和热应力状况,优化发动机设计,提高其燃油效率和耐久性
。
建筑物的温度分布分析
热分析的基本原理
热分析是研究温度场分布、变化 和传递规律的科学,其基本原理 包括能量守恒、热传导、对流和 辐射等。
热分析的应用领域
热分析广泛应用于能源、动力、 化工、机械、电子等众多领域, 涉及传热、燃烧、材料热物性、 电子器件散热等方面。
热分析的常用软件
ANSYS是国际上最流行的热分析 软件之一,具有强大的建模、网 格划分、加载、求解和后处理功 能,广泛应用于工程实际和科学 研究。
模拟系统在稳定状态下温度分布和热流密 度的计算方法
总结词
适用于研究系统在稳定状态下的热性能和 热量传递机制。
详细描述
稳态热分析用于计算系统在稳定状态下温 度分布和热流密度,不考虑时间因素,只 考虑热平衡状态。
详细描述
在稳态热分析中,系统的温度分布和热流 密度不随时间变化,因此可以忽略时间积 分效应,简化计算过程。
施加边界条件和载荷
根据实际情况,为模型的边界施加固 定温度、热流等边界条件,以及热载 荷。
求解和结果查看
选择求解器
根据模型的大小和复杂程度,选择合适的求解器进行求解。
结果后处理与查看
查看温度分布、热流分布等结果,并进行必要的后处理,如云图显示、数据导 出等。
03
热分析的常用方法
稳态热分析
总结词
COMSOL Multiphysics
Ansys热分析教程_瞬态分析
载荷步和子步
在瞬态分析中,载荷步和子步的定义与非线性稳态分析十分类似。载 荷定义的每个载荷步的终点,并可以随时间阶跃或渐变的施加。 每个载荷步的求解是在子步上得到。 子步长根据时间积分步长得到。 自动时间步 (ATS) 同样适用于瞬态分析, 可以简化ITS选择。
ITS选择将影响到瞬态分析的精度和非线性收敛性 (如果存在)。
K T Q
n 1
K
Equivalent conductivity matrix
Q
Equivalent heat flow vector
If nonlinearities are present, the incremental form of this equation is iterated upon at every time point.
* MASS71热质量单元比较
特殊,它能够存贮热能单不 能传导热能。因此,本单元 不需要热传导系数。
瞬态分析前处理考虑因素(续)
象稳态分析一样,瞬态分析也可以是线性或非线性的。如果是 非线性的,前处理与稳态非线性分析有同样的要求。
稳态分析和瞬态分析对明显的区别在于加载和求解 过程。
在瞬态热分析数值方法的一个简单介绍以后,我们将集中解释 这些过程。
积分。
ANTYPE,TRANS + TIMINT,OFF ANTYPE,STATIC ANTYPE,STATIC + TIMINT,ON ANTYPE,TRANS
另外的时间积分例子
在本例中,不是在分析的开始关闭时间积分 效果来建立初始条件,而是在分析的结束关 闭时间积分来“加速”瞬态。
注意改变到稳态边界时 的突变。最后一个载荷 步的终止时间可以是任 意的,但必须比前面的瞬 态载荷步时间数值要大 。
Ansys热分析教程_第三章稳态热分析
质温度。该“附加”结点同样对结果评估带来方便。
前处理:建模
表面效应单元
表面效应单元 - 介绍
• 表面效应单元可以用来施加热生成载荷。 • 当对流换热系数随温度变化时,表面效应单元很方便; 基本选项的不同设置使得评
• 热流率
– 是集中结点载荷。正的热流率表示能量流入模型。热流率同样可以施 加在关键点上。这种载荷通常用于对流和热流不能施加的情况下。施
加该载荷到热传导率有很大差距的区域上时应注意。
热载荷和边界条件的类型
• 对流
– 施加在模型外表面上的面载荷,模拟平面和周围流体之间的热量交换。
• 热流
– 同样是面载荷。使用在通过面的热流率已知的情况下。正的热流值表示热流 输入模型。
前处理:建模
定义并查看材料特性
在ANSYS中定义材料特性的选项:
– 在材料特性对话框中输入需要的数值。 – 从ANSYS材料库或用户自定义材料库中读入材料特性。
在定义了材料特性以后,也可以将材料特性写到文件中以备后 用。
前处理:建模
定义并查看材料特性
要从材料库中读入材料特性,只要指定包含所需数据的文件路径 和文件名即可。
前处理:建模
定义并查看材料特性
稳态热分析中关于材料特性的总体说明
– 对于稳态分析,热材料特性必须输入热传导率“k”-KXX, 和可选的KYY, KZZ。
– 如果用户不定义,KYY和KZZ缺省等于KXX。 – 密度(DENS)和比热(C)或热焓(ENTH)在没有质量传递的稳态热分析中不
需要。 – 随温度变化的材料导热系数k, 使得热分析为非线性。 – 与温度有关的换热系数也被处理为材料特性。
热分析(ansys教程)..
施加载荷计算(续)
c、对流 对流边界条件作为面载施加于实体的外表面,计算与
流体的热交换,它仅可施加于实体和壳模型上,对 于线模型,可以通过对流线单元LINK34考虑对流。
Command Family: SF GUI:Main Menu>Solution>-Loads-Apply>-Thermal-
热传递的方式(续)
3、热辐射
✓ 热辐射指物体发射电磁能,并被其它物体吸收转变 为热的热量交换过程。物体温度越高,单位时间辐 射的热量越多。热传导和热对流都需要有传热介质, 而热辐射无须任何介质。实质上,在真空中的热辐 射效率最高。
✓ 在工程中通常考虑两个或两个以上物体之间的辐射,
系统中每个物体同时辐射并吸收热量。它们之间的
稳态传热
➢ 如果系统的净热流率为0,即流入系统的热量加上 系统自身产生的热量等于流出系统的热量:q流入+q 生成-q流出=0,则系统处于热稳态。在稳态热分析中 任一节点的温度不随时间变化。稳态热分析的能量 平衡方程为(以矩阵形式表示):[K]{T}={Q}
➢ 式中: [K]为传导矩阵,包含导热系数、对流系数 及辐射率和形状系数;{T}为节点温度向量;{Q}为 节点热流率向量,包含热生成;
✓ ANSYS热分析基于能量守恒原理的热平衡方程,用 有限元法计算各节点的温度,并导出其它热物理参 数
✓ ANSYS热分析包括热传导、热对流及热辐射三种热 传递方式。此外,还可以分析相变、有内热源、接 触热阻等问题
ANSYS的热分析分类
❖ ANSYS的热分析分类 ✓ 稳态传热:系统的温度场不随时间变化 ✓ 瞬态传热:系统的温度场随时间明显变化 ❖ 与热有关的耦合分析 ✓ 热-结构耦合 ✓ 热-流体耦合 ✓ 热-电耦合 ✓ 热-磁耦合 ✓ 热-电-磁-结构耦合等
(完整)ANSYS热分析详解
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED 五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位W/m 2—℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中:Q —— 热量; W —- 作功;∆U ——系统内能; ∆KE —-系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化. 三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:dxdT k q -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“—”表示热量流向温度降低的方向。
ANSYS热分析详解解析
A N S Y S热分析详解解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类稳态传热:系统的温度场不随时间变化瞬态传热:系统的温度场随时间明显变化四、耦合分析热-结构耦合热-流体耦合热-电耦合热-磁耦合热-电-磁-结构耦合等第二章基础知识一、符号与单位W/m 2-℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。
三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:dxdT kq -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。
ANSYS瞬态热分析教程及实例 ppt课件
定义密度
GUI:Main Menu > Preprocessor > Material Props > Thermal > Density
在弹出密度定义对话框中的DENS栏键入 “5000”。
命令:MPDATA,DENS,1,,5000 材料属性定义完毕.
PPT课件
PPT课件
QUST
13
3. 设置节点温度
命令:D
GUI:Main Menu > Solution > Define Loads > Apply > Thermal > Temperature > On Nodes
PPT课件
QUST
14
3. 设定非均匀的初始温度 命令:IC GUI:Main Menu > Solution > Define Loads
如果需要知道系统受随时间变化(或不变)的载荷和边 界条件时的响应,就需要进行“瞬态分析” 。
QUST
2
PPT课件
4. 瞬态传热分析
QUST
3
PPT课件
5. 瞬态传热分析
ANSYS 缺省是渐进加载的。渐进加载可以提 高瞬态求解的适应性,如果有非线性时可以提 高收敛性。
QUST
4
PPT课件
5. 瞬态传热分析
(1) 选择分析类型 选择Transient分析,操作如下:
PPT课件
QUST
36
GUI:Main Menu > Preprocessor > Loads > Analysis Type > New Analysis
选择Transient 分析,单击OK。采用ANSYS 默认设置,在弹出的子对话框中单击OK。
Ansys热分析教程(全)
目录第1章–介绍–概述–相关讲座&培训–其他信息来源第2章–基本概念第3章–稳态热传导(n o m a s s t r a n s p o r t o f h e a t)第4章–附加考虑非线性分析第5章–瞬态分析1-3 1-5 1-12 1-132-13-14-15-1第6章–复杂的,时间和空间变化的边界条件第7章–附加对流/热流载荷选项和简单的热/流单元第8章–辐射热传递–例题-使用辐射矩阵的热沉分析第9章–相变分析–相变分析例题-飞轮铸造分析第10章–耦合场分析6-1 7-18-1 8-43 9-1 9-14 10-1目录(续)第1章先决条件1章节内容概述12章节内容概述213章节内容概述310124章节内容概述43546章节内容概述6571章节内容概述7689章节内容概述1072相关讲座&培训2tT c h K Q qq E============t i m e t e m p e r a t u r e d e n s i t y s p e c i f i c h e a t f i l m c o e f f i c i e n t e m i s s i v i t y S t e f a n -B o l t z m a n n c o n s t a n t t h e r m a l c o n d u c t i v i t y h e a t f l o w (r a t e ) h e a t f l u x i n t e r n a l h e a t g e n e r a t i o n /v o l u m e e n e r g y ρεσ*&&&fA N S Y S()3223注,对于结构热容量,密度/G c和比热*G c经常使用该单位。
其中G c=386.4(l b m-i n c h)/(l b f-s e c2)A N S Y S(S I)3223–传导–对流–辐射•传导的热流由传导的傅立叶定律决定�•负号表示热沿梯度的反向流动(i .e ., 热从热的部分流向冷的).q K T n K T T n n n n n *=−∂∂=∂∂=h e a t f l o w r a t e p e r u n i t a r e a i n d i r e c t i o n n Wh e r e , = t h e r m a l c o n d u c t i v i t y i n d i r e c t i o n n= t e m p e r a t u r e t h e r m a l g r a d i e n t i n d i r e c t i o n n Tnq*dT d n•对流的热流由冷却的牛顿准则得出:•对流一般作为面边界条件施加qh T T h T T f S B f S B *()=−=h e a t f l o w r a t e p e r u n i t a r e a b e t w e e n s u r f a c e a n d f l u i d W h e r e , = c o n v e c t i v e f i l m c o e f f i c i e n t= s u r f a c e t e m p e r a t u r e = b u l k f l u i d t e m p e r a t u r e TB Ts•从平面i 到平面j 的辐射热流由施蒂芬-玻斯曼定律得出: •在A N S Y S 中将辐射按平面现象处理(i .e ., 体都假设为不透明的)。
ansys热分析
ANSYS热分析概述ANSYS是一种通用的有限元方法(Finite Element Method,FEM)软件,可以用于热分析。
热分析是通过模拟和分析物体的温度和热流来研究热传导、热膨胀、热辐射等热现象的一种方法。
在工程设计和科学研究中,热分析在许多领域都具有重要的应用价值。
在ANSYS中,热分析可以通过添加适当的热边界条件和材料参数来实现。
热分析步骤ANSYS热分析的一般步骤如下:1.几何建模:在ANSYS中创建或导入需要进行热分析的几何模型。
可以使用ANSYS的几何建模工具来创建模型,也可以从CAD软件中导入模型。
2.材料定义:定义模型中各个部分的材料属性。
对于热分析来说,主要需要定义材料的热导率、热容等参数。
ANSYS提供了各种材料模型和材料数据库来方便用户进行材料定义。
3.网格划分:将几何模型划分成小的有限元单元,以便将其离散化为一系列小区域。
这一步骤通常由ANSYS自动完成,但也可以手动调整网格密度和精度。
4.热边界条件:根据需要为模型设置热边界条件。
热边界条件包括固定温度、热通量、对流换热等。
这些边界条件将直接影响热分析的结果。
5.求解:使用ANSYS提供的求解器对热分析进行求解。
求解过程将根据模型的几何形状、材料属性和边界条件来计算模型的温度分布和热流。
6.结果分析:对求解得到的结果进行分析和后处理。
可以通过ANSYS提供的可视化工具、图表和数据输出来展示和分析计算结果。
根据需要,可以进一步优化模型和参数。
ANSYS热分析的应用领域ANSYS热分析在许多工程和科学领域都有广泛的应用。
以下是几个常见的应用领域:1. 热传导分析热传导分析是研究物体内部温度分布和热传导过程的一种方法。
它在热处理、电路设计、能源系统等领域有重要应用。
利用ANSYS进行热传导分析可以帮助工程师优化设计,改善热传导性能。
2. 热应力分析热应力分析是研究物体在热载荷下产生的应力和变形的一种方法。
热应力分析在焊接、高温材料等领域有应用。
ANSYS瞬态传热分析教程
ANSYS瞬态传热分析教程瞬态传热分析的定义瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。
在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。
瞬态热分析的基本步骤与稳态热分析类似。
主要的区别是瞬态热分析中的载荷是随时间变化的。
为了表达随时间变化的载荷,首先必须将载荷~时间曲线分为载荷步。
载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示。
对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。
瞬态热分析中的单元及命令瞬态热分析中使用的单元与稳态热分析相同。
要了解每个单元的详细说明,请参阅《A NSYS Element Reference Guide》ANSYS 瞬态热分析的主要步骤建模加载求解后处理建模确定jobname、title、units, 进入PREP7;定义单元类型并设置选项;如果需要,定义单元实常数;定义材料热性能:一般瞬态热分析要定义导热系数、密度及比热;建立几何模型;对几何模型划分网格。
加载求解1、定义分析类型如果第一次进行分析,或重新进行分析GUI: Main Menu>Solution>Analysis Type>New Analysis>TransientCommand: ANTYPE,TRANSIENT,NEW如果接着上次的分析继续进行(例如增加其它载荷)GUI: Main Menu>Solution>Analysis Type>RestartCommand: ANTYPE,TRANSIENT,REST2、获得瞬态热分析的初始条件①、定义均匀温度场如果已知模型的起始温度是均匀的,可设定所有节点初始温度Command:TUNIFGUI: Main Menu> Solution>-Loads->Settings>Uniform Temp如果不在对话框中输入数据,则默认为参考温度,参考温度的值默认为零,但可通过如下方法设定参考温度:Command:TREFGUI: Main Menu> Solution>-Loads->Settings>Reference Temp注意:设定均匀的初始温度,与如下的设定节点的温度(自由度)不同Command:DGUI: Main Menu>Solution>-Loads->Apply>-Thermal->Temperature>On Nodes初始均匀温度仅对分析的第一个子步有效;而设定节点温度将保持贯穿整个瞬态分析过程,除非通过下列方法删除此约束:Command:DDELEGUI: Main Menu> Solution>-Loads->Delete>-Thermal-Temperature>On Nodes②、设定非均匀的初始温度在瞬态热分析中,节点温度可以设定为不同的值:Command:ICGUI: Main Menu> Solution>Loads>Apply>-Initial Condit'n>Define如果初始温度场是不均匀的且又是未知的,就必须首先作稳态热分析确定初始条件:设定载荷(如已知的温度、热对流等)将时间积分设置为OFF:Command: TIMINT, OFFGUI: Main Menu> Preprocessor>Loads>-Load Step Opts-Time/Frequen c>Time Integration设定一个只有一个子步的,时间很小的载荷步(例如0.001):Command: TIMEGUI: Main Menu> Preprocessor>Loads>-Load Step Opts-Time/Frequen c>Time and Substps写入载荷步文件:Command:LSWRITEGUI: Main Menu> Preprocessor>Loads>Write LS File或先求解:Command:SOLVEGUI: Main Menu> Solution>Solve>Current LS注意:在第二载荷步中,要删去所有设定的温度,除非这些节点的温度在瞬态分析与稳态分析相同。
ANSYS Workbench 热分析教程
图 3-1 平行平板辐射模型
3.2. 问题分析
该问题为稳态辐射换热问题,分析思路如下: 1. 2. 3. 4. 5. 6. 7. 8. 选择稳态热分析系统。 确定材料参数:稳态辐射换热问题,仅输入平板导热系数。 【DesignModeler】建立两平板几何模型。 进入【Mechanical】分析程序。 网格划分:采用系统默认网格。 施加边界条件:平板四周对称面无热量交换,为绝热边界,系统默认无需输入,环 境温度 20℃。 设置需要的结果:温度分布。 求解及结果显示。
图 2-2 建立保温桶分析文件
2、确定材料参数(图 2-3) 1) 编辑工程数据模型,添加材料的导热率,右击鼠标选择【Engineering Data】 【Edit】 2) 工程数据属性中增加新材料: 【Outline of Schematic A2:Engineering Data】 【Click here to add new material】输入材料名称 Aluminium 3) 选择【Thermal】 【Isotropic Thermal Conductivity】 4) 选择铝材料属性【Properties of Outline Row 3: Aluminium】 【Isotropic Thermal Conductivity】 5) 出现【Table of Properties Row 2: Thermal Conductivity】材料属性表,双击鼠标, 点击每个区域输入材料属性参数:温度 20℃,导热率 236W/(m·℃)。 6) 参数输完后,工程数据表显示导热率-温度图表。 7) 同样输入树脂基复合材料热传导率 0.055W/(m· ℃)。 8) 同样输入钢材料热传导率 70W/(m·℃)。
图 2-12 施加内层表面温度
ansys热分析实例教程
Temperature distribution in a CylinderWe wish to compute the temperature distribution in a long steel cylinder with inner radius 5 inches and outer radius 10 inches. The interior of the cylinder is kept at 75 deg F, and heatis lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F and the thermal conductivity for steel is 0.69 BTU/hr-in-F.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. Recognize symmetry of the problem, and a quadrant of a section through the cylinder is created using ANSYS area creation tools. Preprocessor -> Modeling -> Create -> Areas -> Circle -> Partial annulusThe following geometry is created.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Thermal Solid -> Solid 8 node 77 -> OK -> Close5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area and refine using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the convection coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesTo account for symmetry, select the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperaturesThe temperature on the interior is 75 F and on the outside wall it is found to be 45. These results can be checked using results from heat transfer theory.BackThermal Stress of a Cylinder using Axisymmetric ElementsA steel cylinder with inner radius 5 inches and outer radius 10 inches is 40 inches long and has spherical end caps. The interior of the cylinder is kept at 75 deg F, and heat is lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F. Calculate the stresses in the cylinder caused by the temperature distribution.The problem is solved in two steps. First, the geometry is created, the preference set to'thermal', and the heat transfer problem is modeled and solved. The results of the heat transfer analysis are saved in a file 'jobname.RTH' (Results THermal analysis) when you issue a save jobname.db command.Next the heat transfer boundary conditions and loads are removed from the mesh, the preference is changed to 'structural', the element type is changed from 'thermal' to 'structural', and the temperatures saved in 'jobname.RTH' are recalled and applied as loads.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. A quadrant of a section through the cylinder is created using ANSYS area creation tools.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Solid 8 node 77 -> OK ->Options -> K3 Axisymmetric -> OK5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesSelect the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperatureThe temperature on the interior is 75 F and on the outside wall it is found to be 43.12. File -> Save Jobname.db13. Preprocessor -> Loads -> Delete -> Delete All -> Delete All Opts.14. Preferences -> Structural will show, Thermal will NOT show.15. Preprocessor -> Element Type -> Switch Element Type -> OK (This changes the element to structural)16. Preprocessor -> Loads -> Apply -> Displacements -> Nodes(Fix nodes on vertical and horizontal lines of symmetry from crossing the lines of symmetry.)17. Preprocessor -> Loads -> Apply -> Temperature -> From Thermal AnalysisSelect Jobname.RTH (If it isn't present, look for the default 'file.RTH' in the root directory)18. Solution -> Solve Current LS19. General Postprocessor -> Plot Results -> Element Solution - von Mises StressThe von Mises stress is seen to be a maximum in the end cap on the interior of the cylinder and would govern a yield-based design decision.Back。
Ansys热分析教程(全)
generated
• 将其应用到一个微元体上,就可以得到热传导的控制微分方程。
控制微分方程
• 热传导的控制微分方程
F I F I F I ∂ HG KJ HG KJ HG KJ ∂x
Kxx
∂T ∂x
+∂ ∂y
K yy
∂T ∂y
+∂ ∂z
Kzz
∂T ∂z
+ &q&& = ρc dT dt
expanding the total time derivative, yields
热传递的类型
• 热传递有三种基本类型: – 传导 - 两个良好接触的物体之间的能量交换或一个物体内由于温 度梯度引起的内部能量交换。 – 对流 - 在物体和周围介质之间发生的热交换。 – 辐射 - 一个物体或两个物体之间通过电磁波进行的能量交换。
• 在绝大多数情况下,我们分析的热传导问题都带有对流和/或辐射边 界条件。
Hale Waihona Puke dT dt=∂T ∂t
+ Vx
∂T ∂x
+ Vy
∂T ∂y
+ Vz
∂T ∂z
where Vx ,Vy ,Vz = velocities of the conducting medium.
The terms which include velocities come from mass transport of heat effects. It is interesting to note that, even in steady - state, ρ and c are important when mass transport of heat effects are included.
ansys workbench热分析教程
ansys workbench热分析教程6-1•本章练习稳态热分析的模拟,包括:A、几何模型B、组件-实体接触C、热载荷D、求解选项E、结果与后处理F、作业6、1• 本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使用,除了ANSYS Structural• 提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得: [K(T)]{T}= {Q(T )} •假设:–在稳态分析中不考虑瞬态影响–[K] 可以就是一个常量或就是温度的函数–{Q}可以就是一个常量或就是温度的函数•上述方程基于傅里叶定律:• 固体内部的热流(Fourier’s Law)就是[K]的基础;• 热通量、热流率、以及对流在{Q} 为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析就是很重要的。
•热分析里所有实体类都被约束:–体、面、线•线实体的截面与轴向在D esignModeler中定义• 热分析里不可以使用点质量(Point Mass)的特性•壳体与线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上就是一个常量温度• 但在线实体的轴向仍有温度变化• 唯一需要的材料特性就是导热性(Thermal Conductivity )• Thermal Conductivity 在 Engineering Data 中输 入• 温度相关的导热性以表格 形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。
… 材料特性Training ManualB、组件-实体接触Training Manual•对于结构分析,接触域就是自动生成的,用于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。
–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
施加载荷计算(续)
c、对流 对流边界条件作为面载施加于实体的外表面,计算与
流体的热交换,它仅可施加于实体和壳模型上,对 于线模型,可以通过对流线单元LINK34考虑对流。
Command Family: SF GUI:Main Menu>Solution>-Loads-Apply>-Thermal-
划分网格(续)
材料属性
必须输入导热系数, KXX 如果施加了内部热生成率,则需指定比热 (C) ANSYS提供的材料库 (/ansys57/matlib)包括几种
常用材料的结构属性 和热属性, 但是建议用户创 建、使用自己的材料库 把优先设置为 “热分析” ,使材料模型图形用 户界面只显示材料的热属性
热分析的单元
热分析涉及到的单元有大约40种,其中纯粹用于 热分析的有14种:
线性:LINK32 两维二节点热传导单元 LINK33 三维二节点热传导单元 LINK34 二节点热对ANE55 四节点四边形单元 PLANE77 八节点四边形单元 PLANE35 三节点三角形单元 PLANE75 四节点轴对称单元 PLANE78 八节点轴对称单元
单元类型
❖下表给出了常用的热单元类型 ❖每个结点只有一个自由度: 温度
Linear Quadratic
2-D Solid
PLANE55 PLANE77 PLANE35
3-D Solid
SOLID70 SOLID90 SOLID87
3-D Shell
SHELL57
Line Elements LINK31,32,33,34
施加载荷计算(续)
e、生热率 生热率作为体载施加于单元上,可以模拟化学反应生
热或电流生热。它的单位是单位体积的热流率。 Command Family: BF GUI : Main Menu>Solution>-Loads-Apply>-
Thermal-Heat Generat
施加载荷计算(续)
③定载荷步选项 对于一个热分析,可以确定普通选项、非线性选项以
稳态传热
➢ 如果系统的净热流率为0,即流入系统的热量加上 系统自身产生的热量等于流出系统的热量:q流入+q 生成-q流出=0,则系统处于热稳态。在稳态热分析中 任一节点的温度不随时间变化。稳态热分析的能量 平衡方程为(以矩阵形式表示):[K]{T}={Q}
➢ 式中: [K]为传导矩阵,包含导热系数、对流系数 及辐射率和形状系数;{T}为节点温度向量;{Q}为 节点热流率向量,包含热生成;
(边界条件) : a、恒定的温度
通常作为自由度约束施加于温度已知的边界上。
Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-
Temperature
施加载荷计算(续)
b、热流率 热流率作为节点集中载荷,主要用于线单元模型中
(通常线单元模型不能施加对流或热流密度载荷), 如果输入的值为正,代表热流流入节点,即单元 获取热量。如果温度与热流率同时施加在一节点 上则ANSYS读取温度值进行计算。 注意:如果在实体单元的某一节点上施加热流率, 则此节点周围的单元要密一些,在两种导热系数 差别很大的两个单元的公共节点上施加热流率时, 尤其要注意。此外,尽可能使用热生成或热流密 度边界条件,这样结果会更精确些。 Command Family: F GUI : Main Menu>Solution>-Loads-Apply>Thermal-Heat Flow
一个自由度); ➢ 基于单元边界的热流密度的不连续; ➢ 仅对一种材料、线性、稳态热分析有效; ➢ 使用自适应网格划分可以对误差进行控制。
稳态传热分析
➢ 稳态传热用于分析稳定的热载荷对系统或部件 的影响。通常在进行瞬态热分析以前,进行稳 态热分析用于确定初始温度分布。
➢ 稳态热分析可以通过有限元计算确定由于稳定 的热载荷引起的温度、热梯度、热流率、热流 密度等参数
热分析
➢ 热分析的目的
➢ 热分析用于计算一个系统或部件的温度分布及其 它热物理参数,如热量的获取或损失、热梯度、 热流密度(热通量)等
➢ 热分析在许多工程应用中扮演重要角色,如内燃 机、涡轮机、换热器、管路系统、电子元件等
ANSYS的热分析
在 ANSYS/Multiphysics 、 ANSYS/Mechanical 、 ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED 五种产品中包含热分析功能
选项; ③定义单元实常数; ④定义材料热性能参数,对于稳态传热,一般只
需定义导热系数,它可以是恒定的,也可以随 温度变化; ⑤创建几何模型并划分网格。
几何尺寸(模型)
❖ 既可用ANSYS建立模型,也可用其它方法建好模 型后导入
❖ 模型建好后,以上两种建模方法的具体过程将不 再显示
划分网格
❖ 首先定义单元属性: 单元类型, 实常数, 材料属性.
✓ ANSYS热分析基于能量守恒原理的热平衡方程,用 有限元法计算各节点的温度,并导出其它热物理参 数
✓ ANSYS热分析包括热传导、热对流及热辐射三种热 传递方式。此外,还可以分析相变、有内热源、接 触热阻等问题
ANSYS的热分析分类
❖ ANSYS的热分析分类 ✓ 稳态传热:系统的温度场不随时间变化 ✓ 瞬态传热:系统的温度场随时间明显变化 ❖ 与热有关的耦合分析 ✓ 热-结构耦合 ✓ 热-流体耦合 ✓ 热-电耦合 ✓ 热-磁耦合 ✓ 热-电-磁-结构耦合等
ANSYS代号
KXX HF DENS C ENTH
表征物体吸收的热量,为一个体系的内能与体系的体积和外界施加 于体系的压强的乘积之和
传热学经典理论回顾
热传递的方式
1、热传导 ✓ 热传导可以定义为完全接触的两个物体之间或一个
物体的不同部分之间由于温度梯度而引起的内能的 交换。热传导遵循付里叶定律:qn=-k*(dT/dx),式 中qn为热流密度(W/m2),k为导热系数(W/m-℃), “-”表示热量流向温度降低的方向。 2、热对流 ✓ 热对流是指固体的表面与它周围接触的流体之间, 由于温差的存在引起的热量的交换。热对流可以分 为两类:自然对流和强制对流。热对流用牛顿冷却 方数体(表程或面来称的描膜温述传度:热,系qnT数=B为、h*周给(T围热S-流系TB体数),的、式温膜中度系h。数为等对)流,换TS热为系固
[C(T)]{T }+[K(T)]{T}={Q (T)}
边界条件、初始条件
ANSYS热分析的边界条件或初始条件可分为七种: ✓ 温度:模型区温度已知 ✓ 热流率:热流率已知的点 ✓ 对流:表面的热传递给周围的流体通过对流。输
入对流换热系数h和环境流体的 平均温度Tb ✓ 热辐射:通过辐射产生热传递的面. 输入辐射系
Convection
施加载荷计算(续)
d、热流密度 热流密度也是一种面载。当通过单位面积的热流率已
知或通过FLOTRAN CFD计算得到时,可以在模型 相应的外表面施加热流密度。如果输入的值为正, 代表热流流入单元。热流密度也仅适用于实体和壳 单元。热流密度与对流可以施加在同一外表面,但 ANSYS仅读取最后施加的面载进行计算。 Command Family: F GUI : Main Menu>Solution>-Loads-Apply>Thermal-Heat Flux
热传递的方式(续)
3、热辐射
✓ 热辐射指物体发射电磁能,并被其它物体吸收转变 为热的热量交换过程。物体温度越高,单位时间辐 射的热量越多。热传导和热对流都需要有传热介质, 而热辐射无须任何介质。实质上,在真空中的热辐 射效率最高。
✓ 在工程中通常考虑两个或两个以上物体之间的辐射,
系统中每个物体同时辐射并吸收热量。它们之间的
实常数
主要应用于壳单元和线单元
划分网格(续)
❖ 划分网格 存储数据文件 使用 MeshTool 划分网格,使用缺省的智能网格 划分级别6可以生成很好的初始网格
❖ 至此完成前处理,下面开始求解
施加载荷计算
① 定义分析类型 ❖ 如果进行新的热分析:
Command: ANTYPE, STATIC, NEW GUI: Main menu>Solution>-Analysis Type->New
热分析的单元(续)
三维实体:SOLID87 六节点四面体单元
SOLID70 八节点六面体单元
SOLID90 二十节点六面体单元
壳:
SHELL57 四节点
点:
MASS71
稳态热分析的基本过程
ANSYS热分析可分为三个步骤: • 前处理:建模 • 求解:施加载荷计算 • 后处理:查看结果
建模
①确定jobname、title、unit; ②进入PREP7前处理,定义单元类型,设定单元
➢ ANSYS利用模型几何参数、材料热性能参数以及 所施加的边界条件,生成[K] 、 {T}以及{Q} 。
瞬态传热
➢ 瞬态传热过程是指一个系统的加热或冷却过程。 在这个过程中系统的温度、热流率、热边界条 件以及系统内能随时间都有明显变化。根据能 量守恒原理,瞬态热平衡可以表达为(以矩阵 形式表示):[C]{ }+[TK ]{T}={Q}
热分析的符号与单位
项目 长度 时间 质量 温度 力 能量(热量) 功率(热流率) 热流密度 生热速率 导热系数 对流系数 密度 比热 焓
国际单位
m s Kg ℃
N J W W/m2 W/m3 W/m-℃ W/m2-℃ Kg/m3 J/Kg-℃ J/m3
英制单位 ft[英尺]
s lbm [磅质量]
oF lbf BTU[英制热单位] BTU/sec BTU/sec-ft2 BTU/sec-ft3 BTU/sec-ft-oF BTU/sec-ft2-oF lbm/ft3 BTU/lbm-oF BTU/ft3