2020 人教版 九年级 圆专题复习练习题(有部分答案)

合集下载

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

中考专题——与圆有关的证明和计算纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;一般在10分-15分左右,以后发展中利用圆的知识与其他知识点如函数,方程等相结合作为中考压轴题将会占有非常重要的地位。

考查的类型:(1)线段、角以及切线的证明;(2)利用勾股定理、相似以及锐角三角函数进行线段,比值和阴影面积的求解.例题精讲:1、如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).2、如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.3、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.4、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.5、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.补充练习:1、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若∠C=60°,⊙O的半径为2,求由弧DE,线段DF,EF围成的阴影部分的面积(结果保留根号和π)2、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).3、如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4、如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)5、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)判断CE与⊙O的位置关系,并说明理由;(2)若∠DBA=30°,CG=8,求BE的长.6、如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE于点D.(1)求证:DC是⊙O的切线;3,求DE的长;(2)若AO=6,DC=33,求图中阴影部分面积.(3)过点C作CF⊥AB于F,如图2,若AD-OA=1.5,AC=3答案解析例题精讲:1、(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=A0=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.2、(1)证明:∵∵ABC=∵APC,∵BAC=∵BPC,∵APC=∵CPB=60°,∵∵ABC=∵BAC=60°,∵∵ABC是等边三角形.(2)解:∵∵ABC是等边三角形,AB=2,∵AC=BC=AB=2,∵ACB=60°.在Rt∵PAC中,∵PAC=90°,∵APC=60°,AC=2,∵AP=AC•cot∵APC=2.在Rt∵DAC中,∵DAC=90°,AC=2,∵ACD=60°,∵AD=AC•tan∵ACD=6.∵PD=AD﹣AP=6﹣2=4.3、(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.4、(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,∵OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.5、(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD ⊥AB ,∴∠OAC+∠AEO =90°, ∴∠OCA+∠FCE =90°,即OC ⊥FC ,∴CF 与⊙O 相切;(2)解:∵OD ⊥AB ,AC ⊥BD ,∴∠AOE =∠ACD =90°,∵∠AEO =∠DEC ,∴∠OAE =∠CDE =22.5°, ∵AO =BO ,∴AD =BD ,∴∠ADO =∠BDO =22.5°,∴∠ADB =45°,∴∠CAD =∠ADC =45°,∴AC =CD .补充练习:1、(1)如图,连接OD ∵AB 为⊙O 的直径∴AD ⊥BC ∵AB=AC ∴BD=CD ,D 为BC 中点∵O 为AB 中点∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 为⊙O 的切线(2)如图,连接OE 、OD ∵AB=AC ,∠C=60°∴△ABC 为等边三角形∴∠B=∠A=60°,AB=AC=BC=2⨯2=4∵OA=OB=OD=OE ∴△OAE ,△OBD 都是等边三角形∴∠ODB=∠BOD=∠AOE -∠OEA=∠C=60° ∴∠DOE=180°-2⨯60°=60°,OD ∥AC ,OE ∥BC ∴四边形ODCE 是平行四边形∴OD=CE=BD=CD=2∴DF=CDsin60°=3232=⨯,CF=CDcos60°=1212=⨯ ∴ππ32-323360260-3121-32--2=⨯⨯⨯⨯==∆ODE CDF S S S S 扇形平行四边形阴影2、(1)证明:连接DE 、OD ∵BC 相切⊙O 于点D ∴∠CDA=∠AED ∵AE 为直径∴∠ADE=90°∵AC ⊥BC ∴∠ACD=90°∴∠DAO=∠CAD ∴AD 平分∠BAC(3)在Rt △ABC 中,∠C=90°,AC=BC ∴∠B=∠BAC=45°∵BC 相切⊙O 于点D ∴∠ODB=90°∴OD=BD ,∠BOD=45°设BD=x ,则OD=OA=x ,0B=3x ∴BC=AC=x+1∵AC 2+BC 2=AB 2∴22)2()12x x x +=+( 所以x=2∴BD=OD=2 ∴()4-1360245-22212ππ=⨯⨯=-∆=DOE S BOD S S 扇形阴影3、(1)证明:连接OD ,∵AB=AC ,∴∠B=∠C 。

2020年九年级中考数学复习专题训练:《圆的综合 》(含答案)

2020年九年级中考数学复习专题训练:《圆的综合 》(含答案)

2020年九年级中考数学复习专题训练:《圆的综合》1.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O,交AB于点D.(1)若AB=8,∠ABC=30°,求⊙O的半径;(2)若点E是边BC的中点,连结DE,求证:直线DE是⊙O的切线;(3)在(1)的条件下,保持Rt△ACB不动,将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,当⊙O′与直线AB相切时,m=.2.如图,矩形ABCD中,AB=13,AD=6.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G.(1)当E是CD的中点时:tan∠EAB的值为;(2)在(1)的条件下,证明:FG是⊙O的切线;(3)试探究:BE能否与⊙O相切?若能,求出此时BE的长;若不能,请说明理由.3.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G 在BC 上,点O 在线段AB 上,且AO ≥BO .以OF 为半径的⊙O 与直线AB 交于点M ,N . (1)如图1,若点O 为AB 中点,且点D ,点C 都在⊙O 上,求正方形BEFG 的边长. (2)如图2,若点C 在⊙O 上,求证:以线段OE 和EF 为邻边的矩形的面积为定值,并求出这个定值.(3)如图3,若点D 在⊙O 上,求证:DO ⊥FO .4.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC . (1)求∠ADB 的度数;(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO 于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 的半径.5.定义:当点P在射线OA上时,把的的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA 上的射影值均为=.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形.其中真命题有.A.①②B.①③C.②③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以〇为圆心,OA为半径画圆,点B是⊙O 上任意点.①如图2,若点B在射线OA上的射影值为.求证:直线BC是⊙O的切线;②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式为.6.问题发现:(1)如图1,△ABC内接于半径为4的⊙O,若∠C=60°,则AB=;问题探究:(2)如图2,四边形ABCD内接于半径为6的⊙O,若∠B=120°,求四边形ABCD的面积最大值;解决问题:(3)如图3,一块空地由三条直路(线段AD、AB、BC)和一条弧形道路围成,点M 是AB道路上的一个地铁站口,已知AD=BM=1千米,AM=BC=2千米,∠A=∠B=60°,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M处,另外三个入口分别在点C、D、P处,其中点P在上,并在公园中修四条慢跑道,即图中的线段DM、MC、CP、PD,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.7.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)求证:直线PQ为⊙O的切线;(2)若直径AB的长为4.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.8.已知AB是⊙O的直径,DA为⊙O的切线,切点为A,过⊙O上的点C作CD∥AB交AD于点D,连接BC、AC.(1)如图①,若DC为⊙O的切线,切点为C,求∠ACD和∠DAC的大小.(2)如图②,当CD为⊙O的割线且与⊙O交于点E时,连接AE,若∠EAD=30°,求∠ACD和∠DAC的大小.9.已知AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线一点,连接AC.(Ⅰ)如图①,OB=BD,若DC与⊙O相切,求∠D和∠A的大小;(Ⅱ)如图②,CD与⊙O交于点E,AF⊥CD于点F连接AE,若∠EAB=18°,求∠FAC的大小.10.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC,BD,垂足分别为C,D,连接AM.(1)求证:AM平分∠CAB;(2)若AB=4,∠APE=30°,求的长.11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F,交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=,求CF的长.12.已知,点A为⊙O外一点,过A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=∠DPA.(1)求证:PO=PD;(2)若AC=,求⊙O的半径.13.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=.14.如图,在∠DAM内部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点N 为BC的中点,动点E由A点出发,沿AB运动,速度为每秒5个单位,动点F由A点出发,沿AM运动,速度为每秒8个单位,当点E到达点B时,两点同时停止运动,过A、E、F作⊙O.(1)判断△AEF的形状为,并判断AD与⊙O的位置关系为;(2)求t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为;(注:当A、E、F重合时,内心就是A点)(4)直接写出线段EN与⊙O有两个公共点时,t的取值范围为.(参考数据:sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)15.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM的值.16.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.17.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC 边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tan B=,tan C=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.18.如图,在等腰三角形ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,过点C作⊙O的切线交AB的延长线于点P.(1)求证:∠CAB=2∠BCP;(2)若⊙O的直径为5,sin∠BCP=,求△ABC内切圆的半径;(3)在(2)的条件下,求△ACP的周长.19.已知四边形ABCD为⊙O的内接四边形,直径AC与对角线BD相交于点E,作CH⊥BD于H,CH与过A点的直线相交于点F,∠FAD=∠ABD.(1)求证:AF为⊙O的切线;(2)若BD平分∠ABC,求证:DA=DC;(3)在(2)的条件下,N为AF的中点,连接EN,若∠AED+∠AEN=135°,⊙O的半径为2,求EN的长.20.如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.(1)求证:AO是△CAB的角平分线;(2)若tan∠D=,求的值;(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.参考答案1.解:(1)在Rt△ABC中,∵AB=8,∠ABC=30°,∴AC=AB sin∠ABC=8sin30°=4,∴⊙O的半径为2;(2)证明:连接OD,CD,∵AC为⊙O的直径,∴CD⊥AB,∴∠CDB=90°,∵点E是边BC的中点,∴DE=CE=CB,∴∠DCE=∠CDE,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ACD+∠DCE=90°,∴∠ODE=∠ODC+∠CDE=90°,∴OD⊥DE,∴直线DE是⊙O的切线;(3)连接OO′交AB于F,设⊙O′与AB相切于G,连接O′G,则∠O′GF=90°,∵将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,∴OO′∥BC,AO=O′G,∴∠AOF=∠ACB=90°,∵∠AFO=∠O′FG,∴△AOF≌△O′GF(AAS),∴O′F=AF,∵在Rt△AOF中,∵∠A=60°,AO=2,∴AF=4,OF=2,∴O′F=AF=4,∴OO′=4+2,∴m=4+2.故答案为:4+2.2.(1)解:∵四边形ABCD是矩形,∴∠D=90°,CD∥AB,CD=AB=13,∴∠EAB=∠DEA,∵E是CD的中点,∴DE=CD=,∴tan∠DEA===.故答案为:.(2)证明:连接OF,在矩形ABCD中,AD=BC,∠ADE=∠BCE=90°,又CE=DE,∴△ADE≌△BCE(SAS),∴AE=BE,∴∠EAB=∠EBA.∵OF=OA,∴∠OAF=∠OFA,∴∠OFA=∠EBA.∴OF∥EB.∵FG⊥BE,∴FG⊥OF,∴FG是⊙O的切线.(3)解:若BE能与⊙O相切,由AE是⊙O的直径,则AE⊥BE,∠AEB=90°.设DE=x,则EC=13﹣x.由勾股定理得:AE2+EB2=AB2,即(36+x2)+[(13﹣x)2+36]=132,整理得x2﹣13x+36=0,解得:x1=4,x2=9,∴DE=4或9,当DE=4时,CE=9,BE===3,当DE=9时,CE=4,BE===2,∴BE能与⊙O相切,此时BE=2或3.3.解:(1)如图1,连接OC,∵四边形ABCD和四边形BEFG为正方形,∴AB=BC=1,BE=EF,∠OEF=∠ABC=90°,∵点O为AB中点,∴OB=AB=,设BE=EF=x,则OE=x+,在Rt△OEF中,∵OE2+EF2=OF2,∴,在Rt△OBC中,∵OB2+BC2=OC2,∴=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴,解得:x=,∴正方形BEFG的边长为;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=,即x(x+y)=,∴EF×OE=,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1﹣a,则OE=1﹣a+b,∵∠DAO=∠OEF=90°,∴DA2+OA2=OD2,OE2+EF2=OF2,∴12+a2=OD2,(1﹣a+b)2+b2=OF2,∵OD=OF,∴12+a2=(1﹣a+b)2+b2,∴(b+1)(a﹣b)=0,∵b+1≠0,∴a﹣b=0,∴a=b,∴OA=EF,在Rt△AOD和Rt△EFO中,,∴Rt△AOD≌Rt△EFO(HL),∴∠FOE=∠ODA,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO⊥FO.4.解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA 2+CF 2=EF 2, ∴EA 2+CF 2=EF 2,∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH , ∴S △ABC =S 矩形BGKH ,∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =3, ∴CF =(k +3),EF =(8k ﹣3),∵EA 2+CF 2=EF 2, ∴+=,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣(舍去),k 2=1.∴AB =12,∴AO =AB =6,∴⊙O的半径为6.5.解:(1)①错误.点B在射线OA上的射影值小于1时,∠OBA可以是钝角,故△OAB 不一定是锐角三角形;②正确.点B在射线OA上的射影值等于1时,AB⊥OA,∠OAB=90°,△OAB是直角三角形;③正确.点B在射线OA上的射影值大于1时,∠OAB是钝角,故△OAB是钝角三角形;故答案为:B.(2)①如图2,作BH⊥OC于点H,∵点B在射线OA上的射影值为,∴=,=,CA=OA=OB=1,∴=,又∵∠BOH=∠COB,∴△BOH∽△COB,∴∠BHO=∠CBO=90°,∴BC⊥OB,∴直线BC是⊙O的切线;②图形是上下对称的,只考虑B在直线OC上及OC上方部分的情形.过点D作DM⊥OC,作DN⊥OB,当∠DOB<90°时,设DM=h,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DN=OC×DM,∴DN=2h,∵在Rt△DON和Rt△DOM中,OD2=DN2+ON2=DM2+OM2,∴4h2+y2=h2+x2,∴3h2=x2﹣y2①,∵BD2=CD2,∴4h2+(1﹣y)2=h2+(2﹣x)2②,①②消去h得:y=2x﹣.如图,当∠BOD=90°时,过点D作DM⊥OC于点M,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DO=OC×DM,∵CA=OA=OB=1,∴OD=2DM,∴sin∠DOM=,∴∠DOM=30°,设DM=h,则OD=2h,OM=h,∴h2+=1+4h2,∴h=,∴OM=,当点B在OC上时,OD=,综上所述,当≤x≤时,y=0;当<x≤时,y=2x﹣.故答案为:y=0(≤x≤)或y=2x﹣(<x≤).6.解:(1)如图1,连接OA、OB,过点O作OH⊥AB于点H,∵∠C=60°,∴∠AOB=120°,∵OA=OB,∴△OAB为等腰三角形,∵OH⊥AB,∴∠AOH=∠BOH=60°,∴AH=OA sin∠AOH=4×=2,则AB=2AH=4;故答案为4;(2)如图2,连接AC,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F,∵四边形ABCD的面积S=AC×DE AC×BF=AC×(DE+BF),∴当D、E、F、B四点共线且为直径时,四边形ABCD的面积S最大;∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=120°,在△AOC中,由(1)知,AC=2×OA sin60°=2×6×=6,∴四边形ABCD的面积S的最大值为:×AC×BD=6×12=36,故四边形ABCD的面积的最大值为36;(3)如图3,过点D作DK⊥AB于点K,连接CD,在△ADM中,DK=AD•sin A=1×=,同理AK=,则KM=AM﹣AK=2﹣=,则tan∠DMK==∴∠DMK=30°,故△ADM为直角三角形,同理△CMB为直角三角形,在Rt△ADM中,DM===,∴∠DMC=180°﹣∠DMA﹣∠CMB=60°∵AD=BM,AM=BC,∠A=∠B=60°,∴Rt△ADM≌Rt△BMC(SAS),∴DM=CM,∴△CDM为等边三角形;设所在的圆的圆心为R,连接DR、CR、MR,∵DM=CM,RM=RM,DR=CR,∴△DRM≌△CRM(SSS),∴∠DMR=∠CMR=∠DMC=30°,在△DMR中,DR=1,∠DMR=30°,DM==CM,过点R作RH⊥DM于点H,则RM===1=RD,故D、P、C、M四点共圆,∴∠DPC=120°,如图4,连接MP,在PM上取PP′=PC,∵△CDM为等边三角形,∴∠CDM=60°=∠CPM,∴△P′PC为等边三角形,则PP′=P′C=PC,∵∠PMC=∠PDC,∠CP′M=180°﹣∠PP′C=120°=∠DPC,CD=CM,∴△PDC≌△P′MC(AAS),∴PD=P′M,∴PD+PC=PP′+PD=PP′+P′M=PM,故当PM是直径时,PD+PC最大值为2;∵四边形DMCP的周长=DM+CM+PC+PD=2+PD+PC,而PD+PC最大值为2;故四边形DMCP的周长的最大值为:2+2,即四条慢跑道总长度(即四边形DMCP的周长)最大为2+2.7.(1)证明:∵OQ∥AP,∴∠EOC=∠OAP,∠POQ=∠APO,又∵OP=OA,∴∠APO=∠OAP,又∵∠BOQ=∠EOA=∠OAP,∴∠POQ=∠BOQ,在△BOQ与△POQ中,,∴△POQ≌△BOQ(SAS),∴∠OPQ=∠OBQ=90°,∵点P在⊙O上,∴PQ是⊙O的切线;(2)解:①∵△POQ≌△BOQ,∴∠OBQ=∠OPQ=90°,当∠BOP=90°,四边形OPQB为矩形,而OB=OP,则四边形OPQB为正方形,此时点C、点E与点O重合,PE=PO=AB=2;②∵PE⊥AB,∴当OC=AC,PC=EC,四边形AEOP为菱形,∵OC=OA=1,∴PC===,∴PE=2PC=2.故答案为:2;2.8.解:(1)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∵DC为⊙O的切线,切点为C,∴DC=DA,∵CD∥AB,∴∠D+∠DAB=180°,∴∠D=90°,∴∠ACD=∠DAC=45°;(2)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∠DEA=∠EAB,∴∠ADC=90°,∵∠EAD=30°,∴∠DEA=60°,∴∠EAB=60°,∴∠BCE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠ACD=30°,∴∠DAC=60°.9.解:(Ⅰ)如图①,连接OC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∵DC与⊙O相切,∴∠OCD=90°,∵OB=BD,∴BC=OD=OB=BD,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=∠OCB=∠COB=60°,∴∠BCD=∠OCA=30°,∴∠D=∠A=30°;(Ⅱ)如图②,连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵AF⊥CD,∴∠AFC=90°,∵∠ACF是圆内接四边形ACEB的外角,∴∠ACF=∠ABE,∴∠FAC=∠EAB=18°,答:∠FAC的大小为18°.10.解:(1)连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为=.11.(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵OC⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BED=,∴tan∠C=,∴tan∠C==,且OA=AB=6,∴,解得AC=8,∴=10,∵OC•AF=OA•AC,∴.∴==.12.(1)证明:∵PA与⊙O相切于点P,∴BP⊥AP∴∠OPD+∠DPA=90°,∠OAP+∠AOP=90°∵∠OAP=∠DPA.∴∠OPD=∠AOP∴OD=PD∵PO=OD∴PO=PD.(2)连接PC,∵PB为⊙O的直径∴∠BCP=90°∵PO=PD=OD∴∠AOP=60°设⊙O的半径为x,则PB=2x,=tan60°∴PA=x∴AB==x∵∠BPA=∠BCP=90°,∠B=∠B∴△BAP∽△BPC∴=∵AC=∴=∴7x﹣=4x∴x=∴⊙O的半径为.13.证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,∴S△OBE由勾股定理得OP===9.故答案为:9.14.解:(1)过点E作EH⊥AF于H,连接OA、OE、OH,如图1所示:∵∠ACB=90°,AB=10,AC=8,∴BC===6,设运动时间为t,则AE=5t,AF=8t,∵∠AHE=∠ACB=90°,∠EAH=∠BAC,∴△EAH∽△BAC,∴=,即:=,∴AH=4t,∴FH=AF﹣AH=8t﹣4t=4t,∴AH=FH,∵EH⊥AF,∴△AEF是等腰三角形,∴E为的中点,∠EAF=∠EFA,∵AH=FH,∴OH⊥AC,∴E、H、O三点共线,∴∠OAF+∠AOE=90°,∵AB平分∠DAM,∴∠DAE=∠EAF=∠EFA,∵∠AOE=2∠EFA,∴∠AOE=∠DAE+∠EAF=∠DAF,∴∠DAF+∠OAF=90°=∠DAO,即OA⊥AD,∵OA为⊙O的半径,∴AD与⊙O相切;故答案为:等腰三角形,相切;(2)连接OA、OF、OE,OE于AC交于H,如图2所示:由(1)知:EH⊥AC,∵EN与⊙O相切,∴∠OEN=90°,∵∠ACB=90°,∴四边形EHCN为矩形,∴EH=NC,在Rt△AHE中,EH===3t,∴NC=3t,∵点N为BC的中点,∴BC=2NC=6t,∵BC=6,∴6t=6,∴t=1,∴AH=4,EH=3,设⊙O的半径为x,则OH=x﹣3,在Rt△AOH中,由勾股定理得:OA2=OH2+AH2,即x2=(x﹣3)2+42,解得:x=,∴⊙O的半径为,∴OH=,∴tan∠AOH==,∴∠AOH=74°,∵∠AOH=60°时,△AOE是等边三角形,AE=OA,74°>60°,∴AE>OA,∴劣弧长度的大于半径;(3)当点E运动到B点时,t=10÷5=2,∴AF=2×8=16,AE=EF=AB=10,此时△AEF的内心记为G,当A、E、F重合时,内心为A点,∴△AEF的内心运动的路径长为AG,作GP⊥AE于P,GQ⊥EF于Q,连接AG、GF,则CG=PG=NQ,如图3所示:S△AEF=AF•BC=×16×6=48,设CG=PG=NQ=a,则S△AEF =S△AGF+S△AEB+S△FEG=AF•CG+AE•PG+EF•NQ=×(16+10+10)a=48,解得:a=,在Rt△AGC中,AC2+CG2=AG2,即82+()2=AG,∴AG=,故答案为:;(4)分别讨论两种极限位置,①当EN与⊙O相切时,由(2)知,t=1;②当N在⊙O上,即ON为⊙O的半径,连接OA、ON、OE,OE交AC于H,过点O作OK⊥BC于K,如图4所示:则四边形OKCH为矩形,OA=OE=ON,∴OH=CK,AH=4t,EH=3t,设⊙O的半径为x,则在Rt△AOH中,AH2+OH2=OA2,即(4t)2+(x﹣3t)2=x2,解得:x=t,∴OH=CK=t﹣3t=t,在Rt△OKN中,OK2+KN2=ON2,即(8﹣4t)2+(3+t)2=(t)2,解得:t=,∴线段EN与⊙O有两个公共点时,t的取值范围为:1<t≤,故答案为:1<t≤.15.解:(1)连接OE,则∠OCE=∠OEC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.16.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.17.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a=﹣2(舍去),2∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,=2,(舍去)解得a1∴BD=3+a=3+2=5.∴或5.(5)①∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,连接AD,BD,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.18.解:(1)如图,连接AN,∵AC为直径,∴AN⊥BC,∵AB=AC,∴AN平分∠BAC,∵PC是圆的切线,∴∠ACP=90°,∵∠NAC+∠ACB=∠PCB+∠ACB=90°,∴∠NAC=∠BCP,即∠BAC=2∠BCP;(2)由(1)知,AN平分∠BAC,则∠NAC=∠BCP,故sin∠NAC=sin∠BCP=,则tan∠NAC=,在Rt△NAC中,AC=5,NC=AC•sin∠NAC=5×=,同理AN=2,则BC=2NC=2;S=×BC•AN=2×2=10,△ABC设△ABC内切圆的半径为r,则S=(AB+AC+BC)•r=×(5+5+2)=10,△ABC解得:r=;故△ABC内切圆的半径为;(3)在△ABC中,设AC边长的高为h,则S=AC•h=×5×h=10,解得:h=4,△ABCsin∠BAC==,在Rt△ACP中,∵sin∠BAC==,设PC=4m,则AP=5m,则AC=3m=5,解得m=,△ACP的周长=3m+4m+5m=12m=20.19.(1)证明:如图1,∵AC为⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵=,∴∠ABD=∠DCA,∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DCA=90°,∴CA⊥AF,∴AF为⊙O的切线.(2)证明:如图2,连接OD,∵=,∴∠ABD=∠AOD,∵=,∴∠DBC=∠DOC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)如图3,连接OD交CF于M,作EP⊥AD于P,∵AC为⊙O的直径,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,∴AF∥OM,∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°.∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴∴△ODE≌△OCM,∴OE=OM,设OM=m,∴AE=2﹣m,AP=PE=2﹣m,DP=2+m,∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE,∵∠EAN=∠DPE,∴△EAN∽△DPE,∴=,∴=,∴m=,∴AN=,AE=,∴勾股定理得NE=.20.(1)证明:连接OF,∵AB与⊙O相切于点F,∴OF⊥AB,∵∠ACB=90°,OC=OF,∴∠OAF=∠OAC,即AO是△ABC的角平分线;(2)如图2,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴,∴;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,∴AO=AE+OE=2+3=5,如图3,连接CF交AD于点G,∵AC,AF是⊙O的切线,∴AC=AF,∠CAO=∠OAF,∴CF⊥AO,∴∠ACO=∠CGO=90°,∵∠COG=∠AOC,∴△CGO∽△ACO,∴,∴OC2=OG•OA,∴OG=,∴CG===,∴CF=2CG=.。

2020年九年级数学中考《圆》综合专题复习试题(含答案)

2020年九年级数学中考《圆》综合专题复习试题(含答案)
1 ∴∠AOH=2∠AOC=60°.
1 ∵AH=2AC= 3,
AH ∴OA=sin60°=2. ∴⊙O 半径的长为 2. (2)证明:在 BM 上截取 BE=BC,连接 CE, ∵∠ABC=120°,BM 平分∠ABC, ∴∠MBA=∠MBC=60°. ∵BE=BC, ∴△EBC 是等边三角形.
∴CE=CB=BE,∠BCE=60°. ∴∠BCD+∠DCE=60°. ∵∠ACM=∠ABM=60°,∴∠ECM+∠DCE=60°. ∴∠ECM=∠BCD. ∵∠CAM=∠CBM=60°,∠ACM=∠ABM=60°. ∴△ACM 是等边三角形.∴AC=CM. ∴△ACB≌△MCE(SAS).∴AB=ME. ∵ME+EB=BM, ∴AB+BC=BM.
基础题组
1.(2019·保定一模)已知⊙O 的半径 OA 长为 2,若 OB= 3,则可以得到的正确图形可
能是(A)
2.(2019·广州)平面内,⊙O 的半径为 1,点 P 到 O 的距离为 2,过点 P 可作⊙O 的切线条
数为(C)
A.0 条
B.1 条
C.2 条
D.无数条
3.如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以点 A 为圆心作圆.如果⊙A 与线
则∠D=27°.
基础题组
1.(2019·柳州)如图,A,B,C,D 是⊙O 上的点,则图中与∠A 相等的角是(D)
A.∠B
B.∠C
C.∠DEB
D.∠D
A︵B
A︵B
2.(2019·吉林)如图,在⊙O 中, 所对的圆周角∠ACB=50°.若 P 为 上一点,
∠AOP=55°,则∠POB 的度数为(B)
A.30°
3 切,连接 OC,则 tan∠OCB= 5 .

2019-2020学年人教版九年级数学上学期同步测试专题24-1:圆的有关性质(含解析)

2019-2020学年人教版九年级数学上学期同步测试专题24-1:圆的有关性质(含解析)

专题24.1圆的有关性质(测试)一、单选题1.下列各角中,是圆心角的是( )A .B .C .D .【答案】D 【解析】顶点在圆心,两边和圆相交的角是圆心角,选项D 中,是圆心角, 故选D .2.一个周长是l 的半圆,它的半径是( ) A .l π÷ B .2l π÷C .()2l π÷+D .()1l π÷+【答案】C 【解析】半圆的周长为半径的π倍加上半径的2倍,所以一个周长是l 的半圆,它的半径是()2l π÷+,所以选C. 3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .B .4C .D .4.8【答案】C【解析】∵AB 为直径, ∴90ACB ︒∠=,∴6BC =, ∵OD AC ⊥, ∴142CD AD AC ===,故选C . 4.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵30ADC ∠=︒, ∴260AOC ADC ∠=∠=︒. ∵AB 是O 的弦,OC AB ⊥交O 于点C ,∴AC BC =.∴60AOC BOC ∠=∠=︒. 故选:D ..5.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.A .3B .4C .5D .6【答案】A【解析】设需要安装n (n 是正整数)台同样的监控器,由题意,得:65°×2×n ≥360°, 解得n ≥3613,∴至少要安装3台这样的监控器,才能监控整个展厅.故选:A .且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A 【解析】解:OC AB ⊥,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+, 设半径为r 得:()2221020r r =-+, 解得:25r m =,∴这段弯路的半径为25m故选:A .7.若AB 和CD 的度数相等,则下列命题中正确的是( ) A .AB =CDB .AB 和CD 的长度相等C .AB 所对的弦和CD 所对的弦相等D .AB 所对的圆心角与CD 所对的圆心角相等 【答案】D【解析】如图,AB 与CD 的度数相等,A 、根据度数相等,不能推出弧相等,故本选项错误;B 、根据度数相等,不能推出两弧的长度相等,故本选项错误;C 、根据度数相等,不能推出所对应的弦相等,故本选项错误;D 、根据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个【答案】A【解析】∵C、D为半圆上三等分点,∴»»»AD CD BC==,故①正确,∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD=CD=OC,∠AOD=∠DOC=∠BOC=60°,故②③正确,∵OA=OD=OC=OB,∴△AOD≌△COD≌△COB,且都是等边三角形,∴△AOD沿OD翻折与△COD重合.故④正确,∴正确的说法有:①②③④共4个,故选A.9.下列说法:①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.其中不正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.10.如图所示,AB 是半圆O 的直径。

人教版数学九年级2020年中考同步训练:《圆的选择题》(含答案)

人教版数学九年级2020年中考同步训练:《圆的选择题》(含答案)

人教版数学九年级2020年中考同步训练:《圆的选择题》1.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8 C.D.22.如图,已知圆O的圆心在原点,半径OA=1(单位圆),设∠AOP=∠α,其始边OA与x 轴重合,终边与圆O交于点P,设P点的坐标P(x,y),圆O的切线AT交OP于点T,且AT=m,则下列结论中错误的是()A.sinα=y B.cosα=xC.tanα=m D.x与y成反比例3.如图,Rt△ABC的斜边BC=4,∠ABC=30°,以AB、AC为直径分别作圆.则这两圆的公共部分面积为()A.+B.﹣C.﹣D.﹣4.如图,在圆O上依次有A.B,C三点,BO的延长线交圆O于E,=,点C作CD ∥AB交BE的延长线于D,AD交圆O于点F,连接OA,OF,若∠AOF=3∠FOE,且AF=2,劣弧CF的长是()A.πB.πC.πD.π5.如图,正方形ABCD中,⊙O过点A,B交边AD于点E,连结CE交⊙O于点F,连结AF,若tan∠AFE=,则的值为()A.1 B.C.D.6.如图,点O为正六边形的中心,P,Q分别从点A(1,0)同时出发,沿正六边形按图示方向运动,点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,则第2020次相遇地点的坐标为()A.B.(1,0)C.D.(﹣1,0)7.如图,在圆内接五边形ABCDE中,AB=AE,BC=CD=DE,且∠D=100°,连接AC和EC.则∠ACE的度数为()A.30°B.35°C.40°D.48°8.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC的度数为()A.22°B.24°C.27°D.30°9.如图,在平面直角坐标系中.点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,四边形OCDB是平行四边形.则点C的坐标为()A.(1,7)B.(2,6)C.(2,7)D.(1,6)10.如图,AB是⊙O的直径,点C,点D是半圆上两点,连结AC,BD相交于点P,连结AD,OD.已知OD⊥AC于点E,AB=2.下列结论:①AD2+BC2=4;②sin∠DAC=;③若AC=BD,则DE=OE;④若点P为BD的中点,则DE=2OE.其中确的是()A.①②③B.②③④C.③④D.②④11.如图,圆心为M的量角器的直径的两个端点A,B分别在x轴,y轴正半轴上(包括原点O),AB=4.点P,Q分别在量角器60°,120°刻度线外端,连结MP.量角器从点A 与点Q重合滑动至点Q与点O重合的过程中,线段MP扫过的面积为()A.π+B.πC.π+2D.312.如图,△ABC内接于⊙O,且AB=AC.直径AD交BC于点E,F是AE的中点,连结CF,若AD=6.则CF的最大值为()A.6 B.5 C.4 D.313.如图,△ABC内接于⊙O,将沿BC翻折,交AC于点D,连接BD,若∠BAC=66°,则∠ABD的度数是()A.66°B.44°C.46°D.48°14.如图,半径为3的⊙O与五边形ABCDE的边相切于点A,C,连接OA交BC于点H,连接OB,AB.若∠D+∠E=240°,HC=3BH,则△ABO的面积为()A.3B.C.D.215.如图,点A,B,C是⊙O上三点,AC=BC,点M为⊙O上一点,CE⊥AM,垂足为点E,AE=2,BM=,CM=,则的长为()A.πB.πC.πD.π16.如图,在△ABC中,∠C=40°,∠A=60°.以B为圆心,适当长度为半径作弧,分别交AB,BC于点D,E;分别以D,E为圆心,大于DE长度为半径作弧,两弧交于点F;作射线BP,交AC于点P,过点P作PM⊥AB于M;以P为圆心,PM的长为半径作⊙P.则下列结论中,错误的是()A.∠PBA=40°B.PC=PBC.PM=MB D.⊙P与△ABC有4个公共点17.如图,在△ABC中,∠A=60°,AB=4,以BC的中点O为圆心作圆,分别与AB、AC相切于D、E两点,则的长是()A.πB.πC.πD.318.如图,在边长为8的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18﹣3πB.18﹣πC.32﹣16πD.18﹣9π19.如图,5×3的网格图中,每个小正方形的边长均为1,设经过图中格点A,C,B三点的圆弧与AE交于H,则弧AH的弧长为()A.πB.πC.πD.π20.如图,△ACD内接于⊙O,AB是⊙O的切线,∠C=45°,∠B=30°.AD=4,则AB长为()A.4 B.C.D.参考答案1.解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.2.解:如图,过点P作PH⊥OA于H,由题意知,OA=OP=1,OH=x,PH=y,由切线的性质定理可知AT⊥OA,在Rt△POH中,∠AOP=∠α,∴sinα===y,cosα===x,故A,B正确;在Rt△TOA中,tanα===m,故C正确,在Rt△POH中,OH2+PH2=OP2,∴x2+y2=1,故D错误;故选:D.3.解:如图,设点E是两圆的公共点,连接AE,取AC,AB的中点G,H.在Rt△ABC中,∵∠CAB=90°,∠ABC=30°,BC=4,∴AC=2,AB=2,∠C=60°,∴∠AHE=60°,∠AGE=120°,∴S阴=S扇形HAE﹣S△AEH+S扇形GEA﹣S△AEG=﹣×()2+﹣×1×=﹣,故选:C.4.解:∵=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴=,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形,∴BC∥AD,∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180﹣3x)=180,解得:x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=2,∴的长==π,故选:C.5.解:如图,设⊙O交BC于J,连接AJ,JF,EJ,过点F作FM⊥AD于M交BC于N.设AB =3a.∵四边形ABCD是正方形,∴∠ABC=∠BAD=∠BCD=90°,AD∥BC,AD=AB=BC=CD=3a,∴AJ是⊙O的直径,∴∠AFJ=∠AEJ=90°,∵FM⊥AD,AD∥CB,∴MN⊥BC,∴∠MNC=∠BCD=∠D=90°,∴四边形MNCD是矩形,四边形ABJE是矩形,∴MN=CD=3a,AE=BJ,∴=,∴∠BAJ=∠AFE,∴tan∠BAJ=tan∠AFE=,∴BJ=AE=a,JC=2a,∵∠JAF=∠JEC,∴tan∠JAF=tan∠JEC,∴==,∵∠AFM+∠JFN=90°,∠JFN+∠FJN=90°,∴∠AFM=∠FJN,∵∠AMF=∠FNJ=90°,∴△AMF∽△FNJ,∴===,设JN=2x,则FM=3x,∵AM=AE+EM=a+2x,∴FN=AM=(a+2x),∵FM+FN=3a,∴3x+(a+2x)=3a,∴9x+2a+4x=9a,∴x=a,∴CN=2a﹣2x=2a﹣a=a,∵EM∥CN,∴===,故选:B.6.解:∵A(1,0),O为正六边形的中心,∴OA=AB=1,连接OB,作BG⊥OA于点G,则AG=OA=,BG=,∴B(,),∴C(﹣,),E(﹣,﹣),∵正六边形的边长=1,∴正六边形的周长=6,∵点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,∴第1次相遇需要的时间为:6÷(1+2)=2(秒),此时点P的路程为1×2=2,点的Q路程为2×2=4,此时P,Q相遇地点的坐标在点C(﹣,),以此类推:第二次相遇地点在点E(﹣,﹣),第三次相遇地点在点A(1,0),…如此下去,∵2020÷3=673…1,∴第2020次相遇地点在点C,C的坐标为(﹣,).故选:A.7.解:∵DE=DC,∴∠DEC=∠DCE=(180°﹣100°)=40°,∵BC=CD,∴=,∴∠BAC=∠CED=40°,∵∠EAC+∠EDC=180°,∴∠EAC=180°﹣100°=80°,∴∠EAB=∠EAC+∠BAC=120°,∴∠ECB=180°﹣∠EAB=60°,∵AE=AB,∴=,∴∠ACE=∠ACB=∠ECB=30°,故选:A.8.解:∵四边形ABCD是菱形,∴DA=DC,∴∠DAC=∠DCA=(180°﹣78°)=51°,∵AD∥BC,∴∠ACE=∠DAC=51°,∵四边形AECD是⊙O的内接四边形,∴∠AEC=180°﹣78°=102°,∴∠EAC=180°﹣102°﹣51°=27°,故选:C.9.解:如图,连接OD,AD,DM,作DF⊥OA于F.∵A(20,0),B(16,0),∴OA=20,OB=16,∴AB=20﹣16=4,∵四边形ABCD是平行四边形,∴CD∥OB,CD=OB=16,OC=BD,∴∠CDO=∠DOA,∴=,∴OC=AD=BD,∵DF⊥BA,∴BF=FA=2,∴OF=18,∴在Rt△DMF中.DF===6,∴D(18,6),C(2,6),故选:B.10.解:∵AB是直径,∴∠ACB=90°,∴AC2+BD2=AB2=4,∵AC>AD,∴AD2+BC2<4,故①错误,∵∠DAC=∠CBD,∴sin∠DAC=sin∠CBD=,故②正确,∵AE⊥OE,假设DE=EO,则AD=AO=OD,∴△ADO是等边三角形,显然不符合题意,故③错误,∵∠DEP=∠BCP=90°,DP=PB,∠DPE=∠BPC,∴△PDE≌△PBC(AAS),∴DE=BC,∵OE∥BC,AO=OB,∴AE=EC,∴BC=2OE,∴DE=2OE,故④正确.故选:D.11.解:由题意可知,点M的运动轨迹是以O为圆心,2为半径,圆心角为60°的扇形,点P在第四象限内时,∠AOB是弧AP所对的圆周角,所以∠AOP=30°,点P在第二象限内时,∠BOP是弧BP所对的圆周角,所以∠BOP=60°,所以点P的运动路径是一条线段,当量角器从点A与O重合滑动至点Q与点O重合时,MP扫过的图形是如图所示的阴影部分,它是由两个边长为2的等边三角形与一个扇形组成,所以PM扫过的面积为:+2××22=π+2,故选:C.12.解:∵F是AE的中点,∴设AF=EF=x,则AE=2x,∴DE=6﹣2x,∵AB=AC,∴=,∵AD为⊙O的直径,∴BC⊥AD,∠ABD=90°∴BE=CE,∠ABE+∠DBE=∠DBE+∠D=90°,∴∠ABE=∠D,∵∠AEB=∠DEB=90°,∴△ABE∽△BDE,∴,∴BE2=AE•DE=2x(6﹣x),∴CE2=2x(6﹣x),在Rt△CEF中,CF2=EF2+CE2=x2+2x(6﹣x)=﹣3(x﹣2)2+36,∴当x=2时,CF的最大值为6,故选:A.13.解:∵将沿BC翻折,交AC与点D,∴∠BAC+∠BDC=180°,∵∠BAC=66°,∴∠BDC=114°,∴∠ADB=180°﹣∠BDC=66°,∴∠ABD=180°﹣66°﹣66°=48°,故选:D.14.解:连接OC,过点C,B分别作AO的垂线,垂足分别为M,N,∵半径为3的⊙O与五边形ABCDE的边相切于点A,C,∴∠OAE=∠OCD=90°,∵∠AOC+∠OCD+∠D+∠E+∠OAE=540°,∠D+∠E=240°,∴∠AOC=120°,∴∠MOC=180°﹣∠AOC=60°,∵OC=3,∴,∵CM⊥AO,BN⊥AO,∴CM∥BN,∴△HCM∽△HBN,∴,∴,∴,故选:C.15.解:在AE上截取AG=BM,连接CG,∵AC=BC,∠A=∠B,∴△ACG≌△BCM(SAS),∴CG=CM=,∵AE=2,AG=BM=,∴GE=,∵CE⊥AM,∴CE===2,∴tan∠A==,∴∠A=30°,∴∠COM=60°,连接OM,CO,∵OC=OM,∴△COM是等边三角形,∴OC=,∴的长==,故选:A.16.解:∵∠C=40°,∠A=60°,∴∠ABC=80°,由题意得,BP平分∠ABC,∴∠ABP=ABC=40°,故选项A正确;∵∠PBC=∠PBA=ABC=40°,∴∠C=∠PBC,∴PC=PB,故选项B正确;∵PM⊥AB,∴∠BMP=90°,∴∠BPM=50°,∴∠BPM≠∠MBP,∴PM≠BM,故C选项错误;∵点P在∠ABC的角平分线上,∴P到AB和BC的距离=PM=⊙P的半径,∴AB,BC与⊙P相切,∵PA>PM,PC>PM,∴⊙P与AC相交,∴⊙P与△ABC有4个公共点,故D选项正确,故选:C.17.解:连接OA,OE,OD,∵AB、AC与⊙O相切于D、E两点,∴∠OEC=∠ODB=∠AEO=∠ADO=90°,∵∠BAC=60°,∴∠DOE=120°,∵点O为BC的中点,∴OB=OC,∵OE=OD,∴Rt△OEC≌RtODB(HL),∴∠C=∠B,∴AC=AB=4,AO⊥BC,∴∠CAO=,∴AO=AC=2,∴OE=AO=,∴的长是=π,故选:C.18.解:∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°﹣60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=8×=4,∴图中阴影部分的面积=菱形ABCD的面积﹣扇形DEG的面积=8×4﹣=32﹣16π.故选:C.19.解:连接EB,BH,AB,∵BE=AB==,AE==,∴BE2+AB2=AE2,∴∠ABE=90°,∴△ABE是等腰直角三角形,∵∠ACB=90°,∴AB是圆的直径,∴∠AHB=90°,∴BH⊥AH,∴∠ABH=∠BAH=45°,∴弧AH所对的圆心角为90°,∴的长==.故选:B.20.解:如图,连接OA、OD,∵∠C=45°.∴∠AOD=2∠C=90°.又∵OA=OD,AD=4,∴AD2=2OA2=16,则OA=2.又∵AB是⊙O的切线,∴∠OAB=90°.∵∠B=30°,OA=2,∴AB=OA=2.故选:D.。

人教版数学九年级上册:24《圆》专题练习(附答案)

人教版数学九年级上册:24《圆》专题练习(附答案)

word版初中数学第二十四章《圆》专题练习目录专题1 与圆周角有关的辅助线作法 (1)专题2圆周角定理 (3)专题3 证明切线的两种常用方法 (4)专题4与切线长有关的教材变式 (5)专题5与圆的切线有关的计算与证明 (6)专题6 求阴影部分的面积 (8)专题1 与圆周角有关的辅助线作法类型1 构造同弧或等弧所对的圆周角或圆心角1.如图,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,点B 是AC ︵的中点,则∠D 的度数是( )A .70°B .55°C .35.5°D .35°2.如图,点A ,B ,C ,D 分别是⊙O 上的四点,∠BAC =50°,BD 是直径,则∠DBC 的度数是( )A .40°B .50°C .20°D .35°3.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =50°,AO ∥DC ,则∠B 的度数为( ) A .50°B .55°C .60°D .65°4.如图,A ,B ,C 在⊙O 上,∠ACB =40°,点D 在ACB ︵上,M 为半径OD 上一点,则∠AMB 的度数不可能为( )A .45°B .60°C .75°D .85°类型2 利用直径构造直角三角形5.如图,在⊙O 中,∠OAB =20°,则∠C 的度数为 .6.如图,在⊙O 中,AB 为直径,∠ACB 的平分线交⊙O 于点D ,AB =6,则BD = .7.如图,⊙A 过点O ,C ,D ,点C 的坐标为(3,0),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,已知∠OBD =30°,则⊙A 的半径等于 .8.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于点D ,AC =5,DC =3,AB =42,则⊙O 的半径为 .类型3 构造圆内接四边形9.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60°C.80° D.100°10.如图,已知A,B,C,D是⊙O上的四个点,⊙O的直径AB=2 3.若∠ACD=120°,则线段AD的长为.专题2 圆周角定理1.如图,四边形APBC 是圆内接四边形,延长BP 至E ,若∠EPA =∠CPA ,判断△ABC 的形状,并证明你的结论.2.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC =∠APC =60°. (1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD.3.如图,点A ,B ,C ,D 在同一个圆上,且C 点为一动点(点C 不在BAD ︵上,且不与点B ,D 重合),∠ACB =∠ABD =45°.(1)求证:BD 是该圆的直径; (2)连接CD ,求证:2AC =BC +CD.专题3 证明切线的两种常用方法类型1 直线与圆有交点:连半径,证垂直 (一)借助角度转换证垂直1.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,AB 与CD 交于点E ,点P 是CD 延长线上的一点,AP =AC ,且∠B =2∠P.求证:PA 是⊙O 的切线.(二)利用平行证垂直2.如图,AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且点C 为BF ︵的中点,连接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D.求证:CD 是⊙O 的切线.(三)利用全等证垂直3.如图,AB 是⊙O 的直径,BC ⊥AB 于点B ,连接OC 交⊙O 于点E ,弦AD ∥OC.求证: (1)DE ︵=BE ︵; (2)CD 是⊙O 的切线.(四)利用勾股定理的逆定理证垂直4.(南充中考改编)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB =2,PC =4.求证:PC 是⊙O 的切线.类型2 不确定直线与圆是否有交点:作垂直,证半径5.如图,△ABC 为等腰三角形,O 是底边BC 的中点,腰AB 与⊙O 相切于点D ,OB 与⊙O 相交于点E.求证:AC 是⊙O 的切线.专题4 与切线长有关的教材变式1.如图,AB ,BC ,CD 分别与⊙O 相切于点E ,F ,G ,若∠BOC =90°,求证:AB ∥CD.2.如图,⊙O的直径AB=12 cm,AM和BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C 两点.设AD=x,BC=y,求y关于x的函数解析式.3.如图,Rt△ABC的内切圆⊙O与AB,BC,AC分别相切于点D,E,F,且AC=13,AB=12,∠ABC=90°,则⊙O 的半径为.4.如图,△ABC的周长为18,其内切圆⊙O分别切三边于D,E,F三点,AF=3,FC=4,则BE=.5.已知一个三角形的三边长分别为5,7,8,则其内切圆的半径为()A.32B.32C. 3 D.2 3专题5 与圆的切线有关的计算与证明1.如图,过⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别是A ,B ,OP 交⊙O 于点C ,点D 是优弧ABC ︵上不与点A ,点C 重合的一个动点,连接AD ,CD.若∠APB =80°,则∠ADC 的度数是( )A .15°B .20°C .25°D .30°2.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( )A.3+12 B.3-32 C.3+13 D.3-333.如图,矩形ABCD 中,AB =4,BC =3,连接AC ,⊙P 和⊙Q 分别是△ABC 和△ADC 的内切圆,则PQ 的长是( )A.52B. 5C.52D .2 24.如图,⊙O 是△ABC 的外接圆,BC 为⊙O 的直径,点E 为△ABC 的内心,连接AE 并延长交⊙O 于点D ,连接BD 并延长至点F ,使得BD =DF ,连接CF ,BE.求证: (1)DB =DE ;(2)直线CF 为⊙O 的切线.5.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4.求弦CE的长.6.如图,PA,PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O 的半径为1,求菱形ACBP 的面积.7.如图,⊙O 是边长为6的等边△ABC 的外接圆,点D 为BC ︵的中点,过点D 作DE ∥BC ,DE 交AC 的延长线于点E ,连接AD ,CD.(1)DE 与⊙O 的位置关系是相切; (2)求△ADC 的内切圆半径r.专题6 求阴影部分的面积类型1 直接利用公式求面积1.如图,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( ) A.π2 m 2 B.32π m 2 C .π m 2 D .2π m 2类型2 利用和差法求面积2.如图,在Rt △ABC 中,∠ACB =90°,AC =23,以点B 为圆心,BC 的长为半径作弧,交AB 于点D.若点D 为AB 的中点,则阴影部分的面积是( )A .23-23πB .43-23πC .23-43π D.23π3.如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是AB ︵的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A .2π-4B .4π-8C .2π-8D .4π-44.如图,分别以五边形ABCDE 的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为( )A.32π B .3π C.72π D .2π5.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是( )A.2π3 B .23-π3 C .23-2π3 D .43-2π36.如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是( )A .18+36πB .24+18πC .18+18πD .12+18π7.如图,在平行四边形ABCD 中,AB <AD ,∠D =30°,CD =4,以AB 为直径的⊙O 交BC 于点E ,则阴影部分的面积为 .8.如图,在Rt △ABC ,∠B =90°,∠C =30°,O 为AC 上一点,OA =2,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE ,OF ,则图中阴影部分的面积是 .类型3 利用等积转化法求面积9.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分的面积为( )A .2πB .Π C.π3 D.2π310.如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变 B.由大变小C.由小变大 D.先由小变大,后由大变小11.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC =10 cm,∠BAC=36°,则图中阴影部分的面积为()A.5π cm2 B.10π cm2 C.15π cm2 D.20π cm212.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD =6,EF=8.则图中阴影部分的面积是()A.252π B.10π C.24+4π D.24+5π13.如图,在△ACB中,∠BAC=90°,AC=2,AB=3,现将△ACB绕点A逆时针旋转90°得到△AC1B1,则阴影部分的面积为.参考答案:专题1 与圆周角有关的辅助线作法1.D2.A3.D4.D5.110°__.67.1.829.D11.3.专题2 圆周角定理——教材P90T14的变式与应用1.解:△ABC是等腰三角形,理由:∵四边形APBC是圆内接四边形,∴∠EPA=∠ACB.∵∠EPA=∠CPA,∠CPA=∠ABC,∴∠ACB=∠ABC.∴AB=AC.∴△ABC是等腰三角形.2.解:(1)证明:∵∠ABC=∠APC=60°,∠BAC=∠APC=60°,∴∠ABC=∠BAC=60°.∴△ABC是等边三角形.(2)连接OB ,OC.可得∠BOC =2∠BAC =2×60°=120°. ∵OB =OC ,∴∠OBD =∠OCD =12×(180°-120°)=30°.∵∠ODB =90°,∴OD =12OB =4.3.证明:(1)∵∠ACB =∠ADB =45°, ∠ABD =45°, ∴∠BAD =90°. ∴BD 是该圆的直径.(2)在CD 的延长线上截取DE =BC ,连接EA. ∵∠ABD =∠ADB ,∴AB =AD.∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE. 在△ABC 和△ADE 中, ⎩⎪⎨⎪⎧AB =AD ,∠ABC =∠ADE ,BC =DE ,∴△ABC ≌△ADE (SAS ). ∴∠BAC =∠DAE.∴∠BAC +∠CAD =∠DAE +∠CAD. ∴∠BAD =∠CAE =90°.∵∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形.∴2AC=CE.∴2AC=DE+CD=BC+CD.专题3 证明切线的两种常用方法1.证明:连接OA,AD.∵∠B=2∠P,∠B=∠ADC.∴∠ADC=2∠P.又∵AP=AC,∴∠P=∠ACP.∴∠ADC=2∠ACP.∵CD为直径,∴∠DAC=90°.∴∠ADC=60°,∠ACD=30°.∴△ADO为等边三角形.∴∠AOP=60°.而∠P=∠ACP=30°,∴∠OAP=90°.∴OA⊥PA.又∵AO为⊙O的半径,∴PA是⊙O的切线.2.证明:连接OC,∵CF ︵=CB ︵,OA =OC , ∴∠DAC =∠BAC =∠ACO. ∴AD ∥OC. ∵CD ⊥AF 于点D , ∴∠DCO =90°. 又∵OC 为⊙O 的半径, ∴CD 为⊙O 的切线. 3.证明:(1)连接OD. ∵AD ∥OC ,∴∠DAO =∠COB ,∠ADO =∠DOC. 又∵OA =OD ,∴∠DAO =∠ADO. ∴∠COB =∠COD. ∴DE ︵=BE ︵.(2)由(1)知∠DOE =∠BOE , 在△COD 和△COB 中, ⎩⎪⎨⎪⎧CO =CO ,∠DOC =∠BOC ,OD =OB ,∴△COD ≌△COB (SAS ). ∴∠CDO =∠B.又∵BC ⊥AB ,∴∠CDO =∠B =90°.∵点D在⊙O上,∴CD是⊙O的切线.4.证明:连接OC.∵⊙O的半径为3,∴OC=OB=3.又∵BP=2,∴OP=5.在△OCP中,OC2+PC2=32+42=52=OP2,∴△OCP为直角三角形,∠OCP=90°.∴OC⊥PC.∵C是⊙O上一点,∴PC为⊙O的切线.5.证明:连接OA,OD,作OF⊥AC于点F,垂足为F. ∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC.∵AB与⊙O相切于点D,∴OD⊥AB.而OF⊥AC,∴OF=OD.∴AC是⊙O的切线.专题4 与切线长有关的教材变式1.证明:∵∠BOC=90°,∴∠OBC+∠OCB=90°.又∵BE与BF为⊙O的切线,∴BO为∠EBF的平分线.∴∠OBE=∠OBF.同理可得∠OCB=∠OCG.∴∠OBE+∠OCG=90°.∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°.∴AB∥CD.2.解:过点D作DF⊥BC于点F.∵AD,BC分别是⊙O的切线,∴∠OAD=∠OBF=90°.又∵DF⊥BC,∴四边形ABFD为矩形.∴DF=AB=12 cm,BF=AD.∵AD,BC,DC分别为⊙O的切线,∴DE=DA=x,CE=CB=y.∴DC=x+y,CF=y-x.在Rt △DCF 中,由勾股定理,得DC 2=CF 2+DF 2,即(x +y )2=(y -x )2+122,整理,得xy =36.∴y =36x. ∴y 关于x 的函数解析式y =36x(x>0). 3.2.4.2.5.C专题5 与圆的切线有关的计算与证明1.C2.B3.B4.证明:(1)∵E 为△ABC 的内心,∴∠DAC =∠DAB ,∠CBE =∠EBA.又∵∠DBC =∠DAC ,∠DBE =∠DBC +∠CBE ,∠DEB =∠EAB +∠EBA ,∴∠DBE =∠DEB.∴DB =DE.(2)连接OD.∵BD =DF ,O 是BC 的中点,∴OD ∥CF.又∵BC 为⊙O 的直径,OB =OD ,∴∠ODB =∠DBO =∠DAC =45°.∴∠OCF =∠BOD =90°.∴OC ⊥CF.又∵OC 为⊙O 的半径,∴直线CF 为⊙O 的切线.5.解:(1)证明:过点O 作OD ⊥PB ,连接OC.∵AP 与⊙O 相切,∴OC ⊥AP.又∵OP 平分∠APB ,∴OD =OC.∴PB 是⊙O 的切线.(2)过点C 作CF ⊥PE 于点F.在Rt △OCP 中,OP =OC2+CP2=5.∵S △OCP =12OC ·CP =12OP ·CF ,∴CF =125. 在Rt △COF 中,OF =CO2-CF2=95. ∴FE =3+95=245.在Rt △CFE 中,CE =CF2+EF2=1255. 6.解:(1)证明:连接AO ,BO.∵PA ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,PA =PB ,∠APO =∠BPO =12∠APB =30°. ∴∠AOP =60°.∵OA =OC ,∴∠OAC =∠OCA.∴∠AOP =∠CAO +∠ACO.∴∠ACO =30°.∴∠ACO =∠APO.∴AC =AP.同理BC =PB ,∴AC =BC =BP =AP.∴四边形ACBP 是菱形.(2)连接AB 交PC 于点D ,则AD ⊥PC.在Rt △AOD 中,∠AOD =60°,∴∠OAD =30°.∴OD =12OA =12. ∴AD =OA2-OD2=12-(12)2=32.∴PA =2AD =3,AB =2AD = 3.∴OP =OA2+PA2=2,PC =OP +OC =2+1=3.∴菱形ACBP 的面积为12AB ·PC =332. 7.解:∵D 为BC ︵的中点,∴BD ︵=DC ︵.∴∠BAD =∠DAC =30°.又∵AB =AC ,∴AD 垂直平分BC.∴AD 为⊙O 的直径.∴∠ACD =90°.在Rt △ACD 中,∠DAC =30°,设DC =x ,则AD =2x.由勾股定理,得AD 2=DC 2+AC 2,即(2x )2=x 2+62.解得x =2 3.∴DC =23,AD =4 3.作Rt △ADC 的内切圆⊙O ′,分别切AD ,AC ,DC 于点F ,G ,H ,易知CG =CH =r , ∴AG =AF =6-r ,DH =DF =23-r.∵AF +DF =AD ,∴6-r +23-r =4 3.∴r =3- 3.专题6 求阴影部分的面积1.A2.A3.A4.C5.C6.C73823 9.D10.A11.B12.A13.94π.。

2020年九年级数学 中考第二轮专题训练 圆 (含答案)

2020年九年级数学 中考第二轮专题训练 圆 (含答案)

2020年九年级数学中考第二轮专题训练圆1、已知:如图,⊙O的直径A B与弦C D相交于E,=,⊙O的切线B F与弦A D的延长线相交于点F.(1)求证:C D∥B F.(2)连接B C,若⊙O 的半径为4,cos∠BCD =,求线段A D、C D的长.2、如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.(1)判断D E与⊙O 的位置关系,并证明你的结论;(2)如果⊙O的直径为9,cos B=,求D E的长.3、如图,在Rt△ABC 中,∠ABC=90°,以A B为直径作⊙O,点D 为⊙O上一点,且C D=C B,连接D O并延长交C B的延长线于点E.(1)判断直线C D与⊙O 的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及A C的长.4、如图,BC 是⊙O的直径,CE 是⊙O的弦,过点E 作⊙O 的切线,交C B的延长线于点G,过点B作B F⊥G E于点F,交C E的延长线于点A.(1)求证:∠ABG=2∠C;(2)若G F=33,GB=6,求⊙O的半径.5、如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是C D延长线上的点,且A P=A C.(1)求证:A P是⊙O的切线;(2)若A C=3,求P D 的长.6、如图,在矩形A B C D中,CD=2,AD =4,点P在B C上,将△A B P沿A P折叠,点B 恰好落在对角线A C上的E点,O为A C上一点,⊙O经过点A,P(1)求证:BC 是⊙O的切线;(2)在边C B上截取C F=C E,点F是线段B C的黄金分割点吗?请说明理由.7、已知:如图,在Rt△ABC 中,∠C=90°,点O在A B上,以O为圆心,O A 长为半径的圆与A C,A B分别交于点D,E,且∠CB D=∠A.(1)判断直线B D与⊙O的位置关系,并证明你的结论;(2)若B C=2,B D=,求的值.8、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.9、如图,在△A B C中,A B=A C,以A B为直径的⊙O分别交B C、A C于点D、E,连接E B交O D于点F.(1)求证:O D⊥B E;(2)若D E=,A B=,求A E的长.10、如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线D F是⊙O的切线;(2)求证:B C2=4C F•A C;(3)若⊙O的半径为 4,∠CDF=15°,求阴影部分的面积.11、如图,A B是⊙O的直径,C是⊙O上一点,D是的中点,E为O D延长线上一点,且∠C A E=2∠C,AC 与B D交于点H,与O E交于点F.(1)求证:AE 是⊙O的切线;(2)若DH=9,tan C=,求直径A B的长.12、已知Rt△ABC 中,∠ABC=90°,以A B为直径作⊙O交A C于点D,连接B D.(1)如图 1,若BD :CD =3:4,AD =3,求⊙O的直径A B的长;(2)如图 2,若E是B C的中点,连接E D,请你判断直线E D与⊙O的位置关系,并证明你的结论.13、如图,△A B C内接于⊙O,A B为直径,作O D⊥A B交A C于点D,延长B C,O D交于点F,过点C作⊙O的切线C E,交O F于点E.(1)求证:E C=E D;(2)如果OA=4,EF=3,求弦A C的长.14、以坐标原点为圆心,1 为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过 1 秒后点P运动到点(2,0),此时P Q 恰好是⊙O的切线,连接O Q.求∠Q O P的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q 再经过 5 秒后直线PQ被⊙O截得的弦长.15、如图,已知半径为 1 的⊙O1 与x轴交于A,B两点,O M 为⊙O1 的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=﹣x2+b x+c的图象经过A,B两点.(1)求二次函数的解析式;(2)求切线O M的函数解析式;(3)线段O M 上存在一点P,使得以P,O,A为顶点的三角形与△O O1M 相似.请问有几个符合条件的点P 并分别求出它们的坐标.16、(1)方法选择如图①,四边形A B C D是⊙O的内接四边形,连接A C,B D,A B=B C=A C.求证:B D=A D+C D.小颖认为可用截长法证明:在D B上截取D M=A D,连接A M…小军认为可用补短法证明:延长C D至点N,使得D N=A D…请你选择一种方法证明.(2)类比探究【探究 1】如图②,四边形A B C D是⊙O的内接四边形,连接A C,B D,B C是⊙O的直径,A B=A C.试用等式表示线段A D,B D,C D之间的数量关系,井证明你的结论.【探究 2】如图③,四边形A B C D是⊙O的内接四边形,连接A C,B D.若B C是⊙O的直径,∠ABC =30°,则线段A D,B D,C D之间的等量关系式是.(3)拓展猜想如图④,四边形A B C D是⊙O的内接四边形,连接A C,B D.若B C是⊙O的直径,B C:A C:A B=a:b:c,则线段A D,B D,C D之间的等量关系式是.17、如图,Rt△ABC 中,∠ACB=90°,以B C上一点O为圆心作圆与A B相切于点D,与B C分别交于点F、N,连接D F并延长交A C的延长线点E.(1)求证:A E=A D;(2)过点D作D H⊥B C于点B,连接A F并延长交⊙O于点G,连接D G,若D O平分∠G D H.求证:∠A F D=2∠D F N;(3)在(2)的条件下,延长D G交A E的延长线于点P,连接P F并延长交⊙O于点M,若FM=5,FH =9,求O H的长.参考答案1、(1)证明:∵直径A B平分,∴AB⊥CD.∵BF与⊙O相切,AB是⊙O的直径,∴A B⊥B F.∴C D∥B F.(2)解:连接BD,BC.∵AB是⊙O的直径,∴∠ADB=90°.在Rt△ADB中,∵cos∠BAF=c os∠BCD=,AB=4×2=8.∴AD=AB •c o s∠BAF=8×=6.∵AB⊥CD于E,在Rt△AED中,c os∠BAF=c os∠BCD=,sin∠BAF=.∴DE=AD •s i n∠BAF=6×.∵直径A B平分,∴C D=2D E=3.2、解:(1)答:D E是⊙O的切线.证明:连接O D,A D,∵AB是直径,∴∠ADB=90°,即A D⊥B C,∵O D=O A,∴∠O D A=∠O A D,∴∠O A D=∠C A D,∴∠O D A=∠C A D,又∵D E⊥A C,∴∠EDA+∠CAD=90°,∴∠EDA+∠ODA=90°,即:O D⊥D E,∴DE是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,在Rt△ADB中,∵cos∠B==,AB=9,∴B D=C D=3,在Rt△CDE中,∵cos∠C=,∴CE=CD•cos∠C=3•cos∠B=3×=1,∴D E==2.3、(1)证明:连接O C.∵CB=CD,CO=CO,OB=OD,∴△O C B≌△O C D(S S S),∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)解:设⊙O的半径为r.在Rt△O B E中,∵O E2=E B2+O B2,∴(4﹣r)2=r2+22,∴r=1.5,∵tan∠E==,∴=,∴CD=BC=3,在Rt△ABC中,A C===3.∴圆的半径为1.5,AC 的长为3.4、(1)证明:连接O E,∵EG是⊙O的切线,∴O E⊥E G,∵B F⊥G E,∴O E∥A B,∴∠A=∠OEC,∵OE=OC,∴∠O E C=∠C,∴∠A=∠C,∵∠ABG=∠A+∠C,∴∠ABG=2∠C;(2)解:∵BF⊥GE,∴∠BFG=90°,∵GF=3,GB=6,∴B F==3,∵BF∥OE,∴△B G F∽△O G E,∴=,∴=,∴OE=6,∴⊙O的半径为 6.5、解:(1)证明:连接O A,∵∠B=60°,∴∠AOC=2∠B=120°,∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,又∵A P=A C,∴∠P=∠ACP=30°,∴∠OAP=90°,即O A⊥A P,∵点A在⊙O上,∴AP是⊙O的切线.(2)解:连接A D,∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC∙tan30°=,C D=2A D=2,∴D O=A O=C D=,在Rt△P A O中,由勾股定理得:P A2+A O2=P O2,∴32+()2=(P D+)2,∵PD的值为正数,∴P D=.6、解:(1)连接O P,则∠P A O=∠A P O,而△A E P是由△A B P沿A P折叠而得:故A E=A B=4,∠O A P=∠P A B,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)C F=C E=A C﹣A E=﹣4=2﹣2,=,故:点F是线段B C的黄金分割点. 7、解:(1)直线B D与⊙O相切.证明:如图 1,连接O D.∵OA=OD,∴∠A=∠A D O.∵∠C=90°,∴∠CBD +∠CDB=90°.又∵∠C B D=∠A,∴∠ADO+∠CDB=90°.∴∠ODB=90°.∴直线BD与⊙O相切.(2)解法一:如图 1,连接DE.∵∠C=90°,BC=2,BD=∴.∵AE是⊙O的直径,∴∠ADE=90°.∴.∵∠CBD=∠A,∴==.∵AE=2AO,∴=.解法二:如图 2,过点O作OH⊥AD于点H.∴.∴∵∠C=90°,BC=2,BD=∴.∵∠CBD=∠A,∴==.∴=.8、(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵A O=B O,∴A D=B D,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.9、证明:(1)连接A D.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵A B=A C,∴D C=D B.∵O A=O B,∴O D∥A C.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴可得OD是BE的中垂线,∴DE=DB,∴∠1=∠2,∴B D=E D=,∵O D⊥E B,∴F E=F B.∴O F=A E=,D F=O D﹣O F=.在Rt△DFB 中,;在Rt△OFB 中,;∴=.解得,即.10、解:(1)如图所示,连接O D,∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,∴∠ODF=90°,∴直线DF是⊙O的切线;(2)连接A D,则A D⊥B C,则A B=A C,则D B=D C=,∵∠CDF+∠C=90°,∠C+∠DAC=90°,∴∠CDF=∠DCA,而∠D F C=∠A D C=90°,∴△C F D∽△C D A,∴C D2=C F•A C,即B C2=4C F•A C;(3)连接O E,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△O A E=A E×O E sin∠O E A=×2×O E×cos∠O E A×O E sin∠O E A=4,S =﹣S =×π×42﹣4 =﹣4 .阴影部分S扇形OAE △OAE11、解:(1)∵D是的中点,∴OE⊥AC,∴∠AFE=90°,∴∠E+∠EAF=90°,∵∠AOE=2∠C,∠CAE=2∠C,∴∠CAE=∠AOE,∴∠E+∠AOE=90°,∴∠EAO=90°,∴AE是⊙O的切线;(2)∵∠C=∠B,∵OD=OB,∴∠B=∠O D B,∴∠O D B=∠C,∴tan C=tan∠ODB==,∴设HF=3x,DF=4x,∴DH=5x=9,∴x=,∴D F=,H F=,∵∠C=∠FDH,∠DFH=∠CFD,∴△D F H∽△C F D,∴=,∴C F==,∴A F=C F=,设O A=O D=x,∴O F=x﹣,∵A F2+O F2=O A2,∴()2+(x﹣)2=x2,解得:x=10,∴OA=10,∴直径AB的长为 20.12、解:(1)如图,∵A B是⊙O的直径,∴∠ADB=90°.则∠CDB=∠ADB=90°.∴∠C+∠CBD=90°.∵∠ABC=90°,∴∠ABD+∠CBD=90°.∴∠C=∠A B D.∴△A D B∽△B D C.∴.∵BD:CD=3:4,AD=3,∴BD=4.在Rt△A B D中,A B=;(3 分)(2)直线E D与⊙O相切.证明:如图,连接O D.由(1)得∠BDC=90°.∵E是BC的中点,∴D E=B E=B C,∴∠E D B=∠E B D,∵OB=OD,∴∠ODB=∠OBD.∵∠OBD+∠EBD=90°,∴∠ODB+∠EDB=∠ODE=90°.∵点D在⊙O上,且OD⊥DE∴ED是⊙O的切线.(5 分)13、(1)证明:连接O C,∵CE与⊙O相切,为C是⊙O的半径,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OA=OC,∴∠A=∠OCA,∴∠ACE+∠A=90°,∵OD⊥AB,∴∠ODA+∠A=90°,∵∠ODA=∠CDE,∴∠CDE+∠A=90°,∴∠CDE=∠ACE,∴EC=ED;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△DCF中,∠DCE+∠ECF=90°,∠DCE=∠CDE,∴∠CDE +∠ECF=90°,∵∠CDE +∠F=90°,∴∠ECF=∠F,∴E C=E F,∵EF=3,∴EC=DE=3,∴O E==5,∴OD=OE﹣DE=2,在Rt△OAD中,A D==2,在Rt△AOD 和Rt△ACB 中,∵∠A=∠A,∠A C B=∠A O D,∴Rt△AOD∽Rt△ACB,∴,即,∵∴O C = = .. ∴A C = .14、解:(1)如图一,连接A Q .由题意可知:O Q =O A =1.∵OP =2,∴A 为 OP 的中点.∵PQ 与⊙O 相切于点 Q ,∴△O Q P 为直角三角形.∴.即△OAQ 为等边三角形.∴∠QOP =60°.(2)由(1)可知点 Q 运动 1 秒时经过的弧长所对的圆心角为 30°,若 Q 按照(1)中的方向和速度继续运动,那么再过 5 秒,则 Q 点落在⊙O 与 y 轴负半轴的交点处(如图二).设 直线 P Q 与⊙O 的另外一个交点为 D ,过 O 作 OC ⊥QD 于点 C ,则 C 为 QD 的中点.∵∠QOP =90°,OQ =1,OP =2,∴Q P =. , ∵O C ⊥Q D ,O Q =1,O C = ,∴Q C == .∴QD =15、解:(1)∵圆心的坐标为O1(2,0),⊙O1 半径为 1,∴A(1,0),B(3,0),∵二次函数y=﹣x2+b x+c的图象经过点A,B,∴可得方程组,解得:,∴二次函数解析式为y=﹣x2+4x﹣3.(2)过点M作M F⊥X轴,垂足为F.∵O M是⊙O1 的切线,M为切点,∴O1M⊥O M(圆的切线垂直于经过切点的半径).在R T△O O1M中,sin∠O1O M==,∵∠O1O M为锐角,∴∠O1O M=30°,∴O M=O O1•cos30°=,在R T△M O F中,OF=OM •cos30°=.MF=O M sin30°=.∴点M坐标为(),设切线O M的函数解析式为y=k x(k≠0),由题意可知=k,∴k=,∴切线O M的函数解析式为y=x(3)两个,①过点A作A P1⊥x轴,与O M交于点P1,可得 Rt△A P1O∽Rt△M O1O(两角对应相等两三角形相似),P1A=O A•tan∠A O P1=,∴P1(1,);②过点A作A P2⊥O M,垂足为,过P2 点作P2 H⊥O A,垂足为H.可得 Rt△O P2A∽Rt△O1 M O(两角对应相等两三角形相似),在Rt△O P2A中,∵OA=1,∴P2=O A•cos30°=,在Rt△O P2 H中,O H=O P2•cos∠A O P2=,P2H=O P2 •sin∠A O P2=,P2(,),∴符合条件的P点坐标有(1,),(,).16、解:(1)方法选择:∵A B=B C=A C,∴∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△A B M≌△A C D(A A S),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作A M⊥A D交B D于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴D M=A D,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△A B M≌△A C D(A A S),∴BM=CD,∴B D=B M+D M=C D+A D;【探究 2】如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作A M⊥A D交B D于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴B M=C D,∴B D=B M+D M=C D+2A D;故答案为:B D=C D+2A D;(3)拓展猜想:B D=B M+D M=C D+A D;理由:如图④,∵若B C是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠B A M=∠D A C,∴△A B M∽△A C D,∴=,∴B M=C D,∵∠ADB=∠ACB,∠BAC=∠NAD=90°,∴△ADM∽△ACB,∴==,∴D M=A D,∴B D=B M+D M=C D+A D.故答案为:B D=C D+A D17、解:(1)证明:∵∠A C B=90°∴∠E+∠CFE=∠ACB=90°∵∠CFE=∠OFD∴∠E+∠OFD=90°∵AB切⊙O于D∴OD⊥AB∴∠ODF+∠ADE=90°∵OD=OF∴∠OFD=∠ODF∴∠E=∠ADE∴AE=AD(2)证明:连接D N∵DO平分∠GDH∴设∠ODG=∠ODH=α,设∠FDG=β,则∠FDH=2α+β∵OF=OD∴∠DFN=∠ODF=α+β∵DH⊥FN∴∠DHF=90°∴∠DFN+∠FDH=90°,即α+β+2α+β=3α+2β=90°∵FN为⊙O直径∴∠FDN=90°∴∠DNF=90°﹣∠DFN=90°﹣(2α+β)=3α+2β﹣(α+β)=2α+β∴∠G=∠DNF=2α+β∵∠AFD=∠G+∠FDG=2α+β+β=2α+2β∴∠AFD=2∠DFN(3)过O作O Q∥A B交F M于点Q∵∠AEF+∠EFC=90°,∠DFN+∠FDH=90°,∠EFC=∠DFN∴∠AEF=∠FDH=2α+β∴∠ADE=∠AEF=2α+β∴∠FAD=180°﹣∠AFD﹣∠ADF=2(3α+2β)﹣(2α+2β)﹣(2α+β)=2α+β 即∠F A D=∠A D F∴AF=DF∴F在AD的垂直平分线上∵∠AEF=∠FGD=2α+β,∠AFE=∠DFG∴∠EAF=∠FDG=β∴∠PAD=∠PDA=β+(2α+β)=2α+2β∴PA=PD∴P在A D的垂直平分线上即P M垂直平分A D∴OQ⊥FM∴∠OQF=90°,FQ=F M=∵OQ∥AB∴∠FOQ=∠B∵∠B+∠DOH=∠DOH+∠ODH=90°∴∠B=∠ODH∴∠F O Q=∠O D H在△F O Q与△O D H中∴△FOQ≌△ODH(AAS)∴OH=FQ=。

2020 人教版 九年级 圆专题复习练习题(有部分答案)

2020 人教版 九年级 圆专题复习练习题(有部分答案)

圆一、单选题1.如图所示,MN 为⊙O 的弦,52N ∠=o ,则MON ∠的度数为( )A .38oB .52oC .76oD .104o2.如图,点A ,B ,C 是⊙O 上的三点,若∠BOC=50°,则∠A 的度数是( )A .25°B .20°C .80°D .100°3.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒4.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA =40°,AB =6,则弧BC 的长为( )A .83πB .103πC .53πD .43π5.如果,AB 是⊙O 的切线,A 为切点,,AB=5,AC 是⊙O 的弦,OH ⊥AC ,垂足为H ,若OH=3,则弦AC 的长为( )A.5 B.6 C.8 D.106.如图,已知⊙O 是正方形ABCD 的外接圆,点E 是弧AD 上任意一点,则∠BEC 的度数为()A.30°B.45°C.60°D.90°7.以O为中心点的量角器与直角三角板ABC如图所示摆放,直角顶点B在零刻度线所在直线DE上,且量角器与三角板只有一个公共点P,若点P的读数为35°,则∠CBD的度数是()A.55°B.45°C.35°D.258.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.8003πcm2D.150πcm29.下列说法正确的是( )A.等弧所对的圆心角相等B.平分弦的直径垂直于这条弦C.经过三点可以作一个圆D.相等的圆心角所对的弧相等10.如图,四边形ABCD内接于⊙O,连接OA,OC.若∠AOC=∠ABC,则∠D的大小为( )A.50°B.60°C.80°D.120°11.如图,从一张腰长为90cm,顶角为120︒的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm12.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.54πC.3+πD.8﹣π二、填空题13.若圆锥的底面积为16π cm2,母线长为12 cm,则它的侧面展开图的圆心角为__________.14.已知扇形的圆心角100°,所对的弧长为53π,则此扇形的面积是_________.15.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD于点E,AE=CD,若⊙O的半径为5,则弦CD的长为_____.16.如图,∆ABC 是圆O 的内接三角形,连接OA 、OC ,若∠AOC =∠ABC ,弦AC =则圆O 的半径为__________.17.如图,直线y=-34x-3交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的坐标是_______.18.如图,菱形ABCD 中,2AB =,60C ∠=°,菱形ABCD 在直线L 上向右作无滑动的翻滚,每绕着一个顶点旋转60︒叫一次操作,则经过45次这样的操作菱形中心O 所经过的路径总长为______.(结果保留π)19.如图,四边形ABCD 内接于O e ,若四边形ABCO 是平行四边形,则ADC ∠的大小为_______.20.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是_____(结果保留π)三、解答题21.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O 经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°. (1)求证:CD是⊙O的切线;e的半径为2,求图中阴影部分的面积.(2)若O23.如图,△ABC 内接于⊙O,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点且AP=AC.(1)求证:P A 是⊙O 的切线;(2)若2AB =+,4BC =,求⊙O 的半径24.如图,⊙O 是△ABC 的外接圆,AB 是直径,D 是AC 中点,直线OD 与⊙O 相交于E ,F 两点,P 是⊙O 外一点,P 在直线OD 上,连接P A ,PC ,AF ,且满足∠PCA =∠ABC .(1)证明:EF 2=4OD •OP ;(2)若tan ∠AFP =23,求DE BC的值. 25.已知如图,以Rt △ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为3,∠EAC =60°,求AD 的长。

人教版九年级数学中考真题分类(解答题)专练: 圆的综合(一)有答案

人教版九年级数学中考真题分类(解答题)专练: 圆的综合(一)有答案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯人教版九年级数学中考真题分类(解答题)专练:圆的综合(一)1.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.2.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6,CD=4,且CE=2AE,求EF的长.3.(2020•乐山)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.4.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.5.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.6.(2020•甘孜州)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:∠CAD=∠CAB;(2)若=,AC=2,求CD的长.7.(2020•金华)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.8.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,=,求CD的长.9.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.10.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.参考答案1.(1)证明:连接OD,∵==,∴∠BOD=180°=60°,∵=,∴∠EAD=∠DAB=BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=AB=3,∴AD==3.2.(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴=,∴AC=9,∴AB==3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴==,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴=,∴=,∴FH=,∴EF=﹣2.3.证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.4.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.5.(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.6.(1)证明:如图1,连接OC,,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,即∠CAD=∠CAB.(2)解:如图2,连接BC,∵=,∴设AD=2x,AB=3x,∵AB是⊙O的直径,∴∠ACB=∠ADC=90°,∴∠ACB=90°,∵AD⊥DC,∴∠ADC=90°,∵∠DAC=∠CAB,∴△ACD∽△ABC,∴=,∴=,解得,x1=2,x2=﹣2(舍去),∴AD=4,∴CD==2.7.解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.8.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tan A==tan∠BCE==,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴==,∵AD=8,∴CD=4.9.(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.10.解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.。

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。

人教版初三圆测试题及答案

人教版初三圆测试题及答案

人教版初三圆测试题及答案一、选择题(每题2分,共10分)1. 半径为2的圆的面积是多少?A. 4πB. 6πC. 8πD. 12π2. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 4πrD. C = 8πr3. 若圆的半径是3,圆心角为60°,那么这个弧长是多少?A. πB. 3πC. 6πD. 9π4. 点P到圆心O的距离是5,圆的半径是3,那么点P与圆的位置关系是:A. 在圆上B. 在圆内C. 在圆外D. 无法确定5. 圆的切线与半径垂直,且切点到圆心的距离等于:A. 半径B. 直径C. 周长的一半D. 面积的平方根二、填空题(每题2分,共10分)6. 半径为4的圆的面积是_________。

7. 若圆的周长为12π,那么圆的半径是_________。

8. 圆心角为120°的弧所对的圆心角是_________。

9. 点P到圆心O的距离是2,圆的半径是4,点P与圆的位置关系是_________。

10. 圆的切线与半径垂直,切点到圆心的距离是_________。

三、计算题(每题5分,共20分)11. 已知圆的半径为5,求圆的周长和面积。

12. 已知圆的周长为16π,求圆的半径。

13. 若圆的半径为7,圆心角为45°,求该弧长。

14. 已知点P到圆心O的距离为10,圆的半径为8,求点P与圆的位置关系。

四、解答题(每题10分,共20分)15. 某圆的半径为6,圆心角为30°,求该弧所对的圆心角和弧长。

16. 已知圆的切线在点M处与圆相切,OM=6,半径为4,求切线PM的长度。

五、综合题(15分)17. 某工厂需要在一块半径为10米的圆形场地上安装一个直径为4米的圆形水池,水池的中心与场地的中心重合。

求水池的半径占场地半径的比例,以及水池的面积占整个场地面积的比例。

六、结束语本测试题覆盖了圆的基本概念、公式和计算方法,旨在帮助学生巩固和检验对圆的相关知识的掌握。

2020 人教版 九年级 圆专题复习(有答案)

2020 人教版 九年级 圆专题复习(有答案)

圆一、单选题1.CD是⊙O的弦,AB是直径,且CD⊥AB,垂足为点P.若CD=4,OP=1,AB的值为()A.3B.5C.5D.252.如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A.64°B.58°C.72°D.55°3.如图,点A、B、C是⊙O上的点,∠AOB=70°,则∠ACB的度数是()A.30°B.35°C.45°D.70°4.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的半径是()A.3cm B.33cm C.6cm D.66cm2D.34B.3A.2-π24C.2-8D.35.如图,A,B,P是⊙O上三点,若∠P=110°,则∠AOB的度数为()A.70°B.110°C.125°D.140°6.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=23,则线段CD的长是()A.2B.3C.3237.已知圆内接正三角形的面积为3,则该圆的内接正六边形的边心距是()A.2B.1C.3D.32 8.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()-πππ-249.如图,⊙O的半径为5△,ABC是⊙O的内接三角形,过点C作CD垂直AB于点D.若CD=3,AC=6,则BC长为()»»¼②∠MAN=90°;③¼AM=BM;④∠ACM+∠ANM=∠MOB;⑤AE=A.3B.5C.32D.610.如图,AB是半圆O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC△与ABD相似,可以添加一个条件.下列添加的条件错误的是()A.∠ACD=∠DABC.AD2=BD·C DB.AD=DED.CD·A B=AC·B D11.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为AN 上一点,且AC=AM,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;¼其中正确结论的个数是()12MF.A.2B.3C.4D.5二、填空题13.如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=.14.若用一张直径为20cm的半圆形铁片做一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为_____.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,OE=3,则⊙O的半径为_______.16.如图,⊙O△是ABC的外接圆,⊙O的直径BD=8,∠A=60°,则BC的长度为_____.17.如图,AC是⊙O的直径,弦BD⊥AO,垂足为点E,连接BC,过点O作OF⊥BC,垂足为F,若BD=8cm,AE=2cm,则OF的长度是_____cm.18.如图,△Rt ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则△Rt MBN的周长为_______.19.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为____mm.20.如图,已知⊙P的半径为1,圆心P在抛物线y=x2-2上运动,当⊙P与x轴相切时,圆心P的坐标是___________________.三、解答题21.计算:如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,求tan∠OBC的值.22.如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.23.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)证明:DF是⊙O的切线;(2)若AC=3AE,FC=6,求AF的长.24.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点.三角形ABC的三个顶点均在格点上,以点A为圆心的弧EF与BC相切于格点D,分别交AB,AC于点E,F.(1)直接写出三角形ABC边长AB=;AC=;BC=.(2)求图中由线段EB,BC,CF及弧FE所围成的阴影部分的面积.(结果保留π)25.如图,DC是⊙O的直径,点B在圆上,直线AB交CD延长线于点A,且∠ABD=∠C.(1)求证:AB是⊙O的切线;(2)若AB=4cm,AD=2cm,求tanA的值和DB的长.26.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC 于点E,交AB延长线于点F.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若⊙O半径为5,CD=6,求DE的长;(3)求证:BC2=4CE•AB.参考答案1.D2.B3.B4.B5.D6.B7.B8.B9.B10.D11.A12.D13.4314.53cm15.516.4317.518.2r19.825.(1)证明略;(2)tanA=320.(3,1)或(-3,1)或(1,-1)或(-1,-1)21.2 422.(1)证明略;(2)258.23.(1)略;(2)AF=3.24.(1)210,210,45;(2)20﹣5π6;DB的长为455.24 26.(1)EF与⊙O相切;(2)DE=5;(3)略。

2020年人教版九年级数学上册专题小练习二十《圆-证明题专练》(含答案)

2020年人教版九年级数学上册专题小练习二十《圆-证明题专练》(含答案)

2020年人教版九年级数学上册专题小练习《圆-证明题专练》1.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)2.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.3.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.4.已知P是⊙O外的一点,OP=4,OP交⊙O于点A,且A是OP的中点,Q是⊙O上任意一点.(1)如图1,若PQ是⊙O的切线,求∠QOP的大小;(2)如图2,若∠QOP=90°,求PQ被⊙O截得的弦QB的长.5.已知△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O与BC相切于D,与AC相交于F,连接AD.(1)求证:AD平分∠BAC;(2)连接OC,如果∠B=30°,CF=1,求OC的长.6.如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连接DE.(1)当BD=3时,求线段DE的长;(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.7.如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.8.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.9.如图,四边形ABCD表示一张矩形纸片,AB=10,AD=8.E是BC上一点,将△ABE沿折痕AE向上翻折,点B恰好落在CD边上的点F处,⊙O内切于四边形ABEF.求:(1)折痕AE的长;(2)⊙O的半径.10.已知平行四边形ABCD,AB=8,BC=6,O点在边AB上,以OA为半径作⊙O,交AD于E点.(1)如图1,若AB为O直径,恰好AE=4DE,求sinA的值;(2)如图2,若⊙O与CB延长线相切,切点为F点,求⊙O的半径长.11.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=320,求∠P的大小;(Ⅱ)如图②,D为优弧ADC上一点,且DO的延长线经过AC的中点E,连接DC与AB相交于点P,若∠CAB=160,求∠DPA的大小.12.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC= °时,四边形ODEB是正方形.②当∠BAC= °时,AD=3DE.参考答案1.解:(1)直线BC与⊙O相切;连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵直线BC过半径OD的外端,∴直线BC与⊙O相切.(2)设OA=OD=r,在Rt△BDO中,∠B=30°,∴OB=2r,在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.(3)在Rt△ACB中,∠B=30°,∴∠BOD=60°.∴.∵∠B=30°,OD⊥BC,∴OB=2OD,∴AB=3OD,∵AB=2AC=6,∴OD=2,BD=2S△BOD=×OD•BD=3,∴所求图形面积为.2.解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN=.3.【解答】(1)证明:连接AE,∵AB是⊙O直径,∴∠AEB=90°,即AE⊥BC,∵AB=AC,∴BE=CE.(2)解:∵∠BAC=54°,AB=AC,∴∠ABC=63°,∵BF是⊙O切线,∴∠ABF=90°,∴∠CBF=∠ABF﹣∠ABC=27°.(3)解:连接OD,∵OA=OD,∠BAC=54°,∴∠AOD=72°,∵AB=6,∴OA=3,∴弧AD的长是=.4.解:(1)如图1,∵PQ是⊙O的切线,∴OQ⊥PQ,∵A是OP的中点,∴OP=2OA,在Rt△OPQ中,cos∠QOP==,∴∠QOP=60°;(2)作OD⊥BQ于D,如图2,则QD=BD,∵∠QOP=90°,OP=4,OQ=2,∴PQ=2,∵∠OQD=∠PQO,∴Rt△QOD∽Rt△QPO,∴QD:OQ=OQ:QP,即QD:2=2:2,∴QD=,∴QB=2QD=.5.(1)证明:连接OD,∴OD=OA,∴∠1=∠2,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠3=∠2,∴∠1=∠3,∴AD是∠BAC的平分线;(2)解:连接DF,∵∠B=30°,∴∠BAC=60°,∵AD是∠BAC的平分线,∴∠3=30°,∵BC是⊙O的切线,∴∠FDC=∠3=30°,∴CD=CF=,∴AC=CD=3,∴AF=2,过O作OG⊥AF于G,∴GF=AF=1,四边形ODCG是矩形,∴CG=2,OG=CD=,∴OC==.6.(1)解:∵∠C=90°,AC=3,BC=4,∴AB=5,∵DB为直径,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△DBE∽△ABC,∴,即,∴DE=;(2)连接OE,∵EF为半圆O的切线,∴∠DEO+∠DEF=90°,∵△DBE∽△ABC,∴∠A=∠EDB,又∵∠EDO=∠DEO,∴∠AEF=∠A,∴△FAE是等腰三角形;7.(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.8.【解答】证明:(1)连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE=CD=×4=2,设OC=x,∵BE=2,∴OE=x﹣2,在Rt△OCE中,OC2=OE2+CE2,∴x2=(x﹣2)2+(2)2,解得:x=4,∴OA=OC=4,OE=2,∴AE=6,在Rt△AED中,AD==4,∴AD=CD,∵AF是⊙O切线,∴AF⊥AB,∵CD⊥AB,∴AF∥CD,∵CF∥AD,∴四边形FADC是平行四边形,∵AD=CD,∴平行四边形FADC是菱形;(2)连接OF,AC,∵四边形FADC是菱形,∴FA=FC,∴∠FAC=∠FCA,∵AO=CO,∴∠OAC=∠OCA,∴∠FAC+∠OAC=∠FCA+∠OCA,即∠OCF=∠OAF=90°,即OC⊥FC,∵点C在⊙O上,∴FC是⊙O的切线.9.10.解:(1)连接BE,sinA=0.8;(2)r=32/9.11.12.。

人教版 九年级数学 第24章 圆 24.1 ---24.4章节复习题(含答案)

人教版 九年级数学 第24章 圆 24.1 ---24.4章节复习题(含答案)

人教版 九年级数学 第24章24.1 ---24.4复习题(含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. 如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.21. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.24.2 点和圆、直线和圆的位置关系一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,有下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE=10,DF=8,求CD的长.人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5. 【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】D[解析] 如图,设PQ 的中点为F ,⊙F 与AB 的切点为D ,连接FD ,FC ,CD .∵AB =10,AC =8,BC =6, ∴∠ACB =90°, ∴PQ 为⊙F 的直径.∵⊙F 与AB 相切,∴FD ⊥AB ,FC +FD =PQ ,而FC +FD ≥CD ,∴当CD 为Rt △ABC 的斜边AB 上的高且点F 在CD 上时,PQ 有最小值,为CD 的长,即CD 为⊙F 的直径.∵S △ABC =12BC ·AC =12CD ·AB ,∴CD =4.8.故PQ 的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB⊥AB ,∠OAB =12×(180°-60°)=60°. ∵AB =3,∴OA =6,OB =3 3, ∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°, ∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交.理由:过点A 作AD ⊥BC 于点D ,则BD =CD =8.∵AB =AC =10,∴AD =6.∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°.∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.24.3正多边形和圆一、选择题1.如图,四边形ABCD是⊙O的内接四边形,AB为⊙0直径,点C为劣弧BD 的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°2.如图,圆O是△ABC的外接圆,连接OA、OC,∠OAC=20°,则∠ABC的度数为()A.140°B.110°C.70°D.40°3.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为BAC的中点,过E 作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD 与等边△ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,下列结论:(1)BE=CD ;(2)AF 平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )A .1个B .2个C .3个D .4个7.正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点,AQ 交BD 于M ,过M作MN ⊥AM 交BC 于N ,连AN 、QN .下列结论:①MA=MN ;②∠AQD=∠AQN ; ③S △AQN =12S 五边形ABNQD ;④QN 是以A 为圆心,以AB 为半径的圆的切线.其中正确的结论有( )A .①②③④B .只有①③④C .只有②③④D .只有①② 8.如图,在菱形ABCD 中,点P 是BC 边上一动点,连结AP ,AP 的垂直平分线交BD 于点G ,交 AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变9.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长AE 交⊙O 于点F ,则线段AF 的长为( )A .755B .5C .5+1D .35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.14.如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM2是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD 与等边垂直,求CD的长.19.定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC中,AB=2,BC=52,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+14(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C . ①若86PA PB ==,,求AB 的长 ②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,52AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形; (2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 113 12.①②④ 13.411014.64 15.①②③④ 16.317.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4. 19.(1)正方形、矩形;(2)3;(3)49. 20.(1)略;(2)43π21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)3AP ≥;(2)QAP ∠为定值,QAP ∠=30°;(3)1(234,0)Q +,2(234,0)Q -,3(23,0)Q -,423(,0)3Q24.4 弧长和扇形面积一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.B.C.D.2. 一扇形面积是,半径为,则该扇形圆心角度数是( ) A.B.C.D.3. 圆锥的底面半径为,母线长为,则该圆锥的侧面积为( ) A.B.C.D.4. 如图,在边长为的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是( )A. B. C. D.5. 如果圆柱的底面直径为,母线长为,那么圆柱的侧面展开图的面积等于()A. B. C. D.6. 一个扇形占其所在圆的面积的,则该扇形圆心角是()A. B. C. D.无法计算7. 如图,圆锥的底面半径,高,则这个圆锥的侧面展开图的圆心角是()A. B. C. D.8. 一个圆锥的底面圆的周长是,母线长是,它的侧面展开图的圆心角的度数是()A. B. C. D.9. 已知一个圆锥的侧面积是,它的侧面展开图圆心角为,则这个圆锥的底面半径为A. B. C. D.10. 如图,边长为米的正方形池塘的周围是草地,池塘边、、、处各有一棵树,且米.现用长米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()A.处B.处C.处D.处二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果圆柱的母线长为,底面半径为,那么这个圆柱的侧面积是________.12. 一个圆锥的侧面展开图是一个圆心角为,面积为的扇形,则这个圆锥的高是________.13. 一个圆柱体底面积直径是高的倍,如果底面积半径是分米,则它的表面积是________平方分米.14. 一个扇形的圆心角是,面积为,那么这个扇形的弧长为________.15. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为________.16. 已知圆锥的底面周长为,母线长为,那么这个圆锥的侧面积是________(结果保留).17. 如图,已知的半径,弦,且,点在上,则图中的阴影部分的面积是________.18. 如图,为的弦,点为的中点,,当点、在上运动一周时,点所走过的路径与围成的图形面积是________.19. 如图所示,已知的半径,,则所对的弧的长为________.20. 现有圆周的一个扇形彩纸片,该扇形的半径为,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,扇形的圆心角,半径,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22. 如图,圆锥的底面半径为,高为,求这个圆锥的侧面积和表面积.23. 如图,圆锥的底面半径,高.求这个圆锥的表面积.取24. 如图,在中,,,以腰为直径作半圆,分别交,于点,.求,的长.25. 有一直径为圆形纸片,从中剪出一个圆心角是的最大扇形(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?26. 如图,一个圆锥的高为,侧面展开图是半圆.求圆锥的母线长与底面半径之比;求的度数;求圆锥的侧面积(结果保留).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:设圆锥的底面圆的半径为,扇形的半径为,根据题意得,解得,,解得,所以该圆锥的全面积.故选.2.【答案】A【解答】解:设扇形圆心角的度数为,∴,∴.即扇形圆心角度数为.故选.3.【答案】C【解答】圆锥的侧面展开图为扇形,由扇形面积公式可以得出此圆锥侧面积为:=.4.【答案】D【解答】解:如图所示,.故选.5.【答案】A【解答】解:圆柱的侧面积,故选.6.【答案】B【解答】解:∵一个扇形占其所在圆的面积的,∴该扇形的圆心角占它所在圆的圆心角的,即.故选.7.【答案】C【解答】解:圆锥的母线长,设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故选.8.【答案】C【解答】解:圆锥侧面展开图的扇形面积半径为,弧长为,代入扇形弧长公式,即,解得,即扇形圆心角为度.故选.9.【答案】【解答】此题暂无解答10.【答案】B【解答】解:①;②;③;④,故选二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:这个圆柱的侧面积.故答案为:.12.【答案】【解答】解:设母线长为,底面圆的半径为,,解得:,底面圆的周长为:,解得:,∴这个圆锥的高是:.故答案为:.13.【答案】【解答】解:∵一个圆柱体底面直径是高的倍,如果底面半径是分米,∴高为分米,底面周长为:(分米),则其侧面积为:(平方分米),上下两底面积为:(平方分米).故它的表面积是:平方分米.14.【答案】【解答】解:设这个扇形的半径是.根据扇形面积公式,得,解得(负值舍去).故半径为.弧长是:.故答案为.15.【答案】【解答】解:设圆锥的母线长为,根据题意得:,解得:.故答案为:.16.【答案】【解答】解:圆锥的侧面积.17.【答案】【解答】解:连接,,∵,∴,∵,∴是等边三角形,∴,,∴,故答案为:.18.【答案】【解答】解:如图,连接、,点所走过的路径为小圆,∵点为的中点,,∴,且,∴点所走过的路径与围成的图形面积是,故答案为:.19.【答案】【解答】解:所对的弧的长,故答案为:.20.【答案】【解答】解:解得:,∵扇形彩纸片是圆周,因而圆心角是∴剪去的扇形纸片的圆心角为.剪去的扇形纸片的圆心角为.故答案为.三、解答题(本题共计 6 小题,每题10 分,共计60分)21.【答案】圆锥的底面圆的半径为.【解答】解:设圆锥的底面圆的半径为,根据题意得,解得.22.【答案】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.【解答】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.23.【答案】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.【解答】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.24.【答案】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.【解答】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.25.【答案】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.【解答】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.26.【答案】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.【解答】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.。

2020-2021学年人教版数学九年级章节专题测试及答案:圆(A)

2020-2021学年人教版数学九年级章节专题测试及答案:圆(A)

2020-2021学年人教版数学九年级下册圆复习测试题(A)一、选择题(每小题2分,共16分)1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()(A)4(B)6 (C)7(D)8图1 图22.如图2,C是⊙O上一点,O是圆心,若∠C=35°,则∠AOB的度数为()(A)35°(B)70°(C)105°(D)150°3.如图3,⊙O中弧AB的度数为60°,AC是⊙O的直径,那么∠BOC等于()(A)150°(B)130°(C)120°(D)60°图3 图4 图54.如图4,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC为直径的圆交AB于D,则AD的长为( ) (A)59(B)512(C)516(D) 45.两圆的半径分别为R=5、r=3,圆心距d=6,则这两圆的位置关系是()(A)外离(B)外切(C)相交(D)内含6.如图5,⊙O的半径OA=3,以点A为圆心,OA的长为半径画弧交⊙O于B、C,则BC=( ) (A)23(B)33(C)223(D)2337.一个扇形的圆心角是120°,它的面积为3πcm2,那么这个扇形的半径是()(A)3cm(B)3cm(C)6cm(D)9cm8.如图7,⊙O的直径AB与弦AC的夹角为30,切线CD与AB的延长线交于点D,若⊙O的半径为3,则CD的长为()(A)6 (B)36(C)3 (D)33OCA B图7二、填空题(每小题2分,共16)1.若两圆外切,圆心距为8cm ,一个圆的半径为3 cm ,则另一个圆的半径为cm .2.如图8,A 、B 、C 是⊙O 上的点,AB = 2㎝,∠ACB=30°,那么⊙O 的半径为______________.ODEC BA 图8 图9 图103.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图8,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE=1,AB=10,求CD 的长”.根据题意可得CD 的长为 .4.如图9是一个俱乐部的徽章.徽章的图案是一个金色的圆圈,中间是一个矩形,矩形中间又有一个蓝色的菱形,徽章的直径为2cm ,则徽章内的菱形的边长为____cm.5.如图10,已知圆锥的母线长OA=8,底面圆的半径r=2.若一只小虫从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是____________(结果保留根式).图10 图116.已知⊙O 的半径为8, 圆心O 到直线l 的距离是6, 则直线l 与⊙O 的位置关系是 .7.如图11,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是________.8.如图12,在⊙O 中,弦AB =AC =5cm ,BC =8cm ,则⊙O 的半径等于 cm .图12A OA O三、解答题(每小题5分,共30分)1.如图13是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA 、PB 分别相切于点A 、B ,不倒翁的鼻尖正好是圆心O ,若∠OAB=25°,求∠APB 的度数.图13 图142.如图14,在一张圆桌(圆心为点O)的正上方点A 处吊着一盏照明灯,实践证明:桌子边沿处的光的亮度与灯距离桌面的高度AO 有关,且当sin ∠ABO=36时,桌子边沿处点B 的光的亮度最大,设OB=60cm ,求此时灯距离桌面的高度OA (结果精确到1cm ).3.如图15,一条公路的转弯处是一段圆弧,点O 是的圆心,E 为上一点,OE ⊥CD ,垂足为F .已知CD = 600m ,EF = 100m ,求这段弯路的半径.4.在探讨圆周角与圆心角的大小关系时,小亮首先考虑了一种特殊情况(圆心在圆周角的一边上)如图16(1)所示:因为∠AOC 是⊿ABO 的外角,所以∠AOC=∠ABO+∠BAO ,又因为OA=OB ,所以∠OAB=∠OBA , 所以∠AOC=2∠ABO ,即∠ABC=21∠AOC. 如果∠ABC 的两边都不经过圆心,如图17(2)、17(3),那么结论会怎样?请判断.图165.在同一平面内,已知点O 到直线l 的距离为5,以点O 为圆心,r 为半径画圆.探究、归纳:(1)当r=__________时,⊙O 上有且只有一个点到直线l 的距离等于3. C O DE F 图15。

2020年人教版九年级数学上册期末专题《圆心角圆周角》(含答案)

2020年人教版九年级数学上册期末专题《圆心角圆周角》(含答案)

A.2
B.4
C.2
D.4.8
3.如图,四边形 ABCD 是半圆内接四边形,AB 是直径, = .若∠C=110°,则∠ABC 度数等 于( )
A.55°
B.60°
C.65°
D.70°
4.如图,⊙P 与 x 轴交于点 A(﹣5,0),B(1,0),与 y 轴的正半轴交于点 C.若∠ACB=60 °,则点 C 的纵坐标为( )
19.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD. (1)求证:AD=AN; (2)若AB=4 ,ON=1,求⊙O的半径.
20.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD. (1)如图 1,若点D与圆心O重合,AC=2,求⊙O的半径r。 (2)如图 2,若点D与圆心O不重合,∠BAC=25°,求∠DCA的度数.
18.【解答】(1)证明:∵四边形 ABCD 内接于圆 O,
13.如图,已知 AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD 的度数为

14.如图,四边形 ABCD 内接于⊙O,∠DAB=130°,连接 OC,点 P 是半径 OC 上任意一点,连接 DP,
BP,则∠BPD 可能为
度(写出一个即可).
15.如图,B、C、D 依次为一直线上 4 个点,BC=3,△BCE 为等边三角形,⊙O 过 A、D、E 三
A.AP=2OP
B.CD=2OP
C.OB⊥AC
D.AC 平分 OB
二、填空题 11.如图,AB 是半圆 O 的直径,AC=AD,OC=2,∠CAB=30°,则点 O 到 CD 的距离 OE
为 .
12.如图,AB 是⊙O 的弦,OC⊥AB,交⊙O 于点 C,连接 OA,OB,BC,若∠ABCห้องสมุดไป่ตู้20°, 则∠AOB 的度数是 .

人教版九年级数学:圆经典复习题(含答案)

人教版九年级数学:圆经典复习题(含答案)

练习:在直角坐标平面内,圆O 的半径为5,圆心O 的坐标为(14)--,.试判断点(31)P -,与圆O 的位置关系.知识点三、圆的基本性质1圆是轴对称图形,其对称轴是任意一条过圆心的直线。

2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。

3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。

圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

圆周角定理推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。

圆周角定理推论2:直径所对的圆周角是直角;90°的圆周角所对的弦是直径。

例1 如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是( ) A .4cm B .6cm C .8cm D .10cm例2、如图,A 、B 、C 、D 是⊙O 上的三点,∠BAC=30°,则∠BOC 的大小是( ) A 、60° B 、45° C 、30° D 、15°例3、如图1和图2,MN 是⊙O 的直径,弦AB 、CD•相交于MN•上的一点P ,•∠APM=∠CPM . (1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.BA CEDP ONM FBA CE DPNMF(1) (2)知识点四、圆与三角形的关系1、不在同一条直线上的三个点确定一个圆。

2、三角形的外接圆:经过三角形三个顶点的圆。

3、三角形的外心:三角形三边垂直平分线的交点,即三角形外接圆的圆心。

4、三角形的内切圆:与三角形的三边都相切的圆。

5、三角形的内心:三角形三条角平分线的交点,即三角形内切圆的圆心。

人教版数学九年级2020年中考同步训练:《圆的选择题》(含答案)

人教版数学九年级2020年中考同步训练:《圆的选择题》(含答案)

人教版数学九年级2020年中考同步训练:《圆的选择题》1.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8 C.D.22.如图,已知圆O的圆心在原点,半径OA=1(单位圆),设∠AOP=∠α,其始边OA与x 轴重合,终边与圆O交于点P,设P点的坐标P(x,y),圆O的切线AT交OP于点T,且AT=m,则下列结论中错误的是()A.sinα=y B.cosα=xC.tanα=m D.x与y成反比例3.如图,Rt△ABC的斜边BC=4,∠ABC=30°,以AB、AC为直径分别作圆.则这两圆的公共部分面积为()A.+B.﹣C.﹣D.﹣4.如图,在圆O上依次有A.B,C三点,BO的延长线交圆O于E,=,点C作CD ∥AB交BE的延长线于D,AD交圆O于点F,连接OA,OF,若∠AOF=3∠FOE,且AF=2,劣弧CF的长是()A.πB.πC.πD.π5.如图,正方形ABCD中,⊙O过点A,B交边AD于点E,连结CE交⊙O于点F,连结AF,若tan∠AFE=,则的值为()A.1 B.C.D.6.如图,点O为正六边形的中心,P,Q分别从点A(1,0)同时出发,沿正六边形按图示方向运动,点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,则第2020次相遇地点的坐标为()A.B.(1,0)C.D.(﹣1,0)7.如图,在圆内接五边形ABCDE中,AB=AE,BC=CD=DE,且∠D=100°,连接AC和EC.则∠ACE的度数为()A.30°B.35°C.40°D.48°8.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC的度数为()A.22°B.24°C.27°D.30°9.如图,在平面直角坐标系中.点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,四边形OCDB是平行四边形.则点C的坐标为()A.(1,7)B.(2,6)C.(2,7)D.(1,6)10.如图,AB是⊙O的直径,点C,点D是半圆上两点,连结AC,BD相交于点P,连结AD,OD.已知OD⊥AC于点E,AB=2.下列结论:①AD2+BC2=4;②sin∠DAC=;③若AC=BD,则DE=OE;④若点P为BD的中点,则DE=2OE.其中确的是()A.①②③B.②③④C.③④D.②④11.如图,圆心为M的量角器的直径的两个端点A,B分别在x轴,y轴正半轴上(包括原点O),AB=4.点P,Q分别在量角器60°,120°刻度线外端,连结MP.量角器从点A 与点Q重合滑动至点Q与点O重合的过程中,线段MP扫过的面积为()A.π+B.πC.π+2D.312.如图,△ABC内接于⊙O,且AB=AC.直径AD交BC于点E,F是AE的中点,连结CF,若AD=6.则CF的最大值为()A.6 B.5 C.4 D.313.如图,△ABC内接于⊙O,将沿BC翻折,交AC于点D,连接BD,若∠BAC=66°,则∠ABD的度数是()A.66°B.44°C.46°D.48°14.如图,半径为3的⊙O与五边形ABCDE的边相切于点A,C,连接OA交BC于点H,连接OB,AB.若∠D+∠E=240°,HC=3BH,则△ABO的面积为()A.3B.C.D.215.如图,点A,B,C是⊙O上三点,AC=BC,点M为⊙O上一点,CE⊥AM,垂足为点E,AE=2,BM=,CM=,则的长为()A.πB.πC.πD.π16.如图,在△ABC中,∠C=40°,∠A=60°.以B为圆心,适当长度为半径作弧,分别交AB,BC于点D,E;分别以D,E为圆心,大于DE长度为半径作弧,两弧交于点F;作射线BP,交AC于点P,过点P作PM⊥AB于M;以P为圆心,PM的长为半径作⊙P.则下列结论中,错误的是()A.∠PBA=40°B.PC=PBC.PM=MB D.⊙P与△ABC有4个公共点17.如图,在△ABC中,∠A=60°,AB=4,以BC的中点O为圆心作圆,分别与AB、AC相切于D、E两点,则的长是()A.πB.πC.πD.318.如图,在边长为8的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18﹣3πB.18﹣πC.32﹣16πD.18﹣9π19.如图,5×3的网格图中,每个小正方形的边长均为1,设经过图中格点A,C,B三点的圆弧与AE交于H,则弧AH的弧长为()A.πB.πC.πD.π20.如图,△ACD内接于⊙O,AB是⊙O的切线,∠C=45°,∠B=30°.AD=4,则AB长为()A.4 B.C.D.参考答案1.解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.2.解:如图,过点P作PH⊥OA于H,由题意知,OA=OP=1,OH=x,PH=y,由切线的性质定理可知AT⊥OA,在Rt△POH中,∠AOP=∠α,∴sinα===y,cosα===x,故A,B正确;在Rt△TOA中,tanα===m,故C正确,在Rt△POH中,OH2+PH2=OP2,∴x2+y2=1,故D错误;故选:D.3.解:如图,设点E是两圆的公共点,连接AE,取AC,AB的中点G,H.在Rt△ABC中,∵∠CAB=90°,∠ABC=30°,BC=4,∴AC=2,AB=2,∠C=60°,∴∠AHE=60°,∠AGE=120°,∴S阴=S扇形HAE﹣S△AEH+S扇形GEA﹣S△AEG=﹣×()2+﹣×1×=﹣,故选:C.4.解:∵=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴=,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形,∴BC∥AD,∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180﹣3x)=180,解得:x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=2,∴的长==π,故选:C.5.解:如图,设⊙O交BC于J,连接AJ,JF,EJ,过点F作FM⊥AD于M交BC于N.设AB =3a.∵四边形ABCD是正方形,∴∠ABC=∠BAD=∠BCD=90°,AD∥BC,AD=AB=BC=CD=3a,∴AJ是⊙O的直径,∴∠AFJ=∠AEJ=90°,∵FM⊥AD,AD∥CB,∴MN⊥BC,∴∠MNC=∠BCD=∠D=90°,∴四边形MNCD是矩形,四边形ABJE是矩形,∴MN=CD=3a,AE=BJ,∴=,∴∠BAJ=∠AFE,∴tan∠BAJ=tan∠AFE=,∴BJ=AE=a,JC=2a,∵∠JAF=∠JEC,∴tan∠JAF=tan∠JEC,∴==,∵∠AFM+∠JFN=90°,∠JFN+∠FJN=90°,∴∠AFM=∠FJN,∵∠AMF=∠FNJ=90°,∴△AMF∽△FNJ,∴===,设JN=2x,则FM=3x,∵AM=AE+EM=a+2x,∴FN=AM=(a+2x),∵FM+FN=3a,∴3x+(a+2x)=3a,∴9x+2a+4x=9a,∴x=a,∴CN=2a﹣2x=2a﹣a=a,∵EM∥CN,∴===,故选:B.6.解:∵A(1,0),O为正六边形的中心,∴OA=AB=1,连接OB,作BG⊥OA于点G,则AG=OA=,BG=,∴B(,),∴C(﹣,),E(﹣,﹣),∵正六边形的边长=1,∴正六边形的周长=6,∵点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,∴第1次相遇需要的时间为:6÷(1+2)=2(秒),此时点P的路程为1×2=2,点的Q路程为2×2=4,此时P,Q相遇地点的坐标在点C(﹣,),以此类推:第二次相遇地点在点E(﹣,﹣),第三次相遇地点在点A(1,0),…如此下去,∵2020÷3=673…1,∴第2020次相遇地点在点C,C的坐标为(﹣,).故选:A.7.解:∵DE=DC,∴∠DEC=∠DCE=(180°﹣100°)=40°,∵BC=CD,∴=,∴∠BAC=∠CED=40°,∵∠EAC+∠EDC=180°,∴∠EAC=180°﹣100°=80°,∴∠EAB=∠EAC+∠BAC=120°,∴∠ECB=180°﹣∠EAB=60°,∵AE=AB,∴=,∴∠ACE=∠ACB=∠ECB=30°,故选:A.8.解:∵四边形ABCD是菱形,∴DA=DC,∴∠DAC=∠DCA=(180°﹣78°)=51°,∵AD∥BC,∴∠ACE=∠DAC=51°,∵四边形AECD是⊙O的内接四边形,∴∠AEC=180°﹣78°=102°,∴∠EAC=180°﹣102°﹣51°=27°,故选:C.9.解:如图,连接OD,AD,DM,作DF⊥OA于F.∵A(20,0),B(16,0),∴OA=20,OB=16,∴AB=20﹣16=4,∵四边形ABCD是平行四边形,∴CD∥OB,CD=OB=16,OC=BD,∴∠CDO=∠DOA,∴=,∴OC=AD=BD,∵DF⊥BA,∴BF=FA=2,∴OF=18,∴在Rt△DMF中.DF===6,∴D(18,6),C(2,6),故选:B.10.解:∵AB是直径,∴∠ACB=90°,∴AC2+BD2=AB2=4,∵AC>AD,∴AD2+BC2<4,故①错误,∵∠DAC=∠CBD,∴sin∠DAC=sin∠CBD=,故②正确,∵AE⊥OE,假设DE=EO,则AD=AO=OD,∴△ADO是等边三角形,显然不符合题意,故③错误,∵∠DEP=∠BCP=90°,DP=PB,∠DPE=∠BPC,∴△PDE≌△PBC(AAS),∴DE=BC,∵OE∥BC,AO=OB,∴AE=EC,∴BC=2OE,∴DE=2OE,故④正确.故选:D.11.解:由题意可知,点M的运动轨迹是以O为圆心,2为半径,圆心角为60°的扇形,点P在第四象限内时,∠AOB是弧AP所对的圆周角,所以∠AOP=30°,点P在第二象限内时,∠BOP是弧BP所对的圆周角,所以∠BOP=60°,所以点P的运动路径是一条线段,当量角器从点A与O重合滑动至点Q与点O重合时,MP扫过的图形是如图所示的阴影部分,它是由两个边长为2的等边三角形与一个扇形组成,所以PM扫过的面积为:+2××22=π+2,故选:C.12.解:∵F是AE的中点,∴设AF=EF=x,则AE=2x,∴DE=6﹣2x,∵AB=AC,∴=,∵AD为⊙O的直径,∴BC⊥AD,∠ABD=90°∴BE=CE,∠ABE+∠DBE=∠DBE+∠D=90°,∴∠ABE=∠D,∵∠AEB=∠DEB=90°,∴△ABE∽△BDE,∴,∴BE2=AE•DE=2x(6﹣x),∴CE2=2x(6﹣x),在Rt△CEF中,CF2=EF2+CE2=x2+2x(6﹣x)=﹣3(x﹣2)2+36,∴当x=2时,CF的最大值为6,故选:A.13.解:∵将沿BC翻折,交AC与点D,∴∠BAC+∠BDC=180°,∵∠BAC=66°,∴∠BDC=114°,∴∠ADB=180°﹣∠BDC=66°,∴∠ABD=180°﹣66°﹣66°=48°,故选:D.14.解:连接OC,过点C,B分别作AO的垂线,垂足分别为M,N,∵半径为3的⊙O与五边形ABCDE的边相切于点A,C,∴∠OAE=∠OCD=90°,∵∠AOC+∠OCD+∠D+∠E+∠OAE=540°,∠D+∠E=240°,∴∠AOC=120°,∴∠MOC=180°﹣∠AOC=60°,∵OC=3,∴,∵CM⊥AO,BN⊥AO,∴CM∥BN,∴△HCM∽△HBN,∴,∴,∴,故选:C.15.解:在AE上截取AG=BM,连接CG,∵AC=BC,∠A=∠B,∴△ACG≌△BCM(SAS),∴CG=CM=,∵AE=2,AG=BM=,∴GE=,∵CE⊥AM,∴CE===2,∴tan∠A==,∴∠A=30°,∴∠COM=60°,连接OM,CO,∵OC=OM,∴△COM是等边三角形,∴OC=,∴的长==,故选:A.16.解:∵∠C=40°,∠A=60°,∴∠ABC=80°,由题意得,BP平分∠ABC,∴∠ABP=ABC=40°,故选项A正确;∵∠PBC=∠PBA=ABC=40°,∴∠C=∠PBC,∴PC=PB,故选项B正确;∵PM⊥AB,∴∠BMP=90°,∴∠BPM=50°,∴∠BPM≠∠MBP,∴PM≠BM,故C选项错误;∵点P在∠ABC的角平分线上,∴P到AB和BC的距离=PM=⊙P的半径,∴AB,BC与⊙P相切,∵PA>PM,PC>PM,∴⊙P与AC相交,∴⊙P与△ABC有4个公共点,故D选项正确,故选:C.17.解:连接OA,OE,OD,∵AB、AC与⊙O相切于D、E两点,∴∠OEC=∠ODB=∠AEO=∠ADO=90°,∵∠BAC=60°,∴∠DOE=120°,∵点O为BC的中点,∴OB=OC,∵OE=OD,∴Rt△OEC≌RtODB(HL),∴∠C=∠B,∴AC=AB=4,AO⊥BC,∴∠CAO=,∴AO=AC=2,∴OE=AO=,∴的长是=π,故选:C.18.解:∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°﹣60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=8×=4,∴图中阴影部分的面积=菱形ABCD的面积﹣扇形DEG的面积=8×4﹣=32﹣16π.故选:C.19.解:连接EB,BH,AB,∵BE=AB==,AE==,∴BE2+AB2=AE2,∴∠ABE=90°,∴△ABE是等腰直角三角形,∵∠ACB=90°,∴AB是圆的直径,∴∠AHB=90°,∴BH⊥AH,∴∠ABH=∠BAH=45°,∴弧AH所对的圆心角为90°,∴的长==.故选:B.20.解:如图,连接OA、OD,∵∠C=45°.∴∠AOD=2∠C=90°.又∵OA=OD,AD=4,∴AD2=2OA2=16,则OA=2.又∵AB是⊙O的切线,∴∠OAB=90°.∵∠B=30°,OA=2,∴AB=OA=2.故选:D.。

2020九年级中考数学 专题复习:圆的综合(含答案)

2020九年级中考数学 专题复习:圆的综合(含答案)

2020中考数学 专题复习:圆的综合(含答案)类型一 与基本性质有关的证明与计算1. 如图,AB 是⊙O 的直径,点D 是AE ︵上的一点,且∠BDE =∠CBE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第1题图(1)证明:∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠EAB +∠ABE =90°,∵∠BDE =∠EAB ,∠BDE =∠CBE , ∴∠EAB =∠CBE ,∴∠ABE +∠CBE =∠ABE +∠EAB =90°,即CB ⊥AB . 又∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线; (2)证明:∵BD 平分∠ABE , ∴∠ABD =∠DBE ,AD ︵=DE ︵, ∴∠ABD = ∠DEA , ∴∠DEA = ∠DBE , ∵∠EDB =∠BDE , ∴△DEF ∽△DBE ,∴DE DB =DF DE, ∴DE 2= DF ·DB ;(3)解:如解图,连接OD ,延长ED 交BA 的延长线于点P ,第1题解图∵OD =OB , ∴∠ODB =∠OBD , ∵BD 平分∠ABE , ∴∠OBD = ∠EBD , ∴∠EBD =∠ODB , ∴OD ∥BE , ∴△PDO ∽△PEB , ∴PD PE =POPB, ∵P A =AO , ∴P A =AO =OB , ∴PO PB =PD PE =23, ∵PD PE =PD PD +DE =23,DE =2, ∴PD =4.2. 如图,AB 是⊙O 的直径,C 是BD ︵的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若BE =4,EF = 3,求⊙O 的半径.第2题图(1)证明:连接AC ,如解图,∵点C 是BD ︵的中点,∴∠DBC =∠BAC , 在△ABC 中,∠ACB =90°,CE ⊥AB ,第2题解图∴∠BCE +∠ECA =∠BAC +∠ECA =90°, ∴∠BCE =∠BAC , 又∵C 是BD ︵的中点, ∴∠DBC =∠CDB , ∴∠BCE =∠DBC , ∴CF = BF ;(2)解:∵BE = 4,EF = 3, ∴BF =32+42= 5,∴CF = 5,∴CE = 5+3= 8, ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ∴CE 2=BE ·AB , ∴AB =CE 2BE = 644= 16,∴AO = 8,∴⊙O 的半径为8.3. 如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD . (1)求证:AD =AN;(2)若AB =8,ON = 1,求⊙O 的半径.第3题图(1)证明:∵CD ⊥AB , ∴∠CEB = 90°, ∴∠C +∠B = 90°, 同理∠C +∠CNM = 90°, ∴∠CNM =∠B , ∵∠CNM = ∠AND , ∴∠AND = ∠B , ∵AC ︵=AC ︵, ∴∠ADN = ∠B , ∴∠AND = ∠ADN , ∴AN =AD ;第3题解图(2)解:设OE 的长为x ,连接OA , ∵AN =AD ,CD ⊥AB , ∴DE = NE =x +1,∴OD =OE +ED =x +x +1=2x +1, ∴OA = OD = 2x +1,∴在Rt △OAE 中,OE 2+AE 2= OA 2, ∴x 2+42=(2x +1)2,解得x =53或x =-3(不合题意,舍去),∴OA = 2x +1= 2×53+1= 133,即⊙O 的半径为133.4. 如图,A 、B 、C 为⊙O 上的点,PC 过O 点,交⊙O 于D 点,PD = OD ,若OB ⊥AC 于E 点.第4题图(1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长. 解:(1)A 是PB 的中点, 理由:连接AD ,如解图,第4题解图∵CD 是⊙O 的直径, ∴AD ⊥AC , ∵OB ⊥AC , ∴AD ∥OB , ∵PD = OD ,∴AD 是△PBO 的中位线, ∴P A =AB , ∴A 是PB 的中点; (2)∵AD ∥OB , ∴△APD ∽△BPO , ∴AD BO =PD PO = 12, ∵⊙O 半径为8, ∴OB = 8, ∴AD =4, ∴AC =CD 2-AD 2= 415,∵OB ⊥AC , ∴AE =CE = 215, ∴OE =12AD = 2,∴BE =6, ∴BC =BE 2+CE 2=4 6.5. 如图,AB 是⊙O 的直径,点C 、E 是⊙O 上的点,且AC ︵=EC ︵,连接AC 、BE ,并延长交于点D ,已知AB =2AC =6.第5题图(1)求DC 的长; (2)求EC ︵的长.解:(1)如解图,连接BC ,第5题解图∵ AB 是⊙O 的直径, ∴∠ACB =90°,CB ⊥AD , ∵AC ︵=EC ︵, ∴∠ABC =∠DBC , ∴△ABD 为等腰三角形, ∵AB =2AC =6, ∴DC =AC =3;(2)如解图,连接OC 、OE , ∵AB =2AC =6,∠ACB =90°, ∴∠ABC =30°,OC =OE =3, ∴∠DBC =∠ABC =30°∴∠COE =2∠DBC =60°,∴l EC ︵=60×π×3180=π.6. 如图,AB 为圆O 的直径,CD ⊥AB 于点E ,交圆O 于点D ,OF ⊥AC 于点F .第6题图(1)求证:OF =12BD ;(2)当∠D =30°,BC =1时,求圆中阴影部分的面积. (1)证明:如解图,连接OC ,第6题解图∵OF ⊥AC ,OA =OC , ∴AF =FC ,∵OA =OB ,∴OF 是△ABC 的中位线,∴OF =12BC ,∵AB ⊥CD ,∴BC ︵=BD ︵, ∴BC =BD , ∴OF =12BD ;(2)解:∵∠D =30°, ∴∠A =∠D =30°, ∴∠COB =2∠A =60°, ∴∠AOC =120°,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,BC=1,∴AB=2,AC=3,由(1)可知OF=12BC=1 2,∵∠COB=60°,OB=OC,∴△BOC是等边三角形,∴OA=OB=BC=1,∴S△AOC=12AC ·OF=12×3×12=34,S扇形AOC=120πOA2360=π3,∴S阴影=S扇形AOC-S△AOC=π3-34.7. 如图,△ABC内接于⊙O,AB为⊙O的直径,OD⊥AB交⊙O于点D,AC、OD的延长线交于点E,连接CD.(1)求证:∠ECD=∠BCD;(2)当AC=CD时,求证:CE=CB.第20题图证明:(1)∵AB是⊙O的直径,∴∠ACB=∠ECB=90°,∵OD⊥AB,∴∠DOB=90°,∴∠BCD=12∠DOB=45°,∴∠ECD=∠ECB-∠BCD=90°-45°=45°,∴∠ECD =∠BCD ; (2)如解图,连接OC 、BD ,第7题解图∵AC =CD ,∴∠AOC =∠DOC ,∠ABC =∠DBC , 又∵∠E +∠A =∠ABC +∠A =90°, ∴∠E =∠ABC =∠DBC , 在△ECD 和△BCD 中⎩⎨⎧∠E =∠DBC∠ECD =∠BCD CD =CD, ∴△ECD ≌△BCD (AAS), ∴CE = CB .8. 如图,四边形ABCD 内接于⊙O ,且BD 为直径,∠ACB = 45°,过A 点的AC 的垂线交BC 的延长线于点E . (1)求证:BE = DC ; (2)如果AD =2,求图中阴影的面积.第8题图解:(1)∵BD 是⊙O 的直径, ∴∠BAD =90°,∵∠ACB =45°,∴∠ADB =∠ACB = 45°, ∵AE ⊥AC ,∴△ACE 与△ABD 是等腰直角三角形,∴AE = AC ,AB = AD ,∠EAC = ∠BAD = 90°, ∴∠EAB = ∠CAD , 在△ABE 与△ADC 中,⎩⎨⎧AE =AC∠EAB = ∠CAD AB =AD, ∴△ABE ≌△ADC , ∴BE =DC ;第8题解图(2)如解图,连接AO ,则∠AOD = ∠ABD =90°, ∵AD = 2, ∴AO = OD = 1, ∴S 阴影= S 扇形-S △AOD =90 ·π×12360-12×1×1= π4-12. 9. 如图,在△ABC 中,以AC 为直径的⊙O 分别交AB ,BC 于点D ,E ,连接DE ,AD =BD ,∠ADE =120°. (1)证明:△ABC 是等边三角形; (2)若AC =2,求图中阴影部分的面积.第9题图(1)证明:如解图,连接CD , ∵AC 为⊙O 的直径, ∴CD ⊥AB , ∵AD =BD , ∴AC =BC ,∵∠ADE =120°,∴∠ACE =60°, 又∵AC =BC ,∴△ABC 是等边三角形;第9题解图(2)解:∵△ABC 是等边三角形, ∴∠CAB =∠ACB =∠B =60°,∵∠ADE =120°,∴∠BED =∠BDE =∠B =60°, ∴△BDE 是等边三角形, ∴BD =ED , ∵AD =BD ,∴DE =AD = BE =12AB = 12BC ,∴DE ︵=AD ︵,DE 为△ABC 的中位线,E 为BC 的中点, ∴S 弓形DE =S 弓形AD ,∴S 阴影=S △DEB = 12S △BDC ,∵AC =2,∴AD =BD =1,∴DC =3,∴S 阴影=12×12×1×3= 34.10. 如图,在△ABC 中,AB = AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD .第10题图(1)求证:点E 是BD ︵的中点;(2)当BC = 12,且AD ∶CD =1∶2,求⊙O 的半径. (1)证明:如解图,连接AE ,DE ,第10题解图∵AB 是直径, ∴AE ⊥BC , ∵AB = AC , ∴BE = EC ,∵∠CDB =90°,DE 是斜边BC 的中线, ∴DE = EB , ∴ED ︵= EB ︵,即点E 是BD ︵的中点; (2)设AD =x ,则CD = 2x , ∴AB =AC =3x ,∵AB 为直径, ∴∠ADB =90°, ∴BD 2= (3x )2-x 2=8x 2, 在Rt △CDB 中, (2x )2+8x 2=122, ∴x =23, ∴OA = 32x =33,即⊙O 的半径是3 3.类型二 与切线有关的证明与计算1. 如图,AB 是⊙O 的切线,B 为切点,圆心O 在AC 上,∠A = 30°,D 为BC ︵的中点.第1题图(1)求证:AB =BC ;(2)试判断四边形BOCD 的形状,并说明理由. 解:(1)∵AB 是⊙O 的切线,∴∠OBA = 90°,∠AOB = 90°-30°= 60°. ∵OB =OC ,∴∠OBC =∠OCB ,∠OCB = ∠A = 30°, ∴AB = BC ;(2)四边形BOCD 为菱形,理由如下:连接OD 交BC 于点M , ∵D 是BC ︵的中点,第1题解图∴OD 垂直平分BC , 在Rt △OMC 中, ∵∠OCM = 30°, ∴OC =2OM =OD , ∴OM =MD ,∴四边形BOCD 为菱形.2. 如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点,∠BAC =∠DAC ,过点C 作直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF 是⊙O 的切线;(2)若DE =1,BC =2,求劣弧BC ︵的长l .第2题图(1)证明:如解图,连接OC , ∵OA =OC , ∴∠OAC =∠OCA , ∵∠BAC =∠DAC , ∴∠DAC =∠OCA , ∴AD ∥OC , ∵EF ⊥AD , ∴∠AEC =90°,∴∠OCF =∠AEC =90°, ∴EF 是⊙O 的切线;(2)解:如解图,连接OD ,DC .第2题解图∵∠DAC =12∠DOC ,∠OAC =12∠BOC ,∠DAC =∠OAC , ∴∠DOC =∠BOC , ∴DC =BC =2, 在Rt △EDC 中, ∵ED =1,DC =2, ∴sin ∠ECD =DE DC =12, ∴∠ECD =30°,∴∠OCD =90°-30°=60°, 又∵OC =OD ,∴△DOC 为等边三角形,∴∠BOC =∠COD =60°,OC =2, ∴l =60π×2180=23π. 3. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊥AC ,垂足为点F .第3题图(1)求证:DF 是⊙O 的切线; (2)若AE =4,cos A =25,求DF 的长.(1)证明:如解图,连接OD ,第3题解图∵OB =OD , ∴∠ODB =∠B . 又∵AB =AC , ∴∠C =∠B . ∴∠ODB =∠C . ∴OD ∥AC , ∵DF ⊥AC , ∴∠DFC =90°.∴∠ODF =∠DFC =90°, ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊥AC ,垂足为点G . ∴AG =12AE =2.∵cos A =AG OA =25,∴OA =225=5.∴OG =OA 2-AG 2=21.∵∠ODF =∠DFG =∠OGF =90°. ∴四边形OGFD 为矩形, ∴DF =OG =21.4. 如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=34,求⊙O的半径.第4题图(1)证明:如解图,连接OD,第4题解图∵BC是⊙O的切线,∴OD⊥BC,∴∠ODB=90°,又∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠CAD=∠OAD,∴AD平分∠BAC;(2)解:∵AC=8,tan∠P AC=CDAC=34,∴CD=6,在Rt△ACD中,AD=AC2+CD2=10,如解图,连接DE ,∵AE 为⊙O 的直径, ∴∠ADE = 90°, ∴∠ADE = ∠C , ∵∠CAD =∠OAD , ∴△ACD ∽△ADE , ∴AD AC = AE AD ,即108= AE10, ∴AE =252,∴⊙O 的半径是254.5. 如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA 的延长线于点E ,CO 的延长线交⊙O 于点G ,EF ⊥OG 于点F .(1)求证:∠FEB =∠ECF ; (2)若BC =6,DE =4,求EF 的长.第5题图(1)证明:∵EF ⊥OG ,BC 是⊙O 的切线, ∴∠CBA = ∠EFC =90°,∴∠EOF +∠FEB = 90°,∠BOC +∠BCO =90°, ∵∠EOF = ∠COB , ∴∠FEB = ∠BCO , ∵CB ,CD 是⊙O 的切线, ∴∠ECF = ∠BCO , ∴∠FEB = ∠ECF ;(2)解:如解图,连接OD ,则OD ⊥CE ,第5题解图∵CB,CD为⊙O的切线,BC=6,DE=4,∴CD=BC=6,∴CE=CD+DE=6+4=10,在Rt△CBE中,根据勾股定理得BE=CE2-BC2=102-62=8,设OD=x,则OE=8-x,在Rt△ODE中,根据勾股定理得OE2=OD2+ED2,即(8-x)2=x2+42,解得x=3,则OE=5.在Rt△ODC中,根据勾股定理得OC=CD2+OD2=62+32=35,∵∠EOF=∠COB,∠EFO=∠CBO,∴△EFO∽△CBO,∴EFCB=OEOC,即EF6=535,解得EF=2 5.6. 如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.。

2020人教版九年级圆专题复习练习题(有部分答案)

2020人教版九年级圆专题复习练习题(有部分答案)

圆一、单项选择题 1.如下图,MN 为 ⊙ O 的弦, N 52o ,那么 MON 的度数为〔 〕A . 38oB . 52oC . 76oD . 104o2.如图,点 A ,B , C 是 ⊙O 上的三点,假设 ∠ BOC=50°,那么 ∠A 的度数是〔〕A .25°B . 20°C .80°D . 100 °3 AB 是 ⊙ O 的直径, AC 是 ⊙ O 的切线, A 为切点, BC 与 ⊙ O 交于点 D ,连结.如图, OD .假设 C 50 ,那么 ∠AOD 的度数为〔 〕A . 40B . 50C . 80D . 1004.如图,AB 为 ⊙ O 的直径,点 C 在 ⊙ O 上,假设 ∠ OCA = 40°,AB = 6,那么弧 BC 的长为〔 〕81054πD . 3A . 3B .3 C . 35.如果, AB 是 ⊙ O 的切线, A 为切点, OB=5 2 , AB=5,AC 是⊙O 的弦, OH ⊥ AC ,垂足为 H ,假设 OH=3 ,那么弦 AC 的长为〔〕A . 5B. 6C.8D. 106.如图,⊙O是正方形ABCD的外接圆,点 E 是弧AD上任意一点,那么∠BEC的度数为〔〕A.30°B. 45°C.60°D. 90°7.以O 为中心点的量角器与直角三角板ABC 如下图摆放,直角顶点 B 在零刻度线所在直线DE上,且量角器与三角板只有一个公共点P,假设点P 的读数为35°,那么∠CBD的度数是〔〕A.55°B. 45°C.35°D. 258.如图,一扇形纸扇完全翻开后,外侧两竹条AB和 AC的夹角为120 °, AB 长为25cm,贴纸局部的宽BD为15cm,假设纸扇两面贴纸,那么贴纸的面积为〔〕2B.280022A . 175 π cm350 π cm C.π cm D. 150 π cm39.以下说法正确的选项是( )A .等弧所对的圆心角相等B .平分弦的直径垂直于这条弦C.经过三点可以作一个圆D.相等的圆心角所对的弧相等10.如图,四边形ABCD 内接于⊙O,连接 OA ,OC.假设∠ AOC =∠ABC ,那么∠ D 的大小为〔〕A.50°B. 60°C.80°D. 120 °1190cm,顶角为120的等腰三角形铁皮OAB中剪出一个最大的扇.如图,从一张腰长为形 OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面〔不计损耗〕,那么该圆锥的底面半径为〔〕A .15cm B. 12cm C.10cm D.20cm12.如图,在 Rt△AOB 中,∠ AOB=90 °,OA=3,OB=2,将 Rt△ AOB 绕点 O 顺时针旋转 90°后得 Rt△ FOE,将线段 EF 绕点 E 逆时针旋转 90°后得线段 ED,分别以 O,E 为圆心, OA、ED 长为半径画弧AF 和弧 DF ,连接 AD,那么图中阴影局部面积是〔〕5A .πB.C.3+πD. 8﹣π4二、填空题13.假设圆锥的底面积为2,母线长为 12 cm,那么它的侧面展开图的圆心角为__________ .16π cm14.扇形的圆心角100 °,所对的弧长为π_________.5,那么此扇形的面积是315.如图, AB 是⊙ O 的直径, CD 是⊙ O 的弦, AB⊥ CD 于点 E, AE= CD,假设⊙ O 的半径为 5,那么弦 CD 的长为 _____.16.如图,ABC 是圆 O 的内接三角形,连接 OA、OC,假设∠ AOC =∠ABC,弦 AC= 6 3 那么圆 O 的半径为 __________.317.如图,直线y=- x-3 交 x 轴于点 A ,交 y 轴于点 B ,点 P 是 x 轴上一动点,以点P 为4圆心,以 1 个单位长度为半径作⊙ P,当⊙ P与直线AB相切时,点P 的坐标是 _______.18.如图,菱形ABCD 中,AB 2 ,C60°,菱形ABCD 在直线L 上向右作无滑动45 次这样的操作菱形中心O 所经过的翻滚,每绕着一个顶点旋转60叫一次操作,那么经过的路径总长为______.〔结果保存〕19.如图,四边形ABCD 内接于e O,假设四边形ABCO 是平行四边形,那么ADC 的大小为_______.20.如图,在边长为 4 的正方形ABCD 中,以点 B 为圆心,以AB 为半径画弧,交对角线BD 于点 E,那么图中阴影局部的面积是_____〔结果保存π〕三、解答题21.在 Rt△ABC 中,∠ ACB= 90°,BE 平分∠ ABC,D 是边 AB 上一点,以 BD 为直径的⊙O 经过点 E,且交 BC 于点 F .(1)求证: AC 是⊙ O 的切线;(2)假设 BF= 6,⊙ O 的半径为 5,求 CE 的长.22.如图,点D在⊙ O 的直径AB的延长线上,点C在⊙ O 上,且 AC=CD ,∠ ACD=120°. 〔1〕求证:CD是⊙ O 的切线;2〕假设 e O 的半径为2.〔,求图中阴影局部的面积23.如图,△ ABC 内接于⊙O,∠ B=60 °, CD 是⊙O 的直径,点P 是 CD 延长线上的一点且AP=AC.〔1〕求证:PA是⊙O 的切线;〔2〕假设AB215,BC4,求⊙O的半径24.如图,⊙ O 是△ABC 的外接圆, AB 是直径, D 是 AC 中点,直线 OD 与⊙ O 相交于 E, F 两点, P 是⊙O 外一点, P 在直线 OD 上,连接 PA, PC, AF ,且满足∠ PCA =∠ABC.(1〕证明: EF 2= 4OD ?OP;(2〕假设 tan∠ AFP=2,求DE的值.3BC25.如图,以 Rt△ ABC 的 AC 边为直径作⊙ O 交斜边 AB 于点 E,连接 EO 并延长交 BC 的延长线于点 D,点 F 为 BC 的中点,连接 EF(1〕求证: EF 是⊙ O 的切线;(2〕假设⊙ O 的半径为 3,∠ EAC = 60°,求 AD 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
B . 10π
A . 8π
3
D . 4π
5

一、单选题
1.如图所示, MN 为⊙O 的弦, ∠N = 52o ,则 ∠MON 的度数为( )
A . 38o
B . 52o
C . 76o
D .104o
2.如图,点 A ,B ,C 是⊙O 上的三点,若∠BOC=50°,则∠A 的度数是(

A .25°
B .20°
C .80°
D .100°
3.如图,AB 是⊙ O 的直径,AC 是⊙ O 的切线,A 为切点,BC 与⊙ O 交于点 D ,连结 OD .若 ∠C = 50︒ ,则∠AOD 的度数为(

A . 40︒
B . 50︒
C . 80︒
D .100︒
4.如图,AB 为⊙O 的直径,点 C 在⊙O 上,若∠OCA =40°,AB =6,则弧 BC 的长为( )
3
C .
π
3
5.如果,AB 是⊙O 的切线,A 为切点,OB=5 2 ,AB=5,AC 是⊙O 的弦,OH ⊥AC ,
垂足为 H ,若 OH=3,则弦 AC 的长为( )
A.175πcm2B.350πcm2C.800
3D.150πcm2
A.5B.6C.8D.10
6.如图,已知⊙O是正方形ABCD的外接圆,点E是弧AD上任意一点,则∠BEC的度数为()
A.30°B.45°C.60°D.90°
7.以O为中心点的量角器与直角三角板ABC如图所示摆放,直角顶点B在零刻度线所在直线DE上,且量角器与三角板只有一个公共点P,若点P的读数为35°,则∠CBD的度数是()
A.55°B.45°C.35°D.25
8.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()
πcm2
9.下列说法正确的是()
A.等弧所对的圆心角相等C.经过三点可以作一个圆B.平分弦的直径垂直于这条弦D.相等的圆心角所对的弧相等
10.如图,四边形ABCD内接于⊙O,连接OA,OC.若∠AOC=∠ABC,则∠D的大小
B . 5π 5
为(

A .50°
B .60°
C .80°
D .120°
11.如图,从一张腰长为 90cm ,顶角为120 ︒ 的等腰三角形铁皮 O AB 中剪出一个最大的扇
形 OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗) 则该圆锥的底面半径为


A .15cm
B .12cm
C .10cm
D . 20cm
12.如图,在 △Rt
AOB 中,∠AOB =90°,OA =3,OB =2,将 △Rt AOB 绕点 O 顺时针旋转 90°
后得 △Rt FOE ,将线段 EF 绕点 E 逆时针旋转 90°后得线段 ED ,分别以 O ,E 为圆心,OA 、
ED 长为半径画弧 AF 和弧 DF ,连接 AD ,则图中阴影部分面积是(

A .π
4 C .3+π
D .8﹣π
二、填空题
13.若圆锥的底面积为 16π cm 2,母线长为 12 cm ,则它的侧面展开图的圆心角为__________.
14.已知扇形的圆心角 100°,所对的弧长为 π
,则此扇形的面积是_________.
3
15.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD 于点 E ,AE =CD ,若⊙O 的半径
为 5,则弦 CD 的长为_____.
16.如图,∆ABC是圆O的内接三角形,连接OA、OC,若∠AOC=∠ABC,弦AC=63则圆O的半径为__________.
17.如图,直线y=-
3
4
x-3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是_______.
18.如图,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直线L上向右作无滑动的翻滚,每绕着一个顶点旋转60︒叫一次操作,则经过45次这样的操作菱形中心O所经过的路径总长为______.(结果保留π)
19.如图,四边形ABCD内接于e O,若四边形ABCO是平行四边形,则∠ADC的大小为_______.

20.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是_____(结果保留π
三、解答题
21.在△Rt ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O 经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:C D是⊙O的切线;
(2)若e O的半径为2,求图中阴影部分的面积.
23.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP=AC.
(2)若tan∠AFP=
2
(1)求证:P A是⊙O的切线;
(2)若AB=2+15,BC=4,求⊙O的半径
24.如图,⊙O△是ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接P A,PC,AF,且满足∠PCA=∠ABC.
(1)证明:EF2=4OD OP;
DE
,求的值.
3BC
25.已知如图,以△Rt ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为3,∠EAC=60°,求AD的长。

26.如图,⊙O△是ABC的外接圆,AB是直径,OD⊥AC,垂足为D点,直线OD与⊙O 相交于E,F两点,P是⊙O外一点,P在直线OD上,连接P A,PB,PC,且满足∠PCA
(3)若BC=8,
AB
3,0)或P(-
17
17.(-
7
=∠ABC
(1)求证:P A=PC;
(2)求证:P A是⊙O的切线;
3
=,求DE的长.
DF2
参考答案1.C
2.A
3.C
4.D
5.C
6.B
7.C
8.B
9.A
10.B
11.A
12.D
13.120°
5
14.π
2
15.8
16.6
3,0)
18.103π+5π19.600
20.8﹣2π21.(1)略;(2)CE=4.22.(1)略
(2)图中阴影部分的面积为23.(1)略;(2)32 3π.
24.(1)略;(2)4 5.
25.(2)37
26.(1)略;(2)略;(3)DE=8。

相关文档
最新文档