AD与DA转换器的基本概念

合集下载

ad转换器和da转换器

ad转换器和da转换器
• 单片机测控系统中的ADC和DAC
电流输出型DA转换原理
总电流
•转换电流
分支电流
……
•I01转换电流与“逻辑开关”为1的各支路电流的总和成正比 ,即与D0~D7口输入的二进制数成正比。
•DAC0832
•反馈电 阻 •外接放大器
转换电压
•即,转换电压正比于待转换的二进制数和参考电压
DAC的性能指标: 1、分辨率 通常将DAC能够转换的二进制的位数称为分辨率。 位数越多分辨率也越高,一般为8位、10位、12位、16位等
•参考程序如下:
INIT1: SETB IT1
;选择外部中断1为跳沿触发方式
SETB EA
;总中断允许
SETB EX1 ;允许外部中断1中断
MOV DPTR,#7FF8H ;端口地址送DPTR
MOV A,#00H
MOVX @DPTR,A;启动ADC0809对IN0通道转换
………
;完成其他的工作
•电路分析
➢ 由P2.0形成高8位地址(0xfe),与WR信号合成START/ALE正脉冲启动 ADC,与RD信号合成OE正脉冲输出转换数据;
➢ 启动IN0~IN7通道AD转换的命令的地址为:0xfef8,……,0xfeff。
➢ 读取AD结果的命令的地址为:任何高8位为0xfe的地址均可。
•电路分析
DAC2第1级地址: 1111 1101 …(0xfdff) DAC1和2第二级地址:1110 1111 …(0xefff)
例3参考程序
•语句DAOUT = num的作用只是启动DAC寄存器,传输什么数据都没关 系。
例3 运行效果 (多路D/A同步输出 )
•11.2 AT89S51与ADC的接口

AD和DA转换

AD和DA转换

AD和DA转换在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工处理;经过处理获得的输出数据又要送回物理系统,对系统物理量进行调节和控制。

传感器输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。

这种模拟量到数字量的转换称为模-数(A/D)转换。

处理后获得的数字量有时又需转换成模拟量,这种转换称为数-模(D/A)变换。

A/D变换器简称为ADC和D/A变换器简称为DAC是数字系统和模拟系统的接口电路。

第一节基本概念一、D/A变换D/A变换器一般由变换网络和模拟电子开关组成。

输入n位数字量D(=D…DD)n-110分别控制这些电子开关,通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。

(1)变换网络变换网络一般有权电阻变换网络、R-2RT型电阻变换网络和权电流变换网络等几种。

?、权电阻变换网络n-1-i 权电阻变换网络如图8-1所示,每一个电子开关S所接的电阻R等于2R(i=0,n-1),iin-1即与二进制数的位权相似,R=2R,R=R。

对应二进制位D=1时,电子开关S合上,0n-1iiR上流过的电流 iI=V/R。

iREFin-1令V/2R=I,则有 REFREFi I=2I, iREF即R上流过对应二进位权倍的基准电流,R称为权电阻。

iin-1 权电阻网络中的电阻从R到2R成倍增大,位数越多阻值越大,很难保证精度。

Rf? - … … v I- O n1 + IiI 0+ RRRR R--2 n1 ni 1 0S -S S S -2n1S i0n1V REFDDDD D --n1 n2 I 1 0图8-1 权电阻D/A变换器?、R-2R电阻变换网络R-2R电阻网络中串联臂上的电阻为R,並联臂上的电阻为2R,如图8-2所示。

从每个並联臂2R电阻往后看,电阻都为2R,所以流过每个与电子开关S相连的2R 电阻的电流Iii是前级电流I的一半。

第11章DA与AD转换PPT精品文档37页

第11章DA与AD转换PPT精品文档37页

Digital Electronics Technolo13g.0y5.2020
11.2 D/A转换器
若RF=R,并将I=UR/R代入上式, 则有
UU 2nRn i01Di2i U 2nRD
可见,输出模拟电压正比于数字量的输入。
3.八位集成DAC0832
(1)引脚排列图
Digital Electronics Technolo13g.0y5.2020
Digital Electronics Technolo13g.0y5.2020
11.2 D/A转换器
流入运算放大器的电流为:
I
Dn1
I 21
Dn1
I 22
D1
I 2n1
D0
I 2n
I 2n
(Dn12n1
Dn2
2n2
D121
D020)
I
2n
n1
Di 2iຫໍສະໝຸດ i0运算放大器的输出电压为:
UIRFI2R nF n i01Di2i
Digital Electronics Technolo13g.0y5.2020
Digital Electronics Technolo13g.0y5.2020
11.2 D/A转换器
当D=Dn-1…D0=0时, uo =0
当D=Dn-1…D0=11…1时, 最大输出电压:
uo Uo m2n2 n1URef
因而uo 的变化范围是: 0 ~ 2n2n 1UR
特点:
电路简单,器件少。但精度由电阻的精度定,此电 路中阻值差别大,对集成不利。
Digital Electronics Technolo13g.0y5.2020
11.1 概述
典型数字控制系统框图

《AD及DA转换》课件

《AD及DA转换》课件
AD转换器可采用不同的工作模式,包括单次采样模式、连续采样模式和返馈 式模式。工作模式的选择取决于应用的工作模式可供选择,包括并行输出模式、连续波模式和直流偏置模式。每种模式都有不同的 实现方法和性能特点。
《AD及DA转换》PPT课件
本PPT课件将深入介绍AD及DA转换的原理、分类、工作模式,以及采样率、 量化精度等关键概念。我们还会探讨信号处理技术、硬件实现和电路设计等 重要话题。
什么是AD和DA转换
AD(模数)转换将模拟信号转换为数字信号,DA(数模)转换将数字信号转换为模拟信号。这两种转换器 在许多电子系统中起着关键作用。
AD转换器可根据工作原理和特性进行分类,如逐次逼近型、积分型、双斜率 型和ΔΣ型等。每种类型都有其适用的应用场景和性能特点。
DA转换器的分类
DA转换器可以按照数字信号转换为模拟信号的方法进行分类,如加权电阻型、 串行型、并行型和PDM型等。不同类型的转换器适用于不同的应用需求。
AD转换器的工作模式
AD转换的原理和作用
AD转换器使用采样和量化技术将连续的模拟信号转换为离散的数字信号。它 在信号处理、通信系统和传感器中都有广泛应用。
DA转换的原理和作用
DA转换器将数字信号转换为模拟信号,使其能够在模拟电路中进行进一步处 理和传输。它在音频、视频和通信等领域中扮演着核心角色。
AD转换器的分类

ad与da

ad与da

一个A/D转换器至少具备: 输出引线 开始转换: 1.模拟电源/地与数字电源/地 相隔开. 2.数字信号线与模拟信号线 相隔开。 处理方法
常 见 的 数 模 器 件
A/D,D/A电路 电路
常 见 的 数 模 器 件 / 处 理 方 法 左上图所示:7-29脚为数字信号,其它为模拟信号 6,30脚分别为模拟信号的电源/参考电源
A/D,D/A电路 电路
AD:模数转换,将模拟信号变成数字信号,便于数字设备处理。 DA:数模转换,将数字信号转换为模拟信号与外部接口。 了解: 转换时间:是A/D转换完成一次所需的时间。 即:从启动信号开始到转换结束并得到稳定的数字输出值为止的时间 间隔。转换时间越短则转换速度就越快
A/D,D/A电路 电路

《AD和DA变换》课件

《AD和DA变换》课件

模拟信号采样
信号量化
连续的模拟信号通过采样器转换为离散的数字形式。
通过量化器将连续的信号转换为离散的数值,减小 信号的精度。
AD变换的应用
AD变换在许多领域中具有广泛的应用和重要的意义。
音频处理
AD转换用于音频设备中的声音 采集和处理,例如录音、音乐 制作和语音识别。
通信系统
AD转换用于将模拟信号转换为 数字信号,以便在通信系统中 传输和处理音频和视频数据。
Hale Waihona Puke 数字信号解码通过解码器将二进制信号解码为对应的数字数值。
信号重构
通过重构滤波器将数字信号转换为连续的模拟信号。
DA变换的应用
DA变换在各种设备和应用中发挥着至关重要的作用。
1
显示器
2
DA转换用于显示器中的数字信号解码和
模拟信号重建,以显示图像和视频。
3
音频设备
DA转换用于音频设备中的数字信号重建, 如扬声器和耳机。
关键的信号处理环节
AD变换将模拟信号转换为数字形式,DA变换将数字信号转换为模拟形式,促使数字设备和 模拟设备之间的互操作。
广泛的应用领域
AD和DA变换被广泛应用于音频设备、通信系统、数据采集、控制系统和测量仪器等领域。
AD变换的概念和原理
AD(模数转换)是将模拟信号转换为数字信号的过程。这涉及到信号采样、量化和编码。 • 信号采样:将连续的模拟信号在离散时间点上进行采样。 • 信号量化:将采样的信号转换为离散的数值。 • 信号编码:将量化的数值表示为二进制形式。
《AD和DA变换》PPT课件
本PPT课件介绍AD和DA变换的概念、原理、应用以及问题讨论,旨在向大家 分享我的专业知识和见解。
引言

AD和DA转换器的分类及其主要技术指标

AD和DA转换器的分类及其主要技术指标

AD和DA转换器的分类及其主要技术指标AD和DA转换器(Analog-to-Digital and Digital-to-Analog converters)是电子设备中常用的模数转换器和数模转换器。

AD转换器将连续的模拟信号转换成对应的离散数字信号,而DA转换器则将离散的数字信号转换成相应的连续模拟信号。

本篇文章将介绍AD和DA转换器的分类以及它们的主要技术指标。

一、AD转换器分类AD转换器主要分为以下几个类型:1.逐次逼近型AD转换器(Successive Approximation ADC)逐次逼近型AD转换器是一种常见且常用的AD转换器。

它采用逐渐逼近的方法逐位进行转换。

其基本原理是将模拟输入信号与一个参考电压进行比较,不断调整比较电压的大小,确保比较结果与模拟输入信号的差别小于一个允许误差。

逐次逼近型AD转换器的转换速度相对较快,精度较高。

2.模数积分型AD转换器(Sigma-Delta ADC)模数积分型AD转换器是一种利用高速和低精度的ADC与一个可编程数字滤波器相结合的技术。

它通过对输入信号进行高速取样并进行每个采样周期的累积和平均,降低了后续操作所需的带宽。

模数积分型AD转换器具有较高的分辨率和较好的线性度,适用于高精度应用。

3.并行型AD转换器(Parallel ADC)并行型AD转换器是一种通过多个比较器并行操作的AD转换器。

它的转换速度较快,但其实现成本相对较高。

并行型AD转换器适用于高速数据采集和信号处理。

4.逐渐逼近型AD转换器(Ramp ADC)逐渐逼近型AD转换器是一种通过线性递增电压与输入信号进行比较的转换器。

它利用逐渐逼近的方法寻找与输入信号最接近的电压值,然后以此电压值对应的时间来估计输入信号的值。

逐渐逼近型AD转换器转换速度较慢,但精度较高。

5.其他类型AD转换器除了上述几种常见的AD转换器类型外,还有其他一些特殊的AD转换器类型,如比例调制型AD转换器、索耳转换器等。

AD转换、DA转换是什么意思?ADC、DAC又是什么意思?

AD转换、DA转换是什么意思?ADC、DAC又是什么意思?

AD转换、DA转换是什么意思?ADC、DAC又是什么意思?展开全文A/D转换、D/A转换是什么意思?ADC、DAC又是什么意思?A/D转换=模拟/数字转换,意思是模拟讯号转换为数字讯号;D/A转换=数字/模拟转换,意思是数字讯号转换为模拟讯号;ADC=模拟/数字转换器,DAC=数字/模拟转换器。

什么是超取样?超取样有何作用?超取样是CD机中采用的一种技术,用于提高放音质量。

CD片上的数据讯号被读出后,通过DSP电路的插值处理,将44.1kHz的标准取样率提升一倍到数倍,这就是超取样。

为什么要超取样呢?这涉及到D/A转换之后的噪声滤除问题。

数码讯号经过D/A转换之后,会在音频频带以外的高端产生一个镜象频带,这是一种噪声,必须用低通滤波器滤除,否则经过非线性器件后会折回到音频频带内,对放音效果产生很大的破坏。

该镜像噪声频带的位置和取样频率有关,频率越高,镜像频带就离音频频带越远。

对于标准取样频率来说,必须用衰减十分陡峭的滤波器才能滤掉靠近音频频带的镜像噪声。

但衰减陡峭的滤波器很难设计,相位失真很大,难免会影响到音频频带的高端部分,使音质下降,这就是早期的CD机数码味比较重的重要原因。

如果采用超取样,就可以把镜像噪声推到远离音频频带的位置,这时只需要衰减平缓的低通滤波器就行了,设计难度大大降低,相位特性得以改善,使放音质量获得显著的改善。

数模转换器目录简介解析转换原理D/A转换器分类数模转换器的位数DAC简介数模转换器,又称D/A转换器,简称DAC,它是把数字量转变成模拟的器件。

D/A转换器基本上由4个部分组成,即权电阻网络、运算放大器、基准电源和模拟开关。

模数转换器中一般都要用到数模转换器,模数转换器即A/D转换器,简称ADC,它是把连续的模拟信号转变为离散的数字信号的器件。

解析一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,简称 DAC或D/A 转换器。

最常见的数模转换器是将并行二进制的数字量转换为直流电压或直流电流,它常用作过程控制计算机系统的输出通道,与执行器相连,实现对生产过程的自动控制。

电路中的AD转换与DA转换

电路中的AD转换与DA转换

电路中的AD转换与DA转换在当今信息时代,电子设备已经渗透到我们生活的方方面面。

而这些电子设备的运作离不开AD转换(模数转换)和DA转换(数模转换)这两个关键环节。

本文将介绍AD转换和DA转换的原理、应用以及相关技术发展。

一、AD转换AD转换是模拟信号转换为数字信号的过程。

在电子设备中,传感器等设备输出的信号多为模拟信号,需要通过AD转换将其转换成数字信号,才能由电子器件进行处理和存储。

AD转换器通常由采样器、量化器和编码器组成。

采样器的作用是将模拟信号在一定的时间间隔内取样,量化器将取样的模拟信号分成有限个离散值进行量化,编码器将量化后的离散值转换成二进制数字信号。

通过这一过程,AD转换器能够将连续变化的模拟信号转换为离散的数字信号。

AD转换器广泛应用于各个领域,如音频、视频、电力系统等。

在音频领域,AD转换器用于将声音等模拟信号转换为数字信号,实现录音、播放等功能。

在电力系统中,AD转换器用于电能计量、监测等方面。

二、DA转换DA转换是数字信号转换为模拟信号的过程。

数字信号由计算机或其他数字系统处理和存储,而大部分外围设备如音箱、显示器等则需要模拟信号进行驱动。

DA转换器通常由数字信号输入端和模拟输出端组成。

数字信号输入端接收来自计算机或其他数字系统的数字信号,将数字信号按照一定的波形进行放大、滤波等处理后,经过模拟输出端输出为模拟信号。

这样,数字系统生成的数字信号便可以控制外围设备的模拟输出。

DA转换器广泛应用于音频设备、显示设备等领域。

在音频设备中,DA转换器用于将计算机中存储的音频文件转换为模拟信号,通过音箱输出高质量的音乐。

在显示设备中,DA转换器则将计算机生成的数字图像信号转换为模拟信号,驱动显示器显示各种图像。

三、技术发展随着科技的不断进步,AD转换与DA转换技术也得到了快速的发展与创新。

目前,高速、高精度、低功耗、小型化是AD转换与DA转换技术的发展方向。

在AD转换技术方面,新型的Delta-Sigma调制技术、超大规模集成电路技术等被广泛应用,提高了AD转换器的精度和信噪比。

AD转换电路和DA转换电路

AD转换电路和DA转换电路
4位输入锁存器
LE2
LE3
MSB
12位 相乘 型 D/A 转换 电路
LSB
10
14 UREF 13 Io2
Io1
11
Rf b
24 3
UCC
12
DAC1208
AD-DA转换器实例仿真
有一模数-数模转换电路如图,试根据不同转换频率, 仿真该电路
REF1=REF2=10V E Ovr
REF2
In 10sin4t
1
UR/2
+1
#
-1 N1
UR/4
d1
≥1
&
d0
AD转换器
集成A/D转换器ADC0809
启动 START CLK
IN7
8路 模拟 量输
入 IN0
3 位 ADDA 地址 ADDB
线 ADDC 地址锁 ALE 存允许
WR
8路 模拟 开关
地址 锁存 与 译码
控制逻辑与时序
-1
#
+1
SAR
开关树
三态输 出锁存 缓冲器
ADDA
UCC
+5V
ui7
IN7
REF(+)

……
REF(–)
ui0
IN0 GND
b)
DA转换器
D/A转换器的转换特性
对n位D/A转换器 ,设其输入是n位二进制数字输入信号 Din (d1,…dn), Din = d1x2-1+…+dnx2-n 如果D/A转换器的基准电压位UR,则理想D/A转换器的输 出电压U0可表示为 U0 = UR*Din
REF1
1
2
in Conv

DA及AD转换器

DA及AD转换器


D0
210 vO vI D
增益大于1
7.2.6 D/A转换器的典型应用
4.数字式可编程增益放大电路
VREF R 2R S9 R 2R S8 R 2R S7 R 2R S6 R 2R S5 R 2R S4 R 2R S3 R 2R S2 R 2R S1 2R S0 AD7520 2R R i∑ IOUT1 IOUT2 vI -A +
7.2.5 D/A转换器的主要技术参数
4.转换精度
(1)偏移误差、增益误差
VFSR 理想的 VFSR 理想的 增益误差
偏移误差 0 000 D2D1D0 111 0 000 D2D1D0 111
v0
(a)
v0
(b)
7.2.5 D/A转换器的主要技术参数
(2)非线性误差 在满量程范围内,D/A转换器实际值偏离理想转换特 性的最大值称为积分非线性误差INL。
7.1 概

D/A转换器(Digital Analog Convertor,DAC)
A/D转换器( Analog Digital Convertor,ADC)
D/A转换器和A/D转换器是连接数字世界和模拟世界的 桥梁,在现代信息技术中具有举足轻重的作用。
7.1 概

● 典型应用系统之一——多路数据采集系统
D
DAC
vO
vO KD K Di 2i
i 0
n 1
7.2.1 D/A转换器的基本原理
以三位DAC为例,设K=1,可得出vO和D的关系 D2D1D0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 vO 0V 1V 2V 3V 4V 5V 6V

AD和DA转换简介

AD和DA转换简介

19
技术指标
3. 转换误差 它表示A/D转换器实际输出的数字量和理论上输出的数字量 之间的差别。常用最低有效位的倍数表示。 例如,转换误差≤
1 LSB 。就表明实际输出的数字量和理 2
论上应得到的输出数字量之间的误差小于最低位的半个字。
例:某信号采集系统要求用一片A/D转换集成芯片在1s内对16个热 电偶的输出电压分数进行A/D转换。已知热电偶输出电压范围为0~ 25mV(对应于0~450℃温度范围),需分辨的温度为0.1℃,试问应选 择几位的A/D转换器?其转换时间为多少?
1
问题的提出 能够将模拟量转换为 当计算机用于数据采集和过程控制的时候,采集对象往往是连续变化的物 数字量的器件称为模 传感器 A/D 数转换器,简称A/D 理量(如温度、电压、电流等),但计算机处理的是离散的数字量,因此需 (温度、电压、 电流等模拟量) 转换器或ADC。 要对连续变化的物理量(模拟量)进行采样、保持,再把模拟量转换为数字
技术指标
1. 分辨率 分辨率指A/D转换器对输入模拟信号的分辨能力。从理论
上讲,一个n位二进制数输出的A/D转换器应能区分输入模拟电
压的2n个不同量级,能区分输入模拟电压的最小差异为
1 n)。 (满量程输入的 1/2 FSR 2n
例如,A/D转换器的输出为12位二进制数,最大输入模拟信
号为10V,则其分辨率为
编码器: 由六个与非门构成。
并行ADC原理图
10
电路类型 并行比较型A/D转换器的转换关系
11
电路类型 例如:假设模拟输入 UIN=3.8V , UR=8V 。当模拟输入 UIN=3.8V加到各级比较器时,由于
7 U R 3.5V 16 9 U R 4.5V 16

AD、DA转换器详解

AD、DA转换器详解

DA 转换器----数字信号转换成模拟信号,注意模拟地和数字地要分开,采用单端共地的方式权电阻型DAC :模拟开关S i 受信号D i 控制,当D i =1时,开关左拨,当D i =0时,开关右拨。

假设求和放大器为理想放大器 那么根据“虚短、虚断”的概念I =I 0d 0+I 1d 1+I 2d 2+I 3d 3 I=V REF 23R d 0+V REF 22R d 1+V REF 2R d 2+V REFR d 3=V REF 23R(d 3⋅23+d 2⋅22+d 1⋅21+d 0⋅20)U =−I ∙R f归纳后优点:简单缺点:电阻值相差较大,难以保证精度,且大电阻 不易集成权电阻网络型 倒梯形电阻网络 权电流型 权电容型 开关树型倒T型电阻网络DAC (原则上还是权电阻网络,但所用电阻系列少)开关置于电阻网络和运放之间,开关无论是在实地还是虚地,支路上的电流始终保持不变,这样就无需电流建立时间,也不会产生尖脉冲。

从节点D开始分析,D左侧的两条支路并联等效电阻为R,依次类推节点A两条支路电阻分别为2R,并联等效电阻为R,I=V RR ,I3=I3′=V R2R,,,类推:I∑=I3∙d3+I2∙d2+I1∙d1+I0∙d0=V R2R d3+V R4Rd2+V R8Rd1+V R16Rd0=V R16R(23∙d3+22∙d2+21∙d1+20∙d0)权电流型DACDAC主要技术指标分辨率(理论精度):12n−1转换误差(实际精度):失调误差、增益误差、非线性误差绝对值之和失调误差失调误差(或称零点误差)定义为数字输入全为0码时,其模拟输出值与理想输出值之偏差值。

对于单极性D/A转换,模拟输出的理想值为零伏点。

对于双极性D/A转换,理想值为负域满量程。

偏差值的大小一般用LSB的份数或用偏差值相对满量程的百分数来表示。

增益误差D/A转换器的输入与输出传递特性曲线的斜率称为D/A转换增益或标度系数,实际转换的增益与理想增益之间的偏差称为增益误差(或称标度误差)。

AD和DA的工作原理

AD和DA的工作原理

AD和DA的工作原理AD和DA是模数转换和数模转换的简称,分别代表模数转换器(Analog-to-Digital Converter)和数模转换器(Digital-to-Analog Converter)。

AD用于将模拟信号转换为数字信号,而DA则是将数字信号转换为模拟信号,两者是相对的过程。

AD的工作原理:AD转换器的作用是将输入的模拟信号,通过一定的采样和量化方法,转换为数字形式的信号,以便于数字设备进行处理和存储。

AD转换器通常分为两个主要阶段:采样和量化。

1.采样:AD转换器首先对输入信号进行采样,即按照一定的时间间隔对连续模拟信号进行抽样。

采样的频率也被称为采样率,通常用赫兹(Hz)表示。

采样率决定了输入信号中能够被留存下来的频率范围。

2.量化:采样后的模拟信号将被输入到量化器中。

量化是将连续的模拟信号转换成离散的数字信号的过程。

在这个过程中,AD转换器将把输入的模拟信号分成一定数量的等级,并为每个等级分配一个数字代码。

采样和量化的过程可以通过二进制表示来完成,其中最常见的是通过ADC(模数转换器)将模拟信号转换为二进制数。

DA的工作原理:DA转换器的作用是将数字信号转换为模拟信号,以便于与模拟设备进行连接和交互。

DA转换器通常包含两个主要部分:数字信号处理和模拟输出。

1.数字信号处理:DA转换器首先接收到一串数字信号,这些信号由计算机或数字设备产生。

这些信号是基于离散的数字表示,通常使用二进制数表示。

DA转换器将会对这些数字信号进行处理,比如滤波、重采样等,以确保生成的模拟信号质量和稳定性。

2.模拟输出:处理后的数字信号被输入到DAC(数模转换器),将数字信号转换为模拟信号。

DAC将根据数字信号的数值,通过一定的电流或电压生成模拟信号。

这些模拟信号将与各种模拟设备进行连接,例如音频设备、电机控制等。

需要注意的是,AD和DA转换的精度和速度是非常重要的参数。

转换器的精度是指转换器所能提供的输出与输入之间的误差。

AD和DA转换器

AD和DA转换器

A/D 和D/A 转换器在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工处理;经过处理获得的输出数据又要送回物理系统,对系统物理量进行调节和控制。

传感器输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。

这种模拟量到数字量的转换称为模-数(A/D)转换。

处理后获得的数字量有时又需转换成模拟量,这种转换称为数-模(D/A)变换。

A/D 变换器简称为ADC 和D/A 变换器简称为DAC 是数字系统和模拟系统的接口电路。

第一节 基本概念一、D/A 变换D/A 变换器一般由变换网络和模拟电子开关组成。

输入n 位数字量D (=D n-1…D 1D 0)分别控制这些电子开关,通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。

(1)变换网络变换网络一般有权电阻变换网络、R-2RT 型电阻变换网络和权电流变换网络等几种。

ⅰ、权电阻变换网络权电阻变换网络如图8-1所示,每一个电子开关S i 所接的电阻R i 等于2n-1-i R (i=0~n-1),即与二进制数的位权相似,R 0=2n-1R ,R n-1=R 。

对应二进制位D i =1时,电子开关S i 合上,R i 上流过的电流 I i =V REF /R i 。

令V REF /2n-1R=I REF ,则有 I i =2i I REF ,即R i 上流过对应二进位权倍的基准电流,R i 称为权电阻。

权电阻网络中的电阻从R 到2n-1R 成倍增大,位数越多阻值越大,很难保证精度。

图8-1 权电阻D/A 变换器ⅱ、R-2R 电阻变换网络R-2R 电阻网络中串联臂上的电阻为R ,並联臂上的电阻为2R ,如图8-2所示。

从每个並联臂2R 电阻往后看,电阻都为2R ,所以流过每个与电子开关S i 相连的2R 电阻的电流I i 是前级电流I i+1的一半。

因此, I i =2i I 0=2i I REF /2n ,即与二进制i 位权成正比。

AD_DA转换基本原理

AD_DA转换基本原理

AD_DA转换基本原理AD-DA转换是模拟信号与数字信号之间的转换过程,AD是模拟信号转换为数字信号的过程,DA是数字信号转换为模拟信号的过程。

模拟信号是连续变化的电信号,而数字信号是离散的电信号。

AD-DA转换器在很多领域中被广泛应用,如通信、音频处理、图像处理等。

AD转换的基本原理是使用采样和量化的方法将连续变化的模拟信号转换为离散的数字信号。

采样是指将连续的信号在时间上进行离散化,将信号在一定的时间间隔内进行采集。

量化是指对采样后的信号进行离散化处理,将连续的信号值映射到一组离散值。

采样和量化的间隔称为采样周期和量化间隔,采样周期越小,量化间隔越小,转换精度越高。

在AD转换过程中,首先需要选择一个足够高的采样率,以保证对原始信号的采样能够准确还原。

然后将连续的模拟信号用采样周期将其分为离散的信号样本,每一个样本对应一个离散时间点。

接下来,在每一个采样时间点,通过量化器将信号的幅度映射为一个离散的数字值。

量化的精度决定了数字信号的分辨率和动态范围,一般以位表示,如8位、16位等。

DA转换的基本原理是将离散的数字信号转换为连续变化的模拟信号。

在DA转换过程中,首先需要进行数字信号的解码,将离散的数字值转换为连续的数值。

然后使用保持电路(sample-and-hold)将这些连续的数值保持为恒定的电压信号。

接着,使用模拟滤波器对保持的数值进行平滑处理,去除高频分量和其他干扰。

最后,通过放大器将平滑后的信号放大到合适的幅度,得到模拟输出信号。

在DA转换过程中的重要环节是数字信号的解码和模拟滤波器的设计。

解码过程需要将离散的数字值映射为一组连续的数值,这通常通过查表或者插值的方式实现。

模拟滤波器的设计目的是对离散的数字信号进行平滑处理,去除不需要的高频分量和噪声。

滤波器的选择取决于系统的需求,可以是低通滤波器、带通滤波器等。

AD-DA转换器的性能主要由转换精度、抖动、信噪比和带宽等参数决定。

转换精度越高,代表着数字信号与模拟信号的差距越小。

AD与DA转换简介及其应用

AD与DA转换简介及其应用

A/D与D/A转换简介及其应用班级:姓名:学号:一、背景随着现代科学技术的迅猛发展,特别是数字系统已广泛应用于各种学科领域及日常生活,微型计算机就是一个典型的数学系统。

但是数字系统只能对输入的数字信号进行处理,其输出信号也是数字信号。

而在工业检测控制和生活中的许多物理量都是连续变化的模拟量,如温度、压力、流量、速度等,这些模拟量可以通过传感器或换能器变成与之对应的电压、电流或频率等电模拟量。

为了实现数字系统对这些电模拟量进行检测、运算和控制,就需要一个模拟量与数字量之间的相互转换的过程。

即常常需要将模拟量转换成数字量,简称为AD 转换,完成这种转换的电路称为模数转换器(Analog to Digital Converter) ,简称ADC;或将数字量转换成模拟量,简称DA转换,完成这种转换的电路称为数模转换器(Digital to Analog Converter) ,简称DAC。

二、ADC和DAC基本原理及特点1、模数转换器(ADC)的基本原理模拟信号转换为数字信号,一般分为四个步骤进行,即取样、保持、量化和编码。

前两个步骤在取样-保持电路中完成,后两步骤则在ADC中完成。

常用的ADC有积分型、逐次逼近型、并行比较型/串并行型、Σ -Δ调制型、电容阵列逐次比较型及压频变换型。

其基本原理及特点:1)积分型(如TLC7135) 。

积分型ADC工作原理是将输入电压转换成时间或频率,然后由定时器/计数器获得数字值。

其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。

初期的单片ADC大多采用积分型,现在逐次比较型已逐步成为主流。

双积分是一种常用的AD 转换技术,具有精度高,抗干扰能力强等优点。

但高精度的双积分AD芯片,价格较贵,增加了单片机系统的成本。

2)逐次逼近型(如TLC0831) 。

逐次逼近型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟量转换为数字量—A/D转换(Analog to Digital) 数字量变换为模拟量—D/A转换(Digital to Analog)
传 电路
D/A 转换器
功 率 放 大 器
执 行 部 件
衡量A/D和D/A转换器性能的两个主要指标: 转换精度 转换速度
第15章 数模与模数转换器
第15章 数模与模数转换器
内容提要:数模(DA)与模数(AD)转换器是 一种连接模拟电路和逻辑电路的信号变换电 路,它是能将模拟、数字这两类电路联系在 一起的接口电路。本章主要介绍模拟数字转 换的概念,模数转换和数模转换电路的工作 原理和典型应用电路。
第15章 数模与模数转换器
2010.03
第15章 数模与模数转换器
2010.03
15.1 AD与DA转换的基本概念 15.2 DA转换器 15.3 AD转换器 15.4 多路模拟开关
第15章 数模与模数转换器
2010.03
15.1 AD与DA转换的基本概念
自然界中存在的物理量大都是模拟量,如温度、时间、 角度、速度等。随着数字技术的迅速发展,尤其是计算机的 广泛应用,用数字电路处理模拟信号的情况非常普遍。
相关文档
最新文档