AD和DA转换器的分类及其主要技术指标

合集下载

AD转换简介

AD转换简介

A/D转换:就是把模拟信号,转换为数字信号

ad:模数转换,将模拟信号变成数字信号,便于数字设备处理。

da:数模转换,将数字信号转换为模拟信号与外部世界接口。

具体可以看看下面的资料,了解一下工作原理:

ad转换器的分类

1.下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如tlc7135)

积分型ad工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片ad转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如tlc0831)

逐次比较型ad由一个比较器和da转换器通过逐次比较逻辑构成,从msb 开始,顺序地对每一位将输入电压与内置da转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如tlc5510)

并行比较型ad采用多个比较器,仅作一次比较而实行转换,又称flash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频ad转换器等速度特别高的领域。

串并行比较型ad结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型ad转换器配合da转换器组成,用两次比较实行转换,所以称为half flash(半快速)型。还有分成三步或多步实现ad转换的叫做分级(multistep/subrangling)型ad,而从转换时序角度又可称为流水线(pipelined)型ad,现代的分级型ad中还加入了对多次转换结果作数字运算而修正特性等功能。这类ad速度比逐次比较型高,电路规模比并行型小。4)∑-δ(sigma?/font>delta)调制型(如ad7705)

ADC的分类和指标

ADC的分类和指标

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ—Δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如TLC7135)

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率, 但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如TLC0831)

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值.其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如TLC5510)

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n—1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能.这类AD速度比逐次比较型高,电路规模比并行型小.

《AD及DA转换》课件

《AD及DA转换》课件
AD转换器可采用不同的工作模式,包括单次采样模式、连续采样模式和返馈 式模式。工作模式的选择取决于应用的要求和特定的设计约束。
DA转换器的工作模式
wk.baidu.comDA转换器有多种工作模式可供选择,包括并行输出模式、连续波模式和直流偏置模式。每种模式都有不同的 实现方法和性能特点。
《AD及DA转换》PPT课件
本PPT课件将深入介绍AD及DA转换的原理、分类、工作模式,以及采样率、 量化精度等关键概念。我们还会探讨信号处理技术、硬件实现和电路设计等 重要话题。
什么是AD和DA转换
AD(模数)转换将模拟信号转换为数字信号,DA(数模)转换将数字信号转换为模拟信号。这两种转换器 在许多电子系统中起着关键作用。
AD转换器可根据工作原理和特性进行分类,如逐次逼近型、积分型、双斜率 型和ΔΣ型等。每种类型都有其适用的应用场景和性能特点。
DA转换器的分类
DA转换器可以按照数字信号转换为模拟信号的方法进行分类,如加权电阻型、 串行型、并行型和PDM型等。不同类型的转换器适用于不同的应用需求。
AD转换器的工作模式
AD转换的原理和作用
AD转换器使用采样和量化技术将连续的模拟信号转换为离散的数字信号。它 在信号处理、通信系统和传感器中都有广泛应用。
DA转换的原理和作用
DA转换器将数字信号转换为模拟信号,使其能够在模拟电路中进行进一步处 理和传输。它在音频、视频和通信等领域中扮演着核心角色。

ADC的分类和指标

ADC的分类和指标

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如TLC7135)

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如TLC0831)

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如TLC5510)

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个

n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为

Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。

DA与AD转换器的基本原理

DA与AD转换器的基本原理

DA与AD

一、D/A转换器的基本原理

1、分辨率

分辨率是指输入数字量的最低有效位(LSB)发生变化时,所对应的输出模拟量(电压或电流)的变化量。它反映了输出模拟量的最小变化值。

分辨率与输入数字量的位数有确定的关系,可以表示成FS / 。FS

表示满量程输入值,n为二进制位数。对于5V的满量程,采用8位的DAC时,分辨率为5V/256=19.5mV;当采用12位的DAC时,分辨率则为5V/4096=1.22mV。显然,位数越多分辨率就越高。

2、线性度

线性度(也称非线性误差)是实际转换特性曲线与理想直线特性之间的最大偏差。常以相对于满量程的百分数表示。如±1%是指实际输出值与理论值之差在满刻度的±1%以内。

3、绝对精度和相对精度

绝对精度(简称精度)是指在整个刻度范围内,任一输入数码所对应的模拟量实

际输出值与理论值之间的最大误差。绝对精度是由DAC的增益误差(当输入数码为全1时,实际输出值与理想输出值之差)、零点误差(数码输入为全0时,DAC 的非零输出值)、非线性误差和噪声等引起的。绝对精度(即最大误差)应小于1个LSB。

相对精度与绝对精度表示同一含义,用最大误差相对于满刻度的百分比表示。

应当注意,精度和分辨率具有一定的联系,但概念不同。DAC的位数多时,分辨率会提高,对应于影响精度的量化误差会减小。但其它误差(如温度漂移、线性不良等)的影响仍会使DAC的精度变差。

DAC0832与80C51单片机的接口

1、单缓冲工作方式

此方式适用于只有一路模拟量输出,或有几路模拟量输出但并不要求同步的系统。

AD转换器的分类

AD转换器的分类

AD转换器的分类

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-Δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如TLC7135)

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如TLC0831)

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如TLC5510)

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n 位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD 转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。

第七章 AD 与 DA转换器

第七章  AD 与 DA转换器

第七章 A/D 与 D/A转换器(A/D and D/A converter)
数 字 电 子 技 术
其中fs为采样频率,fimax为输入模拟信号的上限值。 通常选择采样频率fs=(2.5—3)fimax,应该是采样频 率越高越好,但要付出代价,如外接的存储器的容量要 大(1024*8,1024*8*2)。 由于采样时间极短,采样输出为一串断续的窄脉冲, 而要把一个模拟采样信号 数字化需要一定的时间,因 此在前后两次采样之间,应将采样的模拟信号保持下来, 否则采样的模拟信号已发生了变化。可见,进行 可见, 可见 进行A/D转 转 换时所用的输入电压,实际上是每次取样结束时的v 换时所用的输入电压,实际上是每次取样结束时的 I值。 采样保持电路的电路图如下所示: 采样保持电路的电路图如下所示:
3、 CMOS模拟电子开关 前面第二章讲双向模拟开关,但它 能够传输的是电压信号,而我们现 在需要传送的是电流信号。 中北大学电子信息工程系
第七章 A/D 与 D/A转换器(A/D and D/A converter)
数 字 电 子 技 术
3.CMOS 模拟电子开关
中北大学电子信息工程系
第七章 A/D 与 D/A转换器(A/D and D/A converter)
1. A/D转换的一般步骤 模拟信号在时间上是连续的,我们不可能对所有的时 间点的信号进行采样,只能在一系列选定的瞬间(即时间 坐标轴上的一些规定点)对输入的模拟信号采样,将这些 特殊点的模拟量转换成数字量。通常A/D转换须经过采样、 保持和量化、编码这两大步骤完成。 (1)采样、保持 到底采多少个点或者说隔多长时间采样一次,应 以采样后的信号能不失真地反映原来的信号。对于一 个频率有限的模拟信号,可以由采样定理确定采样频 率为 f S ≥ 2 f i max 中北大学电子信息工程系

MCS-51与DA、AD转换器的接口相关知识讲解

MCS-51与DA、AD转换器的接口相关知识讲解
➢ 位数相同,分辨率则相同 ➢ 但相同位数的不同转换器精度会有所不同。
§11.1 MCS-51与DAC的接口
2. MCS-51与8位DAC0832的接口
1) DAC0832芯片介绍 (1) DAC0832的特性
具有两个输入数据寄存器的8位DAC,能直接与 MCS-51单片机相连。主要特性如下:
* 分辨率为8位; * 电流输出,稳定时间为1s; * 可双缓冲输入、单缓冲输入或直接数字输入; * 单一电源供电(+5~+15V);
缓冲和锁存 输入数字量
存放待转换 的数字量
由T型电阻网络和电子 开关组成,T型电阻网 络输出和数字量成正 比的模拟电流。
LE1或LE2=1,当前寄存器的输出跟随输 入
LE1或LE2=0,锁存数据
三种工作形式:直通、单缓冲、双缓冲
§11.1 MCS-51与DAC的接口
2) DAC的应用 接口与DAC的具体应用有关。
(1)输出电流稳定时间:1s; (2)基准电压:VREF= -10~ +10V; (3)单工作电源:+5~ +15V; (4)低功耗:20mW。
2) 接口电路设计及软件编程 (1) 接口电路设计
I/V转换
双极性电压输出 (-10V~ +10V)
采用双缓冲方式
先送高8位数据
高8位输入寄存器端口地址:4001H; 低4位寄存器端口地址: 4000H;

AD_DA原理及主要技术指标

AD_DA原理及主要技术指标

AD_DA原理及主要技术指标

AD-DA(模拟-数字/数字-模拟)转换是现代电子设备中常见的基本电

路和技术。它负责将模拟信号转换为数字信号或将数字信号转换为模拟信号。AD-DA转换在诸如音频处理、图像采集、仪器仪表等领域都有广泛应用。

AD转换即模拟到数字转换,它将连续的模拟信号转换为离散的数字

信号。AD转换通常涉及样本化、量化和编码三个步骤。

样本化是指将连续的模拟信号离散化为一系列时序的采样值。在样本

化过程中,模拟信号将被周期性地采样,并将每个采样点的幅值记录下来。

量化是指将每个采样点的幅值映射到一组离散的量化级别。通过将连

续的幅值区间映射为有限的离散级别,量化将模拟信号的无限细节化为数

字形式。

编码是指将每个量化级别映射到二进制代码。编码将每个量化级别分

配一个特定的二进制代码,使得每个样本点都能准确地表示为二进制形式

的数字。

DA转换即数字到模拟转换,它将离散的数字信号转换为连续的模拟

信号。DA转换通常涉及解码和重构两个步骤。

解码是指将数字代码转换为对应的模拟量化级别。解码使用逆编码来

将二进制代码映射回量化级别。

重构是指使用一定的插值或滤波技术来重建连续的模拟信号。由于数

字信号是离散的,重构步骤有助于消除数字信号中的采样误差,并使其逼

近原始模拟信号。

在AD-DA转换中,有几个重要的技术指标需要考虑:

1. 分辨率:分辨率是指数字信号中能够表示的最小变化量。它通常以比特(bit)来表示。分辨率越高,表示数字信号可以更准确地表示模拟信号。

2.采样率:采样率是指单位时间内进行采样的次数。它通常以赫兹(Hz)来表示。采样率的选择要根据所采集信号的频率范围进行,以避免采样失真。

DA与AD转换器的基本原理

DA与AD转换器的基本原理

DA与AD

一、D/A转换器的基本原理

1、分辨率分辨率是指输入数字量的最低有效位(LSB)发生变化时,所对应的输出模拟量(电压或电流)的变化量。它反映了输出模拟量的最小变化值。分辨率与输入数字量的位数有确定的关系,可以表示成FS / 。FS表示满量程输入值,n为二进制位数。对于5V的满量程,采用8位的DAC时,分辨率为5V/256=19.5mV;当采用12位的DAC时,分辨率则为5V/4096=1.22mV。显然,位数越多分辨率就越高。

2、线性度线性度(也称非线性误差)是实际转换特性曲线与理想直线特性之间的最大偏差。常以相对于满量程的百分数表示。如±1%是指实际输出值与理论值之差在满刻度的±1%以内。

3、绝对精度和相对精度绝对精度(简称精度)是指在整个刻度范围内,任一输入数码所对应的模拟量实际输出值与理论值之间的最大误差。绝对精度是由DAC的增益误差(当输入数码为全1时,实际输出值与理想输出值之差)、零点误差(数码输入为全0时,DAC的非零输出值)、非线性误差和噪声等引起的。绝对精度(即最大误差)应小于1个LSB。相对精度与绝对精度

表示同一含义,用最大误差相对于满刻度的百分比表示。应当注意,精度和分辨率具有一定的联系,但概念不同。DAC的位数多时,分辨率会提高,对应于影响精度的量化误差会减小。但其它误差(如温度漂移、线性不良等)的影响仍会使DAC的精度变差。DAC0832与80C51单片机的接口1、单缓冲工作方式此方式适用于只有一路模拟量输出,或有几路模拟量输出但并不要求同步的系统。

AD_DA原理及主要技术指标

AD_DA原理及主要技术指标

AD_DA原理及主要技术指标

AD(模数转换器)与DA(数模转换器)是数字信号处理中常用的模

拟转换器。AD将模拟信号转换为数字信号,而DA则将数字信号转换为模

拟信号。两者在数字系统与模拟系统之间起着重要的桥梁作用。本文将介

绍AD_DA的原理及主要技术指标。

AD原理:

AD原理基于采样定理,即将连续时间的模拟信号转换为离散时间的

数字信号。在AD转换过程中,首先通过取样器获取模拟信号的离散样点,然后由量化器将取样点量化为离散的数字信号。

主要技术指标:

1.量化精度:量化精度决定了AD转换器的分辨率,以位数表示,常

见的有8位、10位、12位、16位等。位数越大,分辨率越高,对信号的

重建越精准。

2.采样率:采样率指的是AD转换器每秒采样的次数,常用单位为Hz。采样率要满足采样频率大于信号频率两倍以上的采样定理,否则会产生混

叠效应。

3.带宽:AD转换器的带宽是指转换器能够正确采样和重建信号的频

率范围。带宽越大,能够处理的信号频率范围越宽。

4.功耗:功耗是指AD转换器在工作过程中消耗的电能。低功耗的AD

转换器具有节能环保的特点。

5.采样保持电路:采样保持电路对模拟信号进行采样并保持,以确保

量化器能够准确对信号进行量化,有利于提高AD转换器的性能。

DA原理:

DA原理是将数字信号转换为模拟信号的过程。在DA转换过程中,首先通过数值控制器获得数字信号,然后由DA转换器将数字信号转换为模拟信号输出。

主要技术指标:

1.分辨率:分辨率是指DA转换器的数字输入可以表示的最小幅度变化。分辨率越高,输出模拟信号的精度越高。

AD和DA转换器

AD和DA转换器

A/D 和D/A 转换器

在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工处理;经过处理获得的输出数据又要送回物理系统,对系统物理量进行调节和控制。传感器输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。这种模拟量到数字量的转换称为模-数(A/D)转换。处理后获得的数字量有时又需转换成模拟量,这种转换称为数-模(D/A)变换。A/D 变换器简称为ADC 和D/A 变换器简称为DAC 是数字系统和模拟系统的接口电路。

第一节 基本概念一、D/A 变换

D/A 变换器一般由变换网络和模拟电子开关组成。输入n 位数字量D (=D n-1…D 1D 0)分别控制这些电子开关,通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。 (1)变换网络

变换网络一般有权电阻变换网络、R-2RT 型电阻变换网络和权电流变换网络等几种。 ⅰ、权电阻变换网络

权电阻变换网络如图8-1所示,每一个电子开关S i 所接的电阻R i 等于2n-1-i R (i=0~n-1),即与二进制数的位权相似,R 0=2n-1R ,R n-1=R 。对应二进制位D i =1时,电子开关S i 合上,R i 上流过的电流 I i =V REF /R i 。令V REF /2n-1R=I REF ,则有 I i =2i I REF ,

即R i 上流过对应二进位权倍的基准电流,R i 称为权电阻。

权电阻网络中的电阻从R 到2n-1R 成倍增大,位数越多阻值越大,很难保证精度。

AD转换 百度百科

AD转换  百度百科

AD转换

目录

概述

1. AD转换器的分类

2. AD转换器的主要技术指标

概述

AD转换就是模数转换,顾名思义,就是把模拟信号转换成数字信号。

1. AD转换器的分类

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如TLC7135)

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如TLC0831)

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如TLC5510)

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级

AD转换器种类

AD转换器种类

AD指标与类型

1. AD转换器的分类

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如TLC7135)

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如TLC0831)

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如TLC5510)

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频A D转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型A D转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。

AD.DA转换原理

AD.DA转换原理
(5)CP5 ↑ 到来 Q1~Q5 =10000, 返回初态
9.3.4 间接A/D转换器 第一步:S1合到vI一侧,进行固定 时间T1的积分
第二步:S1转到-vREF一侧,向相 反方向积分,积分时间为T2。
工作原理
例如:参考电压VREF=-5V, 模拟vI=3.2. 设初态QAQBQC=000, 环形计数器Q1~Q5=10000,即Q1=1
(1)CP1 ↑ 到来 SA=1, RA=0; SB=0, RB=1; SC=0, RC=1 置成
100→ vO=5×2-1=2.5V
∵ vO < vI
∴ vC =0
二、反馈比较型A/D转换器
1、计数型A/D转换器
转换时间长: 当输出为n位二进制数码时,最长的转换时间 可达(2n-1)TCP。
2、逐次渐进型A/D转换器 原理:类似天平称重原理 从最高位置1, 判断保留或去除; 次高位置1, 判断保留或去除; ……………….. 最低位置1, 判断保留或去除;
n位需(n+2)个CP脉冲
对于n位D/A转换器:
VO与D成正比。
三、集成D/A转换器CB7520 (AD7520)
1、原理图
10位倒T电路,需外接运放,反馈电阻可用内部R,也可自接, VREF需稳定,才能确保转换精度。
2、CB7520中的CMOS模拟开关电路 采用15V电压
9.2.7 D/A转换器的转换精度与转换速度 一、D/A转换器的转换精度 用分辨率和转换误差来描述转换精度 1、分辨率用输入二进制代码的位数给出(理论精度)

ADC的分类和指标

ADC的分类和指标

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如TLC7135)

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如TLC0831)

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如TLC5510)

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. AD转换器的分类

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如TLC7135)

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率, 但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如TLC0831)

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内臵DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如TLC5510)

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型

的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。

4)Σ-Δ(Sigma/FONT>delta)调制型(如AD7705)

Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。

5)电容阵列逐次比较型

电容阵列逐次比较型AD在内臵DA转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为电容阵列式的。

6)压频变换型(如AD650)

压频变换型(Voltage-Frequency Converter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD 的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积

脉冲个数的宽度。其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。

2. AD转换器的主要技术指标

1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。分辩率又称精度,通常以数字信号的位数来表示。

2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。

3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。

5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。

6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。

其它指标还有:绝对精度(Absolute Accuracy) ,相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distotortion缩写THD)和积分非线性。

3. DA转换器的分类

DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。大多数DA转换器由电阻阵列和n个电流开关(或电压开关)构成。按数字输入值切换开关,产生比例于输入的电流(或电压)。此外,也有为了改善精度而把恒流源放入器件内部的。一般说来,由于电流开关的切换误差小,大多采用电流开关型电路,电流开关型电路如果直接输出生成的电流,则为电流输出型DA转换器,此外,电压开关型电路为直接输出电压型DA转换器。

1)电压输出型(如TLC5620)

电压输出型DA转换器虽有直接从电阻阵列输出电压的,但一般采用内臵输出放大器以低阻抗输出。直接输出电压的器件仅用于高阻抗负载,由于无输出放大器部分的延迟,故常作为高速DA转换器使用。

2)电流输出型(如THS5661A)

电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必

相关文档
最新文档