高中生物遗传知识点总结教程文件
(完整版)高中生物遗传学知识点总结
高中生物遗传学知识点总结高中生物遗传学知识点—伴性遗传高中生物伴性遗传知识点总结:伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。
判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。
以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。
高中生物遗传学知识点—遗传病常见遗传病的遗传方式有以下这几种:(1)单基因遗传:常染色体显性遗传:并指、多指;常染色体隐性遗传:白化病、失天性聋哑X连锁隐性遗传:血友病、红绿色盲;X连锁显性遗传:抗维生素D佝偻病;Y连锁遗传:外耳道多毛症;(2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿;(3)染色体病:染色体数目异常:先天性愚型病;染色体结构畸变:猫叫综合症。
单基因遗传:单基因遗传病是指受一对等位基因控制的遗传病,较常见的有红绿色盲、血友病、白化病等。
根据致病基因所在染色体的种类,通常又可分四类:一、常染色体显性遗传病致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。
致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。
此种患者的子女发病的概率相同,均为1/2。
此种患者的异常性状表达程度可不尽相同。
在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。
由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。
还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。
常见常染色体显性遗传病的病因和临床表现1、多指(趾)、并指(趾)。
临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。
高中生物遗传的知识总结
高中生物遗传的知识总结生物遗传是生物学中的一门重要学科,主要研究物质的遗传变异和遗传规律。
生物遗传在高中生物学课程中占据重要地位,对于理解生物的基本原理和进化机制具有重要作用。
以下是关于高中生物遗传知识的总结。
一、基因的概念和发现:1. 基因是决定个体遗传特征的基本单位,是DNA分子的一部分。
2. 莫尔根通过斑点草蝇的实验发现了基因的存在和分布规律。
二、基因的组成和结构:1. 基因组成:基因由DNA分子组成,DNA是由核苷酸组成的,包括脱氧核糖、磷酸基团和嘌呤碱基和嘧啶碱基。
2. 基因的结构:基因由外显子和内含子组成,外显子决定了蛋白质的编码序列,内含子没有编码功能。
三、染色体的遗传:1. 染色体是细胞核中遗传物质的携带者,由DNA和蛋白质组成。
2. 生物的体细胞染色体通常是成对存在,一对染色体来自于父亲,一对来自于母亲。
3. 遗传物质的分离和重组是由于染色体的交换和分裂。
四、遗传的规律:1. 孟德尔的遗传定律:包括单因素和双因素的自交和亲代的交配。
2. 隐性和显性遗传:隐性遗传指的是在基因重组时该特征不表现出来,需要两个隐性基因才能呈现该特征。
3. 基因的连锁和自由组合:基因连锁是指基因位于同一条染色体上,自由组合是指基因位于不同染色体上。
五、基因突变:1. 基因突变是基因的变异现象,包括点突变、染色体结构的改变和数目的改变等。
2. 点突变包括错义突变、无义突变和无移突变。
六、基因的表达和调控:1. 转录和翻译:转录是指DNA的信息被转录成mRNA,翻译是指mRNA的信息被翻译成蛋白质。
2. 底物和激活剂对基因的调控:底物和激活剂可以通过结合到基因的启动子或诱导子上来调控基因的表达。
七、遗传的分子机制:1. DNA复制:DNA复制是指DNA分子通过酶的作用复制成两条完全相同的DNA分子。
2. 重组和基因转移:重组是指基因的重新组合,基因转移是指基因从一个个体到另一个个体的转移。
总而言之,高中生物遗传知识的学习和理解,不仅有助于对个体遗传特征和物种进化机制的理解,也对疾病的诊断和治疗方案的制定具有重要意义。
生物高三遗传知识点总结
生物高三遗传知识点总结高三生物遗传知识点总结生物遗传学是生物学中的重要分支,研究遗传信息在生物个体、群体和种群中的传递、变异和演化规律。
对于高三生物学生来说,掌握遗传学的基本知识是非常重要的。
本文将为大家总结高三生物遗传学的知识点,帮助大家更好地复习和理解。
一、遗传物质的基本组成遗传物质是生物基因组传递遗传信息的媒介,它包括DNA和RNA两种核酸。
DNA是双链结构,由核苷酸(脱氧核苷酸)组成,包括脱氧核糖、有机碱基和磷酸基团。
RNA是单链结构,由核苷酸(核苷酸)组成,包括核糖、有机碱基和磷酸基团。
二、遗传信息的传递1. DNA复制:DNA分子在细胞有丝分裂或减数分裂前复制,确保每个子细胞获得完整的遗传信息。
2. 转录:DNA的信息通过转录作用转移到RNA分子上,形成mRNA、tRNA和rRNA等不同种类的RNA。
3. 翻译:mRNA通过翻译作用转化为蛋白质,遗传信息由核酸语言转译为氨基酸序列,形成具有生物活性的蛋白质。
三、基因的结构和功能1. 基因的概念:基因是遗传信息的功能单位,是决定生物性状的最小遗传单位。
2. 基因的结构:基因由编码区和非编码区组成,编码区包括外显子(编码蛋白质序列)和内含子(非编码序列)。
3. 基因的功能:基因编码蛋白质,通过蛋白质的合成和调控实现生物的遗传与表型表达。
四、遗传规律1. 孟德尔遗传规律:孟德尔通过对豌豆杂交实验的观察,总结了遗传学的三大基本规律:单性分离定律、自由组合定律和分离组合定律。
2. 遗传交叉:遗传交叉是指两组不同的遗传性状同时表现在后代中的一种现象,遗传交叉发生在同一染色体上的互换。
3. 遗传突变:突变是遗传物质发生可遗传性的改变,包括基因突变和染色体突变。
五、遗传离散性状的分离比例1. 单因遗传离散性状:单基因控制的离散性状遵循7:1、3:1和1:2:1的分离比例。
2. 多基因遗传离散性状:多基因控制的离散性状服从连续变异分布,如人体身高、皮肤颜色等。
高中生物遗传知识点总结书
高中生物遗传知识点总结书一、遗传的基本概念1. 遗传:生物体将其特征传递给后代的过程。
2. 变异:生物体在遗传过程中发生的性状差异。
3. 基因:遗传物质的基本单位,控制生物体的性状。
4. 染色体:由DNA和蛋白质组成的线状结构,基因的载体。
5. DNA:脱氧核糖核酸,生物遗传物质的主要成分。
6. RNA:核糖核酸,参与遗传信息的转录和翻译。
二、孟德尔遗传定律1. 分离定律(一对相对性状的分离定律):在有性生殖过程中,一个生物体的两个等位基因在形成配子时分离,每个配子只含有一个等位基因。
2. 组合定律(两对或多对相对性状的组合定律):不同性状的基因在形成配子时,各按分离定律独立分离,一个生物体的多个性状的遗传是相互独立的。
三、基因的遗传模式1. 显性遗传:具有一对相对性状的亲本,后代中至少有一个性状表现出来的遗传方式。
2. 隐性遗传:具有一对相对性状的亲本,后代中只有当两个隐性等位基因同时存在时,隐性性状才会表现出来的遗传方式。
3. 共显性遗传:两个等位基因在同一个体中都能表现出来的遗传方式。
四、性别与性别遗传1. 性别决定:大多数生物的性别由性染色体决定。
2. 性染色体:决定生物性别的染色体,如X和Y染色体。
3. 性别连锁遗传:基因位于性染色体上,其遗传与性别相关联的现象。
五、基因突变1. 基因突变的概念:基因序列发生改变的现象。
2. 突变类型:包括点突变、插入突变、缺失突变等。
3. 突变效应:基因突变可能导致生物体性状的改变。
六、基因重组1. 基因重组的概念:生物体在有性生殖过程中,亲本的基因发生新的组合。
2. 重组类型:包括自由组合、交叉互换等。
3. 重组的意义:增加遗传多样性,有利于生物体适应环境变化。
七、人类遗传病1. 遗传病的概念:由基因突变或染色体异常引起的疾病。
2. 遗传病的类型:包括单基因遗传病、多基因遗传病和染色体病。
3. 遗传病的预防和治疗:通过遗传咨询、基因治疗等手段进行预防和治疗。
高中生物必修二《遗传与进化》知识点汇总
高中生物必修二《遗传与进化》知识点汇总第一章遗传因子的发现第1、2节孟德尔的豌豆杂交实验一、基本概念:(1)性状——是生物体形态、结构、生理和生化等各方面的特征。
(2)相对性状——同种生物的同一性状的不同表现类型。
(3)在具有相对性状的亲本的杂交实验中,杂种一代(F1)表现出来的性状是显性性状,未表现出来的是隐性性状。
(4)性状分离是指在杂种后代中,同时显现出显性性状和隐性性状的现象。
(5)杂交——具有不同基因型的亲本之间的交配或传粉(6)自交——具有相同基因型的个体之间的交配或传粉(自花传粉是其中的一种)(7)测交——用隐性性状(纯合体)的个体与未知基因型的个体进行交配或传粉,来测定该未知个体能产生的配子类型和比例(基因型)的一种杂交方式。
(8)表现型——生物个体表现出来的性状。
(9)基因型——与表现型有关的基因组成。
(10)等位基因——位于一对同源染色体的相同位置,控制相对性状的基因。
非等位基因——包括非同源染色体上的基因及同源染色体的不同位置的基因。
(11)基因——具有遗传效应的DNA片段,在染色体上呈线性排列。
二、孟德尔实验成功的原因:(1)正确选用实验材料:㈠豌豆是严格自花传粉植物(闭花授粉),自然状态下一般是纯种㈡具有易于区分的性状(2)由一对相对性状到多对相对性状的研究(3)分析方法:统计学方法对结果进行分析(4)实验程序:假说-演绎法观察分析——提出假说——演绎推理——实验验证三、孟德尔豌豆杂交实验(一)一对相对性状的杂交:基因分离定律P:高茎豌豆×矮茎豌豆P:AA×aa↓杂交↓杂交F1:高茎豌豆F1:Aa↓自交↓自交F2:高茎豌豆矮茎豌豆F2:AA Aa aa3 :1 1 :2 :1孟德尔用纯种黄色圆粒豌豆和纯种绿色皱粒豌豆作亲本杂交,无论正交还是反交,结出的种子(F1)都是黄色圆粒。
这表明黄色和圆粒是显性性状,绿色和皱粒是隐性性状。
1.对分离现象的解释:(1)生物的性状是由遗传因子决定的,其中决定显性性状的为显性遗传因子,用大写字母表示,决定隐性性状的为隐性遗传因子,用小写字母表示。
高考生物遗传和变异知识点总结
高考生物遗传和变异知识点总结遗传和变异是高考生物中的重要知识点,它们涉及了生物的进化、多样性以及人类的遗传疾病等内容。
下面是对这一部分知识点的总结。
一、遗传的基本概念和规律1. 遗传的基本概念:遗传是指通过基因在代际之间传递和表达的生物性状的变化。
2. 遗传的因素:遗传的因素包括基因、染色体、DNA等。
3. 遗传的规律:(1) 孟德尔的遗传定律:孟德尔通过对豌豆杂交实验的观察总结了遗传定律,包括单因素遗传定律、分离定律和自由组合定律。
(2) 染色体遗传定律:染色体是载体基因的结构,染色体的亲子传递和分离规律决定了基因的遗传方式。
(3) 表现型的遗传规律:表现型是基因与环境相互作用的结果,包括多基因遗传、多基因互制、多基因环境相互作用等。
二、基因突变与变异1. 基因突变的定义:基因突变是指基因序列发生改变,造成新的表型出现的遗传变异。
2. 基因突变的分类:(1) 点突变:包括错义突变、无义突变和同义突变等。
(2) 基因重组:包括染色体交换、交配型重组和基因重组等。
(3) 缺失、插入与倒位:染色体上的片段缺失、插入或倒位引起的遗传变异。
3. 变异的类型:(1) 无性变异:通过染色体的重组来增加遗传多样性。
(2) 同源变异:同一种或相近物种中的个体之间存在的遗传差异。
(3) 多态性:包括形态多态性、生态多态性和生殖多态性等。
三、基因的亲缘关系和基因图谱1. 基因的亲缘关系:通过研究基因的相似性和差异性来判断基因之间的亲缘关系。
亲缘关系可以用基因相似指数和系统发育树来表示。
2. 基因图谱:基因图谱是将基因按照位置在染色体上进行排序和标记的图表。
它可以揭示基因与染色体的关系和基因的分布规律,为遗传研究提供了重要的依据。
四、人类的遗传和变异1. 人类的染色体:人类有23对染色体,其中22对是常染色体,1对是性染色体。
2. 基因突变与遗传疾病:基因突变是人类遗传疾病的重要原因。
常见的遗传疾病包括遗传性疾病、单基因遗传病和染色体异常等。
人教版生物必修1《遗传与进化》知识清单
人教版生物必修1《遗传与进化》知识清
单
本文档为《人教版生物必修1》中的《遗传与进化》知识清单。
下面将列出该章节的主要知识点和概念,供学生参考。
遗传基础
- 遗传的概念和发现历程
- 遗传变异的原因与类型
- 高尔基体的结构和功能
- 基因的结构和功能
- DNA的结构和功能
- 染色体的结构和功能
遗传规律
- 孟德尔的遗传规律
- 单因素遗传
- 双因素遗传
- 三因素遗传
- 组合规律和自由组合规律- 基因的显性和隐性
- 基因型和表现型
- 基因互作和基因的复合进化论
- 进化的概念和起源
- 天然选择和适者生存
- 进化的证据
- 古生物化石
- 比较解剖学
- 比较胚胎学
- 生物地理学
- 分子生物学
进化机制
- 突变和遗传漂变
- 基因流动和基因频率
- 自然选择和人工选择
- 适应与进化
- 物种形成和演化
遗传工程与生物技术
- 遗传工程的概念和应用
- DNA重组技术的原理与方法
- 克隆技术和转基因技术
- 基因组学和蛋白质组学的应用
- 利用生物技术的风险与伦理问题
以上是《人教版生物必修1》中《遗传与进化》知识清单的主要内容。
希望对学生的学习和复习有所帮助。
如有不明之处,请及时向老师或同学求助。
高中生物必修2《遗传与进化》重要知识点汇总
高中生物必修2《遗传与进化》重要知识点汇总第一章遗传因的发现1、相对性状:一种生物的同一种性状的不同表现类型。
控制相对性状的基因,叫做等位基因。
2、性状分离:在杂种后代中,同时出现显性性状和隐性性状的现象。
3、假说-演绎法:观察现象、提出问题→分析问题、提出假说→设计实验、验证假说→分析结果、得出结论。
测交:F1与隐性纯合子杂交。
4、分离定律的实质是:在减数分裂后期随同源染色体的分离,等位基因分开,分别进入两个不同的配子中。
5、自由组合定律的实质是:在减数分裂后期同源染色体上的等位基因分离,非同源染色体上的非等位基因自由组合。
6、表现型指生物个体表现出来的性状;与表现型有关的基因组成叫做基因型。
第二章基因和染色体的关系1、减数分裂是进行有性生殖的生物在产生成熟生殖细胞时,进行的染色体数目减半的细胞分裂。
在减数分裂过程中,染色体只复制一次,而细胞分裂两次。
减数分裂的结果是,成熟生殖细胞中的染色体数目比精(卵)原细胞减少了一半。
减数分裂过程中染色体数目的减半发生在减数第一次分裂。
2、一个卵原细胞经过减数分裂,只形成一个卵细胞(一种基因型)。
一个精原细胞经过减数分裂,形成四个精子(两种基因型)。
3、对于有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞染色体数目的恒定,对于生物的遗传和变异,都是十分重要的。
4、同源染色体:配对的两条染色体,形状和大小一般都相同,一条来自父方,一条来母方。
同源染色体两两配对的现象叫做联会。
联会后的每对同源染色体含有四条染色单体,叫做四分体,四分体中的非姐妹染色单体之间经常发生交叉互换。
5、减数第一次分裂与减数第二次分裂之间通常没有间期,或者间期时间很短。
6、男性红绿色盲基因只能从母亲那里传来,以后只能传给女儿,叫交叉遗传。
7、性别决定的类型有XY型(雄性:XY,雌性:XX)和ZW型(雄性:ZZ,雌性:ZW)。
第三章基因的本质1、艾弗里通过体外转化实验证明了DNA是遗传物质。
高中生物遗传学知识点总结
高中生物遗传学知识点总结高中生物遗传学知识1一、显、隐性的判断:①性状分离,分离出的性状为隐性性状;②杂交:两相对性状的个体杂交;③随机交配的群体中,显性性状》隐性性状;④假设推导:假设某表型为显性,按题干的给出的杂交组合逐代推导,看是否符合;再设该表型为隐性,推导,看是否符合;最后做出判断;二、纯合子杂合子的判断:①测交:若只有一种表型出现,则为纯合子(体);若出现两种比例相同的表现型,则为杂合体;②自交:若出现性状分离,则为杂合子;不出现(或者稳定遗传),则为纯合子;注意:若是动物实验材料,材料适合的时候选择测交;若是植物实验材料,适合的方法是测交和自交,但是最简单的方法为自交;三、基因分离定律和自由组合定律的验证:①测交:选择杂合(或者双杂合)的个体与隐性个体杂交,若子代出现1:1(或者1:1:1:1),则符合;反之,不符合;②自交:杂合(或者双杂合)的个体自交,若子代出现3:1(1:2:1)或者9:3:3:1(其他的变式也可),则符合;否则,不符合;③通过鉴定配子的种类也可以;如:花粉鉴定;再如:通过观察雄峰的表型及比例推测蜂王产生的卵细胞的种类进而验证是否符合分离定律。
高中生物遗传学知识2一、自交和自由(随机)交配的相关计算:①自交:只要确定一方的基因型,另一方的出现概率为“1”(只要带一个系数即可);②自由交配:推荐使用分别求出双亲产生的配子的种类及比例,再进行雌雄配子的自由结合得出子代(若双亲都有多种可能的基因型,要讲各自的系数相乘)。
注意:若对自交或者自由交配的后代进行了相应表型的选择之后,注意子代相应比例的改变。
二、遗传现象中的“特殊遗传”:①不完全显性:如Aa表型介于AA和aa之间的现象。
判断的依据可以根据分离比1:2:1变化推导得知;②复等位基因:一对相对性状受受两个以上的等位基因控制(但每个个体依然只含其中的两个)的现象,先根据题干给出的信息确定出不同表型的基因型,再答题。
2024年高考生物遗传和变异知识点总结
2024年高考生物遗传和变异知识点总结一、遗传和变异的基本概念1. 遗传:指生物个体所具有的一些性状和特征在后代中得以保留并传递的现象。
2. 变异:指生物个体在遗传过程中产生的性状和特征的差异。
3. 遗传物质:DNA,是生物遗传信息的携带者。
二、遗传的基本规律1. 孟德尔遗传规律:包括单因素遗传规律、自由组合规律和二基因遗传规律。
2. 补体遗传规律:交配时两个亲本的基因在一起配对形成一个染色体对,分离后形成四种不同的组合。
三、基因的结构和功能1. 基因:指导生物体形成和发育的遗传物质单位。
2. DNA的结构:由核苷酸组成,包括磷酸、五碳糖和氮碱基。
3. RNA的结构:类似DNA,但糖是核糖,碱基中没有胸腺嘧啶,而是尿嘧啶。
四、基因的表达1. DNA复制:DNA通过一系列酶的作用,进行复制,形成两条完全一致的新DNA分子。
2. 转录:DNA的一部分信息转移到RNA上。
3. 翻译:在细胞质中,mRNA通过核糖体的作用,在氨基酸的参与下,合成蛋白质。
五、基因突变1. 突变:指遗传物质中的基因发生改变。
2. 突变的类型:包括点突变、插入突变、缺失突变、倒位突变和重组等。
六、染色体的结构和变异1. 染色体的结构:包括着丝粒、着丝粒间隔、染色单体、腺带、间相等带和A-T富集区等。
2. 染色体的变异:包括染色体的缺失、重复、倒位、易位和多倍体等。
七、DNA的复制和修复1. DNA的复制:复制起始点是一个起始复制复合体,由DNA聚合酶和其他辅助酶组成。
在复制过程中,存在主链合成和链延伸等步骤。
2. DNA的修复:包括自我修复机制、错配修复机制、核酸切除修复机制和重组修复机制等。
八、生物的遗传变异1. 快速繁殖和遗传变异:快速繁殖的有利因素会加速遗传变异的积累。
2. 多样性与适应性:生物种群的遗传变异为适应新的生存环境提供了可能性。
九、遗传病的诊断和防治1. 遗传病的分类:包括单基因遗传病、多基因遗传病和染色体异常引起的遗传病等。
高中生物遗传史知识点总结
高中生物遗传史知识点总结一、孟德尔的豌豆实验1. 孟德尔的豌豆杂交实验是遗传学的开端,他通过对豌豆植物的性状进行观察和实验,发现了遗传的基本规律。
2. 孟德尔提出了三个基本遗传原则:分离定律、组合定律和独立分配定律。
3. 分离定律指的是在形成配子时,一个体细胞中的两个等位基因分离,每个配子只含有一个等位基因。
4. 组合定律指的是不同性状的基因在形成配子时,其组合方式是自由的。
5. 独立分配定律指出不同性状的基因在形成配子时,彼此独立,互不干扰。
二、染色体的发现与遗传机制1. 染色体的发现是遗传学发展的重要里程碑,科学家通过显微镜观察到细胞分裂过程中染色体的行为。
2. 萨顿提出了基因位于染色体上的假说,并通过实验证实了染色体与遗传的关系。
3. 摩尔根通过果蝇实验,证明了基因位于染色体上,并发现了染色体上的基因连锁和重组现象。
三、DNA的发现与结构1. 沃森和克里克发现了DNA的双螺旋结构,这是现代遗传学的基础。
2. DNA的双螺旋结构由两条互补的链组成,通过碱基对之间的氢键相互结合。
3. 四种碱基分别是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)和鸟嘌呤(G),它们按照特定的配对规则结合:A与T配对,C与G配对。
四、遗传密码与蛋白质合成1. 遗传密码是指DNA序列中的三个连续的碱基(一个密码子)决定一个特定的氨基酸。
2. 蛋白质合成包括转录和翻译两个过程,转录是DNA序列转化为RNA的过程,翻译是RNA指导蛋白质的合成。
3. mRNA、tRNA和rRNA在蛋白质合成中扮演重要角色,mRNA携带遗传信息,tRNA携带氨基酸,rRNA是构成核糖体的组成部分。
五、基因突变与修复1. 基因突变是指DNA序列发生改变的现象,包括点突变、插入、缺失等。
2. 基因突变可能导致遗传病或生物的进化。
3. 细胞具有DNA修复机制,能够修复突变的DNA,保持遗传信息的稳定。
六、遗传与环境的相互作用1. 遗传决定了生物的潜能和限制,但环境因素可以影响基因的表达。
高中生物遗传的知识点总结
高中生物遗传的知识点总结遗传学是高中生物课程中的一个重要组成部分,它涉及生物体性状的传递和变异规律。
以下是高中生物遗传的知识点总结:1. 遗传的物质基础- DNA是主要的遗传物质,它的结构为双螺旋。
- 基因是DNA分子上的一段特定序列,负责编码生物体的特定性状。
- 染色体是DNA和相关蛋白质的复合体,存在于细胞的核中。
2. 孟德尔遗传定律- 孟德尔通过豌豆植物的杂交实验,提出了遗传的两个基本定律:分离定律和自由组合定律。
- 分离定律:在有性生殖过程中,一个性状的两个等位基因在形成配子时分离,每个配子只含有一个等位基因。
- 自由组合定律:不同性状的基因在形成配子时,它们的分离和组合是相互独立的。
3. 遗传的模式- 显性和隐性:显性基因在杂合子中能够表现出来,而隐性基因则不能。
- 等位基因:控制同一性状的不同形式的基因。
- 纯合子和杂合子:纯合子指两个等位基因相同的个体,杂合子则是指两个等位基因不同的个体。
4. 性别遗传- 性染色体:决定性别的染色体,人类中女性为XX,男性为XY。
- 性别连锁遗传:某些基因位于性染色体上,因此其遗传与性别相关联。
5. 遗传变异- 基因突变:基因序列发生改变,可能导致新的性状出现。
- 基因重组:在有性生殖过程中,父母的基因重新组合,产生新的基因型。
6. 人类遗传病- 单基因遗传病:由单个基因突变引起的遗传病,如遗传性肌营养不良。
- 多基因遗传病:由多个基因及环境因素共同作用引起的遗传病,如高血压、糖尿病。
- 染色体异常遗传病:由染色体数目或结构异常引起的遗传病,如唐氏综合症。
7. 遗传学的应用- 基因治疗:通过改变或替换异常基因来治疗遗传病。
- 遗传工程:通过人工手段改变生物体的遗传特性,如转基因技术。
8. 遗传咨询- 遗传咨询旨在帮助个体和家庭了解遗传病的风险,并提供相关的预防和治疗建议。
9. 遗传学实验技术- PCR技术:用于快速复制特定DNA片段的技术。
- DNA测序:确定DNA分子中精确的核苷酸序列。
高中生物必修二遗传高中生物必修二遗传进化知识总结
高中生物必修二遗传高中生物必修二遗传进化知识总结高中生物必修二遗传进化知识总结主要包括以下内容:1. 遗传物质:DNA是细胞中的遗传物质,它位于细胞核中的染色体上。
DNA分子由核苷酸组成,每个核苷酸由碱基、糖和磷酸组成。
2. 遗传信息的传递:遗传信息的传递是通过DNA的复制和基因的转录翻译来实现的。
DNA的复制是指DNA分子的两条链分开,每条链作为模板,合成两条完全相同的新链。
基因的转录是指DNA链的其中一条链作为模板,合成mRNA,然后mRNA通过核糖体转化为蛋白质。
3. 基因和等位基因:基因是指决定个体某一性状的基本遗传单位,一个基因可以有不同的形式,称为等位基因。
4. 遗传性状的表现:一个性状受到多个基因的影响,称为多基因性状。
多基因性状的表现会受到环境的影响。
5. 遗传规律:孟德尔遗传规律是指在一对等位基因中,只有一个基因表现,称为显性基因;另一个基因被掩盖,称为隐性基因。
6. 遗传的模式:显性遗传是指显性基因的表现完全掩盖了隐性基因的表现;共显遗传是指两个基因同时表现出来;部分显性遗传是指显性基因和隐性基因同时表现出来,但显性基因的表现更强。
7. 染色体遗传:染色体是核糖体中的DNA的组织形式,染色体上携带了大量的基因。
染色体的数量和形态在不同物种中存在差异。
8. 基因突变和变异:基因突变是指基因发生突变导致了遗传信息的改变,从而导致新的性状出现。
变异是指同一种群中个体之间存在基因型和表型上的差异。
9. 进化理论:达尔文的进化论是指生物体通过适应环境的选择和竞争,逐渐进化出适应环境的特征和性状。
自然选择和适者生存是进化的重要驱动力。
10. 进化的指示物证:化石记录了生物进化的历史,化石的年代可以通过不同的方法进行测定。
生物地理学和比较解剖学也提供了生物进化的重要证据。
11. 基因漂变和基因流动:基因漂变是指在无选择压力的情况下,基因型频率随机发生变化。
基因流动是指不同种群之间基因型和基因频率的交换。
高考遗传知识点总结
高考遗传知识点总结遗传学是生物学中重要的一个分支,研究基因传递的规律以及遗传变异的机制。
在高考生物考试中,遗传学是一个重要的考察点,不仅包括基本原理,还包括相关的遗传工程技术和应用。
下面对高考遗传知识点进行总结。
一、基本遗传原理1. 遗传基因遗传基因是决定个体性状的遗传信息的基本单位。
在高考中,要了解基因的组成,基因座、等位基因的概念,以及基因的分离定律。
2. 隐性和显性隐性和显性是描述基因表现方式的概念。
在高考中,需要了解隐性基因和显性基因的区别,以及显性和隐性基因的遗传规律。
3. 孟德尔遗传定律孟德尔遗传定律是遗传学的基本原理之一,包括自由组合定律、两性花雄蕊雌蕊雌雄同体性和主要性状与次要性状的分离定律。
在高考中,要熟练掌握孟德尔遗传定律的具体内容,并能够运用到遗传学问题的解决中。
4. 染色体和性别遗传染色体是携带遗传信息的载体,性别遗传是染色体遗传的一个重要方面。
在高考中,需要了解染色体的结构和功能,以及性别决定的遗传规律。
5. 遗传变异变异是生物进化的基础,也是遗传学的重要内容。
在高考中,要了解遗传变异的类型和原因,以及变异对个体性状的影响。
二、遗传工程技术1. 基因工程基因工程是利用基因工程技术对生物体进行基因改造的方法。
在高考中,需要了解基因工程技术的原理和方法,以及基因工程在生物科学和医学领域的应用。
2. 克隆技术克隆技术是利用细胞核移植或者重组DNA技术获得与原始生物一样的或者类似的生物体的方法。
在高考中,需要了解克隆技术的基本原理和方法,以及克隆技术在生物科学和医学领域的应用。
3. 基因编辑技术基因编辑技术是一种精准编辑基因序列的方法,能够对细胞基因组进行精准的修改。
在高考中,需要了解基因编辑技术的原理和方法,以及基因编辑技术在生物科学和医学领域的应用。
三、遗传学在生物科学和医学领域的应用1. 遗传疾病和遗传咨询遗传疾病是由遗传因素所导致的疾病,包括单基因遗传病和多基因遗传病。
高中生物遗传与进化知识点总结
高中生物遗传与进化知识点总结遗传学是生物学的一个重要分支,主要研究生物遗传的规律以及进化过程中的变化。
在高中生物学课程中,遗传与进化是必学的内容之一。
本文将对高中生物中的遗传与进化知识点进行总结,包括基本概念、遗传规律、进化机制等。
一、基本概念1. DNA:脱氧核糖核酸,是构成遗传物质的分子,携带着生物个体遗传信息。
2. 基因:位于染色体上的DNA片段,决定了生物个体的遗传特征。
3. 染色体:存在于细胞核中的DNA和蛋白质复合物,携带着遗传信息。
二、遗传规律1. 孟德尔遗传规律:包括单因素遗传和自由组合定律。
单因素遗传指的是一个个体在特征表现上只有两个基因型,自由组合定律则指出基因的分离和重新组合是相互独立的。
2. 确定基因互作:基因之间存在着相互作用,如显性与显性的互作、显性与隐性的互作等。
三、进化机制1. 突变:指基因或染色体发生突然变异,是进化的原始材料,突变可分为基因突变和染色体突变。
2. 随机性:自然选择是基于随机性的,通过适应环境的生物个体会更容易生存和繁殖下一代,而不适应环境的生物个体则会被淘汰。
3. 遗传漂变:小种群通过遭受随机遗传和环境风险的影响而导致基因频率的随机变化。
4. 基因流动:指不同种群之间或个体之间基因的交换,包括基因人工流动和自然基因流动。
四、人类遗传与进化1. 人类染色体:人类细胞核中有23对染色体,其中一对性染色体决定了个体的性别。
2. 遗传测定:通过遗传的原理,人们可以预测某一基因在下一代中的遗传频率,并进行遗传疾病的风险评估。
3. 进化理论:人类的进化包括生物体的进化和文化进化。
生物体的进化涉及基因突变与自然选择,文化进化则指的是人类社会发展的历程。
总结:高中生物遗传与进化是一门极为重要的学科,通过了解遗传规律和进化机制,可以更好地理解生物世界的多样性和变化。
希望本文的知识总结对你的学习有所帮助。
高中生物遗传知识点总结ppt
高中生物遗传知识点总结ppt一、遗传的基本概念1. 遗传:生物体将其特征传递给后代的现象。
2. 变异:生物体在遗传过程中发生的差异。
3. 性状:生物体所有特征的总和。
4. 基因:遗传物质的基本单位,控制生物体的性状。
二、孟德尔遗传定律1. 分离定律(一对相对性状的遗传):- 杂合子在形成配子时,等位基因分离,各入一个配子。
- 测交实验:杂合子与隐性纯合子杂交,后代表现比例1:1。
2. 组合定律(两对或多对相对性状的遗传):- 不同性状的基因在形成配子时独立分配。
- F2代的性状比例为9:3:3:1(双显性:单显性1:单显性2:双隐性)。
三、基因的遗传方式1. 常染色体遗传:基因位于常染色体上,遗传与性别无关。
2. 性染色体遗传:基因位于性染色体上,遗传与性别有关。
- X染色体遗传:如色盲、血友病,男性患病率高。
- Y染色体遗传:如外耳道多毛症,仅男性表现。
四、基因型与表现型1. 基因型:生物体细胞中基因的组合。
2. 表现型:生物体表现出来的性状。
3. 纯合子:两个等位基因相同的个体。
4. 杂合子:两个等位基因不同的个体。
五、基因的表达1. DNA:遗传信息的载体,双螺旋结构。
2. RNA:DNA的转录产物,参与蛋白质合成。
3. 蛋白质合成:包括转录和翻译两个过程。
4. 基因突变:基因序列发生改变,可能导致新性状的产生。
六、遗传与环境1. 表观遗传学:研究基因表达受环境影响的科学。
2. 基因与环境的互作:环境因素可影响基因的表达。
3. 遗传多样性:生物种群中基因型的多样性。
七、人类遗传病1. 单基因遗传病:由单个基因突变引起的遗传病。
2. 多基因遗传病:由多个基因及环境因素共同作用引起的遗传病。
3. 染色体异常遗传病:由染色体结构或数量异常引起的遗传病。
八、遗传学的应用1. 遗传咨询:为遗传病患者或高风险家庭提供信息和建议。
2. 基因治疗:通过改变基因来治疗遗传病。
3. 遗传工程:通过基因操作技术改良生物特性。
高中生物遗传与进化知识点归纳总结
高中生物遗传与进化知识点归纳总结遗传与进化是高中生物学中重要的内容,涉及到生物的传代和演化过程。
在本篇文章中,我将对高中生物遗传与进化的知识点进行归纳总结。
第一部分:遗传1. 遗传物质DNADNA是生物细胞中的遗传物质,由核酸分子构成。
它负责传递和储存生物的遗传信息。
2. 遗传基本规律- 孟德尔遗传规律:包括单倍型和双倍型、等位基因、显性和隐性基因、基因分离律、自由组合律等。
- 染色体理论:遗传物质DNA位于染色体上,染色体的数量和结构决定了遗传的规律。
3. 基因和基因型基因是决定个体性状和遗传信息的基本单位,基因型指个体在基因上的基因组合。
4. 遗传性状的表现形式包括显性遗传、隐性遗传、不完全显性遗传、共显性遗传等。
第二部分:进化1. 进化理论- 达尔文进化论:强调物种适应环境的能力决定了生存和繁殖的机会,从而决定了进化的方向。
- 遗传变异理论:生物个体之间存在遗传变异,有利的变异能够在自然选择中获得优势。
- 突变和基因重组:突变和基因重组是遗传变异的来源,推动了生物的进化。
2. 进化过程- 自然选择:环境选择性压力导致有利适应环境的个体生存下来并繁殖后代,从而逐渐改变物种的性状。
- 随机漂变:小种群中的遗传变异会因为偶然事件的影响而扩大或弱化,导致物种的遗传多样性变化。
- 复制隔离:物种在不同环境下繁殖,逐渐发展成不同种类。
3. 证据支持- 古生物化石:古生物化石记录了生物进化的历史。
- 比较解剖学:不同物种的解剖结构显示共同祖先和进化的关系。
- 分子生物学证据:通过比较DNA、RNA和蛋白质的序列,了解物种之间的亲缘关系。
第三部分:遗传与进化的关系1. 遗传变异是进化的基础- 遗传变异提供了进化的物质基础,为物种适应环境提供了基因基础。
- 变异对进化的驱动起到了重要的作用。
2. 进化是由遗传机制推动的- 染色体的遗传机制决定了基因在遗传过程中的分离和重组方式。
- 遗传机制导致了基因型的变化,从而影响个体性状的进化。
2024年高考生物遗传和变异知识点总结
2024年高考生物遗传和变异知识点总结一、基本概念1. 遗传:指的是生物体通过生殖细胞将遗传物质(基因)传递给后代的过程。
2. 遗传物质:指的是DNA(脱氧核糖核酸),它是生物体质量的基础,也是遗传信息的携带者。
3. 基因:是指控制某一种或几种性状的一段DNA序列,它是遗传基础。
4. 基因型:是指一个个体的所有基因的组合。
5. 表型:是指一个个体的表现性状。
6. 纯合子:是指一个个体的两个基因均相同。
7. 杂合子:是指一个个体的两个基因不同。
二、遗传规律1. 孟德尔遗传规律孟德尔从豌豆杂交实验中总结出了三个遗传规律:(1)单倍性规律:个体的某一性状由一对基因决定,分别来自父本和母本。
(2)分离规律:杂合子的两个基因在生殖过程中会分离,每个生殖细胞只含有一对基因。
(3)自由组合规律:基因之间的组合是自由的,相互独立地进行遗传。
2. 染色体遗传规律(1)基因与染色体的关系:基因位于染色体上,染色体是基因的载体。
(2)同源染色体分离规律:在减数分裂中,同源染色体会互相分离,其配子中只含有一个。
(3)基因连锁规律:同一染色体上的基因具有连锁作用,它们很少进行交叉互换。
(4)染色体显性规律:在染色体对中,显性等位基因的表现受控于核质比例的大小。
三、遗传的分子基础1. DNA的分子结构DNA由磷酸、五碳糖和四种碱基组成,形成双螺旋结构。
2. DNA的复制DNA复制是指通过DNA聚合酶的作用,将一个DNA分子复制成两个完全相同的DNA分子的过程。
3. RNA的合成RNA合成是指在DNA模板上通过RNA聚合酶的作用,合成RNA 分子的过程。
4. 蛋白质合成蛋白质合成是指在细胞中,通过转录和翻译过程,将DNA上的遗传信息转化为蛋白质的过程。
四、基因突变与变异1. 基因突变基因突变是指DNA序列发生改变,引起基因型的变化。
常见的基因突变类型有:(1)点突变:指DNA序列中一个碱基的改变,包括碱基替换、插入和缺失。
(2)染色体突变:指染色体结构的改变,包括染色体重排、染色体缺失和染色体重复。
2024年高中生物遗传的知识总结范本(二篇)
2024年高中生物遗传的知识总结范本遗传学是生物学中一个非常重要的分支,研究物种内部遗传信息的传递和变化,以及物种之间遗传信息的差异和相似性。
高中生物遗传的内容相对较为基础,但却是进一步学习生物学的基础。
下面将对高中生物遗传的知识进行总结。
一、基因与DNA1. 基因是决定生物遗传特征的单位,位于染色体上。
2. DNA是构成基因的分子,由若干个核苷酸组成,核苷酸由磷酸基团、五碳糖、氮碱基组成。
3. DNA双链结构由两条互补的链组成,碱基配对:腺嘌呤(A)与胸腺嘧啶(T)互补配对,鸟嘌呤(G)与胞嘧啶(C)互补配对。
二、遗传物质的复制1. 遗传物质复制是指在细胞分裂过程中,DNA分子按照一定的模式进行复制。
2. 复制发生在细胞周期的S期,通过将DNA的双链分离,依靠酶类和辅助蛋白质完成。
3. 复制过程中,每条DNA链作为模板分别合成一条新链,新旧链的碱基配对完全互补。
4. 复制后,每个DNA分子由一个旧链和一个新链组成,称为半保留复制。
三、基因的表达与遗传信息的实现1. 基因表达是指基因信息通过转录和翻译的过程转化为蛋白质。
2. 转录发生在细胞核内,将DNA转录为RNA,三种RNA的功能分别为:mRNA携带基因信息被翻译为蛋白质,tRNA将氨基酸输送到蛋白质合成位点,rRNA构成核糖体参与蛋白质合成。
3. 翻译发生在核糖体内,mRNA上的遗传信息被翻译为氨基酸序列,形成蛋白质。
4. 基因的表达受到转录因子的调控,转录因子结合在基因的启动子区域,促进或抑制基因的转录。
四、基因的变异1. 基因的变异是指因突变导致的基因序列的改变。
2. 突变是指由于突变源的作用,导致基因突变,常见的突变类型有点突变、插入突变和缺失突变等。
3. 突变有利于个体适应环境的变化,也可能导致遗传病等疾病。
五、遗传的分离规律1. 孟德尔遗传实验揭示了遗传物质的分离规律,即杂交时基因的分离和再组合。
2. 第一定律(孟德尔定律):纯合子的自交杂交都能得到同一比例的基因型和表型比例,各个基因独立分离。
2024年高中生物遗传的知识总结
2024年高中生物遗传的知识总结____年的高中生物遗传学知识总结遗传学是生物学的一个重要分支,研究的是物种中性状传递给下一代的规律。
在____年,遗传学方面的研究取得了许多重要的突破,下面将以____字的篇幅进行知识总结。
第一部分:基础概念1.1 遗传物质在之前,人们对遗传物质的了解主要局限在DNA(去氧核糖核酸)上,但在____年,对RNA(核糖核酸)和蛋白质等遗传物质的研究也取得重要进展。
目前已经确定DNA是生物体内遗传信息的储存库,并通过转录过程将部分信息转录成RNA,进而合成蛋白质。
1.2 基因基因是指控制生物个体性状的片段,它位于染色体上。
在____年,基因的概念不再局限于DNA序列,还包括对基因的表达的控制。
人们通过进一步的研究发现,基因对个体性状的决定不仅仅取决于其本身序列的差异,还受到环境因素的影响。
1.3 染色体染色体是细胞中遗传信息的载体,它们位于细胞核内。
____年,人们对染色体的研究取得了突破性进展,发现了更多与染色体有关的遗传现象。
例如,人们发现有些疾病是由于染色体上的某些部分重排或缺失引起的。
群体遗传学是研究群体中基因传递规律的科学。
____年,随着人类对群体基因组的研究越来越深入,人们对群体遗传学的认识逐渐深入。
人们发现,不同群体的基因多样性存在显著差异,这些差异在一定程度上可以解释人类种群之间的差异。
第二部分:遗传现象2.1 孟德尔遗传规律孟德尔遗传规律是19世纪末由奥地利博物学家孟德尔提出的一套描述性的遗传规律。
____年,虽然关于孟德尔遗传规律的基本概念没有太大变化,但人们通过更加精确的实验和统计方法,对这一规律的解释和应用有了更深入的认识。
2.2 多基因遗传在过去几十年中,一些复杂性状如身高、体重、智力等的研究表明,多基因遗传起到了重要作用。
____年,通过大规模基因组关联研究(GWAS)和全基因组测序技术的不断进步,人们已经鉴定出了大量与复杂性状相关的基因,进一步揭示了多基因遗传的复杂性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物伴性遗传知识点总结:伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。
判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。
以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。
3.常见遗传病的遗传方式:(1) 单基因遗传:常染色体显性遗传:并指、多指;常染色体隐性遗传:白化病、失天性聋哑X连锁隐性遗传:血友病、红绿色盲;X连锁显性遗传:抗维生素D佝偻病;Y连锁遗传:外耳道多毛症;(2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿;(3 )染色体病:染色体数目异常:先天性愚型病;染色体结构畸变:猫叫综合症。
单基因遗传病单基因遗传病是指受一对等位基因控制的遗传病, 较常见的有红绿色盲、血友病、白化病等。
根据致病基因所在染色体的种类,通常又可分四类:一、常染色体显性遗传病致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。
致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。
此种患者的子女发病的概率相同,均为1/2。
此种患者的异常性状表达程度可不尽相同。
在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。
由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。
还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。
常见常染色体显性遗传病的病因和临床表现1、多指(趾)、并指(趾)。
临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。
2、珠蛋白生成障碍性贫血。
病因:珠蛋白肽链合成不足或缺失。
临床表现:贫血。
3、多发性家族性结肠息肉。
病因:息肉大小不等,可有蒂,也可以是广底的,分布在下段结肠或全部结肠。
临床表现:便血,常有腹痛、腹泻。
4、多囊肾。
病因:肾实质形成大小不等的囊泡,多为双侧。
临床表现:腹痛,血尿,腹部有肿块,高血压和肾功能衰竭。
5、先天性软骨发育不全。
病因:长骨干骺端软骨细胞形成障碍,软骨内成骨变粗,影响骨的长度,但骨膜下成骨不受影响。
临床表现:四肢粗短,躯干相对长,垂手不过髋关节,手指短粗,各指平齐,头围较大,前额前突出,马鞍型鼻梁,下颏前突,腰椎明显前突,臀部后凸。
6、先天性成骨发育不全。
临床表现:以骨骼易折、巩膜蓝色、耳聋为主要特点。
7、视网膜母细胞瘤。
临床表现:视力消失,瞳孔呈黄白色,发展可引起青光眼,眼球突出。
二、常染色体隐性遗传病致病基因为隐性并且位于常染色体上,基因性状是隐性的,即只有纯合子时才显示病状。
此种遗传病父母双方均为致病基因携带者,故多见于近亲婚配者的子女。
子代有1/4的概率患病,子女患病概率均等。
许多遗传代谢异常的疾病,属常染色体隐性遗传病。
按照“一基因、一个酶”或“一个顺反子、一个多肽”(one 的概念,这些遗传代谢病的酶或蛋白分子的异常,来自各自编码基因的异常。
常见常染色体隐性遗传病的病因和临床表现1、白化病。
病因:黑色素细胞缺乏酪氨酸酶,不能使酪氨酸变成黑色素。
临床表现:毛发银白色或淡黄色,虹膜或脉络膜不含色素,因而虹膜和瞳孔呈蓝或浅红色,且畏光,部分有曲光不正、斜视及眼球震颤,少数患者智力低下。
2、苯丙酮尿症。
肝脏中缺乏苯丙氨酸羟化酶,使苯丙氨酸不能氧化成酪氨酸,只能变成苯丙酮酸,大量苯丙氨酸及苯丙酮酸累积在血和脑积液中,并随尿排出,对婴儿神经系统造成不同程度的伤害,并抑制产生黑色素的酪氨酸酶,致使患儿皮肤毛发色素浅。
临床表现:不同程度的智力低下,皮肤毛发色浅,尿有发霉臭味,发育迟缓。
3、半乳糖血症。
病因:由于α1-磷酸半乳糖尿苷转移酶缺乏,使半乳糖代谢被阻断,而积聚在血、尿、组织内,对细胞有损害,主要侵害肝、肾、脑及晶状体。
临床表现:婴儿出生数周后出现体重不增、呕吐、腹泻、腹水等症状,可出现低血糖性惊厥、白内障、智力低下等。
4、粘多糖病。
病因:粘多糖类代谢的先天性障碍,各种组织细胞内积存大量的粘多糖,形成大泡。
临床表现:出生时正常,6个月到2岁时开始发育迟缓,可有智力及语言落后,表情呆板,皮肤略厚,似粘液水肿,可有骨关节多处畸形。
5、先天性肾上腺皮质增生症。
病因:肾上腺皮质合成过程中的各种酶缺乏。
临床表现:女性患者男性化,严重者可呈两性畸形;男性患者外生殖器畸形,假性性早熟,可合并高血压、低血钾等症状。
三、X连锁显性遗传病X连锁显性遗传一些性状或遗传病的基因位于X染色体上,其性质是显性的,这种遗传方式称为X连锁显性遗传(X-linked dominant inheritance),这种疾病称为X连锁显性遗传病。
目前所知X连锁显性遗传病不足20种。
由于致病基因是显性的,并位于X染色体上,因此,不论男性(XAY)和女性(XAXa)只要有一个这种致病基因XA就会发病。
与常染色体显性遗传不同之处是,女性患者既可将致病基因传给生子,又可以传给女儿,且机会均等;而男性患者只能将致病基因传给女儿,不传给儿子。
由此可见,女性患者多于男性,大约为男性的1倍。
另外,从临床上看,女性患者大多数是杂合子,病情一般较男性轻,而男患者病情较重。
抗维生素D佝偻病(vitamin D resistant rickets, VDRR)可以作为X连锁显性遗传病的实例。
VDRR是一种以低磷酸血症导致骨发育障碍为特征的遗传性骨病。
患者主要是肾远曲小管对磷的转运机制有某种障碍,困而尿排磷酸盐增多,血磷酸盐降低而影响骨质钙化。
患者身体矮小,有时伴有佝偻病等各种表现。
患者用常规剂量的维生素D治疗不能奏效,故有抗维生素D佝偻病之称。
从临床观察,女性患者的病情较男性患者轻,多数只有低血磷,佝偻症状不太明显,表现为不完全显性,这可能是女性患者多为杂合子,其中正常X染色体的基因还发挥一定的作用。
男性患者(XHY)与正常女性(XhXh)结婚,所生子女中,儿子全部正常,女儿全部发病;女性患者(XHXh)与正常男性(XhX)结婚,子女中正常与患者各占1/2。
X连锁显性遗传病病种较少,有抗维生素D性佝偻病等。
这类病女性发病率高,这是由于女性有两条X染色体,获得这一显性致病基因的概率高之故,但病情较男性轻。
男性患者病情重,他的全部女儿都将患病。
常见X伴性显性遗传病的病因和临床表现1、抗维生素D佝偻病。
病因:甲状腺功能不足,影响体内磷、血钙的代谢过程,致使血磷降低,且维生素D治疗效果不好。
临床表现为:身材矮小,可伴佝偻病和骨质疏松症的各种表现。
2、家族性遗传性肾炎。
病因:肾小管发育异常,集合管比常人分支少,呈囊状,远曲小管薄,但近曲小管变化轻。
临床表现为:慢性进行性肾炎,反复发作性血尿,1/3~1/2患者伴神经性耳聋。
四、X连锁隐性遗传病致病基因在X染色体上,性状是隐性的,女性只是携带者,这类女性携带者与正常男性婚配,子代中的男性有1/2是概率患病,女性不发病,但有1/2的概率是携带者。
男性患者与正常女性婚配,子代中男性正常,女性都是携带者。
因此X连锁隐性遗传在患病系中常表现为女性携带,男性患病。
男性的致病基因只能随着X染色体传给女儿,不能传给儿子,称为交叉遗传。
常见X伴性隐性遗传病的病因和临床表现1、血友病A。
病因:血浆中抗血友病球蛋白减少,AHG即第Ⅷ因子凝血时间延长。
临床表现:轻微创伤即出血不止,不出血时与常人无异。
2、血友病B。
病因:血浆中缺乏凝血酶成份PTC,即第Ⅸ因子。
临床表现同血友病A。
3、色盲。
临床表现:全色盲对所有颜色看成无色,红绿色盲为不能区别红色和绿色。
4、进行性肌营养不良。
病因:为原发性横纹肌变性并进行性发展。
临床表现:初为行走笨拙,易跌到,登梯及起立时有困难,从仰卧到起立必须先俯卧,双手撑地,再用两手扶小腿、大腿才能站起。
进行性肌肉萎缩,但一般不累及面部及手部肌肉。
隔代遗传隔代遗传从遗传学的角度看,致病基因的传递是代代相传的,一个个体一旦没有从亲代继承到某个特定的致病基因,那么,其后代一般也不必担忧此种致病基因所带来的遗传病。
伴性遗传病患儿绝大多数为男性,追踪其家族发病的情况时可以发现,患者的母亲是正常健康人,但其外祖父却是本病患者。
从中可以总结出两个特点:①伴性遗传病是从外祖父传给外孙,跳过母亲这一代,有明显的隔代遗传现象;为什么这种伴性遗传病都是隔代遗传的呢?是因为这种病是隐性遗传病,并且都是通过女性传递的。
女性虽不发病却是伴性遗传病致病基因的携带者,并将这种病传递给其子代中的男性。
比如甲型血友病,它的发病基因是位于X染色体上的第八凝血因子突变所致,是一种典型的隐性遗传病,其发病者均为男性。
由于父亲遗传给儿子的性染色体只是Y,传给女儿的则是唯一的一个带致病基因的X染色体,所以患血友病的男人,他的儿子完全正常,女儿虽然表型正常,但全部为致病基因携带者,她们结婚所生男孩约有一半将患有外公所患的遗传病。
由此可见,伴性隐性遗传病虽有隔代现象,但致病基因都是通过患者女儿传递下去的。