不等式选讲历年高考真题专项突破

合集下载

高考数学压轴专题新备战高考《不等式选讲》真题汇编附答案

高考数学压轴专题新备战高考《不等式选讲》真题汇编附答案

新高中数学《不等式选讲》专题解析一、141.不等式842x x --->的解集为( ) A .{}|4x x ≤ B .{|5}x x <C .{|48}x x <≤D .{|45}x x <<【答案】B 【解析】 【分析】分三种情况讨论:4x ≤,48x <<以及8x ≥,去绝对值,解出各段不等式,即可得出所求不等式的解集. 【详解】当4x ≤时,()()848442x x x x ---=-+-=>成立,此时4x ≤; 当48x <<时,()()84841222x x x x x ---=---=->,解得5x <,此时45x <<;当8x ≥时,()()848442x x x x ---=---=-<,原不等式不成立. 综上所述,不等式842x x --->的解集为{}5x x <,故选B. 【点睛】本题考查绝对值不等式的解法,常用零点分段法,利用取绝对值进行分段讨论,进而求解不等式,也可以采用绝对值的几何意义来进行求解,考查分类讨论数学思想,属于中等题.2.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.3.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6. 则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6rC •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.4.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。

2025届高考数学基础总复习提升之专题突破详解专题32解不等式含解析

2025届高考数学基础总复习提升之专题突破详解专题32解不等式含解析

专题32 解不等式一.学习目标【学习目标】1.会从实际情境中抽象出一元二次不等式模型.2.结合“三个二次”之间的联系,驾驭一元二次不等式的解法.3.娴熟驾驭分式不等式、含肯定值不等式、指数不等式和对数不等式的解法.二.学问点总结【学问要点】1.一元一次不等式一元一次不等式ax>b(a≠0)的解集为:(1)a>0时,b xa >(2)a<0时,bxa <.2.一元二次不等式一元二次不等式ax2+bx+c>0(a>0)或ax2+bx+c≤0(a>0)的解集的各种状况如下表一元二次不等式ax2+bx+c>0(a>0)求解过程的程序框图如下.三.不等式高考命题题型及陷阱1.含参数的一元二次不等式问题例1. 若关于x 的不等式10ax ->的解集是()1+∞,,则关于x 的不等式()()120ax x -+≥的解集是( )A. [)2,+-∞B. []2,1-C. ()(),21,+-∞-⋃∞D. ][(),21,+-∞-⋃∞【答案】D练习1.不等式20ax bx c ++>的解集为()2,3-,则不等式20cx bx a ++<的解集是( ) A. 11,,23⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭ B. 11,32⎛⎫- ⎪⎝⎭C. 11,23⎛⎫- ⎪⎝⎭D. 11,,32⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭ 【答案】C【方法总结】:在解含参数的一元二次不等式时,留意不等式的解的形式、二次项系数的符号以及不等号方向的对应关系.2.不等式中的含参数问题例2.若关于x 的不等式20k x x -->恰好有4个整数解,则实数k 的取值范围是( )A. 32,53⎛⎫ ⎪⎝⎭B. 32,53⎛⎤ ⎥⎝⎦C. 3,15⎛⎫ ⎪⎝⎭D. 3,15⎛⎤ ⎥⎝⎦ 【答案】B【解析】本题可用解除法,当1k =时,解得1x >有多数个整数解,解除D ,当34x =时,不等式化为()2291620x x -->,得887x <<有5数个整数解,解除C ,当23x =时,不等式化为()224920x x -->,得665x <<,恰有4数个整数解,解除A ,故选B. 【 方法点睛】本题主要考查肯定值不等式的解法、解除法解选择题,属于难题. 用特例代替题设所给的一般性条件,得出特别结论,然后对各个选项进行检验,从而做出正确的推断,这种方法叫做特别法. 若结果为定值,则可采纳此法. 特别法是“小题小做”的重要策略,解除法解答选择题是中学数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高精确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特别值,逐一解除);(3)图象问题(可以用函数性质及特别点解除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.练习1.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( )A. -4≤a ≤4B. -4<a <4【答案】A【解析】依题意应有Δ=a 2-16≤0,解得-4≤a ≤4,故选A.练习2.已知0,0x y >>,且141x y +=,若28x y m m +>+恒成立,则实数m 的取值范围是( )A. ()8,0-B. ()9,1-C. ()1,5 D. ()8,1-【答案】B故选B .【方法总结】本题考查基本不等式与函数恒成立问题,,考查学生分析转化与应用基本不等式的实力.其中将问题转化为求x y + 的最小值是解题的关键.282133x x --⎛⎫> ⎪⎝⎭{|24}x x -<<{|24}x x <<{|4}x x <{}2x x -【答案】A【解析】题中的不等式即: ()28233x x --->,结合指数函数的单调性可得原不等式等价于: ()282x x -->-,求解二次不等式可得原不等式的解集为: {|24}x x -<<.本题选择A 选项.3. 在关于x 的不等式()210x a x a -++<的解集中至多包含2个整数,则a 的取值范围是 ( )A. ()3,5-B. ()2,4-C. []3,5-D. []2,4-【答案】D【解析】 因为关于x 的不等式()210x a x a -++<可化为()()10x x a --<, 当1a >时,不等式的解集为1x a <<,当1a <时,不等式的解集为1a x <<,要使得解集中至多包含2个整数,则4a ≤且2a ≥-,所以实数a 的取值范围是[]2,4a ∈-,故选D.【方法总结】本题主要考查了不等式解集中整数解的存在性问题,其中解答中涉及到一元二次不等式的求解,元素与集合的关系等学问点的综合应用,试题比较基础,属于基础题,同时着重考查了分类探讨思想的应用,解答中正确求解不等式的解集是解答的关键. 4.若关于x 的不等式21cos2cos 03x a x -+≥在R 上恒成立,则实数a 的最大值为( ) A. 13- B. 13 C. 23 D. 1 【答案】B【解析】令[]cos 1,1x t =∈-,则问题转化为不等式24350t at --≤在[]1,1-上恒成立,即435011{ 435033a a a +-≤⇒-≤≤--≤,应选答案B 。

高考数学压轴专题人教版备战高考《不等式选讲》难题汇编及答案

高考数学压轴专题人教版备战高考《不等式选讲》难题汇编及答案

《不等式选讲》知识点汇总一、141.已知集合{|||2}A x x =≥,2{|30}B x x x =->,则A B =I ( ) A .∅B .{|3x x >或2}x ?C .{|3x x >或0}x <D .{|3x x >或0}x <【答案】B 【解析】 【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【详解】∵A ={x |x ≤﹣2,或x ≥2},B ={x |x <0,或x >3}, ∴A ∩B ={x |x ≤﹣2,或x >3}. 故选:B . 【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.2.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.3.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.4.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.5.设a >0,b >0,且ab -(a +b)≥1,则( )A .a ++1)B .a ++1C .a -1)2D .a +b >+1)【答案】A 【解析】 【分析】2a b +.所以ab≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+ 故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.6.2018年9月24日, 英国数学家M.F 阿蒂亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动. 黎曼猜想来源于一些特殊数列求和, 记2221111.........,23S n 则()=+++++A .413S << B .4332S << C .322S << D .2S > 【答案】C 【解析】 【分析】由题意利用不等式放缩后裂项确定S 的范围即可. 【详解】由题意可知:222111123S n =+++++L L()111123341n n >+++++⨯⨯+L L 111111123341n n ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L L 13122>+=,且222111123S n =+++++L L()111112231n n <+++++⨯⨯-⨯L L 11111112231n n L L ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭122n L =-+<,综上可得:322S <<. 本题选择C 选项. 【点睛】本题的核心是考查裂项求和的方法,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.7.设n *∈N )A >BC =D .不能确定【答案】B 【解析】【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】()()()()()22434343434343143n n n n n n n n n n n n n n +-+++++-++-+===++++++⨯+++.()()()()()22212121212121121n n n n n n n n n n n n n n +-+++++-++-+===++++++⨯+++.*n N ∈ 42,31n n n n +>++>+根据不等式的开方性质可以得出42n n +>+31n n +>+ 再根据不等式相加性质可以得出4321n n n n +++>+++显然可以得到4321n n n n <++++++即4321n n n n +-+<+-+成立,因此本题选B . 【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.8.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞C .(),1-∞D .(],1-∞ 【答案】A 【解析】 【分析】先求|x-3|+|x-4|的最小值是1,即得解. 【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1, 所以|x-3|+|x-4|的最小值为1, 所以1<a,即a >1. 故选:A 【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈.若A B =∅I ,则实数a的取值范围是()A .{}06a a ≤≤B .{}64a a a ≤≥或C .{}06a a a ≤≥或D .{}24a a ≤≤【答案】C 【解析】 【分析】根据公式()0x a a a x a <>⇔-<<解出集合A ,再根据交集的运算即可列出关系式,求解即可。

高考数学压轴专题最新备战高考《不等式选讲》真题汇编含答案

高考数学压轴专题最新备战高考《不等式选讲》真题汇编含答案

【最新】《不等式选讲》专题解析(1)一、141.不等式的解集是 ( )A .B .C .D .【答案】B 【解析】 【分析】利用绝对值三角不等式,得到,恒成立.【详解】恒成立.故答案选B 【点睛】本题考查了解绝对值不等式,利用绝对值三角不等式简化了运算.2.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4 B .最小值是-4,最大值是0 C .最小值是-4,最大值是4 D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.3.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+【答案】C 【解析】 【分析】先表示出()()f x f a -,利用绝对值三角不等式a b a b ±≤+即可求解.【详解】由()23f x x x =+,得()()()(3)f x f a x a x a -=-++,因为1x a -≤,所以()(3)323x a x a x a x a a -++≤++=-++,由绝对值三角不等式得232324x a a x a a a -++≤-++≤+,故()()24f x f a a -≤+一定成立.故选:C. 【点睛】本题主要考查绝对值三角不等式的灵活应用,在求最值时要注意等号成立的条件,考查逻辑推理能力,属基础题.4.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.5.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q 真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.6.若关于x 的不等式2|1|30ax x a -++≥的解集为R ,则实数a 的取值范围为 A .1[,+)6∞ B .1[,+)3∞ C .1[,+)2∞ D .1[,+)12∞ 【答案】C 【解析】 【分析】先将不等式2130ax x a -++≥变形为213x a x +≥+,由不等式2130ax x a -++≥的解集是(),-∞+∞,可得213x a x +≥+恒成立,因此只需求出213x x ++的最大值即可.【详解】解:不等式2130ax x a -++≥的解集是(),-∞+∞,即x R ∀∈,2130ax x a -++≥恒成立, ∴221133x x a x x ++≥=++, 令()213x g x x +=+, 当1x =-时,()0g x =;当1x ≠-时,()21143121x g x x x x +==+++-+, 若10x +>,则()41221x x ++-≥=+, 当且仅当411x x +=+,即x 1=时上式“=”成立; 若x 10+<,则()()()441212611x x x x ⎡⎤++-=--++-≤-=-⎢⎥+-+⎢⎥⎣⎦, 当且仅当()()411x x -+=-+,即3x =-时上式“=”成立.()()][()412,62,1x x ∴++-∈-∞-⋃+∞+. ()10,2g x ⎛⎤∴∈ ⎥⎝⎦.12a ∴≥. 则实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选C . 【点睛】本题主要考查不等式恒成立的问题,由不等式恒成立求参数的范围,通常用分离参数的方法,将不等式转化为参数与一个函数比较大小的形式,只需求出函数的最大值或最小值即可,属于常考题型.7.2018年9月24日,英国数学家M.F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和.记无穷数列21n ⎧⎫⎨⎬⎩⎭的各项的和222111123S n L L =+++++,那么下列结论正确的是( ) A .413S << B .5443S << C .322S << D .2S >【答案】C 【解析】 【分析】由2n ≥时,()2111111n n n n n<=---,由裂项相消求和以及不等式的性质可得2S <,排除D ,再由前3项的和排除A ,B ,从而可得到结论. 【详解】由2n ≥时,()2111111n n n n n<=---, 可得222111111111...11...232231n S n n n =++++<+-+-++--12n=-, n →+∞时,2S →,可得2S <,排除D ,由22111341123363++=+>,可排除,A B ,故选C. 【点睛】本题主要考查裂项相消法求数列的和,以及放缩法和排除法的应用,属于中档题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.8.在平面内,已知向量(1,0)a =v ,(0,1)b =v ,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p vB .p v的最大值为C .p vD .p v的最大值为【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v柯西不等式即可求得其最小值,问题得解.【详解】因为()1,0a =v ,()0,1b =v ,()1,1c =v,所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以p v==5≥==≥=, 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立.所以p v, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.9.已知1a >,且函数()2224f x x x a x x a =-++-+.若对任意的()1,x a ∈不等式()()1f x a x ≥-恒成立,则实数a 的取值范围为( )A .[]4,25B .(]1,25C .(]1,16D .[]4,16【答案】C 【解析】 【分析】由题目得已知函数和要求解的不等式中都含有待求的参数,且已知函数中含有两个绝对值符号,直接求解难度很大,因此考虑用排除法,代值验证可得解. 【详解】当25a =时,()22252425f x x x x x =-++-+且22250,4250x x x x -+≥-+≥ 所以()23975f x x x =-+,此时()()1f x a x ≥-化为()24f x x ≥,即2397524x x x -+≥,所以212250x x -+≥在()1,25x ∈不是恒成立的.故A 、B 不对;当3a =时,()223243f x x x x x =-++-+,当()1,3x ∈时,2230,430x x x x -+>-+<,所以()()222324373f x x x x x x x =-+--+=-+-,此时()()1f x a x ≥-化成()27331x x x -+-≥-,即2530x x -+-≥满足()1,3x ∈恒成立,所以当3a =时成立, 故D 不对,C 正确; 故选C. 【点睛】本题考查了含绝对值不等式恒成立的问题,考查了小题小做的技巧方法,属于中档题.10.已知各项均为正数的数列{}n a 的前n 项和为n S ,且()2*21221n n a a S n n N +==++∈,,若对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立,则实数λ的取值范围为( ) A .(]2∞-,B .(]1∞-, C .14∞⎛⎤- ⎥⎝⎦,D .12,∞⎛⎤- ⎥⎝⎦【答案】C 【解析】 【分析】2212,21n n a a S n +==++ ()*n N ∈,可得2n ≥时,()221121210n n n n n n a a S S a a +--=-+=+>,.可得11n n a a +=+时,212224a a +==,解得1a .利用等差数列的通项公式可得n a .通过放缩即可得出实数λ的取值范围. 【详解】2212,21n n a a S n +==++Q ()*n N ∈,2n ∴≥时,()22112121n n n n n a a S S a +--=-+=+, 化为:222121(1)n n n n a a a a +=++=+,0n a >.11n n a a +∴=+,即11n n a a +-=,1n =时,212224a a +==,解得11a =.∴数列{}n a 为等差数列,首项为1,公差为1.11n a n n ∴=+-=. 1211111112n n a n a n a n n n n∴++⋯+=++⋯+++++++. 记11112n b n n n n =++⋯++++,1111111211n b n n n n +=++⋯++++++++. ()()11111022*******n n b b n n n n n +-=+-=>+++++. 所以{}n b 为增数列,112n b b ≥=,即121111111122n n a n a n a n n n n ++⋯+=++⋯+≥++++++. Q 对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立, 122λ∴≤,解得14λ≤ ∴实数λ的取值范围为14∞⎛⎤- ⎥⎝⎦,.故选C . 【点睛】本题考查了数列递推关系、等差数列的通项公式、放缩法,考查了推理能力与计算能力,属于中档题.11.已知数列{}n a ,{}n b 满足11132n n n a a b +=+,11132n n n b a b +=-.设数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,则存在正常数M ,对任意*n N ∈都有( )A .n S M <且n T M >B .n S M <且n T M <C .n S M >且n T M <D .n S M >且n T M >【答案】B 【解析】 【分析】设{}max ,n n n c a b =,则0n c ≥,根据三角不等式结合已知可得115566n nn n a c b c ++≤≤,进而有156n n c c +≤,求出{}n c 的前n 项和的范围,即可求出结论.【详解】设{}max ,n n n c a b =,则0n c ≥,由三角不等式可知11111532326n n n n n n a a b a b c +=+≤+≤, 11111532326n n n n n n b a b a b c +=-≤+≤, 所以156n n c c +≤,设{}n c 的前n 项和为n H , 若0n c =时,则0n n n S T H ===, 存在0M >,使得n n S T M =<,若0n c ≠时,则156n n c c +≤,115[1()]66516nn c H c -≤<-, 取16M c =,,n n S M T M ∴<<. 故选:B. 【点睛】本题考查数列的前n 项和,构造数列转化为等比数列是解题的关键,作为选择题或直接取0,0n n a b ==即可得出答案,要注意特殊方法的选取,属于中档题.12.不等式842x x --->的解集为( ) A .{}|4x x ≤ B .{|5}x x <C .{|48}x x <≤D .{|45}x x <<【答案】B 【解析】 【分析】分三种情况讨论:4x ≤,48x <<以及8x ≥,去绝对值,解出各段不等式,即可得出所求不等式的解集.【详解】当4x ≤时,()()848442x x x x ---=-+-=>成立,此时4x ≤; 当48x <<时,()()84841222x x x x x ---=---=->,解得5x <,此时45x <<;当8x ≥时,()()848442x x x x ---=---=-<,原不等式不成立. 综上所述,不等式842x x --->的解集为{}5x x <,故选B. 【点睛】本题考查绝对值不等式的解法,常用零点分段法,利用取绝对值进行分段讨论,进而求解不等式,也可以采用绝对值的几何意义来进行求解,考查分类讨论数学思想,属于中等题.13.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】 【分析】 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A.14.设x ∈R ,则“2x ≤”是“212x x ++≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据题意,利用含绝对值不等式的解法求解出212x x ++≥,即可判断两个命题的关系。

高考数学十年真题专题解析—不等式选讲

高考数学十年真题专题解析—不等式选讲

不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。

高考数学压轴专题最新备战高考《不等式选讲》难题汇编含解析

高考数学压轴专题最新备战高考《不等式选讲》难题汇编含解析

数学高考《不等式选讲》试题含答案一、141.设全集U =R ,已知23{|0}2x A x x +=>-,{||1|2}B x x =-<,则()U A B =I ð( ) A .3(,1)2--B .(12]-,C .(23],D .[2)3, 【答案】B【解析】【分析】解分式不等式求得集合A ,由此求得U A ð,解绝对值不等式求得集合B ,由此求得()U A B I ð.【详解】由A 中不等式变形得:()()2320x x +->, 解得:32x <-或2x >,即3,(2,)2A ⎛⎫=-∞-+∞ ⎪⎝⎭U , ∴U 3A ,22⎡⎤=-⎢⎥⎣⎦ð, 由B 中不等式变形得:212x -<-<,解得:13x -<<,即1()3B =-,, ∴()(]12U A B =-I ,ð, 故选:B .【点睛】本小题主要考查集合交集交集、补集的概念和运算,考查分式不等式、绝对值不等式的解法,属于基础题.2.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3-B .[]1,3-C .()1,3D .[]1,3 【答案】B【解析】【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题.【详解】 不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+, 即3223x x a x a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立,变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩ 所以a 的取值范围是[]1,3-故选:B【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.3.若关于x 的不等式222213x t x t t t +-+++-<无解,则实数t 的取值范围是( ) A .1,15⎡⎤-⎢⎥⎣⎦B .(],0-∞C .(],1-∞D .(],5-∞ 【答案】C【解析】【分析】先得到当0t ≤时,满足题意,再当0t >时,根据绝对值三角不等式,得到22221x t x t t +-+++-的最小值,要使不等式无解,则最小值需大于等于3t ,从而得到关于t 的不等式,解得t 的范围【详解】关于x 的不等式222213x t x t t t +-+++-<无解,当0t ≤时,可得此时不等式无解,当0t >时,()2222221221x t x t t x t x t t +-+++-+--++-≥21t =--, 所以要使不等式无解,则213t t --≥,平方整理后得20541t t ≤--, 解得115t ≤≤-, 所以01t <≤,综上可得t 的范围为(],1-∞,故选:C.【点睛】本题考查绝对值的三角不等式的应用,根据不等式的解集情况求参数的范围,属于中档题.4.若函数()(0)1a f x ax a x =+>-在(1,)+∞上的最小值为15,函数()1=+++g x x a x ,则函数()g x 的最小值为( ). A .2B .6C .4D .1【解析】【分析】当1x >,0a >时,由基本不等式可得()3≥f x a ,又()f x 最小值为15,可得出5a =,再由绝对值三角不等式()()()g =5151=4+++≥+-+x x x x x ,即可得出结果.【详解】当1x >,0a >时,()()111=+=+-+--a a f x ax a x a x x≥a 3=a ,当且仅当2x =时等号成立,由题可得315a =,即5a =,所以()1=+++g x x a x ()()=5151=4+++≥+-+x x x x ,当且仅当 ()()510++≤x x 即51x -≤≤-时等号成立,所以函数()g x 的最小值为4.故选:C【点睛】本题主要考查基本不等式:)0,0a b a b +?>,当且仅当a b =时等号成立,绝对值的三角不等式: +≥-a b a b ,当且仅当0ab ≤时等号成立.5.设2sin1sin 2sin 222n n n a =++⋅⋅⋅+,对任意正整数m 、n (m >n )都成立的是( ). A .12n m m a a -<B .12n m m a a ->C .12n m n a a -<D .12n m na a -> 【答案】C【解析】【分析】 先作差,再根据三角函数有界性放缩,进而根据等比数列求和确定选项. 【详解】212sin1sin 2sin sin(1)sin(2)sin 222222n m n n n n mn n n m a a a ++++=++⋅⋅⋅+∴-=++⋅⋅⋅+Q 12sin(1)sin(2)sin ||||222m n n n m n n m a a ++++∴-=++⋅⋅⋅+ 12sin(1)sin(2)sin ||||||222n n m n n m ++++≤++⋅⋅⋅+ 11211(1)11111122122222212n m n n n m n m n +-++-≤++⋅⋅⋅+==-<- 故选:C本题考查三角函数有界性、等比数列求和以及放缩法,考查综合分析求解与论证能力,属中档题.6.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是A .0B .1C .-1D .2【答案】B【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.7.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .33()()f x f a a -≤+B .24()()f x f a a -≤+C .()()5f x f a a -≤+D .2|()()2|(1)f x f a a -≤+ 【答案】B【解析】【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立【详解】 令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B .【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.8.设,x y ∈R ,且0xy ≠,则222241x y y x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .9- B .9C .10D .0【解析】【分析】利用柯西不等式得出最小值.【详解】(x 224y +)(y 221x+)≥(x 12y x y ⋅+⋅)2=9.当且仅当xy 2xy=即xy= 时取等号. 故选:B .【点睛】 本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.9.设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈.若A B =∅I ,则实数a 的取值范围是() A .{}06a a ≤≤B .{}64a a a ≤≥或C .{}06a a a ≤≥或D .{}24a a ≤≤ 【答案】C【解析】【分析】 根据公式()0x a a a x a <>⇔-<<解出集合A ,再根据交集的运算即可列出关系式,求解即可。

通用版五年高考2024_2025高考数学真题专题归纳专题21不等式选讲含解析理

通用版五年高考2024_2025高考数学真题专题归纳专题21不等式选讲含解析理

专题21 不等式选讲【2024年】1.(2024·新课标Ⅰ)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭. 【解析】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-. 所以不等式的解集为7,6⎛⎫-∞-⎪⎝⎭. 2.(2024·新课标Ⅱ)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.3.(2024·新课标Ⅲ)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 【答案】(1)证明见解析(2)证明见解析. 【解析】 (1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. ,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题. 4.(2024·江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 【答案】22,3⎡⎤-⎢⎥⎣⎦【解析】1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦【2024年】1.【2024年高考全国Ⅰ卷理数】已知a ,b ,c 为正数,且满意abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++. 【答案】(1)见解析;(2)见解析.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥ =3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.2.【2024年高考全国Ⅱ卷理数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.3.【2024年高考全国Ⅲ卷理数】设,,x y z ∈R ,且1x y z ++=. (1)求222(1)(1)(1)x y z -++++的最小值; (2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 【答案】(1)43;(2)见详解. 【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立. 所以222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.4.【2024年高考江苏卷数学】设x ∈R ,解不等式||+|2 1|>2x x -.【答案】1{|1}3x x x <->或.【解析】当x <0时,原不等式可化为122x x -+->,解得x <13-;当0≤x≤12时,原不等式可化为x+1–2x>2,即x<–1,无解;当x>12时,原不等式可化为x+2x–1>2,解得x>1.综上,原不等式的解集为1{|1}3x x x<->或.【2024年】1. (2024年全国I卷理数)[选修4–5:不等式选讲]已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.2. (2024年全国Ⅱ卷理数) [选修4-5:不等式选讲]设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【答案】(1),(2)【解析】(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.3. (2024年全国Ⅲ卷理数) [选修4—5:不等式选讲]设函数.(1)画出的图像;(2)当,,求的最小值.【答案】(1)见解析(2)5【解析】(1)的图像如图所示.(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为5。

高考数学压轴专题人教版备战高考《不等式选讲》技巧及练习题附答案

高考数学压轴专题人教版备战高考《不等式选讲》技巧及练习题附答案

数学高考《不等式选讲》试题含答案一、141.设x ∈R ,则“2x ≤”是“212x x ++≥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据题意,利用含绝对值不等式的解法求解出212x x ++≥,即可判断两个命题的关系。

【详解】212x x ++≥可化为()20212x x x +≥⎧I ⎨-≤+⎩或()20221x x x +<⎧II ⎨--≥-⎩解得()23x I -≤≤,()2x II <-所以原不等式的解集为3x ≤,故“2x ≤”是“3x ≤”的充分不必要条件,故答案选A 。

【点睛】本题主要考查含绝对值的不等式的解法和充分条件、必要条件的判断。

2.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。

3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.4.已知集合{}|11A x x =-<,1|10B x x ⎧⎫=-≥⎨⎬⎩⎭,则A B =∩( )A .{}|12x x ≤<B .{}|02x x <<C .{}|01x x <≤D .{}|01x x <<【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,()1011100{0x x x x x x -≥--≥⇒≥⇒≠,解得0,1x x <≥,故[)1,2A B ⋂=.点睛:本题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合交集等知识.解含有一个绝对值不等式,只需要按照口诀“大于在两边,小于在中间”来解即可.解分式不等式主要方法就是通过通分后,转化为整式不等式来求解,在转化的过程中要注意分母不为零这个特殊情况.5.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .40【答案】B 【解析】 【分析】根据柯西不等式得到不等式关系,进而求解. 【详解】根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.6.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( ) A .33()()f x f a a -≤+ B .24()()f x f a a -≤+ C .()()5f x f a a -≤+ D .2|()()2|(1)f x f a a -≤+【答案】B 【解析】 【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立 【详解】令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B . 【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.7.设集合{}|22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B I 等于 A .R B .{}|,0x x R x ∈≠ C .{}0D .∅【答案】B 【解析】解:[0,2]A =,[4,0]B =-,所以(){}0R R C A B C ⋂=,故选B 。

高考数学压轴专题最新备战高考《不等式选讲》真题汇编含解析

高考数学压轴专题最新备战高考《不等式选讲》真题汇编含解析

新《不等式选讲》专题解析(1)一、141.已知不等式1x m -<成立的一个充分非必要条件是1132x ≤≤,则实数m 的取值范围是( ) A .14,23⎡⎤-⎢⎥⎣⎦B .14,23⎛⎫-⎪⎝⎭C .1,2⎛⎫-∞-⎪⎝⎭D .4,3⎡⎫+∞⎪⎢⎣⎭【答案】B 【解析】 【分析】先求得不等式1x m -<解集,结合题意,列出不等式组113112m m ⎧-<⎪⎪⎨⎪+>⎪⎩,即可求解.【详解】由题意,不等式1x m -<,解得11m x m -<<+, 因为不等式1x m -<成立的一个充分非必要条件是1132x ≤≤, 则113112m m ⎧-<⎪⎪⎨⎪+>⎪⎩,解得1423m -<<,即实数m 的取值范围是14,23⎛⎫- ⎪⎝⎭.故选B . 【点睛】本题主要考查了绝对值不等式的求解,以及利用充分不必要条件求解参数问题,其中解答中正确求解不等式的解集,集合充分不必要条件,列出不等式组是解答的关键,着重考查了推理与运算能力,属于基础题.2.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( ) AB .13C.2D【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,22||OM a b =+,根据柯西不等式得到a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,22||OM a b =+,所以222222291||()()(31)4OM a b a b a b=+=+++=…,当且仅当223a b =时,取等号, 222213b e a =-=,6e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.3.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。

高考数学真题分类十年(2014-2023)高考 专题27 不等式选讲(解析版)

高考数学真题分类十年(2014-2023)高考 专题27  不等式选讲(解析版)
(1)当 = 1时,求不等式() < 0的解集;
(2)当 ∈ (−∞, 1)时,() < 0,求的取值范围.
【答案】 (1) (−∞, 1); ( 2) 1, +∞)
【官方解析】
(1)当 = 1时,() = | − 1| + | − 2|( − 1).
当 < 1时,() = −2( − 1)2 < 0;当 ≥ 1时,() ≥ 0.
2
【答案】(Ⅰ){| 3 < < 2} (Ⅱ)(2,+∞)
分析:(Ⅰ)利用零点分析法将不等式 f(x)>1 化为一元一次不等式组来解;(Ⅱ)将()化
为分段函数,求出()与轴围成三角形的顶点坐标,即可求出三角形的面积,根据题
意列出关于的不等式,即可解出的取值范围.
解析:(Ⅰ)当 a=1 时,不等式 f(x)>1 化为|x+1|-2|x-1|>1,
( − 1)2 (当且仅当2 − 1 ≤ ≤ 2 时取等号),
∴ ( − 1)2 ≥ 4,解得: ≤ −1或 ≥ 3,
a 的取值范围为−∞, −1 ∪ 3, +∞).
【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于
常考题型.
3.(2020 江苏高考·第 23 题)设 ∈ ,解不等式2| + 1| + || ≤ 4.
1
【答案】{ | ≤ −5 或 ≥ − 3}
分可
3
解析:原不等式可化为{
1
解得 ≤ −5或 ≥ − 3.
3
< −2
≥ −2
或{

− − 3 ≥ 2 3 + 3 ≥ 2
1

高考数学压轴专题最新备战高考《不等式选讲》真题汇编附解析

高考数学压轴专题最新备战高考《不等式选讲》真题汇编附解析

【最新】数学高考《不等式选讲》复习资料一、141.“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】C 【解析】 【分析】设:31p a -<<,1:,|||2x R x a x q ∃∈-++<,考虑命题“若p 则q ”及其逆命题的真假后可得两者之间的条件关系. 【详解】设:31p a -<<,||:|1|2q x a x -++<,当31a -<<时,|||1|1x a x a -++≥+总成立,而12a +<, 故|||1|2x a x -++<在R 上有解,故,|||1|2x R x a x ∃∈-++<, 所以“若p 则q ”为真命题.若,|||1|2x R x a x ∃∈-++<,则()min21x a x >-++,由绝对值不等式可知11x a x a -++≥+,当且仅当()()10x a x --≤时等号成立, 所以1x a x -++的最小值为1a +,故21a >-即31a -<<,所以“若q 则p ”为真命题.综上,“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的充要条件. 故选:C. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.2.不等式2124x x a a +--≥-的解集为R ,则实数a 的取值范围是( ) A .(][),13,-∞+∞U B .()(),13,-∞⋃+∞ C .[]1,3 D .()1,3【答案】C 【解析】 【分析】令()12f x x x =+--,通过对x 的取值范围的讨论,去掉绝对值符号,可求得()min 3f x =,依题意,即可求得实数a 的取值范围.【详解】令()12f x x x =+--,当1x <-时,()()123f x x x =----+=-;当12x -≤≤时,()()[]12213,3f x x x x =+--+=-∈-; 当2x >时,()()123f x x x =+--=; ∴()min 3f x =-.∵不等式2124x x a a +--≥-的解集为R , ∴()2min 43a a f x -≤=-,即实数a 的取值范围是[]1,3.故选C. 【点睛】本题考查绝对值不等式的解法,考查函数恒成立问题,解题方法是转化为求函数最值,然后解不等式.3.设a >0,b >0,且ab -(a +b)≥1,则( )A .a ++1)B .a ++1C .a -1)2D .a +b >+1)【答案】A 【解析】 【分析】2a b +.所以ab≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+ 故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.4.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可. 【详解】∵a ,b 均为正数,且ab ﹣a ﹣2b =0, ∴21a b+=1. 则22214a b a b-+- 24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号.∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.5.已知集合{}|11A x x =-<,1|10B x x ⎧⎫=-≥⎨⎬⎩⎭,则A B =∩( ) A .{}|12x x ≤< B .{}|02x x << C .{}|01x x <≤ D .{}|01x x <<【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,()1011100{0x x x x x x -≥--≥⇒≥⇒≠,解得0,1x x <≥,故[)1,2A B ⋂=.点睛:本题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合交集等知识.解含有一个绝对值不等式,只需要按照口诀“大于在两边,小于在中间”来解即可.解分式不等式主要方法就是通过通分后,转化为整式不等式来求解,在转化的过程中要注意分母不为零这个特殊情况.6.已知a +b +c =1,且a , b , c >0,则 222a b b c a c +++++ 的最小值为( ) A .1 B .3C .6D .9【答案】D 【解析】2221,a b c a b b c c a ++=∴+++++Q ()1112++a b c a b b c c a ⎛⎫=⋅++ ⎪+++⎝⎭()()()()21111119a b b c c a a b b c c a ⎛⎫⎡⎤=+++++⋅++≥++= ⎪⎣⎦+++⎝⎭,当且仅当13a b c ===时等号成立,故选D.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).7.已知各项均为正数的数列{}n a 的前n 项和为n S ,且()2*21221n n a a S n n N +==++∈,,若对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立,则实数λ的取值范围为( ) A .(]2∞-,B .(]1∞-,C .14∞⎛⎤- ⎥⎝⎦, D .12,∞⎛⎤- ⎥⎝⎦ 【答案】C 【解析】 【分析】2212,21n n a a S n +==++ ()*n N ∈,可得2n ≥时,()221121210n n n n n n a a S S a a +--=-+=+>,.可得11n n a a +=+时,212224a a +==,解得1a .利用等差数列的通项公式可得n a .通过放缩即可得出实数λ的取值范围. 【详解】2212,21n n a a S n +==++Q ()*n N ∈,2n ∴≥时,()22112121n n n n n a a S S a +--=-+=+, 化为:222121(1)n n n n a a a a +=++=+,0n a >.11n n a a +∴=+,即11n n a a +-=,1n =时,212224a a +==,解得11a =.∴数列{}n a 为等差数列,首项为1,公差为1.11n a n n ∴=+-=. 1211111112n n a n a n a n n n n∴++⋯+=++⋯+++++++. 记11112n b n n n n =++⋯++++,1111111211n b n n n n +=++⋯++++++++. ()()11111022*******n n b b n n n n n +-=+-=>+++++. 所以{}n b 为增数列,112n b b ≥=,即121111111122n n a n a n a n n n n ++⋯+=++⋯+≥++++++. Q 对任意的*n N ∈,1211120nn a n a n a λ++⋯+-≥+++恒成立, 122λ∴≤,解得14λ≤ ∴实数λ的取值范围为14∞⎛⎤- ⎥⎝⎦,.故选C . 【点睛】本题考查了数列递推关系、等差数列的通项公式、放缩法,考查了推理能力与计算能力,属于中档题.8.已知命题P:2log (1)1x -<;命题q:21x -<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】【分析】先化简命题p 和q,再利用充要条件的定义判断得解. 【详解】由题得命题p:1<x <3,命题q:1<x <3. 所以命题p 是命题q 的充要条件. 故选C 【点睛】本题主要考查对数不等式和绝对值不等式的解法,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+【答案】C 【解析】 【分析】先表示出()()f x f a -,利用绝对值三角不等式a b a b ±≤+即可求解. 【详解】由()23f x x x =+,得()()()(3)f x f a x a x a -=-++,因为1x a -≤,所以()(3)323x a x a x a x a a -++≤++=-++,由绝对值三角不等式得232324x a a x a a a -++≤-++≤+,故()()24f x f a a -≤+一定成立.故选:C. 【点睛】本题主要考查绝对值三角不等式的灵活应用,在求最值时要注意等号成立的条件,考查逻辑推理能力,属基础题.10.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】 【分析】 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A.11.若关于x 的不等式|x-1|+|x-3|≤a 2-2a-1在R 上的解集为⌀,则实数a 的取值范围是( ) A .(-∞,-1)∪(3,+∞) B .(-∞,0)∪(3,+∞)C .(-1,3)D .[-1,3]【答案】C 【解析】 【分析】表示数轴上的对应点到1和3对应点的距离之和,其最小值为2,再由,解得的取值范围.【详解】表示数轴上的对应点到1和3对应点的距离之和,其最小值为2,由题意的解集为空集, 可得恒成立,所以有,整理得,解得,所以的范围是, 故选C. 【点睛】该题考查的是有关根据不等式的解集为求参数的取值范围的问题,在解题的过程中,注意对不等式的转化,对应恒成立问题向最值靠拢,属于简单题目.12.对任意x ∈R ,不等式22|sin ||sin |x x a a +-≥恒成立,则实数a 的取值范围是( ) A .01a ≤≤ B .11a -≤≤ C .12a -≤≤ D .22a -≤≤【答案】B 【解析】 【分析】解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.求函数()||||||f t t t t a =++-的最小值,从而不等式2||a a ≥可得11a -≤≤.解法二:(特殊值法)代入2a =, 1a =-,排除错误选项即可. 【详解】解:解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.令()||||||f t t t t a =++-,则min [()](0)||f t f a ==, 从而解不等式2||a a ≥可得11a -≤≤.故选B . 解法二:(特殊值法)当2a =时,因为2|sin ||sin 2|2sin 2|sin |2|sin |2x x x x x +-=-+≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 2|4x x +-≥不恒成立, 所以2a =不合题意,可以排除C 、D .当1a =-时,因为2|sin ||sin 1|1sin 2|sin |1|sin |1x x x x x ++=++≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 1|1x x ++≥恒成立, 所以1a =-符合题意,可以排除A. 故选:B 【点睛】本题考查绝对值不等式的参数问题,属于中档题,利用函数求最值的方法或者特殊值排除法都可以解题.13.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=u u u r u u u r,O 为坐标原点,则OB 的最大值是( )A 1- BC 1 D【答案】C 【解析】 【分析】设(),B x y ,利用两点间的距离公式可得221x y ax cy +=++,再利用柯西不等式进行放. 【详解】设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++11≤+=+取等号条件:ay cx =;令OB d ==,则212d d ≤+,得1d ≤.故选:C. 【点睛】本题考查两点间的距离公式,勾股定理、柯西不等式的应用,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不等式放缩时等号成立的条件.14.设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是( ) A .a b a c b c -≤-+-B .2212a a +≥C .12a b a b-+≥- D 【答案】C 【解析】 【分析】A.用a b a b a b -≤±≤+来判断.B.用基本不等式来判断.C.用特殊值当1,2a b ==时来判断.D.==,再比较. 【详解】A. 因为-=-+-≤-+-a b a c c b a c b c 恒成立,故正确.B.因为 2212+≥=a a ,当且仅当221a a =即1a =±时取等号,故正确. C.当1,2a b ==时,1110-+=-=-a b a b,原不等式不成立,故错误.D.==>≤确. 故选:C 【点睛】本题主要考查了不等式的比较及其应用,还考查了转化化归的思想,属于中档题.15.若关于x 的不等式2x m n -<的解集为(,)αβ,则αβ-的值( ) A .与m 有关,且与n 有关 B .与m 有关,但与n 无关 C .与m 无关,且与n 无关 D .与m 无关,但与n 有关【答案】D 【解析】 【分析】根据题意先解出不等式2x m n -<的解集,再根据解集求出αβ-的值,即可判断其与,m n 之间的关系.【详解】2222m n m nx m n n x m n x -+-<⇒-<-<⇒<<Q ,22m n m nαβ∴-+==22m n m nn αβ-+-∴==-- 因此,αβ-的值与m 无关,但与n 有关.故选:D. 【点睛】本题主要考查绝对值不等式的解法,形式如(0)x m a a -<> 的绝对值不等式,可以转化为a x m a -<-< 的简单不等式进行求解.16.函数()f x cosx = ,则()f x 的最大值是( ) ABC .1D .2【答案】A 【解析】 【分析】将()f x 化为()f x cosx =,利用柯西不等式即可得出答案.【详解】因为()f x cosx = 所以()f x cosx =…=当且仅当3cosx =时取等号. 故选:A 【点睛】本题主要考查了求函数的最值,涉及了柯西不等式的应用,属于中档题.17.已知数列{}n a 的前n 项和2n S n =,数列{}n b 满足()1log 01n n ana b a a +=<<,n T 是数列{}n b 的前n 项和,若11log 2n a n M a +=,则n T 与n M 的大小关系是( ) A .n n T M ≥ B .n n T M >C .n n T M <D .n n T M ≤【答案】C 【解析】 【分析】先求出2462log ()13521n a nT n =⨯⨯⨯-L,log n a M =,再利用数学归纳法证明*1321)242n n N n -⨯⨯⋯⨯<∈即得解. 【详解】因为2n S n =,所以11=1,21(2)n n n a a S S n n -=-=-≥适合n=1,所以=21n a n -. 所以2log 21n an b n =-, 所以24622462log log log log log ()1352113521n a a a a a n n T n n =+++=⨯⨯⨯--L111log =log (21)log 22n a n a a M a n +=+= 下面利用数学归纳法证明不等式*1321)242n n N n -⨯⨯⋯⨯∈ (1)当1n =时,左边12=,右边=<右边,不等式成立, (2)22414n n -<Q ,即2(21)(21)(2)n n n +-<.即212221n n n n -<+,∴<,∴< 假设当n k =时,原式成立,即1121232k k -⨯⨯⋯⨯<,那么当1n k =+时,即112121212322(1)2(1)k k k k k k -++⨯⨯⋯⨯⨯<=<++g , 即1n k =+时结论成立.根据(1)和(2)可知不等式对任意正整数n 都成立.所以246213521n n ⨯⨯⨯>-L因为0<a <1,所以2462log ()log 13521a a n n ⨯⨯⨯<-L所以n n T M <.故选:C【点睛】本题主要考查数列通项的求法,考查对数的运算和对数函数的性质,考查数学归纳法,意在考查学生对这些知识的理解掌握水平.18.若函数()12f x x x a =+++的最小值3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或8【答案】D【解析】试题分析:由题意,①当12a ->-时,即2a >,3(1),2(){1,123(1),1a x a x a f x x a x x a x --+≤-=+--<≤-++>-,则当2a x =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =或4a =-(舍);②当12a -<-时,即2a <,3(1),1(){1,123(1),2x a x a f x x a x a x a x --+≤-=-+--<≤-++>-,则当2a x =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =(舍)或4a =-;③当12a -=-时,即2a =,()31f x x =+,此时min ()0f x =,不满足题意,所以8a =或4a =-,故选D.19.已知x+3y+5z=6,则x 2+y 2+z 2的最小值为( )A .65B .635 C .3635 D .6【答案】C【解析】【分析】由题意结合柯西不等式的结论求解x 2+y 2+z 2的最小值即可.【详解】由柯西不等式,得:x 2+y 2+z 2=(12+32+52)(x 2+y 2+z 22221)135++ ≥(1×x+3×y+5×z )2135⨯=26136.3535⨯= 当且仅当x 6186,,35357y z ===时等号成立. 即x 2+y 2+z 2的最小值为3635. 本题选择C 选项.【点睛】根据题目特征,想到利用向量方法或利用柯西不等式想法比较自然.利用柯西不等式代数形式及其向量形式解题的方法是一致的.选择哪种方法进行解题,可能会因解题者的知识解构、思维特征及对问题与方法的熟悉程度做出选择.20.设x ∈R ,则“31x <”是“1122x -<”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】分别求解三次不等式和绝对值不等式确定x 的取值范围,然后考查充分性和必要性是否成立即可.【详解】由31x <可得1x <, 由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B .【点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.。

《不等式选讲》历年高考真题专项突破.doc

《不等式选讲》历年高考真题专项突破.doc

《不等式选讲》历年高考真题专项突破整理人:毛锦涛命题角度1.含有绝对值不等式的解法1.已知函数 f (x)=|2x﹣1|+|2x+a| ,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式 f (x)<g(x)的解集;(Ⅱ)设a>﹣1,且当时,f (x)≤g(x),求a 的取值范围.2.已知函数 f (x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式 f (x)≥ 3 的解集;(2)若f (x)≤|x﹣4| 的解集包含[1 ,2] ,求a 的取值范围.3.设函数f (x)=|x﹣a|+3x ,其中a>0.(Ⅰ)当a=1时,求不等式 f (x)≥3x+2 的解集(Ⅱ)若不等式 f (x)≤0 的解集为{x|x ≤﹣1},求a 的值.4.已知函数 f (x)=|2x﹣a|+a.(1)当a=2时,求不等式 f (x)≤ 6 的解集;(2)设函数g(x)=|2x﹣1| ,当x∈R时,f (x)+g(x)≥3,求a 的取值范围.5.已知函数f (x)=|x﹣2|﹣|x﹣5| .(1)证明:﹣3≤ f (x)≤3;(2)求不等式 f (x)≥x2﹣8x+15的解集.命题角度2.含有绝对值的函数的图像与应用6.已知函数 f (x)=|x+1|﹣2|x﹣a| ,a>0.(Ⅰ)当a=1时,求不等式 f (x)>1 的解集;(Ⅱ)若 f (x)的图象与x轴围成的三角形面积大于6,求a 的取值范围.7.设函数f (x)=|2x﹣4|+1 .(Ⅰ)画出函数y=f (x)的图象:(Ⅱ)若不等式 f (x)≤ax 的解集非空,求 a 的取值范围.8. 已知函数f(x)=| x+1|﹣| 2x﹣3| .(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式| f(x)| >1 的解集.命题角度3.不等式的证明与最值9.设函数f (x)=|x+ |+|x﹣a| (a>0).(Ⅰ)证明:f (x)≥2;(Ⅱ)若 f (3)<5,求a 的取值范围.10.若a>0,b>0,且+ = .(Ⅰ)求a3+b3 的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.11.设a,b,c,d 均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+ ;(2)+ >+ 是|a﹣b| <|c﹣d| 的充要条件.12.设a,b,c 均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).13.已知函数f (x)=|x﹣|+|x+ | ,M为不等式f (x)<2 的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b| <|1+ab| .14.设a>0,| x-1| <a3,| y-2| <a3,求证:|2x+y-4| <a.15. 若函数 f (x) x 1 2 x a 的最小值为5,则实数a=_______.16.已知a>0,b>0,c>0,函数f (x)=|x+a|+|x﹣b|+c 的最小值为4.(1)求a+b+c 的值;(2)求a2+ b2+c2 的最小值.(柯西不等式)17. 已知关于x的不等式x a b的解集为x 2 x 4 .(I)求实数a,b的值;(II)求at 12 bt 的最大值.(柯西不等式)2017 年03 月30日小毛的高中数学组卷参考答案与试题解析一.解答题(共13小题)1.(2013?新课标Ⅰ)(选修4﹣5:不等式选讲)已知函数 f (x)=|2x﹣1|+|2x+a| ,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式 f (x)<g(x)的解集;(Ⅱ)设a>﹣1,且当时,f (x)≤g(x),求a 的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式 f (x)<g(x)化为|2x﹣1|+|2x ﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y= ,它的图象如图所示:结合图象可得,y<0 的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当时,f (x)=1+a,不等式化为1+a≤x+3,故x ≥a﹣2对都成立.故﹣≥a﹣2,解得a ≤,故a 的取值范围为(﹣1,] .2.(2012?新课标)已知函数 f (x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式 f (x)≥ 3 的解集;(2)若f (x)≤|x﹣4| 的解集包含[1 ,2] ,求a 的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥ 3 即|x﹣3|+|x﹣2| ≥3,即①,或②,或③.解①可得x≤1,解②可得x∈?,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x ≤ 1 或x≥4}.(2)原命题即 f (x)≤|x﹣4| 在[1 ,2] 上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1 ,2] 上恒成立,等价于|x+a| ≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1 ,2] 上恒成立.故当1 ≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a 的取值范围为[﹣3,0] .3.(2011?新课标)设函数 f (x)=|x﹣a|+3x ,其中a>0.(Ⅰ)当a=1时,求不等式 f (x)≥3x+2 的解集(Ⅱ)若不等式 f (x)≤0 的解集为{x|x ≤﹣1},求a 的值.【解答】解:(Ⅰ)当a=1时,f (x)≥3x+2 可化为|x﹣1| ≥2.由此可得x≥ 3 或x≤﹣1.故不等式 f (x)≥3x+2 的解集为{x|x ≥ 3 或x≤﹣1}.(Ⅱ)由 f (x)≤0 得|x﹣a|+3x ≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x }由题设可得﹣=﹣1,故a=24.(2016?新课标Ⅲ)已知函数 f (x)=|2x﹣a|+a .(1)当a=2时,求不等式 f (x)≤ 6 的解集;(2)设函数g(x)=|2x﹣1| ,当x∈R时,f (x)+g(x)≥3,求a 的取值范围.【解答】解:(1)当a=2时,f (x)=|2x﹣2|+2 ,∵f (x)≤6,∴|2x﹣2|+2 ≤6,|2x﹣2| ≤4,|x﹣1| ≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f (x)≤ 6 的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1| ,∴f (x)+g(x)=|2x﹣1|+|2x﹣a|+a ≥3,2|x﹣|+2|x﹣|+a ≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1| ≥>0,∴(a﹣1)2≥2,(3﹣a)2≥(3﹣a)解得2≤a<3,∴a 的取值范围是[2 ,+∞).5.(2011?辽宁)选修4﹣5:不等式选讲已知函数 f (x)=|x﹣2|﹣|x﹣5| .(1)证明:﹣3≤ f (x)≤3;(2)求不等式 f (x)≥x2﹣8x+15的解集.。

高考数学压轴专题最新备战高考《不等式选讲》真题汇编附答案

高考数学压轴专题最新备战高考《不等式选讲》真题汇编附答案

新高考数学《不等式选讲》专题解析一、141.已知命题P:2log (1)1x -<;命题q:21x -<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】先化简命题p 和q,再利用充要条件的定义判断得解. 【详解】由题得命题p:1<x <3,命题q:1<x <3. 所以命题p 是命题q 的充要条件. 故选C 【点睛】本题主要考查对数不等式和绝对值不等式的解法,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+【答案】C 【解析】 【分析】先表示出()()f x f a -,利用绝对值三角不等式a b a b ±≤+即可求解. 【详解】由()23f x x x =+,得()()()(3)f x f a x a x a -=-++,因为1x a -≤,所以()(3)323x a x a x a x a a -++≤++=-++,由绝对值三角不等式得232324x a a x a a a -++≤-++≤+,故()()24f x f a a -≤+一定成立.故选:C. 【点睛】本题主要考查绝对值三角不等式的灵活应用,在求最值时要注意等号成立的条件,考查逻辑推理能力,属基础题.3.猜测使2n a n >对任意正整数n 恒成立的最小正整数a 的值为( ) A .2B .3C .4D .5【答案】B 【解析】 【分析】由题意结合选项利用特殊值排除选项A ,然后利用数学归纳法证明选项B 正确即可. 【详解】注意到当2,4a n ==时,2n a n >不成立,则2a =不合题意, 当3a =时,不等式即23n n >, 当1n =时,不等式即31>, 当2n =时,不等式即94>,下面用数学归纳法证明该式对于*,3n N n ∈≥成立, 当3n =时,不等式即279>,明显成立, 假设()*3,n k k k N=≥∈时不等式成立,即23kk >,则当1n k =+时,123333k k k +=⋅>, 而()()222*31221k k k k k N-+=--∈,结合二次函数的性质可知,当2k >时,22221222210k k -->⨯-⨯->,故当*3,k k N ≥∈时,()()2222310,31k k k k -+>>+.综上可得,23n n >对任意的n 均成立. 则最小正整数a 的值为3. 故选:B . 【点睛】本题主要考查数学归纳法的应用,排除法处理选择题的技巧等知识,意在考查学生的转化能力和计算求解能力.4.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A B .13C .2D 【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b为平面上一点,||OM =所以||4OM ==,当且仅当223a b =时,取等号, 222213b e a =-=,e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.5.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.6.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.7.2018年9月24日,英国数学家.M F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和,记222111123S n =+++++L L ,则( ) A .413S << B .4332S << C .322S << D .2S >【答案】C 【解析】 【分析】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--,利用放缩法和极限,即可得到答案. 【详解】 由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--, 所以2221111111113111()()()232334121n S n n n n =+++++>+-+-++-=-++L L L 22211111111111(1)()()2232231n S n n n nL L =++++<+-+-++-=--, 当n →+∞且n N +∈时,101n →+,且10n →,所以322S <<,故选C. 【点睛】本题主要考查了数列思想的应用问题,其中解答中,认真审题,利用21n进行合理放缩,再利用极限求解是解答本题的关键,着重考查了分析问题和解答问题的能力,以及放缩思想的应用,属于中档试题.8.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.9.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4B .最小值是-4,最大值是0C .最小值是-4,最大值是4D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.10.设n *∈N) A>BC=D .不能确定【答案】B 【解析】 【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】22-===.22-===.*n N ∈42,31n n n n +>++>+>>><<成立,因此本题选B . 【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.11.若关于x 的不等式x 2x 1a +-->的解集不是空集,则实数a 的取值范围是( ) A .()3,∞ B .()3,∞-C .(),3∞-D .(),3∞--【答案】C 【解析】x 2x 1+--表示数轴上的x 对应点到2-和1对应点的距离之差,其最大值为3,故当3a >时,关于x 的不等式x 2x 1a +-->的解集不是空集,故实数a 的取值范围为(),3∞-,故选C.点睛:本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.12.已知,,x y z R +∈,且1x y z ++=,则222x y z ++的最小值是( ) A .1 B .13C .12D .3【答案】B 【解析】 【分析】利用柯西不等式得出()()()2222222111xy z x y z ++++≥++,于此可得出222x y z ++的最小值。

高考数学压轴专题新备战高考《不等式选讲》真题汇编及答案

高考数学压轴专题新备战高考《不等式选讲》真题汇编及答案

数学《不等式选讲》期末复习知识要点一、141.不等式222log 2log x x x x -<+的解集为( ) A .()1,2 B .()0,1C .()1,+∞D .()2,+∞【答案】C 【解析】 【分析】由题意得出0x >,分2log 0x >和2log 0x ≤两种情况讨论,结合222log 2log x x x x -<+可得出2log 0x >,解出该不等式即可.【详解】由题意得出0x >,当2log 0x ≤时,则222log 2log x x x x -=+. 当2log 0x >时,222log 2log x x x x -<+,解不等式2log 0x >得1x >. 因此,不等式222log 2log x x x x -<+的解集为()1,+∞. 故选:C. 【点睛】本题考查绝对值不等式的求解,同时也考查绝对值三角不等式的应用,考查推理能力与运算求解能力,属于中等题.2.已知()f x 是定义域为R 的偶函数,当0x …时,2()4f x x x =+,则(2)5f x +>的解集为( )A .(,5)(5,)-∞-+∞UB .(,5)(3,)-∞-+∞UC .(,7)(3,)-∞-+∞UD .(,7)(2,)-∞-+∞U【答案】C 【解析】 【分析】根据偶函数以及当0x …时,2()4f x x x =+,可得0x ≥时的表达式,由此求得(2)(|2|)f x f x +=+,再代入可解得.【详解】∵()f x 是定义域为R 的偶函数,∴当0x ≥时,0x -≤,所以22()()()4()4f x f x x x x x =-=-+-=-. 由()25f x +>以及()f x 为偶函数,得(|2|)5f x +>,∴2|2|4|2|5x x +-+>,所以(|2|5)(|2|1)0x x +-++>, 因为|2|10x ++>,所以|2|5x +>,所以25x +>或25x +<-, 解得7<-x 或 3.x > 故选C 【点睛】本题考查了利用函数的奇偶性求函数解析式,绝对值不等式的解法,属于中档题.3.不等式2124x x a a +--≥-的解集为R ,则实数a 的取值范围是( ) A .(][),13,-∞+∞U B .()(),13,-∞⋃+∞ C .[]1,3 D .()1,3【答案】C 【解析】 【分析】令()12f x x x =+--,通过对x 的取值范围的讨论,去掉绝对值符号,可求得()min 3f x =,依题意,即可求得实数a 的取值范围.【详解】令()12f x x x =+--,当1x <-时,()()123f x x x =----+=-;当12x -≤≤时,()()[]12213,3f x x x x =+--+=-∈-; 当2x >时,()()123f x x x =+--=; ∴()min 3f x =-.∵不等式2124x x a a +--≥-的解集为R , ∴()2min 43a a f x -≤=-,即实数a 的取值范围是[]1,3.故选C. 【点睛】本题考查绝对值不等式的解法,考查函数恒成立问题,解题方法是转化为求函数最值,然后解不等式.4.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A B .13C D 【答案】D 【解析】【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,22||OM a b =+,根据柯西不等式得到a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,22||OM a b =+,所以222222291||()()(31)4OM a b a b a b=+=+++=…,当且仅当223a b =时,取等号, 222213b e a =-=,6e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.5.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式选讲》历年高考真题专项突破整理人:毛锦涛命题角度1.含有绝对值不等式的解法1.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.2.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.3.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.4.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.5.已知函数f(x)=|x﹣2|﹣|x﹣5|.(1)证明:﹣3≤f(x)≤3;(2)求不等式f(x)≥x2﹣8x+15的解集.命题角度2.含有绝对值的函数的图像与应用6.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.7.设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.8. 已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.命题角度3.不等式的证明与最值9.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.10.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.11.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a ﹣b|<|c ﹣d|的充要条件.12.设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ) (Ⅱ).13.已知函数f (x )=|x ﹣|+|x+|,M 为不等式f (x )<2的解集. (Ⅰ)求M ;(Ⅱ)证明:当a ,b ∈M 时,|a+b|<|1+ab|.14.设a >0,|x -1|<3a ,|y -2|<3a,求证:|2x+y-4|<a.15. 若函数()12f x x x a =++-的最小值为5,则实数a =_______.16.已知a >0,b >0,c >0,函数f (x )=|x+a|+|x ﹣b|+c 的最小值为4. (1)求a+b+c 的值;(2)求a 2+b 2+c 2的最小值.(柯西不等式)17.已知关于x 的不等式x a b +<的解集为{}24x x <<. (I )求实数a ,b 的值;(II 12at bt ++的最大值.(柯西不等式)2017年03月30日小毛的高中数学组卷参考答案与试题解析一.解答题(共13小题)1.(2013•新课标Ⅰ)(选修4﹣5:不等式选讲)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则 y=,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当时,f(x)=1+a,不等式化为 1+a≤x+3,故 x≥a﹣2对都成立.故﹣≥a﹣2,解得 a≤,故a的取值范围为(﹣1,].2.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为 {x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x 在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].3.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=24.(2016•新课标Ⅲ)已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).5.(2011•辽宁)选修4﹣5:不等式选讲已知函数f(x)=|x﹣2|﹣|x﹣5|.(1)证明:﹣3≤f(x)≤3;(2)求不等式f(x)≥x2﹣8x+15的解集.【解答】解:(1)f(x)=|x﹣2|﹣|x﹣5|=.当2<x<5时,﹣3<2x﹣7<3.所以﹣3≤f(x)≤3.(2)由(1)可知,当x≤2时,f(x)≥x2﹣8x+15的解集为空集;当2<x<5时,f(x)≥x2﹣8x+15的解集为{x|5﹣≤x<5};当x≥5时,f(x)≥x2﹣8x+15的解集为{x|5≤x≤6}.综上,不等式f(x)≥x2﹣8x+15的解集为{x|5﹣≤x≤6}.6.(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).7.(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).8.(2014•新课标Ⅱ)设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即 6﹣a+<5,即 a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).9.(2014•新课标Ⅰ)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.10.(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.11.(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【解答】证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:a2+b2+c2≥ab+bc+ca,由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.12.(2016•新课标Ⅱ)已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.【解答】解:(I)当x<时,不等式f(x)<2可化为:﹣x﹣x﹣<2,解得:x>﹣1,∴﹣1<x<,当≤x≤时,不等式f(x)<2可化为:﹣x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:﹣+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(﹣1,1);证明:(Ⅱ)当a,b∈M时,(a2﹣1)(b2﹣1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.13.(2015•福建)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.【解答】解:(1)因为f(x)=|x+a|+|x﹣b|+c≥|(x+a)﹣(x﹣b)|+c=|a+b|+c,当且仅当﹣a≤x≤b时,等号成立,又a>0,b>0,所以|a+b|=a+b,所以f(x)的最小值为a+b+c,所以a+b+c=4;(2)由(1)知a+b+c=4,由柯西不等式得,(a2+b2+c2)(4+9+1)≥(•2+•3+c•1)2=(a+b+c)2=16,即a2+b2+c2≥当且仅当==,即a=,b=,c=时,等号成立.所以a2+b2+c2的最小值为.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).。

相关文档
最新文档